JP2021133490A - Correction-polishing processing method and correction-polishing processing device - Google Patents

Correction-polishing processing method and correction-polishing processing device Download PDF

Info

Publication number
JP2021133490A
JP2021133490A JP2020034252A JP2020034252A JP2021133490A JP 2021133490 A JP2021133490 A JP 2021133490A JP 2020034252 A JP2020034252 A JP 2020034252A JP 2020034252 A JP2020034252 A JP 2020034252A JP 2021133490 A JP2021133490 A JP 2021133490A
Authority
JP
Japan
Prior art keywords
polishing
work
correction
processing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020034252A
Other languages
Japanese (ja)
Inventor
龍一郎 大出
Ryuichiro Ode
龍一郎 大出
雄介 松澤
Yusuke Matsuzawa
雄介 松澤
寛和 橋爪
Hirokazu Hashizume
寛和 橋爪
秀和 三村
Hidekazu Mimura
秀和 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Natsume Optical Corp
Original Assignee
University of Tokyo NUC
Natsume Optical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Natsume Optical Corp filed Critical University of Tokyo NUC
Priority to JP2020034252A priority Critical patent/JP2021133490A/en
Publication of JP2021133490A publication Critical patent/JP2021133490A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a correction-polishing processing method and a correction-polishing processing device which can suppress occurrence of streaks in a static processing trace, and do not cause anisotropy in surface roughness even when increasing scanning pitch of correction-polishing processing, so that efficiency in processing can be improved.SOLUTION: A correction-polishing processing method, which performs scanning processing by numerically controlling a rotary tool 2 that can perform polishing processing locally, while supplying slurry polishing processing liquid 8, processes a work-piece 90 while oscillating the work-piece. A vibration frequency of the oscillation is 0.1 Hz or more and amplitude of vibration is 1 μm or more. In the polishing processing liquid, abrasive grain made of organic particles whose average particle size is 5 μm or more are dispersed in liquid, which is composed mainly of pure water or water.SELECTED DRAWING: Figure 1

Description

本発明は、局所的に研磨加工可能な回転ツールにより数値制御で走査加工する修正研磨加工方法に関する。 The present invention relates to a correction polishing method in which scanning is performed by numerical control using a rotation tool capable of locally polishing.

レンズやミラーなどの光学素子の表面形状は、光の集光性能や強度変化に大きく影響を及ぼす。一方で、要求される表面形状は様々である。特に非球面や自由曲面形状は、従来のすり合わせ研磨による作製は難しい。そこで、局所的に研磨加工可能な回転ツールを、スラリー状の研磨加工液を間に供給しつつ、ワーク(被加工物)に押し付けながら全面にわたって数値制御で走査加工する修正研磨加工が行われている。 The surface shape of optical elements such as lenses and mirrors greatly affects the light condensing performance and changes in intensity. On the other hand, the required surface shapes are various. In particular, it is difficult to produce aspherical surfaces and free-form surface shapes by conventional grinding. Therefore, a correction polishing process is performed in which a rotary tool capable of locally polishing process is subjected to numerical control scanning processing over the entire surface while being pressed against a work (workpiece) while supplying a slurry-like polishing processing liquid in between. There is.

修正研磨加工では、予めワークと同質の材料に回転ツールを走査せずに研磨加工することで静止加工痕を得、この静止加工痕を単位時間当たりに置き換えた単位加工形状を得る。そして、この単位加工形状とワーク上の形状誤差(修正目標形状)とをデコンボリューション(逆畳み込み積分)計算することで回転ツールの滞留時間(走査速度)を算出し、この滞留時間分布に沿って回転ツールを走査する、というプロセスにより目的の形状へと修正加工を行う(例えば、特許文献1参照。)。 In the correction polishing process, a static processing mark is obtained by polishing a material of the same quality as the work in advance without scanning the rotation tool, and a unit processing shape is obtained by replacing the static processing mark per unit time. Then, the residence time (scanning speed) of the rotation tool is calculated by deconvolution (deconvolution integration) of this unit processing shape and the shape error (correction target shape) on the work, and along this residence time distribution. The process of scanning the rotation tool performs correction processing to the desired shape (see, for example, Patent Document 1).

修正研磨加工では、ツール摩耗や加工液(スラリー)の供給方法によって発生する、加工レートの不安定性を抑えることが重要となる。特に、酸化セリウムやシリカなどの一般的な研磨砥粒を用いた場合、砥粒の分散性の悪さが加工レートの不安定性の要因となる。この課題に対し、本発明者は既に、アクリルなどの有機粒子を砥粒として用いるOrganic Abrasive Machining(OAM法)を開発した(特許文献2を参照。)。有機粒子を用いるメリットは、水と比重が近いため粒子の分散性が非常に高い、工作物と比べて柔らかく加工傷が付きにくい、有機溶剤に溶解するため加工後の除去が容易、安価で入手し易いといった点が挙げられる。 In the corrective polishing process, it is important to suppress the instability of the processing rate caused by tool wear and the method of supplying the processing liquid (slurry). In particular, when general abrasive grains such as cerium oxide and silica are used, poor dispersibility of the abrasive grains causes instability of the processing rate. In response to this problem, the present inventor has already developed Organic Abrasive Machining (OAM method) using organic particles such as acrylic as abrasive particles (see Patent Document 2). The merits of using organic particles are that the specific gravity is close to that of water, so the dispersibility of the particles is very high, it is softer than a workpiece and less likely to be scratched, and it is easy to remove after processing because it dissolves in an organic solvent, and it can be obtained at low cost. The point is that it is easy to do.

上記OAM法では、アクリル粒子を用いて100μm空間分解能の修正研磨加工が達成されている。しかしながら、このOAM法においても、図6に示す通り、静止加工痕にツールの回転方向に依存する縞が発生する。この結果、修正研磨加工の走査ピッチを上げると、研磨加工後の表面粗さはツール回転方向に異方性が見られ、わずかに悪化してしまう。このため、走査ピッチを上げることができず、加工の効率化が図れないといった課題があった。 In the above OAM method, a correction polishing process having a spatial resolution of 100 μm is achieved using acrylic particles. However, even in this OAM method, as shown in FIG. 6, fringes depending on the rotation direction of the tool are generated in the static machining marks. As a result, when the scanning pitch of the correction polishing process is increased, the surface roughness after the polishing process is anisotropy in the tool rotation direction and is slightly deteriorated. Therefore, there is a problem that the scanning pitch cannot be increased and the processing efficiency cannot be improved.

特開2005−22005号公報Japanese Unexamined Patent Publication No. 2005-2205 特許第6446590号公報Japanese Patent No. 6446590

そこで、本発明が前述の状況に鑑み、解決しようとするところは、静止加工痕での縞の発生を抑え、修正研磨加工の走査ピッチを上げても表面粗さに異方性が出ず、加工の効率化を図ることができる修正研磨加工方法および修正研磨加工装置を提供する点にある。 Therefore, in view of the above-mentioned situation, the present invention tries to solve the problem by suppressing the occurrence of fringes in the static processing marks and increasing the scanning pitch of the correction polishing process without anisotropy in the surface roughness. The point is to provide a correction polishing processing method and a correction polishing processing apparatus capable of improving the processing efficiency.

本発明者は、上述の課題を解決するべく鋭意検討した結果、ワークを揺動させることにより加工を平均化して縞の発生、ひいては異方性を抑制し、表面粗さを改善できる可能性があることを着想し、揺動による静止加工痕の変化を調査した結果、本発明を完成するに至ったものである。 As a result of diligent studies to solve the above-mentioned problems, the present inventor may be able to average the processing by oscillating the work, suppress the generation of fringes and thus anisotropy, and improve the surface roughness. As a result of investigating the change in the static processing mark due to the shaking, the present invention has been completed.

すなわち本発明は、以下の発明を包含する。 That is, the present invention includes the following inventions.

(1) 局所的に研磨加工可能な回転ツールを、スラリー状の研磨加工液を間に供給しつつ、数値制御で走査加工する修正研磨加工方法において、前記ワークを揺動させながら加工を行うことを特徴とする、修正研磨加工方法。 (1) In a correction polishing method in which a rotary tool capable of locally polishing is scanned by numerical control while supplying a slurry-like polishing liquid in between, the work is processed while swinging. A modified polishing method characterized by.

(2) 前記揺動の振動数を、0.1Hz以上とした、(1)記載の修正研磨加工方法。 (2) The modified polishing method according to (1), wherein the frequency of the vibration is 0.1 Hz or higher.

(3) 前記揺動の振幅を、1μm以上とした、(1)又は(2)記載の修正研磨加工方法。 (3) The modified polishing method according to (1) or (2), wherein the swing amplitude is 1 μm or more.

(4) 前記研磨加工液が、平均粒径5μm以上の有機粒子からなる砥粒を液体中に分散させた研磨加工液である、(1)〜(3)の何れかに記載の修正研磨加工方法。 (4) The correction polishing process according to any one of (1) to (3), wherein the polishing process solution is a polishing process solution in which abrasive grains composed of organic particles having an average particle size of 5 μm or more are dispersed in the liquid. Method.

(5) 前記液体が、純水または水を主成分とする液体である、(1)〜(4)の何れかに記載の修正研磨加工方法。 (5) The modified polishing method according to any one of (1) to (4), wherein the liquid is a liquid containing pure water or water as a main component.

(6) 走査されない静止状態で局所的にワークを研磨できるワーク研磨用の回転ツールと、
該回転ツールとワークとの間に、スラリー状の研磨加工液を供給する加工液供給手段と、前記ワークをXYZ方向に移動可能に保持するワーク保持機構と、該ワーク保持機構に保持されたワークを揺動させる揺動手段とを備え、前記揺動手段によって揺動するワークに対し、前記ワーク保持機構を数値制御して走査加工する、修正研磨加工装置。
(6) A rotary tool for polishing workpieces that can locally polish workpieces in a stationary state without scanning,
A processing liquid supply means for supplying a slurry-like polishing processing liquid between the rotating tool and the work, a work holding mechanism for holding the work movably in the XYZ direction, and a work held by the work holding mechanism. A correction polishing processing apparatus provided with a swinging means for swinging the work, and scanning the work swinging by the swinging means by numerically controlling the work holding mechanism.

(7) 前記揺動手段が、前記ワークを保持する保持体を、前記揺動方向に沿って案内するガイド機構と、前記保持体を前記揺動方向に沿って振動させる振動アクチュエータと、よりなる(6)記載の修正研磨加工装置。 (7) The swinging means comprises a guide mechanism for guiding the holding body holding the work along the swinging direction, and a vibrating actuator for vibrating the holding body along the swinging direction. (6) The modified polishing apparatus according to (6).

以上にしてなる本願発明によれば、ワークを、回転ツールの回転方向に交差する方向にワークを揺動させながら加工を行うことで、該回転ツールによる静止加工痕での縞の発生が抑えられるため、数値制御で走査加工する際の走査ピッチを上げても、表面粗さに異方性が出ず、修正研磨加工の効率化を図ることができる。 According to the invention of the present application as described above, by processing the work while swinging the work in a direction intersecting the rotation direction of the rotation tool, it is possible to suppress the occurrence of fringes on the static processing marks by the rotation tool. Therefore, even if the scanning pitch is increased during the scanning process by numerical control, the surface roughness does not become anisotropic, and the efficiency of the correction polishing process can be improved.

本発明の代表的実施形態に係る修正研磨加工装置を示す正面図。The front view which shows the correction polishing processing apparatus which concerns on the typical embodiment of this invention. 左側は揺動なしの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of static processing marks without shaking, and the right side is a graph showing the depth profile. 左側は揺動の振幅1μmの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of a static processing mark having a swing amplitude of 1 μm, and the right side is a graph showing a depth profile. 左側は揺動の振幅5μmの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of a static processing mark having a swing amplitude of 5 μm, and the right side is a graph showing a depth profile. 左側は揺動の振幅10μmの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of a static processing mark having a swing amplitude of 10 μm, and the right side is a graph showing a depth profile. 左側は揺動の振幅20μmの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of a static processing mark having a swing amplitude of 20 μm, and the right side is a graph showing a depth profile. 左側は揺動の振幅30μmの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of a static processing mark having a swing amplitude of 30 μm, and the right side is a graph showing a depth profile. 左側は揺動なしの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of static processing marks without shaking, and the right side is a graph showing the depth profile. 左側は揺動の振動数0.1Hzの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of a static processing mark with a vibration frequency of 0.1 Hz, and the right side is a graph showing a depth profile. 左側は揺動の振動数1Hzの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of a static processing mark with a vibration frequency of 1 Hz, and the right side is a graph showing a depth profile. 左側は揺動の振動数10Hzの静止加工痕の表面観察画像、右側は深さプロファイルを示すグラフ。The left side is a surface observation image of a static processing mark with a vibration frequency of 10 Hz, and the right side is a graph showing a depth profile. 左側は揺動なし、走査ピッチ10μmの走査加工痕の表面観察画像、右側は拡大像。The left side is a surface observation image of scanning traces with a scanning pitch of 10 μm without shaking, and the right side is an enlarged image. 左側は揺動あり、走査ピッチ10μmの走査加工痕の表面観察画像、右側は拡大像。The left side is oscillating, and the surface observation image of scanning marks with a scanning pitch of 10 μm, and the right side is an enlarged image. 左側は揺動なし、走査ピッチ50μmの走査加工痕の表面観察画像、右側は拡大像。The left side is a surface observation image of scanning traces with a scanning pitch of 50 μm without shaking, and the right side is an enlarged image. 左側は揺動あり、走査ピッチ50μmの走査加工痕の表面観察画像、右側は拡大像。The left side is oscillating, and the surface observation image of scanning marks with a scanning pitch of 50 μm, and the right side is an enlarged image. (a)は10μmピッチの走査加工におけるPSD、(b)は50μmピッチの走査加工におけるPSD。(A) is a PSD in a 10 μm pitch scanning process, and (b) is a PSD in a 50 μm pitch scanning process. (a)は従来のOAM法における静止加工痕の表面観察画像、(b)は走査加工前後の表面粗さを示す画像。(A) is a surface observation image of static processing marks in the conventional OAM method, and (b) is an image showing surface roughness before and after scanning processing. 走査加工の方法を示す説明図。Explanatory drawing which shows the method of scanning processing.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。 Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本発明の代表的実施形態に係る修正研磨加工装置1は、図1に示すように、ワーク9に対して局所的に押し付けられるワーク研磨用の回転ツール2と、回転ツール2とワーク9との間に、スラリー状の研磨加工液を供給する加工液供給手段3と、ワーク9をXYZ方向に移動可能に保持するワーク保持機構4と、ワーク保持機構4に保持されたワーク9を揺動させる揺動手段5とを備えている。 As shown in FIG. 1, the correction polishing apparatus 1 according to a typical embodiment of the present invention includes a rotation tool 2 for polishing a work that is locally pressed against the work 9, and the rotation tool 2 and the work 9. In between, the machining fluid supply means 3 for supplying the polishing fluid in the form of a slurry, the work holding mechanism 4 for holding the work 9 so as to be movable in the XYZ direction, and the work 9 held by the work holding mechanism 4 are swung. It is provided with a swinging means 5.

本実施形態では、OAM法(特許第6446590号公報記載の局所研磨加工方法)に、揺動手段5を組み合わせて構成したものについて説明するが、本発明は、このようなOAM法を用いたものに限定されるものではなく、EEM加工(Elastic Emission Machining)法や磁性流体研磨加工方法(特公平2−25745号公報)、その他の種々の局所研磨加工法に揺動手段を組み合わせて構成することが可能である。特に、工具ツールとワーク表面が直接接触せず、もしくは強い接触力を生じず、高速で揺動することが可能な修正研磨加工法に組み合わせて構成することが有効である。なお、本実施形態のOAM法に関する構成に関しては、上記特許第6446590号公報の記載が参照により援用される。 In the present embodiment, the OAM method (local polishing method described in Japanese Patent No. 6446590) and the swinging means 5 will be described in combination, but the present invention uses such an OAM method. The EEM processing (Elastic Emission Machining) method, the ferrofluid polishing processing method (Japanese Patent Publication No. 2-25745), and various other local polishing processing methods are combined with the swinging means. Is possible. In particular, it is effective to combine it with a correction polishing method capable of swinging at high speed without direct contact between the tool and the work surface or generating a strong contact force. Regarding the configuration of the OAM method of the present embodiment, the description of Japanese Patent No. 6446590 is incorporated by reference.

回転ツール2は、ゴム等の弾性素材よりなる回転体20と、先端に該回転体20が設けられ、該回転体20を回転させる軸方向に長い軸体21と、基端側で該軸体21を支持しつつ軸中心に回転させる回転支持部22とより構成されており、回転体20の外周面をワーク9側に押し当てることで、軸体21が湾曲し、該湾曲した軸体21の弾性復元力により回転体20がワーク9側に押し付け付勢される。図中符号70は錘、71の電子天秤であり、回転体20のワーク9への押し付け荷重(及び荷重変化)を電子天秤71で詳細に測定し、パソコン10に記録できるように構成されている。 The rotating tool 2 includes a rotating body 20 made of an elastic material such as rubber, a shaft body 21 provided with the rotating body 20 at the tip and long in the axial direction for rotating the rotating body 20, and the shaft body on the proximal end side. It is composed of a rotation support portion 22 that rotates the center of the shaft while supporting the 21. By pressing the outer peripheral surface of the rotating body 20 against the work 9, the shaft body 21 is curved, and the curved shaft body 21 is curved. The rotating body 20 is pressed against the work 9 side and urged by the elastic restoring force of. Reference numeral 70 in the figure is an electronic balance of the weight and 71, and is configured so that the pressing load (and load change) of the rotating body 20 on the work 9 can be measured in detail by the electronic balance 71 and recorded on the personal computer 10. ..

回転体20は、ワーク9に対面する外周面における研磨作用領域の外径(領域内の最大直径)が5.0mm以下になるように構成され、回転体の直径(外周面の最大直径)は従来の回転ツールの直径と比較して小径に設定されている。具体的な弾性素材としては、フッ素ゴムを用いることが好ましい。回転体20の形状は、球状、部分球状、断面円のリング形状(トロイダル形状)その他、種々の形状が採用できる。 The rotating body 20 is configured so that the outer diameter (maximum diameter in the region) of the polishing action region on the outer peripheral surface facing the work 9 is 5.0 mm or less, and the diameter of the rotating body (maximum diameter of the outer peripheral surface) is The diameter is set smaller than the diameter of the conventional rotating tool. As a specific elastic material, it is preferable to use fluororubber. As the shape of the rotating body 20, various shapes such as a spherical shape, a partial spherical shape, a ring shape having a circular cross section (toroidal shape), and the like can be adopted.

軸体21は、ステンレス等の金属シャフトを用いることができる。本実施形態では、軸体21の先端部をトロイダル形状の回転体20に嵌め込んで固定し、かつ該軸体21の基端部を回転支持部22に固定することにより回転ツール11が構成されている。回転支持部22は電動モータなどを用いることができる。そして、回転体20とワーク被加工面90との間に介在する砥粒が、回転体20に押さえつけられながら被加工面90上を転動して被加工面90を研磨する。 As the shaft body 21, a metal shaft such as stainless steel can be used. In the present embodiment, the rotation tool 11 is configured by fitting and fixing the tip end portion of the shaft body 21 into the toroidal-shaped rotating body 20 and fixing the base end portion of the shaft body 21 to the rotation support portion 22. ing. An electric motor or the like can be used for the rotation support portion 22. Then, the abrasive grains interposed between the rotating body 20 and the work surface 90 are rolled on the work surface 90 while being pressed by the rotating body 20 to polish the work surface 90.

加工液供給手段3は、噴出ノズル30と、該ノズルから噴射してワーク被加工面90に当って落下する研磨加工液8を受け入れる、噴出ノズル30の周りの回収槽31と、回収槽31に受け入れて回収された研磨加工液8を再度、噴出ノズル30に供給して上方に噴出させるスラリー循環ポンプ35とよりなる加工液噴射ユニットが構成されている。研磨加工液8はこれら噴出ノズル30、ワーク被加工面90、回収槽31およびポンプ35の間を循環する。 The processing liquid supply means 3 is provided in the ejection nozzle 30 and the recovery tank 31 around the ejection nozzle 30 and the recovery tank 31 which receive the polishing processing liquid 8 which is ejected from the nozzle and hits the workpiece surface 90 and falls. A machining fluid injection unit including a slurry circulation pump 35 that supplies the receiving and recovered polishing fluid 8 to the ejection nozzle 30 again and ejects it upward is configured. The polishing liquid 8 circulates between the ejection nozzle 30, the workpiece surface 90, the recovery tank 31, and the pump 35.

研磨加工液8の液体は、有機粒子の分散性の点で純水または水を主成分とする液体であることが好ましい。有機粒子は、種々のものを採用でき、とくに高分子材料からなるアクリル粒子、ウレタン粒子、スチレン粒子など、密度1g/cm3に近いものが好ましい。なかでもウレタンやアクリル(密度は共に1.2g/cm3)がより好ましい。異なる素材の有機粒子を混合してもよい。また、有機粒子の平均粒径は、5μm以上30μm以下が好ましい。 The liquid of the polishing liquid 8 is preferably a liquid containing pure water or water as a main component in terms of the dispersibility of organic particles. Various organic particles can be adopted, and in particular, those having a density close to 1 g / cm3, such as acrylic particles, urethane particles, and styrene particles made of a polymer material, are preferable. Of these, urethane and acrylic (both densities are 1.2 g / cm3) are more preferable. Organic particles of different materials may be mixed. The average particle size of the organic particles is preferably 5 μm or more and 30 μm or less.

ワーク保持機構4は、被加工面90を下方に向けたワーク9を上方位置においてXYZ方向に移動可能に保持するX軸ステージ41、Y軸ステージ43及びZ軸ステージ42の3軸自動ステージより構成されている。ワーク保持機構4にワーク9を保持したまま回動させる回動機構(回転ステージ;θステージ)を付与すれば、ワークの位置に加えて姿勢を変えることができ、より加工の自由度を高めることができる。ワーク保持機構4や回転ツール2の支持台60の動作などを図示しないコンピュータにより数値制御することにより、回転ツール2と接触した状態のワーク9を動かし、被加工面90を自動で走査加工するように構成されている。 The work holding mechanism 4 is composed of a three-axis automatic stage of an X-axis stage 41, a Y-axis stage 43, and a Z-axis stage 42 that holds the work 9 with the work surface 90 facing downward so as to be movable in the XYZ direction at an upper position. Has been done. If the work holding mechanism 4 is provided with a rotating mechanism (rotating stage; θ stage) that rotates the work 9 while holding it, the posture can be changed in addition to the position of the work, and the degree of freedom in processing can be further increased. Can be done. By numerically controlling the operation of the work holding mechanism 4 and the support base 60 of the rotation tool 2 by a computer (not shown), the work 9 in contact with the rotation tool 2 is moved, and the surface 90 to be machined is automatically scanned. It is configured in.

揺動手段5は、ワーク9を保持する保持体40を揺動方向に沿って案内するガイド機構51と、保持体40を揺動方向に沿って振動させる振動アクチュエータ52とを備えている。ガイド機構51はリニアガイドが好適であり、振動アクチュエータ52には圧電アクチュエータが好適である。圧電アクチュエータに正弦波の交流電流を流すことで、圧電アクチュエータの変位がガイド機構51を通じてワークに伝達され、ワークをガイド機構51の案内方向に沿って揺動させる。圧電アクチュエータとしては、たとえばメカノトランスフォーマ社製の変位拡大機構型圧電アクチュエータなどを好適に用いることができる。 The swinging means 5 includes a guide mechanism 51 that guides the holding body 40 that holds the work 9 along the swinging direction, and a vibrating actuator 52 that vibrates the holding body 40 along the swinging direction. A linear guide is suitable for the guide mechanism 51, and a piezoelectric actuator is suitable for the vibration actuator 52. By passing a sinusoidal alternating current through the piezoelectric actuator, the displacement of the piezoelectric actuator is transmitted to the work through the guide mechanism 51, and the work is swung along the guide direction of the guide mechanism 51. As the piezoelectric actuator, for example, a displacement expansion mechanism type piezoelectric actuator manufactured by Mechano Transformer Co., Ltd. can be preferably used.

揺動の振動数は0.1Hz以上、振幅は1μm以上とすることが好ましい。本実施形態では、ガイド機構51による揺動の案内方向は、回転ツール2の被加工面90に沿った回転接線方向に直交する方向にまっすぐな方向とされ、この方向に揺動されることになるが、本発明はこのような揺動方向に限定されない。揺動の態様も直線往復以外に曲線往復、無端状(ループ状)に回転揺動など、種々の態様が可能である。 The frequency of vibration is preferably 0.1 Hz or more, and the amplitude is preferably 1 μm or more. In the present embodiment, the guidance direction of the swing by the guide mechanism 51 is a straight direction in the direction orthogonal to the rotation tangential direction along the machined surface 90 of the rotation tool 2, and the swing is made in this direction. However, the present invention is not limited to such a swing direction. In addition to linear reciprocation, various modes of swinging are possible, such as curved reciprocating and endless (loop-shaped) rotary swinging.

<静止加工痕試験1>
図1に示した加工装置を用い、揺動の振幅のみ変えて、静止加工痕(ツールの走査を停止した加工)の違いを確認する実験を行った結果について説明する。
<Static machining mark test 1>
The result of an experiment for confirming the difference in static machining marks (machining in which the scanning of the tool is stopped) by changing only the swing amplitude using the machining apparatus shown in FIG. 1 will be described.

(加工条件)
・ワークの素材:石英ガラス
・研磨加工液:平均粒径10μmのアクリル粒子を10wt%で純水と混合したスラリー
・回転ツールの回転体の素材:フッ素ゴム
・回転ツールの回転体の外径:3mm
・回転ツールの押し込み深さ:400μm
・回転ツールの回転速度:2000rpm
・ワーク揺動の振動数(圧電アクチュエータに入力する正弦波交流電流の周波数):1Hz
・ワーク揺動の振幅:0μm(揺動なし)/1μm/5μm/10μm/20μm/30μm
・加工時間:5分
(結果)
結果を図2(a)〜図2(f)に示す。各図の左側は、各振幅におけるスポット加工痕全体の走査型白色干渉計による計測結果、右側は深さプロファイルを示している。深さプロファイルのうちツール(回転ツール)の回転と垂直方向(被加工面に沿った回転接線方向に直交する方向)のプロファイルを比較すると、揺動無しでは非常に表面粗さが粗いのに対し、揺動の振幅を増やすほど表面が滑らかになっていく様子が確認された。また、振幅が大きくなるにつれて静止加工痕のサイズが肥大化する様子も確認された。
<静止加工痕試験2>
次に、図1に示した加工装置を用い、揺動の周波数のみ変えて、静止加工痕の違いを確認する実験を行った結果について説明する。
(Processing conditions)
・ Work material: Quartz glass ・ Polishing liquid: Slurry of acrylic particles with an average particle size of 10 μm mixed with pure water at 10 wt% ・ Material of rotating body of rotating tool: Fluorine rubber ・ Outer diameter of rotating body of rotating tool: 3mm
・ Pushing depth of rotation tool: 400 μm
-Rotation speed of rotation tool: 2000 rpm
・ Frequency of work swing (frequency of sinusoidal alternating current input to piezoelectric actuator): 1Hz
-Work swing amplitude: 0 μm (no swing) / 1 μm / 5 μm / 10 μm / 20 μm / 30 μm
・ Processing time: 5 minutes (result)
The results are shown in FIGS. 2 (a) and 2 (f). The left side of each figure shows the measurement result of the entire spot processing mark at each amplitude by the scanning white interferometer, and the right side shows the depth profile. Comparing the depth profiles of the tool (rotation tool) rotation and the vertical direction (direction orthogonal to the rotation tangential direction along the machined surface), the surface roughness is very rough without shaking. It was confirmed that the surface became smoother as the swing amplitude was increased. It was also confirmed that the size of the static processing marks increased as the amplitude increased.
<Static machining mark test 2>
Next, the results of an experiment for confirming the difference in static machining marks by changing only the swing frequency using the machining apparatus shown in FIG. 1 will be described.

(加工条件)
・ワークの素材:石英ガラス
・研磨加工液:平均粒径10μmのアクリル粒子を10wt%で純水と混合したスラリー
・回転ツールの回転体の素材:フッ素ゴム
・回転ツールの回転体の外径:3mm
・回転ツールの押し込み深さ:400μm
・回転ツールの回転速度:2000rpm
・ワーク揺動の振幅:10μm
・ワーク揺動の振動数:0Hz(揺動なし)/0.1Hz/1Hz/10Hz
・加工時間:5分
(結果)
結果を、図3(a)〜図3(d)に示す。各図の左側は、各振幅におけるスポット加工痕全体の走査型白色干渉計による計測結果、右側は深さプロファイルを示している。深さプロファイルのうちツール(回転ツール)の回転と垂直方向(被加工面に沿った回転接線方向に直交する方向)のプロファイルを比較すると、振動数は0.1Hzでも十分に表面粗さの改善が確認された。ただし、これ以上振動数を上げても、さらなる改善は見られなかった。これは、0.1Hzの揺動であってもも加工時間5分の間にワークは30往復しており、十分に加工の平均化作用が行われたことによると考えられる。
<走査加工痕の比較>
回転ツールを送り(ワークを移動させる)ながら、一定範囲の走査(スキャン)加工を行い、走査ピッチの違い、及び揺動の有無による表面粗さの違いを確認する実験を行った結果について説明する。
(Processing conditions)
・ Work material: Quartz glass ・ Polishing liquid: Slurry of acrylic particles with an average particle size of 10 μm mixed with pure water at 10 wt% ・ Material of rotating body of rotating tool: Fluorine rubber ・ Outer diameter of rotating body of rotating tool: 3mm
・ Pushing depth of rotation tool: 400 μm
-Rotation speed of rotation tool: 2000 rpm
・ Amplitude of work swing: 10 μm
-Work swing frequency: 0Hz (no swing) /0.1Hz/1Hz/10Hz
・ Processing time: 5 minutes (result)
The results are shown in FIGS. 3 (a) to 3 (d). The left side of each figure shows the measurement result of the entire spot processing mark at each amplitude by the scanning white interferometer, and the right side shows the depth profile. Comparing the depth profile of the tool (rotation tool) rotation and the vertical direction (direction orthogonal to the rotation tangential direction along the machined surface), the surface roughness is sufficiently improved even at a frequency of 0.1 Hz. Was confirmed. However, even if the frequency was raised further, no further improvement was seen. It is considered that this is because the work reciprocates 30 times during the machining time of 5 minutes even with the fluctuation of 0.1 Hz, and the machining averaging action is sufficiently performed.
<Comparison of scanning marks>
We will explain the results of an experiment in which scanning processing is performed in a certain range while feeding the rotation tool (moving the work), and the difference in scanning pitch and the difference in surface roughness depending on the presence or absence of shaking are confirmed. ..

(加工条件)
・ワークの素材:石英ガラス
・研磨加工液:平均粒径10μmのアクリル粒子を10wt%で純水と混合したスラリー
・回転ツールの回転体の素材:フッ素ゴム
・回転ツールの回転体の外径:3mm
・回転ツールの押し込み深さ:400μm
・回転ツールの回転速度:2000rpm
・ワーク揺動:揺動無し/搖動あり(振幅30μm、振動数90Hz)
・走査ピッチ:10μm/50μm(走査ピッチは図7参照)
・走査範囲:走査ピッチ10μmでは690μm四方、走査ピッチ50μmでは650μm四方
・加工時間:30分
(結果)
結果を、図4(a)〜図4(d)及び図5に示す。図4の各図の左側が加工痕全体の走査型白色干渉計による計測結果であり、右側が加工部分の拡大像である。50μmピッチの揺動無しでは、走査ピッチに依存する表面粗さの悪化がみられたのに対し、50μmピッチの揺動ありでは、走査ピッチに依存する表面粗さの悪化は見られず、表面粗さが改善した。10μmピッチでは、揺動の有無で表面粗さは変わりなかった。すなわち走査ピッチに依存する表面粗さの悪化はみられず、これ以上の表面粗さの改善もなかった。
(Processing conditions)
・ Work material: Quartz glass ・ Polishing liquid: Slurry of acrylic particles with an average particle size of 10 μm mixed with pure water at 10 wt% ・ Material of rotating body of rotating tool: Fluorine rubber ・ Outer diameter of rotating body of rotating tool: 3mm
・ Pushing depth of rotation tool: 400 μm
-Rotation speed of rotation tool: 2000 rpm
・ Work swing: No swing / swing (amplitude 30 μm, frequency 90 Hz)
-Scanning pitch: 10 μm / 50 μm (see Fig. 7 for scanning pitch)
-Scanning range: 690 μm square at a scanning pitch of 10 μm, 650 μm square at a scanning pitch of 50 μm-Processing time: 30 minutes (Result)
The results are shown in FIGS. 4 (a) to 4 (d) and FIG. The left side of each figure of FIG. 4 is the measurement result of the entire processing mark by the scanning white interferometer, and the right side is a magnified image of the processed portion. Without the 50 μm pitch swing, the surface roughness was deteriorated depending on the scanning pitch, whereas with the 50 μm pitch swing, the surface roughness was not deteriorated depending on the scanning pitch, and the surface was not deteriorated. Roughness improved. At a pitch of 10 μm, the surface roughness did not change with or without rocking. That is, no deterioration in surface roughness was observed depending on the scanning pitch, and no further improvement in surface roughness was observed.

図5は揺動方向の表面粗さのPSD(パワースペクトル密度)の比較を示す。50μmピッチの低い空間周波数では表面粗さの改善がみられるが、10μmピッチの高い周波数領域では揺動による表面粗さの改善がみられない結果が得られた。 FIG. 5 shows a comparison of PSD (power spectral density) of surface roughness in the swing direction. The surface roughness was improved at a low spatial frequency of 50 μm pitch, but the surface roughness was not improved by rocking in the high frequency region of 10 μm pitch.

この結果から推測するに、揺動の平均速度が回転ツールの回転速度と比較して1.7%程度しかなく、粒子一つ一つの流れは揺動の影響をほとんど受けないことから、走査ピッチを細かくしてスポット加工時の縞の影響がそもそも出ない状況下では、搖動を加えても更なる表面粗さの向上は図れなかったのであろう。これに対し、走査ピッチを上げた場合の表面粗さの悪化については、搖動により効果的に防止できることがわかる。 Inferring from this result, the average speed of rocking is only about 1.7% of the rotation speed of the rotating tool, and the flow of each particle is hardly affected by rocking, so the scanning pitch. Under the circumstances where the influence of the fringes during spot processing was not seen in the first place, the surface roughness could not be further improved by adding the sway. On the other hand, it can be seen that the deterioration of the surface roughness when the scanning pitch is increased can be effectively prevented by the vibration.

1 修正研磨加工装置
2 回転ツール
3 加工液供給手段
4 ワーク保持機構
5 揺動手段
8 研磨加工液
9 ワーク
20 回転体
21 軸体
22 回転支持部
30 噴出ノズル
31 回収槽
35 スラリー循環ポンプ
35 ポンプ
40 保持体
42 Z軸ステージ
41 X軸ステージ
43 Y軸ステージ
51 ガイド機構
52 振動アクチュエータ
70 錘
71 荷重測定装置
60 支持台
90 被加工面
1 Corrective polishing equipment 2 Rotating tool 3 Machining liquid supply means 4 Work holding mechanism 5 Swinging means 8 Polishing liquid 9 Work 20 Rotating body 21 Shaft 22 Rotating support 30 Spout nozzle 31 Recovery tank 35 Slurry circulation pump 35 Pump 40 Holder 42 Z-axis stage 41 X-axis stage 43 Y-axis stage 51 Guide mechanism 52 Vibration actuator 70 Weight 71 Load measuring device 60 Support base 90 Work surface

Claims (7)

局所的に研磨加工可能な回転ツールを、スラリー状の研磨加工液を間に供給しつつ、数値制御で走査加工する修正研磨加工方法において、
前記ワークを揺動させながら加工を行うことを特徴とする、修正研磨加工方法。
In a correction polishing method in which a rotary tool capable of locally polishing is scanned by numerical control while supplying a slurry-like polishing liquid in between.
A correction polishing processing method, characterized in that processing is performed while swinging the work.
前記揺動の振動数を、0.1Hz以上とした、請求項1記載の修正研磨加工方法。 The modified polishing method according to claim 1, wherein the vibration frequency is 0.1 Hz or higher. 前記揺動の振幅を、1μm以上とした、請求項1又は2記載の修正研磨加工方法。 The modified polishing method according to claim 1 or 2, wherein the swing amplitude is 1 μm or more. 前記研磨加工液が、平均粒径5μm以上の有機粒子からなる砥粒を液体中に分散させた研磨加工液である、請求項1〜3の何れか1項に記載の修正研磨加工方法。 The modified polishing method according to any one of claims 1 to 3, wherein the polishing liquid is a polishing liquid in which abrasive grains composed of organic particles having an average particle size of 5 μm or more are dispersed in the liquid. 前記液体が、純水または水を主成分とする液体である、請求項1〜4の何れか1項に記載の修正研磨加工方法。 The modified polishing method according to any one of claims 1 to 4, wherein the liquid is pure water or a liquid containing water as a main component. 走査されない静止状態で局所的にワークを研磨できるワーク研磨用の回転ツールと、
該回転ツールとワークとの間に、スラリー状の研磨加工液を供給する加工液供給手段と、
前記ワークをXYZ方向に移動可能に保持するワーク保持機構と、
該ワーク保持機構に保持されたワークを揺動させる揺動手段とを備え、
前記揺動手段によって揺動するワークに対し、前記ワーク保持機構を数値制御して走査加工する、修正研磨加工装置。
A rotary tool for polishing workpieces that can locally polish workpieces in a stationary state without scanning,
A processing liquid supply means for supplying a slurry-like polishing processing liquid between the rotating tool and the work,
A work holding mechanism that holds the work movably in the XYZ directions,
A swinging means for swinging the work held by the work holding mechanism is provided.
A correction polishing machine that numerically controls the work holding mechanism to perform scanning on a work that swings by the swinging means.
前記揺動手段が、
前記ワークを保持する保持体を、前記揺動方向に沿って案内するガイド機構と、
前記保持体を前記揺動方向に沿って振動させる振動アクチュエータと、
よりなる請求項6記載の修正研磨加工装置。
The rocking means
A guide mechanism that guides the holding body that holds the work along the swing direction, and
A vibrating actuator that vibrates the holder along the swing direction,
The correction polishing processing apparatus according to claim 6.
JP2020034252A 2020-02-28 2020-02-28 Correction-polishing processing method and correction-polishing processing device Pending JP2021133490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020034252A JP2021133490A (en) 2020-02-28 2020-02-28 Correction-polishing processing method and correction-polishing processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020034252A JP2021133490A (en) 2020-02-28 2020-02-28 Correction-polishing processing method and correction-polishing processing device

Publications (1)

Publication Number Publication Date
JP2021133490A true JP2021133490A (en) 2021-09-13

Family

ID=77659699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034252A Pending JP2021133490A (en) 2020-02-28 2020-02-28 Correction-polishing processing method and correction-polishing processing device

Country Status (1)

Country Link
JP (1) JP2021133490A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225800A (en) * 1996-02-22 1997-09-02 Canon Inc Grinding method
WO2016199612A1 (en) * 2015-06-12 2016-12-15 旭硝子株式会社 Method for manufacturing glass plate, glass plate, and display device
JP2020025998A (en) * 2018-08-09 2020-02-20 国立大学法人 東京大学 Local polishing processing method, local polishing processing device, and corrective polishing processing device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225800A (en) * 1996-02-22 1997-09-02 Canon Inc Grinding method
WO2016199612A1 (en) * 2015-06-12 2016-12-15 旭硝子株式会社 Method for manufacturing glass plate, glass plate, and display device
JP2020025998A (en) * 2018-08-09 2020-02-20 国立大学法人 東京大学 Local polishing processing method, local polishing processing device, and corrective polishing processing device using the same

Similar Documents

Publication Publication Date Title
CA2234761C (en) Deterministic magnetorheological finishing
EP1072357B1 (en) Elid centerless grinding apparatus
JP6617454B2 (en) Cutting apparatus and cutting method
JP2008264929A (en) Electrolytic polishing device
JP2007210074A (en) Grinding device, polishing device, grinding method and polishing method
EP0868976A2 (en) Lapping apparatus and method for high speed lapping with a rotatable abrasive platen
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
CN108381305A (en) A kind of spherical array focus ultrasonic fluid oscillation polishing system based on acoustic lens
JP6446590B1 (en) Local polishing method, local polishing apparatus, and corrected polishing apparatus using the local polishing apparatus
JP2021133490A (en) Correction-polishing processing method and correction-polishing processing device
JP2019166635A (en) Cutting device and cutting method
JP2007098541A (en) Polishing tool and polish method
JPS63267155A (en) Polishing device
JP2008194796A (en) Lapping tool and device
JP2006075986A (en) Work polishing method and polishing device
JP7113456B2 (en) Grinding device and grinding method
JP5903689B2 (en) High frequency vibration internal grinding machine
Walker et al. Commissioning of the first Precessions 1.2 m CNC polishing machines for large optics
JP2009090414A (en) Spherical surface grinding method for lens
JP2011031371A (en) Compound surface grinding device
JP2007245273A (en) Polishing method using twisted thread cylindrical tool, polishing tool for performing its polishing method, and polishing device equipped with its polishing tool
JP5352892B2 (en) Grinding method and grinding apparatus
CN114340830A (en) Scraping device and scraping method
JP2005111629A (en) Polishing tool, polishing device using the same, and polishing method
JPH11333702A (en) Device and method for generating spherical surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240416