JP4770165B2 - High-speed EEM processing method using agglomerated fine particles - Google Patents

High-speed EEM processing method using agglomerated fine particles Download PDF

Info

Publication number
JP4770165B2
JP4770165B2 JP2004357656A JP2004357656A JP4770165B2 JP 4770165 B2 JP4770165 B2 JP 4770165B2 JP 2004357656 A JP2004357656 A JP 2004357656A JP 2004357656 A JP2004357656 A JP 2004357656A JP 4770165 B2 JP4770165 B2 JP 4770165B2
Authority
JP
Japan
Prior art keywords
processing
fine particles
workpiece
eem
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004357656A
Other languages
Japanese (ja)
Other versions
JP2006159379A (en
Inventor
勇藏 森
Original Assignee
森 勇蔵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森 勇蔵 filed Critical 森 勇蔵
Priority to JP2004357656A priority Critical patent/JP4770165B2/en
Publication of JP2006159379A publication Critical patent/JP2006159379A/en
Application granted granted Critical
Publication of JP4770165B2 publication Critical patent/JP4770165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、凝集微粒子による高速EEM加工方法に係わり、更に詳しくは、Siウェーハ、SOI等の半導体ウェーハ及び薄膜用基板等の被加工物の加工面に超微粒子を流動接触させて歪み、クラック及び熱変質等を全く生じさせずに加工を進行させる凝集微粒子による高速EEM加工方法に関するものである。 The present invention relates to a high-speed EEM processing method using agglomerated fine particles. More specifically, ultrafine particles are brought into fluid contact with a processed surface of a workpiece such as a Si wafer, a semiconductor wafer such as SOI, and a thin film substrate. The present invention relates to a high-speed EEM processing method using agglomerated fine particles in which processing proceeds without causing any thermal alteration.

従来、超微粒子を分散した懸濁液を被加工物の加工面に沿って流動させて、該超微粒子を加工面上に略無荷重の状態で接触させ、その際の超微粒子と加工面界面での相互作用(一種の化学結合)により、加工面原子を原子単位に近いオーダで除去して加工する、いわゆるEEM(Elastic Emission Machining)は既に知られている。表面加工技術の一つであるEEMは,加工物表面と加工物表面と反応性を持った粉末微粒子表面との2つの固体表面間の化学反応を利用した超精密加工法である。EEMでは、原子スケールから見て大きな微粒子を用いるため、マイクロラフネスの凹部の原子は微粒子表面と作用せず、凸部の原子が優先的に除去される。そのため、加工すべき除去量が非常に少なく、効率の良い加工が可能である。また、微粒子供給領域を広くすることによって、長周期の粗さ除去も可能である。EEMを実現するためには、微粒子の供給、除去のための安定した超純水の流れを被加工物表面上に発生させる必要がある。この超微粒子を加工面上に供給する方式として、回転球型加工ヘッド方式とノズル型加工ヘッド方式とが提案されている。   Conventionally, a suspension in which ultrafine particles are dispersed is made to flow along the processed surface of the workpiece, and the ultrafine particles are brought into contact with the processed surface under almost no load. So-called EEM (Elastic Emission Machining), in which processed surface atoms are removed by an order close to the atomic unit by an interaction (a kind of chemical bond), is already known. EEM, which is one of the surface processing techniques, is an ultra-precise processing method that uses a chemical reaction between two solid surfaces, the surface of the workpiece, the surface of the workpiece, and the surface of the fine powder particles having reactivity. Since EEM uses large fine particles as viewed from the atomic scale, the atoms in the concave portions of the microroughness do not act on the surface of the fine particles, and the atoms in the convex portions are removed preferentially. Therefore, the removal amount to be processed is very small, and efficient processing is possible. Moreover, long period roughness can be removed by widening the fine particle supply region. In order to realize EEM, it is necessary to generate a stable flow of ultrapure water for supplying and removing fine particles on the surface of the workpiece. As a method of supplying the ultrafine particles onto the processing surface, a rotating sphere type processing head method and a nozzle type processing head method have been proposed.

回転球型加工ヘッド方式では、特許文献1〜3に示されているように、加工用球体を被加工物の加工面に押圧しながら回転駆動手段により回転させて加工面近傍に懸濁液流を発生させるとともに、その動圧によって加工面に対して非接触状態を維持し、そして球体を加工面全面に走査して、加工面上の微小領域に形成されるスポット加工痕を連続させて、広い表面を精密に加工するのである。また、ノズル型加工ヘッド方式では、特許文献4に示されているように、超純水を主体とした加工槽内に被加工物と高圧力ノズルとを所定の間隔を置いて配設され、被加工物の表面近傍に高圧力ノズルから噴射した超純水の高速剪断流を発生させるとともに、超純水の流れによって被加工物と化学的な反応性のある微粒子を被加工物表面に供給し、被加工物と化学結合した微粒子を高速剪断流にて取り除いて被加工物表面の原子を除去し、加工を進行させるのである。   In the rotating sphere processing head method, as shown in Patent Documents 1 to 3, the processing sphere is pressed against the processing surface of the work piece while being rotated by the rotation driving means, so that the suspension flow near the processing surface. And maintaining a non-contact state with respect to the processing surface by the dynamic pressure, and scanning the sphere over the entire processing surface, to continue the spot processing marks formed in a minute region on the processing surface, A wide surface is precisely processed. Further, in the nozzle type processing head system, as shown in Patent Document 4, a workpiece and a high pressure nozzle are disposed at a predetermined interval in a processing tank mainly composed of ultrapure water, A high-speed shear flow of ultrapure water sprayed from a high-pressure nozzle is generated near the surface of the workpiece, and fine particles chemically reactive with the workpiece are supplied to the workpiece surface by the flow of ultrapure water. Then, fine particles chemically bonded to the workpiece are removed by a high-speed shear flow to remove atoms on the surface of the workpiece, and the processing proceeds.

回転球型加工ヘッド方式では、物理的に安定な弾性流体潤滑状態を被加工物の表面に発生させ、該表面上に高速剪断流を発生させて加工し、中間空間波長領域(1μm〜100μm)における平滑化が可能である。しかし、回転球と被加工物との間の微小ギャップに一様な流れを作るためには、回転球の周囲で発生する不要な流れが影響を与えないように加工槽を大型化する必要があり、また回転球の材質にポリウレタン製等の低弾性率高分子材料を使用する必要があったため、寸法精度や耐久性が劣るばかりでなく、加工液の有機汚染が発生し、更に水による膨潤滑のため回転体が変形し、流れの安定性が得られないといった欠点を有し、更に別の問題点として、回転球では非対称なポイント状加工痕しか得られないこと、微小ギャップが1μm程度のため加工液中の粗粒の影響による外乱を受け易いこと、加工能率が低いことが挙げられる。   In the rotating sphere type machining head method, a physically stable elastohydrodynamic lubrication state is generated on the surface of the workpiece, a high-speed shear flow is generated on the surface, and the medium space wavelength region (1 μm to 100 μm) is processed. Can be smoothed. However, in order to create a uniform flow in the minute gap between the rotating sphere and the workpiece, it is necessary to enlarge the processing tank so that unnecessary flow generated around the rotating sphere does not affect it. In addition, since it was necessary to use a low elastic modulus polymer material such as polyurethane as the material of the rotating sphere, not only the dimensional accuracy and durability were inferior, but also organic contamination of the processing liquid occurred, and further swelling due to water The rotating body is deformed due to slipping, and the flow stability cannot be obtained. As another problem, the rotating sphere can only obtain asymmetric point-shaped processing marks, and the micro gap is about 1 μm. Therefore, it is easy to receive the disturbance by the influence of the coarse grain in a processing liquid, and that processing efficiency is low.

そこで、新たに開発されたノズル型加工ヘッド方式では、使用する微粒子が制限されないので、様々な微粒子を選択することが可能であり、また約0.1mm(円孔ノズルでは直径、スリット孔ノズルでは幅)の局所領域のみに微粒子の供給が可能であるので、数値制御加工用のヘッドとして適しているといった利点がある。ここで、微粒子の表面形状はEEMの平坦化メカニズムから非常に重要な要素である。従って、EEMでは微粒子の分散性、均一性を重視した結果、球形微粒子を用いていた。しかしながら、球形微粒子では、加工面との接触面積が小さいため、一つ一つの微粒子の除去加工量は少なく、加工能率が低いという欠点を有している。
特公平2−25745号公報 特公平7−16870号公報 特公平6−44989号公報 特開2000−167770号公報
Therefore, in the newly developed nozzle type machining head system, the fine particles to be used are not limited, so it is possible to select various fine particles, and about 0.1 mm (diameter for circular nozzles, and for slit nozzles) Since the fine particles can be supplied only to the local region of (width), there is an advantage that it is suitable as a head for numerical control processing. Here, the surface shape of the fine particles is a very important factor from the planarization mechanism of EEM. Therefore, as a result of emphasizing the dispersibility and uniformity of fine particles in EEM, spherical fine particles were used. However, since spherical fine particles have a small contact area with the processed surface, they have the disadvantages that the amount of removal of each fine particle is small and the processing efficiency is low.
Japanese Patent Publication No. 2-25745 Japanese Patent Publication No. 7-16870 Japanese Patent Publication No. 6-44989 JP 2000-167770 A

そこで、本発明が前述の状況に鑑み、解決しようとするところは、ノズル型加工ヘッド方式において、使用する微粒子が制限されないという利点を生かし、微粒子の種類や加工パラメータを最適化して、Siウェーハを始めとして難加工性のSiC等を含む半導体ウェーハや、Zerodur、ULE等のEUVL用光学素子材料等の高能率な加工を実現する凝集微粒子による高速EEM加工方法を提供することを目的としている。 Therefore, in view of the above-mentioned situation, the present invention intends to solve the problem that the nozzle type machining head system takes advantage of the fact that the fine particles to be used are not limited, optimizes the kind of fine particles and the machining parameters, and creates a Si wafer. It is an object of the present invention to provide a high-speed EEM processing method using agglomerated fine particles that realizes high-efficiency processing such as semiconductor wafers containing SiC, which is difficult to process, and optical element materials for EUVL such as Zerodur and ULE.

本発明は、前述の課題解決のために、加工槽内の超純水を主体とした液体中に被加工物とノズル型加工ヘッドとを所定の間隔を置いて配設し、粒径が1〜100nmの微粒子が凝集して平均径が0.5〜5μmの集合体となった凝集微粒子を超純水に分散させた加工液を、前記ノズル型加工ヘッドから被加工物の表面に噴射し、該被加工物の表面近傍に加工液の剪断流を発生させるとともに、加工液の流れによって被加工物と化学的な反応性のある凝集微粒子を被加工物表面に供給し、被加工物と化学結合した凝集微粒子を剪断流にて取り除いて被加工物表面の原子を除去し、加工を進行させる凝集微粒子による高速EEM加工方法を構成した。
ここで、前記凝集微粒子は、SiO2微粒子を加熱により凝集させた集合体であることが工業性の面で好ましい。
そして、前記加工液中の凝集微粒子の濃度を3〜7vol%とすることが好ましい。更に、前記ノズル型加工ヘッドから噴射される加工液の噴射角度は、被加工物の表面に対して10〜90°の範囲であることが好ましい。
In order to solve the above-mentioned problem, the present invention arranges a workpiece and a nozzle type processing head at a predetermined interval in a liquid mainly composed of ultrapure water in a processing tank, and has a particle size of 1. A processing liquid in which aggregated fine particles, which are aggregates having an average diameter of 0.5 to 5 μm by aggregation of fine particles of ˜100 nm, are dispersed in ultrapure water is sprayed from the nozzle type processing head onto the surface of the workpiece. Generating a shearing flow of the machining fluid in the vicinity of the surface of the workpiece, and supplying aggregated fine particles chemically reactive with the workpiece to the workpiece surface by the flow of the machining fluid; The chemically bonded agglomerated fine particles were removed by a shear flow to remove atoms on the surface of the workpiece, and a high-speed EEM processing method using agglomerated fine particles for proceeding the processing was configured.
Here, the agglomerated fine particles are preferably aggregates obtained by agglomerating SiO 2 fine particles by heating, from an industrial viewpoint.
And it is preferable that the density | concentration of the aggregation fine particle in the said processing liquid shall be 3-7 vol%. Furthermore, it is preferable that the spray angle of the processing liquid sprayed from the nozzle type processing head is in the range of 10 to 90 ° with respect to the surface of the workpiece.

以上にしてなる本発明の凝集微粒子による高速EEM加工方法は、Si(001)表面における平面加工においては、従来の球形微粒子を用いたEEMと比較して、表面の平滑化性能が若干劣るものの300倍以上の加工速度を達成することができ、しかもSiCのような難加工物も加工することが可能であり、またZerodur、ULE等のEUVL用光学素子材料においても、約150〜300倍の単位除去レートで加工することが可能である。本発明は、従来の球形微粒子を用いたEEMの前加工として用いることで、高能率且つ超精密なEEMを実現できるのである。
The high-speed EEM processing method using the agglomerated fine particles of the present invention as described above is slightly inferior in surface smoothing performance to the surface processing on the Si (001) surface as compared with the conventional EEM using spherical fine particles. Double the processing speed can be achieved, and difficult-to-work materials such as SiC can be processed. In the EULD optical element materials such as Zerodur and ULE, the unit is about 150 to 300 times. It is possible to process at a removal rate. The present invention can realize high-efficiency and ultra-precise EEM by using it as pre-processing of EEM using conventional spherical fine particles.

ノズル型加工ヘッド方式の場合、ノズル開口部から吐出された流れにより微粒子を被加工物表面に供給し、また付着した微粒子は剪断流により除去される。EEM加工を実現するためには、この加工ヘッドに関する様々な加工パラメータを最適に選択しなければならない。EEMの加工パラメータは大きく二つに分けることができる。一つはどのような性質の微粒子を選択するかであり、もう一つは微粒子を超純水に分散させた加工液を被加工物に対してどのように吐出するかである。   In the case of the nozzle type machining head method, fine particles are supplied to the surface of the workpiece by the flow discharged from the nozzle opening, and the adhered fine particles are removed by a shear flow. In order to realize EEM processing, various processing parameters relating to the processing head must be optimally selected. The processing parameters of EEM can be roughly divided into two. One is what kind of fine particles are selected, and the other is how to discharge a machining liquid in which fine particles are dispersed in ultrapure water to a workpiece.

微粒子を被加工物表面と化学的な相互作用によって、結合・脱離するには、被加工物表面上に、ある一定以上の速度勾配をもった剪断流が必要である。本実施形態では、被加工表面上の特定の位置に微粒子を高能率に供給するために、スリット状に開口したノズル型加工ヘッドを用いている。図1に本実施形態で使用したノズル型加工ヘッドの概念図を示し、表1にその加工液吐出パラメータの範囲を示している。ノズル型加工ヘッド1と被加工物2の表面間の距離Dは1mm程度に設定できるため、ノズル型加工ヘッド走査の際の姿勢制御が極めて容易であり、また機械剛性や熱変形、その他の原因による装置の変形が加工に及ぼす影響は無視できる。また、安定した流れを形成するために、加工液の吐出は液中で行っている。また、前記ノズル型加工ヘッドから噴射される加工液の噴射角度は、被加工物の表面に対して10〜90°の範囲に設定し、更に被加工物の表面に沿って効率良く高速剪断流を形成するために、噴射角度を30〜45°に設定することが好ましい。   In order to bind and desorb the fine particles to / from the workpiece surface by chemical interaction, a shear flow having a certain speed gradient or more is required on the workpiece surface. In the present embodiment, a nozzle type processing head opened in a slit shape is used in order to efficiently supply fine particles to a specific position on the processing surface. FIG. 1 shows a conceptual diagram of a nozzle type machining head used in this embodiment, and Table 1 shows a range of machining fluid discharge parameters. Since the distance D between the nozzle type processing head 1 and the surface of the workpiece 2 can be set to about 1 mm, the posture control during the scanning of the nozzle type processing head is extremely easy, and mechanical rigidity, thermal deformation, and other causes The influence of the deformation of the device on machining is negligible. Further, in order to form a stable flow, the machining liquid is discharged in the liquid. Further, the spray angle of the processing liquid sprayed from the nozzle type processing head is set in a range of 10 to 90 ° with respect to the surface of the workpiece, and the high-speed shear flow is efficiently performed along the surface of the workpiece. In order to form the angle, it is preferable to set the injection angle to 30 to 45 °.

Figure 0004770165
Figure 0004770165

加工液吐出条件のうち、平均吐出流速Vとは、背圧、流路長さ、開口ギャップで決まり、その時の流量を開口面積により割ったものである。加工特性に対しては、この平均吐出流速V、ノズル−被加工物間距離D、吐出角度θは、被加工物表面上へ到達したときの微粒子の持つ運動エネルギーを決定し、加工表面上における流れの様子にも大きく影響する。それゆえ、目的とする加工量、加工表面粗さを達成するために、最適な吐出条件を選択する必要がある。   Among the processing liquid discharge conditions, the average discharge flow velocity V is determined by the back pressure, the flow path length, and the opening gap, and the flow rate at that time is divided by the opening area. For the processing characteristics, the average discharge flow velocity V, the nozzle-workpiece distance D, and the discharge angle θ determine the kinetic energy of the fine particles when they reach the workpiece surface. It greatly affects the flow. Therefore, it is necessary to select the optimum discharge conditions in order to achieve the target processing amount and processing surface roughness.

一方、EEMは微粒子表面の反応性を利用した加工法であるので、その微粒子材料は加工特性に大きく影響する。また、微粒子の表面形状は、EEMの平坦化メカニズムを考えると加工速度及び原子レベルにおける表面粗さに対して重要なパラメータである。   On the other hand, since EEM is a processing method that utilizes the reactivity of the surface of the fine particles, the fine particle material greatly affects the processing characteristics. The surface shape of the fine particles is an important parameter for the processing speed and the surface roughness at the atomic level in view of the EEM flattening mechanism.

本実施形態では、微粒子材料としては、SiO2微粒子を採用した。そして、図2は、加工に用いたシリカ微粒子のTEM像である。図2(a)の微粒子は、本発明において新たに採用した平均径が約2μmの凝集微粒子であり、粒子径が0.1μm以下、実際には数十nmの1次粒子を加熱により凝集させた集合体で、表面積が非常に大きい特徴を有するものである。図2(b)の微粒子は、従来からEEMで用いている粒径が2μmで均一な球状のシリカ微粒子であり、この微粒子を加工に用いることによって、原子レベルで平滑なSi(001)表面作製が可能であることは、すでに公知である。しかし、球形微粒子では、加工面との接触面積が非常に小さいため、一つ一つの微粒子の除去加工量は少ない。そこで、図2(a)の凝集微粒子を加工に用いた場合、SiC表面との接触領域を広くでき、高能率な表面加工ができることを見出したのである。尚、凝集微粒子と同様に多数の微小凹凸を表面に有する単一非球形微粒子を用いても同様に高能率で加工できるものと推測できる。 In the present embodiment, SiO 2 fine particles are employed as the fine particle material. FIG. 2 is a TEM image of the silica fine particles used for processing. The fine particles in FIG. 2 (a) are agglomerated fine particles newly adopted in the present invention and having an average diameter of about 2 μm, and the primary particles having a particle diameter of 0.1 μm or less, actually several tens of nanometers, are aggregated by heating. It has a characteristic that its surface area is very large. The fine particles in FIG. 2 (b) are uniform spherical silica fine particles having a particle diameter of 2 μm, which have been used in EEM in the past. By using these fine particles for processing, a smooth Si (001) surface can be produced at the atomic level. It is already known that this is possible. However, in the case of spherical fine particles, the contact area with the processed surface is very small, so that the removal processing amount of each fine particle is small. Therefore, it has been found that when the agglomerated fine particles of FIG. 2 (a) are used for processing, the contact area with the SiC surface can be widened and highly efficient surface processing can be performed. In addition, it can be presumed that, similarly to the aggregated fine particles, even if single non-spherical fine particles having a large number of minute irregularities on the surface are used, they can be similarly processed with high efficiency.

以下に、凝集微粒子を用いた本発明加工と球形微粒子を用いた従来加工とを比較することによって、本発明の優れた加工能率を実証する。両微粒子によるSi(001)表面における平面加工を実施し、加工速度、表面粗さの違いを評価した。その加工条件を表2に示す。ここで、注目すべきことは、凝集微粒子を用いた場合、吐出流速、ノズル−被加工物間距離などの吐出条件により、微粒子に与えるエネルギーが小さいにもかかわらず、球形微粒子を用いた場合と比較して、表面の平滑化性能が若干劣るものの300倍以上の加工速度が得られている。実際に、加工前のSi表面と、凝集微粒子と球形微粒子とで加工した後のそれぞれのSi表面を、位相シフト干渉顕微鏡でそれぞれ異なる部位を16回測定して平均値を求めた。加工前のSi表面は、RMS:0.146nm、P−V:1.421nmであったのが、凝集微粒子による加工後は、RMS:0.183nm、P−V:2.14nm、球形微粒子による加工後は、RMS:0.127nm、P−V:1.365nmとなった。即ち、球形微粒子による加工後は、加工前の表面よりRMSとP−Vともに改善されているが、凝集微粒子による加工後は、加工前の表面よりRMSとP−Vとも若干悪くなっている。しかし、凝集微粒子による加工速度の大幅な向上は、注目すべきである。   Hereinafter, the superior processing efficiency of the present invention will be demonstrated by comparing the present processing using aggregated fine particles with the conventional processing using spherical fine particles. Planar processing on the Si (001) surface with both fine particles was performed, and the difference in processing speed and surface roughness was evaluated. Table 2 shows the processing conditions. Here, it should be noted that when aggregated fine particles are used, spherical fine particles are used even though the energy given to the fine particles is small due to the discharge conditions such as the discharge flow rate and the nozzle-workpiece distance. In comparison, although the surface smoothing performance is slightly inferior, a processing speed of 300 times or more is obtained. Actually, the Si surface before processing, and each Si surface after processing with aggregated fine particles and spherical fine particles were measured 16 times at different sites with a phase shift interference microscope, and the average value was obtained. The Si surface before processing was RMS: 0.146 nm and PV: 1.421 nm, but after processing with aggregated fine particles, RMS: 0.183 nm, PV: 2.14 nm, and spherical fine particles. After processing, RMS was 0.127 nm and PV was 1.365 nm. That is, after processing with spherical fine particles, both RMS and PV are improved from the surface before processing, but after processing with aggregated fine particles, both RMS and PV are slightly worse than the surface before processing. However, the significant improvement in processing speed due to the agglomerated fine particles should be noted.

Figure 0004770165
Figure 0004770165

次に、加工除去レートの安定性は、実用化を考慮すると重要な評価項目である。凝集微粒子の場合、微小微粒子の集合体であるので、時間経過において微粒子の崩壊などが起こり、加工除去レートの減少が考えられる。そこで、凝集微粒子を用いた場合の加工除去レートの長時間安定性を調べた。加工液条件は、表3と同等であるが、加工液濃度は6.8vol%としている。加工液作製日から10日〜15日経過するまでは体積加工速度は約1/5に急激に減少するが、その後は30日まで一定の値を維持することが確かめられた。体積加工速度は、10分間のSi(001)表面の静止加工を行い、その単位加工痕形状から求め、試料交換の時間以外は、常に加工を継続した。また、加工後の表面粗さに関しても、ZYGO干渉顕微鏡により調べた結果、64μm×48μmの像において、前述の値と同等の表面粗さが継続して得られることが確認できた。   Next, the stability of the processing removal rate is an important evaluation item in consideration of practical use. In the case of an agglomerated fine particle, since it is an aggregate of fine fine particles, the fine particle collapses over time, and the processing removal rate can be reduced. Therefore, the long-term stability of the processing removal rate when the agglomerated fine particles were used was examined. The working fluid conditions are the same as in Table 3, but the working fluid concentration is 6.8 vol%. It was confirmed that the volumetric processing rate rapidly decreased to about 1/5 until 10 to 15 days from the working fluid preparation date, but thereafter maintained a constant value until 30 days. The volume processing speed was obtained by static processing of the Si (001) surface for 10 minutes, and was obtained from the shape of the unit processing trace, and the processing was always continued except for the sample exchange time. Further, as a result of examining the surface roughness after processing with a ZYGO interference microscope, it was confirmed that a surface roughness equivalent to the aforementioned value was continuously obtained in an image of 64 μm × 48 μm.

次に、微粒子濃度と加工速度の関係を調べた。加工液作製日から十分な時間が経過した後の、加工液濃度に対する体積加工速度の関係を調べた結果、濃度を上げると飛躍的に加工速度が向上するが、約7vol%以上の加工液濃度にすると、加工液の粘性が高くなるため、これ以上濃度を高くすることは不可能である。従って、高速加工を行うための加工液濃度の最適な範囲は6〜7vol%をとした。そして、表3にSiO2凝集微粒子を用いた最適化加工条件で、Si(001)表面を加工したところ、わずか10分間で5mm×5mmの領域が約100nmの深さで加工されていることがわかった。それにより加工された加工面の表面粗さは、加工前より若干改善されていることも確認できた。 Next, the relationship between the fine particle concentration and the processing speed was examined. As a result of investigating the relationship between the volume machining speed and the machining fluid concentration after a sufficient time has passed since the machining fluid preparation date, the machining speed is dramatically improved by increasing the concentration, but the machining fluid concentration of about 7 vol% or more is increased. In this case, since the viscosity of the machining liquid increases, it is impossible to increase the concentration any more. Therefore, the optimum range of the working fluid concentration for performing high speed machining is set to 6-7 vol%. And when the Si (001) surface was processed under the optimized processing conditions using SiO 2 aggregated fine particles in Table 3, a region of 5 mm × 5 mm was processed at a depth of about 100 nm in just 10 minutes. all right. It was also confirmed that the surface roughness of the processed surface was slightly improved from that before processing.

Figure 0004770165
Figure 0004770165

次に、前述のSiO2凝集微粒子により、Zerodur及びULEの加工を行った。表4にSi(001)表面の加工速度を1としたときのそれぞれの加工速度比を示している。また、Zerodur及びULEの加工表面の位相シフト干渉顕微鏡による観察の結果、わずかに表面粗さの改善が見られ、球形微粒子による加工と同等の表面が得られることがわかった。この結果、凝集微粒子を用いれば、EUVL用の光学材料においても、従来の球形微粒子によるEEMに比べて約150〜300倍の単位除去レートで加工可能であることを確認した。尚、高空間周波数領域は粗さの改善は進むが、ノズル型加工ヘッド方式の場合は、中間周波数領域の粗さの改善は感度が低く、この領域においては前加工プロセスでの平坦化が必要である。 Next, Zerodur and ULE were processed with the above-mentioned SiO 2 aggregated fine particles. Table 4 shows each processing speed ratio when the processing speed of the Si (001) surface is 1. Further, as a result of observing the processed surfaces of Zerodur and ULE with a phase shift interference microscope, it was found that the surface roughness was slightly improved, and a surface equivalent to processing with spherical fine particles was obtained. As a result, it was confirmed that if the aggregated fine particles are used, the EUVL optical material can be processed at a unit removal rate of about 150 to 300 times that of EEM using conventional spherical fine particles. In the high spatial frequency region, the improvement of roughness progresses, but in the case of the nozzle type machining head method, the improvement in the roughness of the intermediate frequency region is low in sensitivity, and in this region, flattening in the pre-processing process is necessary It is.

Figure 0004770165
Figure 0004770165

近年、次世代パワー半導体素子用材料として,ワイドバンドギャップ半導体であるシリコンカーバイド(SiC)単結晶が注目され、Siの性能を超えるSiC素子の研究開発が行われている.さらなるSiC素子の高性能化には、SiC単結晶の結晶欠陥の低減や酸化膜界面の高品位化などの技術開発が望まれている。これらの技術開発のための基礎技術として、清浄かつ平坦なSiC表面を得るための表面処理技術や表面加工技術を確立することは重要である。EEMによるSiC表面の加工を考えた場合,SiC表面は、高硬度かつ化学的に安定であることから、化学反応を利用した加工法であるEEMでは、加工が困難であることが予想される。そのため、加工時に微粒子とSiC表面との反応領域が広くなるように、表面積の大きな凝集微粒子を採用して加工を行った。   In recent years, silicon carbide (SiC) single crystal, which is a wide band gap semiconductor, has attracted attention as a material for next-generation power semiconductor devices, and research and development of SiC devices exceeding the performance of Si has been conducted. In order to further improve the performance of SiC elements, technological developments such as reduction of crystal defects in SiC single crystals and enhancement of the quality of oxide film interfaces are desired. As a basic technology for developing these technologies, it is important to establish a surface treatment technology and a surface processing technology for obtaining a clean and flat SiC surface. When processing of the SiC surface by EEM is considered, since the SiC surface is highly hard and chemically stable, it is expected that processing is difficult with EEM, which is a processing method using a chemical reaction. For this reason, the processing is performed by employing aggregated fine particles having a large surface area so that the reaction area between the fine particles and the SiC surface becomes wide during processing.

本実施形態では、被加工物として、4H-SiC(0001)Si面を用い、加工前の処理として、表面上の自然酸化膜の除去を目的に、50%HF溶液中に10分間浸漬させる処理を行った。この加工における加工条件を表5に示している。   In this embodiment, a 4H—SiC (0001) Si surface is used as a workpiece, and as a pre-processing treatment, the treatment is immersed for 10 minutes in a 50% HF solution for the purpose of removing the natural oxide film on the surface. Went. Table 5 shows the processing conditions in this processing.

Figure 0004770165
Figure 0004770165

図2(a)の凝集微粒子を用いてSiC表面を加工した結果について述べる.図3は加工前のSiC表面を位相シフト干渉顕微鏡で測定した微分像と断面プロファイル、図4は加工後のSiC表面を位相シフト干渉顕微鏡で測定した微分像と断面プロファイルである.測定に用いた顕微鏡は、ZYGO社製 NewView200CHRであり、測定領域は64μm×48μmである。   The result of processing the SiC surface using the agglomerated fine particles of FIG. Fig. 3 shows the differential image and cross-sectional profile obtained by measuring the SiC surface before processing with a phase shift interference microscope, and Fig. 4 shows the differential image and cross-sectional profile obtained by measuring the SiC surface after processing with a phase shift interference microscope. The microscope used for the measurement is NewView200CHR manufactured by ZYGO, and the measurement area is 64 μm × 48 μm.

このときの加工量は50nmであり,加工速度は15.6nm/hであった。加工液の濃度や微粒子の吐出速度を調整することにより、現状の加工速度を数倍にすることも可能であるため、さらに高能率に加工を行うことができる。図3(a),(b)から、前加工表面上には,無数の研磨痕(スクラッチ)が存在し、表面のラフネスは、空間波長1〜10μmの凹凸で構成されていることがわかる。そして、図4(a),(b)から、前加工表面に存在していたスクラッチが加工によって完全に除去され、空間波長5〜10μmのラフネスが除去されて、平滑な表面が形成されていることがわかる。また、図5は、測定データを元に、空間周波数解析PSD(Power Spectral Density)を行った結果である。空間波長1μmから10μmの領域において、表面の平滑化が確認できる。   The processing amount at this time was 50 nm, and the processing speed was 15.6 nm / h. By adjusting the concentration of the processing liquid and the discharge speed of the fine particles, the current processing speed can be increased several times, so that the processing can be performed with higher efficiency. 3 (a) and 3 (b), it can be seen that there are innumerable polishing marks (scratches) on the pre-processed surface, and the surface roughness is composed of irregularities with a spatial wavelength of 1 to 10 μm. Then, from FIGS. 4A and 4B, the scratch existing on the pre-processed surface is completely removed by processing, the roughness of the spatial wavelength of 5 to 10 μm is removed, and a smooth surface is formed. I understand that. FIG. 5 shows the result of performing spatial frequency analysis PSD (Power Spectral Density) based on the measurement data. Smoothing of the surface can be confirmed in a spatial wavelength region of 1 μm to 10 μm.

原子間力顕微鏡:AFM(Atomic Force Microscopy)を用いて加工前後のSiC表面を測定した結果について述べる。測定に用いたAFMはSIIナノテクノロジー社製 SPA400+SPI3800Nであり、大気圧下でDFMモードにより測定した。図6(a),(b),(c)は、加工前後の表面を2μm×2μm領域で測定したAFM像である。前加工表面のマイクロラフネスはRa:0.605nm[P−V:6.169nm,RMS:0.767nm]であるのに対して、図2(a)の凝集微粒子を用いた時の加工表面のマイクロラフネスは、Ra:0.074nm[P−V:1.108nm,RMS:0.093nm]であった。AFM像から,前加工表面上に見られたスクラッチが、加工後には完全に除去され、表面が平滑化されていることから、高能率かつ十分な表面精度を持つ表面が形成されていることがわかる。また、図2(b)の球形微粒子を用いて図6(b)の表面を加工すると、表面のマイクロラフネスがRa:0.042nm[P−V:0.475nm,RMS:0.053nm]となり、さらに原子レベルで平滑な表面が得られることも確認している。   Atomic force microscope: The results of measuring the SiC surface before and after processing using AFM (Atomic Force Microscopy) will be described. The AFM used for the measurement was SPA400 + SPI3800N manufactured by SII Nano Technology, and was measured in the DFM mode under atmospheric pressure. 6A, 6B, and 6C are AFM images obtained by measuring the surface before and after processing in a 2 μm × 2 μm region. The micro-roughness of the pre-processed surface is Ra: 0.605 nm [PV: 6.169 nm, RMS: 0.767 nm], whereas the micro-roughness of the processed surface when using the agglomerated fine particles of FIG. The microroughness was Ra: 0.074 nm [PV: 1.108 nm, RMS: 0.093 nm]. From the AFM image, scratches seen on the pre-processed surface are completely removed after processing, and the surface is smoothed, so that a surface with high efficiency and sufficient surface accuracy is formed. Recognize. When the surface of FIG. 6B is processed using the spherical fine particles of FIG. 2B, the microroughness of the surface becomes Ra: 0.042 nm [PV: 0.475 nm, RMS: 0.053 nm]. It has also been confirmed that a smooth surface can be obtained at the atomic level.

次に、図7は、前加工表面と加工表面の500nm、1μm、2μm、4μm四方を測定したデータから、空間周波数解析を行った結果である。空間周波数解析から、空間波長1μmから0.01μmのすべての領域で、1/10から1/100程度の改善が見られる。これは、各空間波長領域で粗さの振幅が平均して1/3から1/10以下に低減されたことを示している。また、マイクロラフネスのスペクトル構造に違いが生じることなく、加工とともに全空間波長域での一様な平滑化が確認できる。   Next, FIG. 7 shows the results of spatial frequency analysis from data obtained by measuring 500 nm, 1 μm, 2 μm, and 4 μm squares of the pre-processed surface and the processed surface. From the spatial frequency analysis, an improvement of about 1/10 to 1/100 is observed in all regions with a spatial wavelength of 1 μm to 0.01 μm. This indicates that the average amplitude of the roughness is reduced from 1/3 to 1/10 or less in each spatial wavelength region. In addition, uniform smoothing in the entire spatial wavelength region can be confirmed with processing without any difference in the spectral structure of the microroughness.

加工前後での表面の結晶性について、LEED(Low Energy Electron Diffraction)を用いて評価した。加工前にSiCを50%HF溶液中に10分間浸漬させた後、表面をLEEDで観察しても回折パターンは得られなかった。このことから、高濃度のHF洗浄を行ったSiC表面には、ウェーハ作製時の研磨によるダメージ層が少なくとも原子1〜2層分程度存在していることがわかる。つぎに、高濃度のHF洗浄したSiC表面を図2(a)の凝集微粒子を用いて加工した後、表面をLEEDで観察した結果、加工後の表面にはバルクの結晶構造である1×1の回折パターンが確認できた。このことから、加工によって、ウェーハ作製時の研磨工程に起因するダメージ層が除去され、結晶学的な原子配列の乱れのない表面が得られることが、LEEDによる回折スポットの直接観察によって実証された。   The crystallinity of the surface before and after processing was evaluated using LEED (Low Energy Electron Diffraction). Even after immersing SiC in a 50% HF solution for 10 minutes before processing and observing the surface with LEED, a diffraction pattern was not obtained. From this, it can be seen that there are at least about 1 to 2 layers of damaged layers due to polishing during wafer fabrication on the SiC surface subjected to high concentration HF cleaning. Next, after processing the SiC surface cleaned with high concentration HF using the agglomerated fine particles of FIG. 2A, the surface was observed with LEED. As a result, the processed surface had a bulk crystal structure of 1 × 1. The diffraction pattern was confirmed. From this, it was demonstrated by direct observation of diffraction spots by LEED that the damage layer resulting from the polishing process during wafer fabrication was removed by processing, and a surface free of crystallographic atomic arrangement disturbance was obtained. .

このように、凝集微粒子によってSiCを加工することにより、前加工表面に存在していたスクラッチが加工により完全に除去され、結晶構造に乱れのない表面が形成されることを確認した。また、加工表面のマイクロラフネスは、AFMの測定によってRMSが0.1nm以下(2μm×2μm領域)であることを確認し、EEMによって、十分な表面精度が得られることを示した。   As described above, it was confirmed that by processing SiC with the aggregated fine particles, the scratch existing on the pre-processed surface was completely removed by the process, and a surface having no disorder in the crystal structure was formed. Further, the microroughness of the processed surface was confirmed by RMS to be 0.1 nm or less (2 μm × 2 μm region) by AFM measurement, and it was shown that sufficient surface accuracy can be obtained by EEM.

ノズル型加工ヘッドによる加工の概念図である。It is a conceptual diagram of the process by a nozzle type processing head. 微粒子のTEM像を示し、(a)は凝集微粒子、(b)は球形微粒子を示す。The TEM image of microparticles | fine-particles is shown, (a) shows an aggregation microparticle, (b) shows a spherical microparticle. 加工前のSiC表面を位相シフト干渉顕微鏡で測定した結果を示し、(a)は微分像、(b)は断面プロファイルである。The result of having measured the SiC surface before a process with a phase shift interference microscope is shown, (a) is a differential image, (b) is a cross-sectional profile. 加工後のSiC表面を位相シフト干渉顕微鏡で測定した結果を示し、(a)は微分像、(b)は断面プロファイルである。The result of having measured the SiC surface after a process with a phase shift interference microscope is shown, (a) is a differential image, (b) is a cross-sectional profile. 加工後のSiC表面の空間周波数解析(PSD)の結果を示すグラフである。It is a graph which shows the result of the spatial frequency analysis (PSD) of the SiC surface after a process. 加工前後の表面のAFM像であり、(a)は加工前の表面、(b)は凝集微粒子による加工後の表面、(c)は(b)の表面の球形微粒子による加工後の表面をそれぞれ示している。It is an AFM image of the surface before and after processing, (a) is the surface before processing, (b) is the surface after processing with aggregated particles, (c) is the surface after processing with spherical particles on the surface of (b), respectively. Show. 前加工表面(pre-processed surface)と加工表面(processed surface)の500nm、1μm、2μm、4μm四方を測定したデータから空間周波数解析を行った結果を示すグラフである。It is a graph which shows the result of having performed the spatial frequency analysis from the data which measured 500nm, 1 micrometer, 2 micrometers, and 4 micrometers square of the pre-processed surface and the processed surface (processed surface).

符号の説明Explanation of symbols

1 ノズル型加工ヘッド
2 被加工物
1 Nozzle type processing head 2 Work piece

Claims (4)

加工槽内の超純水を主体とした液体中に被加工物とノズル型加工ヘッドとを所定の間隔を置いて配設し、粒径が1〜100nmの微粒子が凝集して平均径が0.5〜5μmの集合体となった凝集微粒子を超純水に分散させた加工液を、前記ノズル型加工ヘッドから被加工物の表面に噴射し、該被加工物の表面近傍に加工液の剪断流を発生させるとともに、加工液の流れによって被加工物と化学的な反応性のある凝集微粒子を被加工物表面に供給し、被加工物と化学結合した凝集微粒子を剪断流にて取り除いて被加工物表面の原子を除去し、加工を進行させることを特徴とする凝集微粒子による高速EEM加工方法。 An object to be processed and a nozzle type processing head are arranged at a predetermined interval in a liquid mainly composed of ultrapure water in a processing tank, and fine particles having a particle diameter of 1 to 100 nm are aggregated to have an average diameter of 0. A machining liquid in which aggregated fine particles that are aggregates of 5 to 5 μm are dispersed in ultrapure water is sprayed from the nozzle type machining head onto the surface of the workpiece, and the machining liquid is placed near the surface of the workpiece. In addition to generating a shear flow, agglomerated fine particles that are chemically reactive with the workpiece are supplied to the workpiece surface by the flow of the machining fluid, and the aggregated fine particles chemically bonded to the workpiece are removed by the shear flow. A high-speed EEM processing method using agglomerated fine particles, characterized in that atoms on the surface of a workpiece are removed and processing proceeds. 前記凝集微粒子は、SiO2微粒子を加熱により凝集させた集合体である請求項記載の凝集微粒子による高速EEM加工方法。 The aggregating fine particles, fast EEM working method using aggregation particles of claim 1, wherein an aggregate obtained by aggregating by heating the SiO 2 particles. 前記加工液中の凝集微粒子の濃度を3〜7vol%とした請求項1又は2記載の凝集微粒子による高速EEM加工方法。 The high-speed EEM processing method using the aggregated fine particles according to claim 1 or 2, wherein the concentration of the aggregated fine particles in the processing liquid is 3 to 7 vol%. 前記ノズル型加工ヘッドから噴射される加工液の噴射角度は、被加工物の表面に対して10〜90°の範囲である請求項1〜何れかに記載の凝集微粒子による高速EEM加工方法。 The high-speed EEM processing method using agglomerated fine particles according to any one of claims 1 to 3 , wherein an injection angle of the processing liquid injected from the nozzle type processing head is in a range of 10 to 90 ° with respect to a surface of the workpiece.
JP2004357656A 2004-12-10 2004-12-10 High-speed EEM processing method using agglomerated fine particles Active JP4770165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357656A JP4770165B2 (en) 2004-12-10 2004-12-10 High-speed EEM processing method using agglomerated fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357656A JP4770165B2 (en) 2004-12-10 2004-12-10 High-speed EEM processing method using agglomerated fine particles

Publications (2)

Publication Number Publication Date
JP2006159379A JP2006159379A (en) 2006-06-22
JP4770165B2 true JP4770165B2 (en) 2011-09-14

Family

ID=36661931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357656A Active JP4770165B2 (en) 2004-12-10 2004-12-10 High-speed EEM processing method using agglomerated fine particles

Country Status (1)

Country Link
JP (1) JP4770165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018117A1 (en) * 2005-08-05 2007-02-15 Yuzo Mori Electron beam assisted eem method
JP6176479B2 (en) * 2013-05-20 2017-08-09 株式会社ジェイテックコーポレーション EEM processing method and apparatus using current collecting nozzle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860352B2 (en) * 1998-12-07 2006-12-20 独立行政法人科学技術振興機構 EEM processing method by high-speed shear flow
JP2000313955A (en) * 1999-03-02 2000-11-14 Mitsui Mining & Smelting Co Ltd Sputtering target and its production

Also Published As

Publication number Publication date
JP2006159379A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
Xu et al. Study on high efficient sapphire wafer processing by coupling SG-mechanical polishing and GLA-CMP
Shi et al. Characterization of colloidal silica abrasives with different sizes and their chemical–mechanical polishing performance on 4H-SiC (0 0 0 1)
Li et al. Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher
CN104736296B (en) The method for polishing sapphire surface
US6793837B2 (en) Process for material-removing machining of both sides of semiconductor wafers
Wang et al. Chemical–mechanical wear of monocrystalline silicon by a single pad asperity
JP5098483B2 (en) Polishing method of sapphire substrate
TW201209002A (en) Synthetic quartz glass substrate and making method
JP2006196609A (en) POLISHING METHOD OF GaN SUBSTRATE
JP2014199847A (en) Method of manufacturing substrate for mask blank for euv lithography, method of manufacturing substrate with multilayer reflection film for euv lithography, method of manufacturing mask blank for euv lithography, and method of manufacturing transfer mask for euv lithography
Yu et al. Effect of ultrasonic vibration on polishing monocrystalline silicon: surface quality and material removal rate
JP2007294073A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
Ban et al. Compound mechanical and chemical-mechanical polishing processing technique for single-crystal silicon carbide
JP4770165B2 (en) High-speed EEM processing method using agglomerated fine particles
Fu et al. Material removal mechanism of Cu-CMP studied by nano-scratching under various environmental conditions
JP2012234604A (en) Method for manufacturing glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP6444680B2 (en) Manufacturing method of substrate, manufacturing method of substrate with multilayer reflective film, manufacturing method of mask blank, and manufacturing method of transfer mask
Wang et al. Effect of abrasive on tribological behavior and polishing effect of β-Ga2O3 (100) substrate
Yin et al. Characteristic of SiC slurry in ultra precision lapping of sapphire substrates
Kang et al. The deterioration characteristics and mechanism of polishing pads in chemical mechanical polishing of fused silica
JP2017182057A (en) Method for manufacturing substrate, method for manufacturing substrate with multilayer reflection film, method for manufacturing mask blank, and method for manufacturing transfer mask
Chen et al. Performance assessment of ultrathin sapphire wafer polishing with layer stacked clamping (LSC) method
Wang et al. Effect of different grinding strategies on subsequent polishing processes of sapphire
Choi et al. Pad surface and coefficient of friction correlation analysis during friction between felt pad and single-crystal silicon
Qu et al. Material removal rate prediction and surface quality study for ultrasonic vibration polishing of monocrystalline silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4770165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250