JP2020010536A - 電池保護回路、蓄電装置、及び電気機器 - Google Patents

電池保護回路、蓄電装置、及び電気機器 Download PDF

Info

Publication number
JP2020010536A
JP2020010536A JP2018130751A JP2018130751A JP2020010536A JP 2020010536 A JP2020010536 A JP 2020010536A JP 2018130751 A JP2018130751 A JP 2018130751A JP 2018130751 A JP2018130751 A JP 2018130751A JP 2020010536 A JP2020010536 A JP 2020010536A
Authority
JP
Japan
Prior art keywords
transistor
circuit
insulator
conductor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018130751A
Other languages
English (en)
Other versions
JP7085428B2 (ja
Inventor
池田 隆之
Takayuki Ikeda
隆之 池田
宗広 上妻
Munehiro Kozuma
宗広 上妻
隆徳 松嵜
Takanori Matsuzaki
隆徳 松嵜
亮太 田島
Ryota Tajima
亮太 田島
山崎 舜平
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2018130751A priority Critical patent/JP7085428B2/ja
Publication of JP2020010536A publication Critical patent/JP2020010536A/ja
Priority to JP2022091382A priority patent/JP2022119979A/ja
Application granted granted Critical
Publication of JP7085428B2 publication Critical patent/JP7085428B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】新規な構成の電池保護回路、および当該電池回路を備えた蓄電装置を提供すること。【解決手段】蓄電装置は、複数の電池セルを備えた組電池と、電池保護回路と、を有する。電池保護回路は、比較回路と、参照電圧生成回路と、制御回路と、記憶回路と、を有する。比較回路は、第1入力端子と、第2入力端子と、出力端子と、を有する。第1入力端子は、電池セルのいずれか一の端子に電気的に接続される。第2入力端子は、記憶回路に電気的に接続される。記憶回路は、第1トランジスタを有し、当該第1トランジスタを非導通状態とすることで、参照電圧生成回路で生成された電圧を保持する機能を有する。制御回路は、出力端子の信号に応じて、組電池に与える電圧または電流を制御する機能を有する。【選択図】図3

Description

本発明の一態様は、電池保護回路、蓄電装置、及び電気機器に関する。
なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、撮像装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
蓄電装置(バッテリ、二次電池ともいう)は、小型の電気機器から自動車に至るまで幅広い分野で利用されるようになっている。電池の応用範囲が広がるにつれて、複数の電池セルを直列に接続したマルチセル構成のバッテリスタックを使ったアプリケーションが増えている。
蓄電装置は、過放電、過充電、過電流、または短絡といった充放電時の異常を把握するため、通常電池保護回路を備えている。電池保護回路は、充放電時の異常を検知するため、電圧や電流等のデータを取得する。電池保護回路は、観測されるデータに基づいて、充放電の停止やセル・バランシングなどの制御を行う。
特許文献1は、電池保護回路として機能する保護ICについて開示している。特許文献1に記載の保護ICでは、内部に複数のコンパレータ(比較器)を設け、参照電圧と、電池が接続された端子の電圧と、を比較して充放電時の異常を検出する構成について開示している。
また特許文献2では、二次電池の微小短絡を検出する電池状態検知装置及びそれを内蔵する電池パックが示されている。
米国特許出願公開第2011−267726号明細書 特開2010−66161号公報
電池保護回路は安全性を高めるため、充放電時の異常検出を常時行う必要がある。例えば、電池保護回路内のコンパレータでは、内部の電源回路において参照電圧を生成するための電力、あるいはコンパレータを動作させるための電力が必要となる。
電池保護回路内のコンパレータは、過放電、過充電、過電流、または短絡といった検出する機能毎に設ける必要がある。さらに電池保護回路内のコンパレータは、複数の電池セルを備えた組電池に設ける電池保護回路の場合、直接に設けられる電池セル毎に必要となるため、必要な数がさらに増加する。
しかしながら、電源回路およびコンパレータにおいて、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタ)で形成されるトランジスタを用いる場合、温度上昇時の特性の変動が顕著になるといった問題がある。特に電池セルの充放電等により電池保護回路が高温環境下に曝されることなると、内部のトランジスタ特性の変動が大きくなる。この場合、トランジスタを介したリーク電流の増大、さらにはトランジスタ特性の変動に伴って正常な動作が難しくなるといった問題や、消費電力の増大といった問題が生じる虞がある。
本発明の一態様は、新規な電池保護回路、蓄電装置、及び電気機器等を提供することを課題の一とする。または、本発明の一態様は、消費電力の低減を図ることができる、新規な構成の電池保護回路、蓄電装置、及び電気機器等を提供することを課題の一とする。
なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した記載、及び/又は他の課題のうち、少なくとも一つの課題を解決するものである。
本発明の一態様は、複数の電池セルを備えた組電池の電池保護回路であって、比較回路と、参照電圧生成回路と、制御回路と、記憶回路と、を有し、比較回路は、第1入力端子と、第2入力端子と、出力端子と、を有し、第1入力端子は、電池セルのいずれか一の端子に電気的に接続され、第2入力端子は、記憶回路に電気的に接続され、記憶回路は、第1トランジスタを有し、当該第1トランジスタを非導通状態とすることで、参照電圧生成回路で生成された電圧を保持する機能を有し、制御回路は、出力端子の信号に応じて、組電池に与える電圧または電流を制御する機能を有する電池保護回路である。
本発明の一態様において、第1トランジスタは、チャネル形成領域に酸化物半導体を有する電池保護回路が好ましい。
本発明の一態様において、比較回路は、第2トランジスタを有し、第2トランジスタは、チャネル形成領域にシリコンを有する電池保護回路が好ましい。
本発明の一態様は、複数の電池セルを備えた組電池と、電池保護回路と、を有し、電池保護回路は、比較回路と、参照電圧生成回路と、制御回路と、記憶回路と、を有し、比較回路は、第1入力端子と、第2入力端子と、出力端子と、を有し、第1入力端子は、電池セルのいずれか一の端子に電気的に接続され、第2入力端子は、記憶回路に電気的に接続され、記憶回路は、第1トランジスタを有し、当該第1トランジスタを非導通状態とすることで、参照電圧生成回路で生成された電圧を保持する機能を有し、制御回路は、出力端子の信号に応じて、組電池に与える電圧または電流を制御する機能を有する蓄電装置である。
本発明の一態様において、第1トランジスタは、チャネル形成領域に酸化物半導体を有する蓄電装置が好ましい。
本発明の一態様において、比較回路は、第2トランジスタを有し、第2トランジスタは、チャネル形成領域にシリコンを有する蓄電装置が好ましい。
本発明の一態様は、上記記載の蓄電装置と、筐体と、を有する電気機器である。
なおその他の本発明の一態様については、以下で述べる実施の形態における説明、及び図面に記載されている。
本発明の一態様は、新規な電池保護回路、蓄電装置、及び電気機器等を提供することができる。または、本発明の一態様は、消費電力の低減を図ることができる、新規な構成の電池保護回路、蓄電装置、及び電気機器等を提供することができる。
なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び/又は他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
本発明の一態様を説明するブロック図。 本発明の一態様を説明するブロック図。 本発明の一態様を説明するブロック図。 本発明の一態様を説明するブロック図。 本発明の一態様を説明する回路図。 本発明の一態様を説明するタイミングチャート。 本発明の一態様を説明する回路図。 半導体装置の構成例を示す断面図。 半導体装置の構成例を示す断面図。 トランジスタの構造例を示す上面図、及び断面図。 電子部品の作製工程を示すフローチャート図及び斜視模式図。 本発明の一態様の電気機器を説明する図。 本発明の一態様の電気機器を説明する図。 本発明の一態様の電気機器を説明する図。 本発明の一態様の電気機器を説明する図。 本発明の一態様の電気機器を説明する図。 本発明の一態様の電気機器を説明する図。 本発明の一態様の電気機器を説明する図。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
なお本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
なお図面において、同一の要素または同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。
(実施の形態1)
電池保護回路、および当該電池保護回路を備えた蓄電装置の構成について、図1乃至図6を参照して説明する。
図1には、蓄電装置100のブロック図の一例について示す。図1に示す蓄電装置100は、電池保護回路110、組電池120、セルバランス回路部130、トランジスタ140、トランジスタ150を図示している。
組電池120は、一例として、複数の電池セル121を有する。なお図1では組電池120が1つに対して電池保護回路110を1つ備える構成について図示しているが、1つの組電池に対して複数の電池保護回路を設ける構成としてもよい。
また電池セル121をリチウムイオン二次電池セルとして説明するが、リチウムイオン二次電池セルに限定されず、二次電池の正極材料として例えば、元素A、元素X、及び酸素を有する材料を用いることができる。元素Aは第1族の元素および第2族の元素から選ばれる一以上である。第1族の元素として例えば、リチウム、ナトリウム、カリウム等のアルカリ金属を用いることができる。また、第2族の元素として例えば、カルシウム、ベリリウム、マグネシウム等を用いることができる。元素Xとして例えば金属元素、シリコン及びリンから選ばれる一以上を用いることができる。また、元素Xはコバルト、ニッケル、マンガン、鉄、及びバナジウムから選ばれる一以上である。代表的には、リチウムコバルト複合酸化物LiCoOや、リン酸鉄リチウムLiFePOが挙げられる。
セルバランス回路部130は、一例として、複数の抵抗素子131およびトランジスタ132を有する。セルバランス回路部130は、抵抗素子131に流れる電流量を調整し、電池保護回路110から出力される制御信号OUT1によってトランジスタ132を導通状態とすることで電池セル121の放電を行い、充電率を調整する。
トランジスタ140およびトランジスタ150は、組電池120への充電または放電を制御する機能を有する。一例としては、トランジスタ140は、制御信号OUT2によって導通状態または非導通状態が制御され、組電池120を放電させるか否かが制御される。またトランジスタ150は、制御信号OUT3によって導通状態または非導通状態が制御され、組電池120を充電するか否かが制御される。
電池保護回路110は、組電池120が有する電池セル121の各端子の電圧値(モニタ電圧)、および組電池に流れる電流値(モニタ電流)を観測するための回路である。なお図1では、モニタ電流を測定するために抵抗素子を流れる電流を観測する構成について図示しているが他の構成、例えばトランジスタ140またはトランジスタ150のオン電流をモニタ電流として観測する構成としてもよい。
また電池保護回路110は、モニタ電圧およびモニタ電流に応じて、制御信号OUT1乃至OUT3を出力する機能を有する。電池保護回路110は、組電池120内の各電池セル121の状態推定を行うための演算処理を行う演算回路を有する。電池保護回路110は、演算処理によって得られた演算結果に応じてセルバランスを調整するための制御信号、充電又は放電を制御するための信号を出力する。
電池セル121の状態推定を行うための演算手段としては、モニタ電圧およびモニタ電流等のデータに基づく回帰モデルを用いて充電率を算出する演算が好適である。回帰モデルとしては、状態方程式に基づくカルマンフィルタが好ましい。
カルマンフィルタは、無限インパルス応答フィルタの一種である。また、重回帰分析は多変量解析の一つであり、回帰分析の独立変数を複数にしたものである。重回帰分析としては、最小二乗法などがある。回帰分析では観測値の時系列が多く必要とされる一方、カルマンフィルタは、ある程度のデータの蓄積さえあれば、逐次的に最適な補正係数が得られるメリットを有する。また、カルマンフィルタは、非定常時系列に対しても適用できる。
二次電池の内部抵抗及びSOC(State Of Charge)を推定する方法として、非線形カルマンフィルタ(具体的には無香料カルマンフィルタ(UKFとも呼ぶ))を利用することができる。また、拡張カルマンフィルタ(EKFともよぶ)を用いることもできる。
本発明の一態様において、電池保護回路110内で観測された電圧値と、比較する電圧値(参照電圧)と、を比較するコンパレータ(比較回路)において、参照電圧を保持する記憶回路を備える構成とする。参照電圧は、参照電圧生成回路で生成される電圧である。記憶回路は、トランジスタおよび容量素子を有する構成とする。記憶回路は、当該トランジスタを非導通状態とすることで、参照電圧生成回路で生成された参照電圧を保持する構成とする。
電池保護回路110内の記憶回路を構成するトランジスタは、チャネル形成領域が酸化物半導体を有するトランジスタ(以下、OSトランジスタという)で構成されることが好ましい。
本発明の一態様の構成では、OSトランジスタを有する記憶回路を用いる構成とすることで、オフ時にソースとドレイン間を流れるリーク電流(以下、オフ電流)が極めて低いことを利用して、参照電圧を記憶回路に保持させることができる。
加えてOSトランジスタを用いた記憶回路では、電荷を充電又は放電することによって参照電圧の書き換えおよび読み出しが可能となるため、実質的に無制限回のモニタ電圧の取得および読み出しが可能である。OSトランジスタを用いた記憶回路は、磁気メモリあるいは抵抗変化型メモリなどのように原子レベルでの構造変化を伴わないため、書き換え耐性に優れている。またOSトランジスタを用いた記憶回路は、フラッシュメモリのように繰り返し書き換え動作でも電子捕獲中心の増加による不安定性が認められない。
またOSトランジスタを用いた記憶回路は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。
またOSトランジスタは、ゲート電極、ソース電極およびドレイン電極に加えて、バックゲート電極を含むと、4端子の半導体素子とすることができる。ゲート電極またはバックゲート電極に与える電圧に応じて、ソースとドレインとの間を流れる信号の入出力が独立制御可能な電気回路網で構成することができる。そのため、LSIと同一思考で回路設計を行うことができる。加えてOSトランジスタは、高温環境下において、Siトランジスタよりも優れた電気特性を有する。具体的には、、100℃以上200℃以下、好ましくは125℃以上150℃以下といった高温下においてもオン電流とオフ電流の比が大きいため、良好なスイッチング動作を行うことができる。
なお図1では、電池保護回路110から出力される制御信号OUT1がセルバランス回路部130内のトランジスタ132のゲートに与えられる構成について図示しているが、他の構成としてもよい。例えば図2に図示する蓄電装置100のように、セルバランス回路130A内にセルバランス制御回路133を設け、制御信号OUT1を当該セルバランス制御回路133に与える構成としてもよい。セルバランス制御回路133は、入力される信号に応じてトランジスタ132のゲートに与える信号を生成する回路である。
なお上述したトランジスタ140およびトランジスタ150についても、OSトランジスタで構成することが好適である。上述したようにOSトランジスタは、オフ電流が極めて低く、高温環境下においてもスイッチング特性が良好といった特性を有する。そのため、高温環境下においても、組電池120への充電または放電の制御を誤動作なく行うことができる。
次いで組電池120の具体的な例を挙げた後、電池保護回路110の構成例について説明する。
図3(A)には、図1で説明した組電池120の一例として、6個の電池セル121が直列に接続された模式図を図示している。また図3(A)では、上述したモニタ電圧を取得するための端子として7つの端子を図示している。電池保護回路110は、各端子から電圧VC0乃至VC6を取得する。電池保護回路110は、例えば電圧VC0乃至VC6から電池セル121間の充電率のばらつきを見積もることができる。
図3(B)には、図1で説明した電池保護回路110のブロック図の一例を図示している。図3(B)では、コンパレータ113および記憶回路114を備えた電圧比較部111と、演算回路112、および参照電圧生成回路115を図示している。
電圧比較部111は、各電池セルのモニタ電圧に相当する電圧VC0乃至VC6と、参照電圧Vref[0]乃至Vref[6]と、比較し、比較結果に相当する電圧レベルを演算回路112に出力する機能を有する。電圧比較部111が有するコンパレータ113の第1入力端子は、電圧VC0乃至VC6を与える端子に接続される。また電圧比較部111が有するコンパレータ113の第2入力端子は、記憶回路114に接続される。
記憶回路114は、上述したようにOSトランジスタを有する記憶回路である。具体的な回路構成については、後述する図5を用いて説明を行う。なお参照電圧生成回路115は、参照電圧Vref[0]乃至Vref[6]((図3(B)では図示せず。Vref[N]ともいう。)のいずれか一の電圧を記憶回路114に与える。記憶回路114は、参照電圧Vref[0]乃至Vref[6]のいずれか一の電圧に応じた電荷を保持する。
なおコンパレータ113は、チャネル形成領域にシリコンを有するトランジスタ(Siトランジスタ)で構成することが好適である。Siトランジスタは、pチャネル型およびnチャネル型のトランジスタを備える。コンパレータ113は、相補型のトランジスタで構成することができる。また、Siトランジスタは、OSトランジスタと積層して設けることができる。そのため、記憶回路を設けることに伴う回路面積の増加分を小さくすることができる。
参照電圧生成回路115は、入力される電圧、例えば電圧VC6をもとに複数の参照電圧Vref[0]乃至Vref[6]を生成する機能を有する回路である。参照電圧Vref[0]乃至Vref[6]は、電圧VC6を降圧あるいは昇圧して得られる電圧とすればよい。つまり参照電圧生成回路115は、レベルシフタ、昇圧回路あるいは降圧回路として機能する回路である。
演算回路112は、コンパレータ113の出力端子から得られる信号、およびモニタ電流などのその他の信号Sに応じて、上述した制御信号OUT1乃至OUT3(図3(B)では、OUTと図示)を出力する機能を有する。演算回路112は、コンパレータ113の出力信号、および信号Sに応じて組電池120内の各電池セル121の状態推定を行うための演算処理を行い、演算処理結果に応じて制御信号OUTを出力する。制御信号OUTは、上述した制御信号OUT1乃至OUT3に相当し、組電池120の充放電の制御、セルバランスを調整する信号である。
図4(A)、(B)は、図3(B)で説明した電池保護回路110の動作を説明するためのブロック図である。
図4(A)に図示するブロック図では、図3(B)で図示した構成を、説明のため一部抜き題して図示したものに相当する。図4(A)では、図3(B)に図示した構成に加え、スイッチPSW、メモリ制御回路116、およびセンサ117を図示している。
スイッチPSWは、参照電圧生成回路115を動作させるための電圧(VC6)を、参照電圧生成回路115に伝えるか否かを制御するためのスイッチである。スイッチPSWは、メモリ制御回路116から出力される信号SPGによってオンまたはオフが制御される。スイッチPSWは、トランジスタ、例えばOSトランジスタで構成することで、オフ電流を極めて低くできるため好適である。
センサ117は、メモリ制御回路116がスイッチPSWおよび記憶回路114を動作させるための信号を生成するためのトリガーとして機能する。センサ117は、例えば温度センサあるいはタイマーなどを有する。センサ117は、環境温度の変化あるいは一定時間経過の後など、メモリ制御回路116がスイッチPSWおよび記憶回路114を間欠的に動作させるための信号を生成する。
メモリ制御回路116は、スイッチPSWのオンまたはオフを制御するための信号SPG、および記憶回路の動作を制御するための信号Sm_W、信号Sm_Hを生成する機能を有する。メモリ制御回路116は、センサ117からの制御に応じて、各種制御信号を出力する機能を有する。
図4(A)には、メモリ制御回路116が記憶回路114のそれぞれに参照電圧Vref[0]乃至Vref[6]を書き込む場合の動作を図示している。当該動作では、スイッチPSWがオンとなるよう信号SPGで制御する。また当該動作では、参照電圧生成回路115で生成された参照電圧が記憶回路114に書き込まれるよう信号Sで制御する。
また図4(B)には、メモリ制御回路116が記憶回路のそれぞれで参照電圧Vref[0]乃至Vref[6]を保持させる動作を図示している。当該動作では、スイッチPSWがオフとなるよう信号SPGで制御する。また当該動作では、参照電圧生成回路115で生成された参照電圧を記憶回路114で保持するよう信号Sで制御する。そのため、記憶回路114は、参照電圧生成回路115を非動作としても参照電圧Vref[0]乃至Vref[6]を出力し続けることができる。スイッチPSWがオフの間、参照電圧生成回路115は非動作とすることができるため、低消費電力化を図ることができる。
図4(A)、(B)の構成とすることで、記憶回路114に保持された参照電圧を定期的にリフレッシュ(元の参照電圧を再書き込みすること)することができる。参照電圧を保持する記憶回路114にOSトランジスタを用いる構成とすることで、上記リフレッシュの頻度を少なくすることができるため、好適である。
図5(A)乃至(C)は、図3(B)で説明した記憶回路114に適用可能な記憶回路114A乃至114Cの構成例について説明する図である。なお図5(A)乃至(C)では、説明のため、コンパレータ113を併せて図示している。
図5(A)に図示する記憶回路114Aは、トランジスタMT1および容量素子C[N]を有する。トランジスタMT1は、ソース又はドレインの一方に参照電圧Vref[N]を与える配線が接続される。トランジスタMT1は、ゲートに信号Smを与える配線が接続される。トランジスタMT1は、ソース又はドレインの他方に容量素子C[N]の一方の電極、およびコンパレータ113の反転入力端子に接続される。なお図4(A)において、容量素子C[N]の一方の電極、およびコンパレータ113の反転入力端子が接続されるノードを、ノードMNと図示している。なおコンパレータ113の非反転入力端子には、電池セル121からの電圧VC[N]を与える配線に接続される。
上述したように記憶回路114Aが有するトランジスタMT1は、OSトランジスタとすることが好適である。OSトランジスタはオフ電流が極めて低い。そのためスイッチとして機能するトランジスタMT1をオフにすることで容量素子C[N]にモニタ電圧に応じた電荷を保持することができる。つまり、トランジスタMT1乃至MT4をオフ状態とすることで電池セルの出力電圧をノードMNに接続されたコンパレータ113の入力端子に印加し続けることができる。
OSトランジスタを有する記憶回路を用いる構成とすることで、オフ電流が極めて低いことを利用して、参照電圧を保持させることができるため、参照電圧生成回路の起動を間欠的に行わせることができる。そのため、消費電力の低減を図ることができる。
図5(B)では、図5(A)で図示した構成において、トランジスタMT1にバックゲート電極を設け、ゲート電極とバックゲート電極の双方に信号を印加する構成を図示している。図5(B)の構成とすることで、ゲート電極とバックゲート電極の双方からチャネル形成領域を制御する電圧を印加することができる。そのため、より確実に、スイッチとして機能するトランジスタMT1のオンまたはオフの制御を行うことができる。
図5(C)では、図5(A)で図示した構成において、トランジスタMT1にバックゲート電極を設け、バックゲート電極に別の電位、例えばバックゲート電位線から別の電位を与える構成を図示している。図5(C)の構成として、バックゲート電位線にしきい値電圧を制御可能な電位を与える構成とすることで高温環境下におけるオフ電流を低減可能な構成とすることができる。そのため、高温環境下においても、スイッチとして機能するトランジスタMT1のオンまたはオフの制御を行うことができる。
図6は、図5(A)で説明した記憶回路114Aの動作を説明するためのタイミングチャートである。図6のタイミングチャートでは、図4(A)、図5(A)で図示した信号S、ノードMNの電位、参照電圧Vref[N]を与える配線の電位、スイッチPSWのオンまたはオフについて図示している。
時刻T11から時刻T12では、信号SをHレベルとし、トランジスタMT1をオンにする。容量素子C[N]の一方の電極、つまりノードMNに参照電圧が印加される。この間、スイッチPSWをオンにし、参照電圧Vref[N]が記憶回路114に供給される。
時刻T12から時刻T13では、信号SをLレベルとし、トランジスタMT1をオフにする。容量素子C[N]の一方の電極、つまりノードMNに参照電圧が保持される。
時刻T13から時刻T14では、信号SをLレベルとし、トランジスタMT1をオフにする。容量素子C[N]の一方の電極、つまりノードMNに参照電圧が保持され続ける。この間、スイッチPSWをオフにし、参照電圧生成回路115を休止させる。
センサ117による所定の時間経過の後、参照電圧のリフレッシュを行う。時刻T14から時刻T15では、スイッチPSWをオンにし、記憶回路114への参照電圧Vref[N]の供給を再開する。
時刻T15から時刻T16では、再び信号SをHレベルとし、トランジスタMT1をオンにする。容量素子C[N]の一方の電極、つまりノードMNに参照電圧が再度印加される。
本発明の一態様の構成では、記憶回路114の参照電圧を保持するためのトランジスタとしてOSトランジスタを用いる構成とする。そのため、一旦記憶回路114に書き込まれた参照電圧に応じた電荷を長期間保持することができる。
(実施の形態2)
本実施の形態では、上記実施の形態で説明した電池保護回路、および当該電池保護回路を備えた蓄電装置の動作例について説明する。
図7では、電池保護回路、および当該電池管理回路を備えた蓄電装置の動作例を説明するためのフローチャートを図示する。
上述したように電池保護回路は、電池セル毎の電流・電圧を測定する(ステップS001)。電池セル毎の電流の測定は、モニタ電流のデータ、電池セル毎の電圧の測定は、モニタ電圧のデータを取得することで行われる。
次いで電池保護回路は、ステップS001で測定した各データをもとに、組電池の電池セルにおけるセルバランスがとれているか(アンバランス判定)を電池保護回路の演算回路で判断する(ステップS002)。アンバランス判定がなければ充電完了の判断のステップS005に進み、充電完了であれば終了する。充電完了でなければ再度ステップS001を行う。
次いで電池保護回路は、ステップS002でアンバランス判定と判断した場合、演算回路で制御信号を生成する(ステップS003)。
次いで電池保護回路は、セルバランス回路部130に電池セルのアンバランスを解消するための制御信号を出力し、セルバランス回路部130を起動する(ステップS004)。充放電制御用のトランジスタは、充放電を行うための電圧および電流を伝えるための配線に設けられたトランジスタである。
以上の動作により、電池保護回路はモニタ電圧およびモニタ電流から電池セル間のセルバランスのバラつきを検知しながら充電することができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態3)
上記実施の形態で説明した電池保護回路に適用可能な半導体装置の構成例について説明する。
図8に示す半導体装置は、トランジスタ300と、トランジスタ500と、容量素子600と、を有している。図10(A)はトランジスタ500のチャネル長方向の断面図であり、図10(B)はトランジスタ500のチャネル幅方向の断面図であり、図10(C)はトランジスタ300のチャネル幅方向の断面図である。
トランジスタ500は、チャネル形成領域に金属酸化物を有するトランジスタ(OSトランジスタ)である。トランジスタ500は、オフ電流が小さいため、これを半導体装置が有するOSトランジスタに用いることにより、長期にわたり書き込んだデータを保持することが可能である。
本実施の形態で説明する半導体装置は、図8に示すようにトランジスタ300、トランジスタ500、容量素子600を有する。トランジスタ500はトランジスタ300の上方に設けられ、容量素子600はトランジスタ300、及びトランジスタ500の上方に設けられている。
トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域又はドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。なお、トランジスタ300は、例えば、上記実施の形態におけるコンパレータが有するトランジスタ等に適用することができる。
トランジスタ300は、図10(C)に示すように、半導体領域313の上面及びチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
なお、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、又はドレイン領域となる低抵抗領域314a、及び低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。又は、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。又はGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域314a、及び低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、又はホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
なお、図8に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみで構成する場合、図9に示すとおり、トランジスタ300の構成を、酸化物半導体を用いているトランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。
トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。
絶縁体320、絶縁体322、絶縁体324、及び絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
また、絶縁体324には、基板311、又はトランジスタ300などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326には容量素子600、又はトランジスタ500と接続する導電体328、及び導電体330等が埋め込まれている。なお、導電体328、及び導電体330は、プラグ又は配線としての機能を有する。また、プラグ又は配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
各プラグ、及び配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、又は金属酸化物材料などの導電性材料を、単層又は積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。又は、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体326、及び導電体330上に、配線層を設けてもよい。例えば、図8において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、又は配線としての機能を有する。なお導電体356は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
絶縁体354、及び導電体356上に、配線層を設けてもよい。例えば、図8において、絶縁体360、絶縁体362、及び絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、及び絶縁体364には、導電体366が形成されている。導電体366は、プラグ又は配線としての機能を有する。なお導電体366は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体364、及び導電体366上に、配線層を設けてもよい。例えば、図8において、絶縁体370、絶縁体372、及び絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、及び絶縁体374には、導電体376が形成されている。導電体376は、プラグ又は配線としての機能を有する。なお導電体376は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体374、及び導電体376上に、配線層を設けてもよい。例えば、図8において、絶縁体380、絶縁体382、及び絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、及び絶縁体384には、導電体386が形成されている。導電体386は、プラグ又は配線としての機能を有する。なお導電体386は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、及び導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
絶縁体384上には絶縁体510、絶縁体512、絶縁体514、及び絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、及び絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
例えば、絶縁体510、及び絶縁体514には、例えば、基板311、又はトランジスタ300を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
また、水素に対するバリア性を有する膜として、例えば、絶縁体510、及び絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、例えば、絶縁体512、及び絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、及び絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体510、絶縁体512、絶縁体514、及び絶縁体516には、導電体518、及びトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量素子600、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体518は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
特に、絶縁体510、及び絶縁体514と接する領域の導電体518は、酸素、水素、及び水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ500とは、酸素、水素、及び水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体516の上方には、トランジスタ500が設けられている。
図10(A)(B)に示すように、トランジスタ500は、絶縁体514及び絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516及び導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542a及び導電体542bと、導電体542a及び導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面及び側面に配置された酸化物530cと、酸化物530cの形成面に配置された絶縁体550と、絶縁体550の形成面に配置された導電体560と、を有する。
また、図10(A)(B)に示すように、酸化物530a、酸化物530b、導電体542a、及び導電体542bと、絶縁体580との間に絶縁体544が配置されることが好ましい。また、図10(A)(B)に示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図10(A)(B)に示すように、絶縁体580、導電体560、及び絶縁体550の上に絶縁体574が配置されることが好ましい。
なお、以下において、酸化物530a、酸化物530b、及び酸化物530cをまとめて酸化物530という場合がある。
なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、及び酸化物530cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、又は4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、図8、図10(A)に示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542a及び導電体542bは、それぞれソース電極又はドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542a及び導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542a又は導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542a及び導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
導電体503は、酸化物530、及び導電体560と、重なるように配置する。これにより、導電体560、及び導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。本明細書等において、第1のゲート電極、及び第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
また、導電体503は、導電体518と同様の構成であり、絶縁体514及び絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503a及び導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、又は3層以上の積層構造として設ける構成にしてもよい。
ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、又は酸素の拡散を抑制する機能とは、上記不純物、又は上記酸素のいずれか一又は、すべての拡散を抑制する機能とする。
例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、又はアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。その場合、導電体505は、必ずしも設けなくともよい。なお、導電体503bを単層で図示したが、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
絶縁体520、絶縁体522、絶縁体524、及び絶縁体550は、第2のゲート絶縁膜としての機能を有する。
ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損を低減し、トランジスタ500の信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm、又は3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、又は100℃以上400℃以下の範囲が好ましい。
また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、又は(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層又は積層で用いることが好ましい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
特に、不純物、及び酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
又は、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。又はこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン又は窒化シリコンを積層して用いてもよい。
また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520や、絶縁体526を得ることができる。
なお、図10(A)(B)のトランジスタ500では、3層の積層構造からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、及び絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、又は4層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物530として適用できるIn−M−Zn酸化物は、実施の形態4で説明するCAAC−OS、CAC−OSであることが好ましい。また、酸化物530として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
酸化物530においてチャネル形成領域にとして機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。
なお、酸化物530は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530a又は酸化物530bに用いることができる金属酸化物を、用いることができる。
また、酸化物530a及び酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a及び酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
ここで、酸化物530a、酸化物530b、及び酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、及び酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化又は連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530a及び酸化物530cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
酸化物530b上には、ソース電極、及びドレイン電極として機能する導電体542a、及び導電体542bが設けられる。導電体542a、及び導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、又は上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、又は、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素又は酸素に対するバリア性があるため好ましい。
また、図10では、導電体542a、及び導電体542bを単層構造として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
また、チタン膜又は窒化チタン膜と、そのチタン膜又は窒化チタン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にチタン膜又は窒化チタン膜を形成する三層構造、モリブデン膜又は窒化モリブデン膜と、そのモリブデン膜又は窒化モリブデン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にモリブデン膜又は窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫又は酸化亜鉛を含む透明導電材料を用いてもよい。
また、図10(A)に示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、及び領域543bが形成される場合がある。このとき、領域543aはソース領域又はドレイン領域の一方として機能し、領域543bはソース領域又はドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア密度が増加し、領域543a(領域543b)は、低抵抗領域となる。
絶縁体544は、導電体542a、及び導電体542bを覆うように設けられ、導電体542a、及び導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタン又は、マグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコン又は窒化シリコンなども用いることができる。
特に、絶縁体544として、アルミニウム、又はハフニウムの一方又は双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱履歴において、結晶化しにくいため好ましい。なお、導電体542a、及び導電体542bが耐酸化性を有する材料、又は、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
絶縁体544を有することで、絶縁体580に含まれる水、及び水素などの不純物が酸化物530c、絶縁体550を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面、及び側面)接して配置することが好ましい。絶縁体550は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。
加熱により酸素が放出される絶縁体を、絶縁体550として、酸化物530cの上面に接して設けることにより、絶縁体550から、酸化物530cを通じて、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水又は水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。
また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
なお、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
第1のゲート電極として機能する導電体560は、図10(A)(B)では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、又は酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
また、導電体560bは、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層構造としてもよい。
絶縁体580は、絶縁体544を介して、導電体542a、及び導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、又は樹脂などを有することが好ましい。特に、酸化シリコン、及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を、酸化物530cと接して設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530へと効率良く供給することができる。なお、絶縁体580中の水又は水素などの不純物濃度が低減されていることが好ましい。
絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
絶縁体574は、絶縁体580の上面、導電体560の上面、及び絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550、及び絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、又はマグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、及び窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水又は水素などの不純物濃度が低減されていることが好ましい。
また、絶縁体581、絶縁体574、絶縁体580、及び絶縁体544に形成された開口に、導電体540a、及び導電体540bを配置する。導電体540a及び導電体540bは、導電体560を挟んで対向して設ける。導電体540a及び導電体540bは、後述する導電体546、及び導電体548と同様の構成である。
絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、及び絶縁体586には、導電体546、及び導電体548等が埋め込まれている。
導電体546、及び導電体548は、容量素子600、トランジスタ500、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体546、及び導電体548は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
続いて、トランジスタ500の上方には、容量素子600が設けられている。容量素子600は、導電体610と、導電体620、絶縁体630とを有する。
また、導電体546、及び導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、又は配線としての機能を有する。導電体610は、容量素子600の電極としての機能を有する。なお、導電体612、及び導電体610は、同時に形成することができる。
導電体612、及び導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、又は上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
図8では、導電体612、及び導電体610は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、及び導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
導電体620、及び絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制するとともに、信頼性を向上させることができる。又は、酸化物半導体を有するトランジスタを用いた電池保護回路において、微細化又は高集積化を図ることができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、上述の実施の形態で説明し電池保護回路を電子部品とする例について、図11を用いて説明する。
図11(A)では上述の実施の形態で説明し電池制御回路を電子部品とする例について説明する。なお電子部品は、半導体パッケージ、又はIC用パッケージともいう。この電子部品は、端子取り出し方向や、端子の形状に応じて、複数の規格や名称が存在する。そこで、本実施の形態では、その一例について説明することにする。
OSトランジスタやSiトランジスタで構成される回路部は、組み立て工程(後工程)を経て、プリント基板に脱着可能な部品が複数合わさることで完成する。
後工程については、図11(A)に示す各工程を経ることで完成させることができる。具体的には、前工程で得られる素子基板が完成(ステップS1)した後、基板の裏面を研削する(ステップS2)。この段階で基板を薄膜化することで、前工程での基板の反り等を低減し、部品としての小型化を図るためである。
基板の裏面を研削して、基板を複数のチップに分離するダイシング工程を行う。そして、分離したチップを個々にピックアップしてリードフレーム上に搭載し接合する、ダイボンディング工程を行う(ステップS3)。このダイボンディング工程におけるチップとリードフレームとの接着は、樹脂による接着や、テープによる接着等、適宜製品に応じて適した方法を選択する。なお、ダイボンディング工程は、インターポーザ上に搭載し接合してもよい。
次いでリードフレームのリードとチップ上の電極とを、金属の細線(ワイヤー)で電気的に接続する、ワイヤーボンディングを行う(ステップS4)。金属の細線には、銀線や金線を用いることができる。また、ワイヤーボンディングは、ボールボンディングや、ウェッジボンディングを用いることができる。
ワイヤーボンディングされたチップは、エポキシ樹脂等で封止される、モールド工程が施される(ステップS5)。モールド工程を行うことで電子部品の内部が樹脂で充填され、機械的な外力による内蔵される回路部やワイヤーに対するダメージを低減することができ、また水分や埃による特性の劣化を低減することができる。
次いでリードフレームのリードをメッキ処理する。そしてリードを切断及び成形加工する(ステップS6)。このめっき処理によりリードの錆を防止し、後にプリント基板に実装する際のはんだ付けをより確実に行うことができる。
次いでパッケージの表面に印字処理(マーキング)を施す(ステップS7)。そして最終的な検査工程(ステップS8)を経てPLDを含む回路部を有する電子部品が完成する(ステップS9)。
また、完成した電子部品の斜視模式図を図11(B)に示す。図11(B)では、電子部品の一例として、QFP(Quad Flat Package)の斜視模式図を示している。図11(B)に示す電子部品700は、リード701及び回路部703を示している。図11(B)に示す電子部品700は、例えばプリント基板702に実装される。このような電子部品700が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで電気機器の内部に搭載することができる。完成した回路基板704は、電気機器等の内部に設けられる。
(実施の形態5)
本実施の形態では、上記実施の形態で説明した電池保護回路を備えた電子部品を適用可能な蓄電装置および蓄電システムの構成について説明する。
[円筒型二次電池]
円筒型の二次電池の例について図12(A)を参照して説明する。円筒型の二次電池400は、図12(A)に示すように、上面に正極キャップ(電池蓋)401を有し、側面及び底面に電池缶(外装缶)402を有している。これら正極キャップ401と電池缶(外装缶)402とは、ガスケット(絶縁パッキン)410によって絶縁されている。
図12(B)は蓄電システム415の一例を示す。蓄電システム415は複数の二次電池400を有する。それぞれの二次電池の正極は、絶縁体425で分離された導電体424に接触し、電気的に接続されている。導電体424は配線423を介して、制御回路420に電気的に接続されている。また、それぞれの二次電池の負極は、配線426を介して制御回路420に電気的に接続されている。制御回路420として、先の実施の形態にて述べた電池保護回路を用いることができる。
図12(C)は、蓄電システム415の一例を示す。蓄電システム415は複数の二次電池400を有し、複数の二次電池400は、導電板413及び導電板414の間に挟まれている。複数の二次電池400は、配線416により導電板413及び導電板414と電気的に接続される。複数の二次電池400は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池400を有する蓄電システム415を構成することで、大きな電力を取り出すことができる。
複数の二次電池400の間に温度制御装置を有していてもよい。二次電池400が過熱されたときは、温度制御装置により冷却し、二次電池400が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム415の性能が外気温に影響されにくくなる。
また、図12(C)において、蓄電システム415は制御回路420に配線421及び配線422を介して電気的に接続されている。制御回路420として、先の実施の形態にて述べた電池保護回路を用いることができる。配線421は導電板413を介して複数の二次電池400の正極に、配線422は導電板414を介して複数の二次電池400の負極に、それぞれ電気的に接続される。
[二次電池パック]
次に本発明の一態様の蓄電システムの例について、図13を用いて説明する。
図13(A)は、二次電池パック531の外観を示す図である。図13(B)は二次電池パック531の構成を説明する図である。二次電池パック531は、回路基板501と、二次電池513と、を有する。二次電池513には、ラベル509が貼られている。回路基板501は、シール515により固定されている。また、二次電池パック531は、アンテナ517を有する。
回路基板501は制御回路590を有する。制御回路590は、先の実施の形態に示す電池保護回路を用いることができる。例えば、図13(B)に示すように、回路基板501上に、制御回路590を有する。また、回路基板501は、端子511と電気的に接続されている。また回路基板501は、アンテナ517、二次電池513の正極リード及び負極リードの一方551、正極リード及び負極リードの他方552と電気的に接続される。
あるいは、図13(C)に示すように、回路基板501上に設けられる回路システム590aと、端子511を介して回路基板501に電気的に接続される回路システム590bと、を有してもよい。例えば、本発明の一態様の制御回路の一部分が回路システム590aに、他の一部分が回路システム590bに、それぞれ設けられる。
なお、アンテナ517はコイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ914は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ914を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
二次電池パック531は、アンテナ517と、二次電池513との間に層519を有する。層519は、例えば二次電池513による電磁界を遮蔽することができる機能を有する。層519としては、例えば磁性体を用いることができる。
二次電池513は、図13(C)に示すような捲回された電池素子593を有する。電池素子593は、負極594と、正極595と、セパレータ596と、を有する。電池素子593は、セパレータ596を挟んで負極594と、正極595とが重なり合って積層され、該積層シートを捲回したものである。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、車両に本発明の一態様である蓄電システムを搭載する例を示す。車両として例えば自動車、二輪車、自転車、等が挙げられる。
蓄電システムを車両に搭載すると、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車を実現できる。
図14において、本発明の一態様である蓄電システムを用いた車両を例示する。図14(A)に示す自動車8400は、走行のための動力源として電気モーターを用いる電気自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。本発明の一態様を用いることで、航続距離の長い車両を実現することができる。自動車8400は蓄電システムを有する。蓄電システムは電気モーター8406を駆動するだけでなく、ヘッドライト8401やルームライト(図示せず)などの発光装置に電力を供給することができる。
また、蓄電システムは、自動車8400が有するスピードメーター、タコメーターなどの表示装置に電力を供給することができる。また、蓄電システムは、自動車8400が有するナビゲーションシステムなどに電力を供給することができる。
図14(B)に示す自動車8500は、自動車8500が有する蓄電システム8024にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。図14(B)に、地上設置型の充電装置8021から自動車8500に搭載された蓄電システム8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法やコネクターの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車8500に搭載された蓄電システム8024を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に蓄電システムの充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
また、図14(C)は、本発明の一態様の蓄電システムを用いた二輪車の一例である。図14(C)に示すスクータ8600は、蓄電システム8602、サイドミラー8601、方向指示灯8603を備える。蓄電システム8602は、方向指示灯8603に電気を供給することができる。
また、図14(C)に示すスクータ8600は、座席下収納8604に、蓄電システム8602を収納することができる。蓄電システム8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
また、図15(A)は、本発明の一態様の蓄電システムを用いた電動自転車の一例である。図15(A)に示す電動自転車8700に、本発明の一態様の蓄電システムを適用することができる。本発明の一態様の蓄電システムは例えば、複数の蓄電池と、保護回路と、ニューラルネットワークと、を有する。
電動自転車8700は、蓄電システム8702を備える。蓄電システム8702は、運転者をアシストするモーターに電気を供給することができる。また、蓄電システム8702は、持ち運びができ、図15(B)に自転車から取り外した状態を示している。また、蓄電システム8702は、本発明の一態様の蓄電システムが有する蓄電池8701が複数内蔵されており、そのバッテリー残量などを表示部8703で表示できるようにしている。また蓄電システム8702は、本発明の一態様の制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。制御回路8704として、先の実施の形態に示す電池保護回路を用いることができる。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態7)
本実施の形態では、先の実施の形態で示した蓄電システムを電子機器に実装する例を説明する。
次に、図16(A)及び図16(B)に、2つ折り可能なタブレット型端末(クラムシェル型端末も含む)の一例を示す。図16(A)及び図16(B)に示すタブレット型端末9600は、筐体9630a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9631、表示モード切り替えスイッチ9626、電源スイッチ9627、省電力モード切り替えスイッチ9625、留め具9629、操作スイッチ9628、を有する。表示部9631には、可撓性を有するパネルを用いることで、より広い表示部を有するタブレット端末とすることができる。図16(A)は、タブレット型端末9600を開いた状態を示し、図16(B)は、タブレット型端末9600を閉じた状態を示している。
また、タブレット型端末9600は、筐体9630a及び筐体9630bの内部に蓄電体9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9630bに渡って設けられている。
表示部9631は、一部をタッチパネルの領域とすることができ、表示された操作キーにふれることでデータ入力をすることができる。また、タッチパネルのキーボード表示切り替えボタンが表示されている位置に指やスタイラスなどでふれることで表示部9631にキーボードボタン表示することができる。
また、表示モード切り替えスイッチ9626は、縦表示又は横表示などの表示の向きを切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えスイッチ9625は、タブレット型端末9600に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
図16(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9633、及び本発明の一態様の蓄電システムを有する。蓄電システムは、制御回路9634と、蓄電体9635と、を有する。制御回路9634については、先の実施の形態に示す電池保護回路を用いることができる。
なお、タブレット型端末9600は2つ折り可能なため、未使用時に筐体9630a及び筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより、表示部9631を保護できるため、タブレット型端末9600の耐久性を高めることができる。
また、この他にも図16(A)及び図16(B)に示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の片面又は両面に設けることができ、蓄電体9635の充電を効率的に行う構成とすることができる。
なお図16(A)(B)では、2つ折り可能なタブレット型端末に先の実施の形態に示す電池保護回路を用いた制御回路を適用する構成について説明したが、他の構成でもよい。例えば、図16(C)に図示するように、クラムシェル型端末であるノート型パーソナルコンピュータへの適用も可能である。図16(C)では、筐体9630aに表示部9631、筐体9630Bにキーボード部9640を備えたノート型パーソナルコンピュータ9601を図示している。ノート型パーソナルコンピュータ9601内には、図16(A)(B)で説明した制御回路9634と、蓄電体9635と、を有する。制御回路9634については、先の実施の形態に示す電池保護回路を用いることができる。
図17に、他の電子機器の例を示す。図17において、表示装置8000は、本発明の一態様の蓄電システムを実装する電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、二次電池8004等を有する。本発明の一態様に係る検出システムは、筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を受けることもできるし、二次電池8004に蓄積された電力を用いることもできる。
表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。
また、音声入力デバイス8005も二次電池を用いる。音声入力デバイス8005は、先の実施の形態に示す蓄電システムを有する。音声入力デバイス8005は、無線通信素子の他、マイクを含むセンサ(光学センサ、温度センサ、湿度センサ、気圧センサ、照度センサ、モーションセンサなど)を複数有し、使用者の命令する言葉によって他のデバイス、例えば表示装置8000の電源操作、照明装置8100の光量調節などを行うことができる。音声入力デバイス8005は音声で周辺機器の操作が行え、手動リモコンの代わりとなる。
また、音声入力デバイス8005は、車輪や機械式移動手段を有しており、使用者の発声が聞こえる方向に移動し、内蔵されているマイクで正確に命令を聞き取るとともに、その内容を表示部8008に表示する、または表示部8008のタッチ入力操作が行える構成としている。
また、音声入力デバイス8005は、スマートフォンなどの携帯情報端末8009の充電ドックとしても機能させることができる。携帯情報端末8009と音声入力デバイス8005は、有線または無線で電力の授受を可能としている。携帯情報端末8009は、室内においては、特に持ち運ぶ必要がなく、必要な容量を確保しつつ、二次電池に負荷がかかり劣化することを回避したいため、音声入力デバイス8005によって二次電池の管理、メンテナンスなどを行えることが望ましい。また、音声入力デバイス8005はスピーカ8007及びマイクを有しているため、携帯情報端末8009が充電中であってもハンズフリーで会話することもできる。また、音声入力デバイス8005の二次電池の容量が低下すれば、矢印の方向に移動し、外部電源と接続された充電モジュール8010から無線充電によって充電を行えばよい。
また、音声入力デバイス8005を台に載せてもよい。また、音声入力デバイス8005を車輪や機械式移動手段を設けて所望の位置に移動させてもよく、或いは台や車輪を設けず、音声入力デバイス8005を所望の位置、例えば床の上などに固定してもよい。
なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
図17において、据え付け型の照明装置8100は、充電を制御するマイクロプロセッサ(APSを含む)で制御される二次電池8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、二次電池8103等を有する。図17では、二次電池8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、二次電池8103は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源から電力の供給を受けることもできるし、二次電池8103に蓄積された電力を用いることもできる。
なお、図17では天井8104に設けられた据え付け型の照明装置8100を例示しているが、二次電池8103は、天井8104以外、例えば側壁8105、床8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
図17において、室内機8200及び室外機8204を有するエアコンディショナーは、二次電池8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、二次電池8203等を有する。図17では、二次電池8203が、室内機8200に設けられている場合を例示しているが、二次電池8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、二次電池8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、二次電池8203に蓄積された電力を用いることもできる。
図17において、電気冷凍冷蔵庫8300は、二次電池8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、二次電池8304等を有する。図17では、二次電池8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、二次電池8304に蓄積された電力を用いることもできる。
また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、二次電池に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われない夜間において、二次電池8304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる昼間において、二次電池8304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。
上述の電子機器の他、二次電池はあらゆる電子機器に搭載することができる。本発明の一態様により、二次電池のサイクル特性が良好となる。そのため、本発明の一態様である充電を制御するマイクロプロセッサ(APSを含む)を本実施の形態で説明した電子機器に搭載することで、より長寿命の電子機器とすることができる。本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
本発明の一態様の蓄電システムを電子機器に実装する例を図18(A)乃至(E)に示す。本発明の一態様の蓄電システムを適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図18(A)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、本発明の一態様の蓄電システムを有する。本発明の一態様の蓄電システムは例えば、蓄電池7407と、先の実施の形態に示す電池保護回路と、を有する。
図18(B)は、携帯電話機7400を湾曲させた状態を示している。携帯電話機7400を外部の力により変形させて全体を湾曲させると、その内部に設けられている蓄電池7407も湾曲される場合がある。このような場合には、蓄電池7407として、可撓性を有する蓄電池を用いることが好ましい。可撓性を有する蓄電池の曲げられた状態を図18(C)に示す。蓄電池には制御回路7408が電気的に接続されている。制御回路7408として、先の実施の形態に示す電池保護回路を用いることができる。
また、フレキシブルな形状を備える蓄電池を、家屋やビルの内壁または外壁や、自動車の内装または外装の曲面に沿って組み込むことも可能である。
図18(D)は、バングル型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、及び本発明の一態様の蓄電システムを有する。本発明の一態様の蓄電システムは例えば、蓄電池7104と、先の実施の形態に示す電池保護回路と、を有する。
図18(E)は、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200は、筐体7201、表示部7202、バンド7203、バックル7204、操作ボタン7205、入出力端子7206などを備える。
携帯情報端末7200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
表示部7202はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、表示部7202はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部7202に表示されたアイコン7207に触れることで、アプリケーションを起動することができる。
操作ボタン7205は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯情報端末7200に組み込まれたオペレーティングシステムにより、操作ボタン7205の機能を自由に設定することもできる。
また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯情報端末7200は入出力端子7206を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子7206を介して充電を行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により行ってもよい。
携帯情報端末7200は、本発明の一態様の蓄電システムを有する。該蓄電システムは、蓄電池と、先の実施の形態に示す電池保護回路と、を有する。
携帯情報端末7200はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサや、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(本明細書等の記載に関する付記)
以上の実施の形態、及び実施の形態における各構成の説明について、以下に付記する。
各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)、及び/又は、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換えなどを行うことが出来る。
なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)、及び/又は、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)に対して、組み合わせることにより、さらに多くの図を構成させることが出来る。
また本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合や、複数の回路にわたって一つの機能が関わる場合があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。
また、図面において、大きさ、層の厚さ、又は領域は、説明の便宜上任意の大きさに示したものである。よって、必ずしもそのスケールに限定されない。なお図面は明確性を期すために模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
本明細書等において、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、ソースとドレインとの他方を「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。これは、トランジスタのソースとドレインは、トランジスタの構造又は動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子や、ソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
また、本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電圧(接地電圧)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
なお本明細書等において、「膜」、「層」などの語句は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
本明細書等において、スイッチとは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。または、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。
本明細書等において、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲートとが重なる領域、またはチャネルが形成される領域における、ソースとドレインとの間の距離をいう。
本明細書等において、チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。
本明細書等において、AとBとが接続されている、とは、AとBとが直接接続されているものの他、電気的に接続されているものを含むものとする。ここで、AとBとが電気的に接続されているとは、AとBとの間で、何らかの電気的作用を有する対象物が存在するとき、AとBとの電気信号の授受を可能とするものをいう。
100 蓄電装置
110 電池保護回路
111 電圧比較部
112 演算回路
113 コンパレータ
114 記憶回路
114A 記憶回路
114C 記憶回路
115 参照電圧生成回路
116 メモリ制御回路
117 センサ
120 組電池
121 電池セル
130 セルバランス回路部
130A セルバランス回路
131 抵抗素子
132 トランジスタ
133 セルバランス制御回路
140 トランジスタ
150 トランジスタ

Claims (7)

  1. 複数の電池セルを備えた組電池の電池保護回路であって、
    比較回路と、参照電圧生成回路と、制御回路と、記憶回路と、を有し、
    前記比較回路は、第1入力端子と、第2入力端子と、出力端子と、を有し、
    前記第1入力端子は、前記電池セルのいずれか一の端子に電気的に接続され、
    前記第2入力端子は、前記記憶回路に電気的に接続され、
    前記記憶回路は、第1トランジスタを有し、当該第1トランジスタを非導通状態とすることで、前記参照電圧生成回路で生成された電圧を保持する機能を有し、
    前記制御回路は、前記出力端子の信号に応じて、前記組電池に与える電圧または電流を制御する機能を有することを特徴とする電池保護回路。
  2. 請求項1において、
    前記第1トランジスタは、チャネル形成領域に酸化物半導体を有することを特徴とする電池保護回路。
  3. 請求項1または2において、
    前記比較回路は、第2トランジスタを有し、
    前記第2トランジスタは、チャネル形成領域にシリコンを有することを特徴とする電池保護回路。
  4. 複数の電池セルを備えた組電池と、電池保護回路と、を有し、
    前記電池保護回路は、比較回路と、参照電圧生成回路と、制御回路と、記憶回路と、を有し、
    前記比較回路は、第1入力端子と、第2入力端子と、出力端子と、を有し、
    前記第1入力端子は、前記電池セルのいずれか一の端子に電気的に接続され、
    前記第2入力端子は、前記記憶回路に電気的に接続され、
    前記記憶回路は、第1トランジスタを有し、当該第1トランジスタを非導通状態とすることで、前記参照電圧生成回路で生成された電圧を保持する機能を有し、
    前記制御回路は、前記出力端子の信号に応じて、前記組電池に与える電圧または電流を制御する機能を有することを特徴とする蓄電装置。
  5. 請求項4において、
    前記第1トランジスタは、チャネル形成領域に酸化物半導体を有することを特徴とする蓄電装置。
  6. 請求項4または5において、
    前記比較回路は、第2トランジスタを有し、
    前記第2トランジスタは、チャネル形成領域にシリコンを有することを特徴とする蓄電装置。
  7. 請求項4乃至6のいずれか一に記載の蓄電装置と、
    筐体と、を有する電気機器。
JP2018130751A 2018-07-10 2018-07-10 電池保護回路、蓄電装置、及び電気機器 Active JP7085428B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018130751A JP7085428B2 (ja) 2018-07-10 2018-07-10 電池保護回路、蓄電装置、及び電気機器
JP2022091382A JP2022119979A (ja) 2018-07-10 2022-06-06 電池保護回路、及び、蓄電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130751A JP7085428B2 (ja) 2018-07-10 2018-07-10 電池保護回路、蓄電装置、及び電気機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022091382A Division JP2022119979A (ja) 2018-07-10 2022-06-06 電池保護回路、及び、蓄電装置

Publications (2)

Publication Number Publication Date
JP2020010536A true JP2020010536A (ja) 2020-01-16
JP7085428B2 JP7085428B2 (ja) 2022-06-16

Family

ID=69152670

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018130751A Active JP7085428B2 (ja) 2018-07-10 2018-07-10 電池保護回路、蓄電装置、及び電気機器
JP2022091382A Pending JP2022119979A (ja) 2018-07-10 2022-06-06 電池保護回路、及び、蓄電装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022091382A Pending JP2022119979A (ja) 2018-07-10 2022-06-06 電池保護回路、及び、蓄電装置

Country Status (1)

Country Link
JP (2) JP7085428B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021165780A1 (ja) * 2020-02-21 2021-08-26 株式会社半導体エネルギー研究所 半導体装置、蓄電装置、電池制御回路、電子部品、車両、および電子機器
KR20230140381A (ko) 2022-03-29 2023-10-06 에이블릭 가부시키가이샤 전압 검출 회로, 충전 제어 회로, 충방전 제어 회로 및 반도체 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111033A (ja) * 1992-09-29 1994-04-22 Nec Ic Microcomput Syst Ltd 入力回路
JPH11155241A (ja) * 1997-11-21 1999-06-08 Hitachi Ltd 組電池充電電流制御回路および組電池充電方法
JP2000035468A (ja) * 1998-07-16 2000-02-02 Toshiba Microelectronics Corp 電池容量判定回路
JP2003298421A (ja) * 2002-03-29 2003-10-17 Fujitsu Ltd A/d変換回路
WO2011155034A1 (ja) * 2010-06-09 2011-12-15 トヨタ自動車株式会社 車両用組電池均等化システム及び車両用組電池均等化方法
JP2014039459A (ja) * 2012-07-17 2014-02-27 Semiconductor Energy Lab Co Ltd 充電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111033A (ja) * 1992-09-29 1994-04-22 Nec Ic Microcomput Syst Ltd 入力回路
JPH11155241A (ja) * 1997-11-21 1999-06-08 Hitachi Ltd 組電池充電電流制御回路および組電池充電方法
JP2000035468A (ja) * 1998-07-16 2000-02-02 Toshiba Microelectronics Corp 電池容量判定回路
JP2003298421A (ja) * 2002-03-29 2003-10-17 Fujitsu Ltd A/d変換回路
WO2011155034A1 (ja) * 2010-06-09 2011-12-15 トヨタ自動車株式会社 車両用組電池均等化システム及び車両用組電池均等化方法
JP2014039459A (ja) * 2012-07-17 2014-02-27 Semiconductor Energy Lab Co Ltd 充電装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021165780A1 (ja) * 2020-02-21 2021-08-26 株式会社半導体エネルギー研究所 半導体装置、蓄電装置、電池制御回路、電子部品、車両、および電子機器
KR20230140381A (ko) 2022-03-29 2023-10-06 에이블릭 가부시키가이샤 전압 검출 회로, 충전 제어 회로, 충방전 제어 회로 및 반도체 장치
EP4270723A1 (en) 2022-03-29 2023-11-01 ABLIC Inc. Voltage detection circuit, charge control circuit, charge and discharge control circuit, and semiconductor device

Also Published As

Publication number Publication date
JP2022119979A (ja) 2022-08-17
JP7085428B2 (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
JP7064940B2 (ja) 蓄電装置、半導体装置、icチップ、電子機器
JP7405763B2 (ja) 蓄電装置及び蓄電装置の動作方法
JP2022119979A (ja) 電池保護回路、及び、蓄電装置
JP7330986B2 (ja) 半導体装置及び半導体装置の動作方法
JP7463298B2 (ja) 半導体装置及び半導体装置の動作方法
WO2021165780A1 (ja) 半導体装置、蓄電装置、電池制御回路、電子部品、車両、および電子機器
WO2020148599A1 (ja) 半導体装置
JP7472037B2 (ja) 電池保護回路、蓄電装置、及び電気機器
WO2020128743A1 (ja) 半導体装置および電池パック
JP7322022B2 (ja) 電池管理回路、蓄電装置、及び電気機器
WO2022049455A1 (ja) 二次電池の制御回路および電子機器
US20230336006A1 (en) Control Circuit And Electronic Device
WO2020089725A1 (ja) 電源回路、および当該電源回路を備えた半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7085428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150