JP2020010179A - Manufacturing method of high-frequency passive component - Google Patents

Manufacturing method of high-frequency passive component Download PDF

Info

Publication number
JP2020010179A
JP2020010179A JP2018129367A JP2018129367A JP2020010179A JP 2020010179 A JP2020010179 A JP 2020010179A JP 2018129367 A JP2018129367 A JP 2018129367A JP 2018129367 A JP2018129367 A JP 2018129367A JP 2020010179 A JP2020010179 A JP 2020010179A
Authority
JP
Japan
Prior art keywords
substrate
concave portion
manufacturing
passive component
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018129367A
Other languages
Japanese (ja)
Inventor
理 額賀
Osamu Nukaga
理 額賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2018129367A priority Critical patent/JP2020010179A/en
Priority to PCT/JP2019/026447 priority patent/WO2020009145A1/en
Publication of JP2020010179A publication Critical patent/JP2020010179A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Waveguides (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

To provide a manufacturing method of a high-frequency passive component, capable of improving a manufacturing cost and a mass productivity.SOLUTION: A manufacturing method of a high-frequency passive component, having a substrate 35 formed by a dielectric body, and a side wall or a penetration electrode 45 formed in the substrate 35, comprises: a step of manufacturing an original mold having a concave part corresponding to the side wall or the penetration electrode 45 from a glass; a step of manufacturing a mold having a convex part corresponding to the concave part from a metal by using the original mold; a step of manufacturing the substrate 35 having the concave part corresponding to the convex part from a resin by using the mold; a step of polishing a surface 34 opposite to the side where the concave part 31 of the substrate 35 is opened to expose the concave part 31 to a surface 36 on the opposite side; and a step of forming a conductive layer 41 formed by the side wall or the penetration electrode 45 in the concave part 31 after it is exposed or was exposed to the surface 36 of the opposite side.SELECTED DRAWING: Figure 3

Description

本発明は、ミリ波等の高周波通信に利用可能な導波路構造を有する高周波受動部品の製造方法に関する。   The present invention relates to a method for manufacturing a high-frequency passive component having a waveguide structure that can be used for high-frequency communication such as millimeter waves.

近年、ミリ波帯を利用した数G[bps]の高速大容量通信が提案され、その一部が実現されつつある。小型で安価なミリ波通信モジュールを実現する形態として、例えば、特許文献1には、ポスト壁導波路(Post−wall Waveguide)を利用したモード変換器が提案されている。   In recent years, high-speed, large-capacity communication of several gigabits per second (bps) using a millimeter wave band has been proposed, and a part thereof is being realized. As a mode for realizing a small and inexpensive millimeter-wave communication module, for example, Patent Document 1 proposes a mode converter using a post-wall waveguide (Post-wall Waveguide).

特開2014−158243号公報JP 2014-158243 A

特許文献1において、精密な受動部品を作製するために用いられる基板としては、ガラス基板、石英基板等が示されている。しかし、ガラス基板、石英基板等は加工が難しく、時間が掛かる等、製造コストおよび量産性の課題があった。   Patent Literature 1 discloses a glass substrate, a quartz substrate, or the like as a substrate used for manufacturing a precise passive component. However, glass substrates, quartz substrates, and the like are difficult to process and take time, and thus have problems of manufacturing cost and mass productivity.

本発明は、上記事情に鑑みてなされたものであり、製造コストおよび量産性を改善することが可能な高周波受動部品の製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a high-frequency passive component capable of improving manufacturing cost and mass productivity.

前記課題を解決するため、本発明は、誘電体からなる基板と、前記基板に形成された側壁および/または貫通電極とを有する高周波受動部品の製造方法であって、側壁および/または貫通電極に対応する凹部を有する原型をガラスから作製する工程と、前記原型を用いて、前記凹部に対応する凸部を有する型を金属から作製する工程と、前記型を用いて、前記凸部に対応する凹部を有する基板を樹脂から作製する工程と、前記基板の前記凹部が開口する側とは反対側の面を研磨して、前記凹部を前記反対側の面に露出する工程と、前記基板の前記凹部または前記基板の前記反対側の面に露出した凹部に、側壁および/または貫通電極となる導体層を形成する工程と、を有することを特徴とする高周波受動部品の製造方法を提供する。   In order to solve the above-mentioned problem, the present invention is a method for manufacturing a high-frequency passive component having a substrate made of a dielectric, and a side wall and / or a through electrode formed on the substrate. A step of manufacturing a mold having a corresponding concave portion from glass, a step of using a mold to form a mold having a convex portion corresponding to the concave portion from a metal, and using the mold to correspond to the convex portion. Manufacturing a substrate having a concave portion from a resin, polishing the surface of the substrate opposite to the side on which the concave portion opens, and exposing the concave portion to the opposite surface; and Forming a conductor layer serving as a side wall and / or a through electrode in the concave portion or the concave portion exposed on the opposite surface of the substrate.

前記側壁および/または前記貫通電極に対応する凹部を有する原型をガラスから作製する工程に、フェムト秒レーザアシストエッチングを使用してもよい。   Femtosecond laser-assisted etching may be used in the step of manufacturing a mold having a concave portion corresponding to the side wall and / or the through electrode from glass.

前記凹部を有する前記基板の、前記凹部が開口する側に導体層を形成する工程と、前記凹部を前記反対側の面に露出する工程の後に、前記反対側の面に導体層を形成する工程と、を有してもよい。
前記凹部を前記反対側の面に露出する工程に先立って、前記凹部を有する前記基板の、前記凹部が開口する側に導体層を形成する工程と、前記凹部が開口する側に形成された導体層を絶縁材で被覆する工程と、を有してもよい。
Forming a conductive layer on the side of the substrate having the concave portion where the concave portion opens, and forming a conductive layer on the opposite surface after the step of exposing the concave portion to the opposite surface. And may be provided.
Prior to the step of exposing the concave portion to the opposite surface, a step of forming a conductor layer on the side of the substrate having the concave portion where the concave portion opens, and a conductor formed on the side where the concave portion opens Covering the layer with an insulating material.

前記凹部を前記反対側の面に露出する工程に先立って、前記基板の前記凹部に、側壁および/または貫通電極となる導体層を形成する工程を有し、前記凹部を前記反対側の面に露出する工程において、前記凹部に形成された前記導体層を、前記反対側の面に露出させて、側壁および/または貫通電極としてもよい。
前記高周波受動部品が、前記基板の両面に形成された導体層と、前記導体層に接続された側壁または貫通電極により導波領域を囲むように構成される導波路構造を有してもよい。
Prior to the step of exposing the concave portion to the opposite surface, a step of forming a conductor layer serving as a side wall and / or a through electrode in the concave portion of the substrate is provided, and the concave portion is formed on the opposite surface. In the exposing step, the conductor layer formed in the concave portion may be exposed on the opposite surface to serve as a side wall and / or a through electrode.
The high-frequency passive component may have a waveguide structure configured to surround a waveguide region by conductor layers formed on both surfaces of the substrate and side walls or through electrodes connected to the conductor layers.

前記基板を、他の配線基板上に接合する工程と、前記基板と前記他の配線基板とを貫通する連通孔を形成する工程と、前記連通孔に接続導体を形成して、前記基板に形成される高周波受動部品と前記他の配線基板の配線とを電気的に接続する工程と、を有してもよい。   Bonding the substrate to another wiring substrate, forming a communication hole penetrating the substrate and the other wiring substrate, forming a connection conductor in the communication hole, and forming the connection hole on the substrate. Electrically connecting the high-frequency passive component to the wiring of the another wiring board.

本発明によれば、ガラスの原型をマスターとして精密な加工が可能であり、マスターから所望の数量で金属の型を作製し、型を用いて精密な側壁および/または貫通電極が形成された樹脂基板を低コストで安価に製造することができ、量産性に優れる。   ADVANTAGE OF THE INVENTION According to this invention, precise processing is possible using a glass prototype as a master, a metal mold is produced in a desired number from the master, and a resin on which precise side walls and / or through electrodes are formed using the mold. Substrates can be manufactured at low cost and at low cost, and are excellent in mass productivity.

原型から型を作製する工程を(a)〜(c)の順に示す断面図である。It is sectional drawing which shows the process of producing a type | mold from a prototype in order of (a)-(c). 型から基板を作製する工程を(a)〜(c)の順に示す断面図である。It is sectional drawing which shows the process of producing a board | substrate from a type | mold in order of (a)-(c). 高周波受動部品を作製する工程を(a)〜(d)の順に示す断面図である。It is sectional drawing which shows the process of manufacturing a high frequency passive component in order of (a)-(d). 基板を配線基板と接合する工程を(a)〜(b)の順に示す断面図である。It is sectional drawing which shows the process of joining a board | substrate with a wiring board in order of (a)-(b).

以下、好適な実施形態に基づき、図面を参照して本発明を説明する。図1(a)〜(c)は、原型から型を作製する工程を順に示す。図2(a)〜(c)は、型から基板を作製する工程を順に示す。図3(a)〜(d)は、基板に高周波受動部品を作製する工程を順に示す。図4(a)〜(b)は、高周波受動部品が作製された基板を他の配線基板と接合する工程を示す。   Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. 1 (a) to 1 (c) sequentially show steps of producing a mold from a prototype. FIGS. 2A to 2C sequentially show steps of manufacturing a substrate from a mold. FIGS. 3A to 3D sequentially show steps of manufacturing a high-frequency passive component on a substrate. FIGS. 4A and 4B show a process of joining a substrate on which a high-frequency passive component is manufactured to another wiring substrate.

本実施形態による高周波受動部品の製造方法は、概略として、図1に示すように、側壁または貫通電極に対応する凹部11および貫通電極に対応する凹部12を有する原型10をガラスから作製する工程と、原型10を用いて、原型10の凹部11,12に対応する凸部21,22を有する型20を金属から作製する工程と、図2に示すように、型20を用いて、型20の凸部21,22に対応する凹部31,32を有する基板35を樹脂からなる基板材料30から作製する工程と、図3に示すように、基板35の凹部31,32が開口する側とは反対側の第2主面34を研磨して、基板35の凹部31,32を第2主面34に露出する工程と、を有する。基板35には、側壁または貫通電極45、貫通電極46を設けることができる。   The method of manufacturing the high-frequency passive component according to the present embodiment generally includes, as shown in FIG. 1, a step of manufacturing a mold 10 having a concave portion 11 corresponding to a side wall or a through electrode and a concave portion 12 corresponding to a through electrode from glass. Forming a mold 20 having projections 21 and 22 corresponding to the recesses 11 and 12 of the mold 10 from a metal using the mold 10, and forming the mold 20 using the mold 20 as shown in FIG. 2. The step of manufacturing the substrate 35 having the concave portions 31 and 32 corresponding to the convex portions 21 and 22 from the substrate material 30 made of resin is opposite to the side of the substrate 35 where the concave portions 31 and 32 are opened as shown in FIG. Polishing the second main surface 34 on the side to expose the concave portions 31 and 32 of the substrate 35 to the second main surface 34. The substrate 35 can be provided with side walls or through electrodes 45 and through electrodes 46.

図1(a)に示すように、原型10は、凹部11,12が開口した第1主面13と、この第1主面13とは反対側にある第2主面14とを有する。凹部11,12は第2主面14に到達せず、底部が閉鎖されている。本実施形態で原型10とは、基板35と同様な形状を有し、原型10の形状を型20に転写し、さらに型20の形状を基板材料30に転写するために用いられる。つまり、原型10は、直接基板35を成形するための型20ではなく、型20の元となるマスター型である。   As shown in FIG. 1A, the prototype 10 has a first main surface 13 in which the concave portions 11 and 12 are open, and a second main surface 14 on the opposite side to the first main surface 13. The recesses 11 and 12 do not reach the second main surface 14 and the bottoms are closed. In the present embodiment, the prototype 10 has the same shape as the substrate 35, and is used to transfer the shape of the prototype 10 to the mold 20, and further to transfer the shape of the mold 20 to the substrate material 30. That is, the prototype 10 is not a mold 20 for directly molding the substrate 35 but a master mold that is a base of the mold 20.

原型10を構成する誘電体としては、ガラスが挙げられる。ガラスとしては、多成分ガラス、石英ガラス(シリカガラス)、ケイ酸塩ガラス等が挙げられる。ガラスと同様な材料として、サファイア、合成石英、天然石英、半導体等の無機材料を採用することもできる。原型10を構成する誘電体基板は、例えばウエハ状をした大面積の基板であってもよい。図1では原型10の凹部11,12を下向きに表示しているが、下向きとは異なる向きに原型10を配置してもよい。   Glass is mentioned as a dielectric material constituting the prototype 10. Examples of the glass include multi-component glass, quartz glass (silica glass), and silicate glass. As a material similar to glass, inorganic materials such as sapphire, synthetic quartz, natural quartz, and semiconductors can be used. The dielectric substrate constituting the prototype 10 may be, for example, a wafer-shaped large-area substrate. In FIG. 1, the concave portions 11 and 12 of the prototype 10 are shown facing downward, but the prototype 10 may be arranged in a direction different from the downward direction.

原型10に凹部11,12を形成する方法としては、ドリル等の穿孔機械、レーザ、エッチング等が挙げられる。例えば、レーザの集光照射により、ガラス等の材料を局所的に改質した後、改質により溶解性が高くなった部分をウェットエッチングで選択的に除去する方法が挙げられる。例えばフェムト秒レーザアシストエッチングにより、位置精度および加工精度の高い加工が可能となる。ここでいうフェムト秒レーザーアシストエッチングとは、第一に、パルス幅10ps以下の超短パルスレーザーを集光走査させることで集光部に沿って、クラックあるいは構造変性部からなる改質部を設け、次いで、エッチングによって改質部を選択的にエッチングし凹部11,12などを設ける加工法を指す。アスペクト比(径に対する深さの比率)が高い微細孔を形成できるだけでなく、テーパ形状、段差形状等を含む任意形状の凹部が加工できる。テーパ形状は、材料の第1主面から第2主面または内部に向けて、径または形状が小さくなってもよく、逆に、径または形状が大きくなってもよい。   Examples of a method for forming the concave portions 11 and 12 in the prototype 10 include a drilling machine such as a drill, laser, and etching. For example, there is a method in which a material such as glass is locally modified by condensing irradiation of a laser, and a portion having increased solubility due to the modification is selectively removed by wet etching. For example, femtosecond laser-assisted etching enables processing with high positional accuracy and high processing accuracy. The femtosecond laser-assisted etching referred to here means, first, to provide a modified part consisting of cracks or structurally modified parts along the condensing part by condensing and scanning an ultrashort pulse laser with a pulse width of 10 ps or less. Next, a processing method in which the modified portion is selectively etched by etching to provide the concave portions 11 and 12 and the like. Not only can micropores having a high aspect ratio (ratio of depth to diameter) be formed, but also concave portions of any shape including a tapered shape, a stepped shape, and the like can be processed. The tapered shape may have a smaller diameter or shape from the first main surface of the material to the second main surface or inside, or conversely, may have a larger diameter or shape.

図1(b)に示すように、例えばNi等の金属を用いた電鋳、メッキ等により、原型10の凹部11,12と第1主面13に金属を付着させ、型20を形成する。原型10の凹部11,12に堆積した金属から凸部21,22が構成され、原型10の第1主面13に堆積した金属から基部23が構成される。原型10と型20とを剥離することにより、図1(c)に示すように、基部23の片面に凸部21,22が突出して形成された型20が得られる。原型10を構成する材料は耐久性に優れるため、同一の原型10を用いて、原型10から型20を作製する工程を複数回繰り返して行うことができる。   As shown in FIG. 1B, the metal is adhered to the concave portions 11 and 12 and the first main surface 13 of the prototype 10 by electroforming, plating, or the like using a metal such as Ni to form the mold 20. The protrusions 21 and 22 are made of metal deposited on the recesses 11 and 12 of the prototype 10, and the base 23 is made of metal deposited on the first main surface 13 of the prototype 10. By peeling the prototype 10 and the mold 20, as shown in FIG. 1C, the mold 20 in which the protrusions 21 and 22 project from one surface of the base 23 is obtained. Since the material constituting the prototype 10 is excellent in durability, the process of manufacturing the mold 20 from the prototype 10 using the same prototype 10 can be repeated a plurality of times.

図2(a)に示すように、樹脂からなる基板材料30を準備し、図2(b)に示すように、型20の凸部21,22に基板材料30を重ね合わせる。基板材料30は、平坦なフィルム、シート等でもよい。基板材料30として好ましい樹脂としては、シクロオレフィンコポリマー(COC)、フッ素樹脂、液晶ポリマー(LCP)等が挙げられる。図2では型20の凸部21,22を上向きに表示しているが、上向きとは異なる向きに型20を配置してもよい。   As shown in FIG. 2A, a substrate material 30 made of resin is prepared, and as shown in FIG. 2B, the substrate material 30 is overlaid on the projections 21 and 22 of the mold 20. Substrate material 30 may be a flat film, sheet, or the like. Preferred resins for the substrate material 30 include cycloolefin copolymer (COC), fluororesin, liquid crystal polymer (LCP), and the like. Although the protrusions 21 and 22 of the mold 20 are displayed upward in FIG. 2, the mold 20 may be arranged in a different direction from the upward.

基板材料30を構成する樹脂が熱可塑性樹脂である場合、加熱により樹脂を軟化させ、ホットエンボス法により、型20の形状を基板材料30に転写させ、凸部21,22に対応する形状の凹部31,32を形成することができる。基板材料30が熱硬化性樹脂、光硬化性樹脂等の硬化性樹脂である場合は、液状などの流動性を有する未硬化の状態で基板材料30を型20に塗布し、型20と重ね合わせたまま樹脂を硬化させることで、凸部21,22に対応する形状の凹部31,32を形成することができる。   When the resin constituting the substrate material 30 is a thermoplastic resin, the resin is softened by heating, the shape of the mold 20 is transferred to the substrate material 30 by the hot embossing method, and the concave portions having the shapes corresponding to the convex portions 21 and 22 are formed. 31, 32 can be formed. When the substrate material 30 is a curable resin such as a thermosetting resin or a photocurable resin, the substrate material 30 is applied to the mold 20 in an uncured state having fluidity such as a liquid, and is superimposed on the mold 20. By curing the resin as it is, the concave portions 31 and 32 having shapes corresponding to the convex portions 21 and 22 can be formed.

型20と基板材料30とを剥離することにより、図2(c)に示すように、型20の基部23に接した第1主面33に凹部31,32が形成された基板35が得られる。第1主面33は、凹部31,32が開口した側の面である。また、第2主面34は、第1主面33とは反対側の面である。凹部31,32は第2主面34に到達せず、底部が閉鎖されている。型20を構成する材料は耐久性に優れるため、同一の型20を用いて、凹部31,32を有する基板35を成形する工程を複数回繰り返して行うことができる。   By peeling the mold 20 and the substrate material 30, as shown in FIG. 2C, a substrate 35 having the concave portions 31 and 32 formed in the first main surface 33 in contact with the base 23 of the mold 20 is obtained. . The first main surface 33 is a surface on the side where the concave portions 31 and 32 are opened. The second main surface 34 is a surface opposite to the first main surface 33. The recesses 31 and 32 do not reach the second main surface 34 and are closed at the bottom. Since the material forming the mold 20 is excellent in durability, the process of forming the substrate 35 having the concave portions 31 and 32 using the same mold 20 can be repeated a plurality of times.

図3(a)に示すように、第1主面33に凹部31,32が開口した基板35に対して、第1主面33側に第1導体層41,42,43が形成される。これらのうち、第1導体層41は凹部31の内壁に、第1導体層42は凹部32の内壁に、第1導体層43は第1主面33に、それぞれ形成されている。凹部31,32の内壁に各々形成された第1導体層41,42は、基板35の第2主面34に露出していない。第1導体層42はブラインドビアを構成している。第1導体層41は凹部31が穴状の場合はブラインドビアを構成している。第1導体層41は、凹部31が図3(d)に示す導波路構造48に沿って連続した溝状の場合は、連続した側壁45を構成する。溝状の凹部31または側壁45が連続する範囲は、導波路構造48の長手方向または幅方向の少なくとも一部であれば特に限定されず、導波路構造48の全周にわたってもよい。   As shown in FIG. 3A, first conductor layers 41, 42, 43 are formed on the first main surface 33 side with respect to the substrate 35 having the concave portions 31, 32 opened in the first main surface 33. Of these, the first conductor layer 41 is formed on the inner wall of the recess 31, the first conductor layer 42 is formed on the inner wall of the recess 32, and the first conductor layer 43 is formed on the first main surface 33. The first conductor layers 41 and 42 formed on the inner walls of the concave portions 31 and 32 are not exposed on the second main surface 34 of the substrate 35. The first conductor layer 42 forms a blind via. The first conductor layer 41 forms a blind via when the concave portion 31 has a hole shape. The first conductor layer 41 forms a continuous side wall 45 when the concave portion 31 has a continuous groove shape along the waveguide structure 48 shown in FIG. The range in which the groove-shaped concave portion 31 or the side wall 45 is continuous is not particularly limited as long as it is at least a part in the longitudinal direction or the width direction of the waveguide structure 48, and may be all around the waveguide structure 48.

第1導体層41,42,43のような導体層を形成する方法としては、スパッタ、蒸着、無電解メッキ、電解メッキ、導体ペーストなどの1種または2種以上が挙げられる。2種以上の導体材料または成膜方法を併用してもよく、2種以上の導体を積層して導体層を構成してもよい。絶縁体上に導体層を形成する場合には、スパッタ、蒸着、無電解メッキにより目標より薄い膜厚でシード層を形成した後、電解メッキにより目標の膜厚まで導体を積層してもよい。第1導体層41,42,43の表面(基板35に接する側とは反対側の外面)には、酸化防止のため、NiAu,NiPdAu等の酸化防止層を設けてもよい。また、第1導体層43が配線、パッド等の形状を有するようにパターニング等を適宜行ってもよい。   Examples of a method for forming a conductor layer such as the first conductor layers 41, 42, and 43 include one or more of sputtering, vapor deposition, electroless plating, electrolytic plating, and conductor paste. Two or more kinds of conductor materials or film forming methods may be used in combination, or two or more kinds of conductors may be laminated to form a conductor layer. When a conductor layer is formed on an insulator, a seed layer having a smaller thickness than a target may be formed by sputtering, vapor deposition, or electroless plating, and then the conductor may be laminated to a target thickness by electrolytic plating. An oxidation preventing layer such as NiAu, NiPdAu may be provided on the surfaces of the first conductor layers 41, 42, 43 (the outer surface opposite to the side in contact with the substrate 35) to prevent oxidation. Further, patterning or the like may be appropriately performed so that the first conductor layer 43 has a shape such as a wiring and a pad.

図3(b)に示すように、第1主面33に第1導体層43が形成された基板35の第1主面33を、絶縁材44で被覆する。絶縁材44は、凹部31,32内に充填されてもよい。絶縁材44としては、例えば樹脂が挙げられる。これにより、後述するように、基板35の第2主面34を研磨する際に、第1主面33側の第1導体層41,42,43を保護することができる。また、第1導体層41が側壁となる場合、基板35の第2主面34を研磨し、凹部31,32が基板35の第2主面36に露出した際に、絶縁材44が接合材または接着材として機能し、導波路構造48が基板35から離反することを防ぐことができる。   As shown in FIG. 3B, the first main surface 33 of the substrate 35 in which the first conductor layer 43 is formed on the first main surface 33 is covered with an insulating material 44. The insulating material 44 may be filled in the recesses 31 and 32. Examples of the insulating material 44 include a resin. Thus, as described later, when the second main surface 34 of the substrate 35 is polished, the first conductor layers 41, 42, and 43 on the first main surface 33 side can be protected. When the first conductor layer 41 serves as a side wall, the second main surface 34 of the substrate 35 is polished, and when the concave portions 31 and 32 are exposed on the second main surface 36 of the substrate 35, Alternatively, it functions as an adhesive and can prevent the waveguide structure 48 from separating from the substrate 35.

図3(c)に示すように、基板35の第2主面34を研磨することにより、凹部31,32が新たな第2主面36に露出する。また、凹部31,32に形成された第1導体層41,42が新たな第2主面36に露出されて、側壁または貫通電極45、貫通電極46となる。側壁または貫通電極45および貫通電極46の形状は各々、原型10の凹部11,12の形状に従って、精密に形成された凹部31,32の形状に基づく。これにより、樹脂からなる基板35に高精度な側壁や貫通孔を作製することができる。   As shown in FIG. 3C, by polishing the second main surface 34 of the substrate 35, the concave portions 31 and 32 are exposed on a new second main surface 36. In addition, the first conductor layers 41 and 42 formed in the concave portions 31 and 32 are exposed on the new second main surface 36 to become side walls or through electrodes 45 and through electrodes 46. The shapes of the side wall or through electrode 45 and the through electrode 46 are based on the shapes of the precisely formed recesses 31 and 32 according to the shapes of the recesses 11 and 12 of the prototype 10, respectively. Thereby, highly accurate side walls and through holes can be formed in the substrate 35 made of resin.

図3(d)に示すように、基板35の第2主面36に第2導体層47を形成する。第2導体層47を形成する方法は、上述したように、第1導体層41,42,43を形成する方法と同様でよい。また、上述したように、第2導体層47の表面(基板35に接する側とは反対側の外面)に酸化防止層を設けてもよく、第2導体層47のパターニングなどを適宜行ってもよい。層構成、パターニング等に関して、第2主面36に形成された第2導体層47が、第1主面33に形成された第1導体層43と同様であってもよく、互いに異なってもよい。   As shown in FIG. 3D, a second conductor layer 47 is formed on the second main surface 36 of the substrate 35. The method of forming the second conductor layer 47 may be the same as the method of forming the first conductor layers 41, 42, and 43, as described above. Further, as described above, an oxidation preventing layer may be provided on the surface of the second conductor layer 47 (the outer surface opposite to the side in contact with the substrate 35), and the second conductor layer 47 may be appropriately patterned. Good. The second conductor layer 47 formed on the second main surface 36 may be the same as or different from the first conductor layer 43 formed on the first main surface 33 with respect to the layer configuration, patterning, and the like. .

パターン状のレジストを用いてパターン状の導体層を形成する方法としては、(1)パターン状のレジストを形成した後に導体層を形成し、レジスト上に積層された導体層をレジストと一緒に除去して、レジストのない領域に導体層を残す方法(リフトオフ)や、(2)全面的に導体層を形成した上にパターン状のレジストを形成した後、レジストに覆われていない領域の材料層をエッチング等で除去し、さらに必要に応じて不要なレジストを除去する方法などが挙げられる。エッチング法としては、適宜、ドライエッチング、ウェットエッチング等の各種から選択することができる。   As a method of forming a patterned conductor layer using a patterned resist, (1) a conductor layer is formed after a patterned resist is formed, and the conductor layer laminated on the resist is removed together with the resist. Then, a method of leaving a conductor layer in a region where there is no resist (lift-off), or (2) forming a patterned resist on the entire surface of the conductor layer and then forming a material layer in a region not covered with the resist Is removed by etching or the like, and if necessary, unnecessary resist is removed. The etching method can be appropriately selected from various types such as dry etching and wet etching.

基板35に形成された側壁または貫通電極45、貫通電極46は、導波路、フィルタ、ダイプレクサ、方向性結合器、分配器等の受動部品(パッシブデバイス)を構成してもよい。例えば、基板35を構成する誘電体が、第1導体層43と第2導体層47と側壁45とで囲まれる領域を有する場合は、導波管と同様な導波路構造48を構成することができる。この導波路構造は、例えばミリ波などの高周波信号(電磁波)が伝搬される高周波デバイスとして利用することができる。周波数は特に限定されないが、例えば30〜300GHz、60〜80GHz等が挙げられる。   The side wall or the penetrating electrode 45 and the penetrating electrode 46 formed on the substrate 35 may constitute a passive component (passive device) such as a waveguide, a filter, a diplexer, a directional coupler, and a distributor. For example, when the dielectric constituting the substrate 35 has a region surrounded by the first conductor layer 43, the second conductor layer 47, and the side wall 45, a waveguide structure 48 similar to a waveguide may be constituted. it can. This waveguide structure can be used as a high-frequency device through which a high-frequency signal (electromagnetic wave) such as a millimeter wave is propagated. Although the frequency is not particularly limited, for example, 30 to 300 GHz, 60 to 80 GHz, and the like are exemplified.

導体層および貫通電極から構成される導波路構造として、例えばポスト壁導波路が挙げられる。ポスト壁導波路を構成する基板の両主面には、例えばグランド電位に接続することで接地された広壁が設けられてもよい。貫通電極は、例えば多数を配列することで導波路構造を囲む壁部を構成することができる。貫通電極から構成される壁部としては、導波路構造の幅方向に対向する狭壁、長手方向の端部に設けられるショート壁、その他の側壁等が挙げられる。壁部を構成する貫通電極の形状は、図3に示されるような円筒形状に限定されず、円柱形状等でもよい。また、貫通電極の配列も、受動部品の機能等に応じて種々の構成が可能であり、貫通電極が等間隔に配置された部分、貫通電極の間隔が不均等の部分、貫通電極が所定の区間に渡り配置されていない部分等を設けてもよい。   As a waveguide structure including a conductor layer and a through electrode, for example, a post-wall waveguide is given. A wide wall that is grounded by being connected to a ground potential, for example, may be provided on both main surfaces of the substrate that forms the post wall waveguide. The through electrodes can form a wall surrounding the waveguide structure by, for example, arranging a large number of the through electrodes. Examples of the wall formed by the through electrode include a narrow wall facing the width direction of the waveguide structure, a short wall provided at an end in the longitudinal direction, and other side walls. The shape of the through electrode forming the wall is not limited to a cylindrical shape as shown in FIG. 3, but may be a cylindrical shape or the like. In addition, the arrangement of the through electrodes can be variously configured in accordance with the function of the passive component and the like, and the portions where the through electrodes are arranged at equal intervals, the portions where the intervals between the through electrodes are uneven, and the through electrodes A portion that is not arranged over a section may be provided.

導波路構造48の内部に設けられる貫通電極46は、モード変換機構を構成してもよい。モード変換機構は、導波路構造48の外部に設けられる配線層(図示せず)と接続され、配線層から導波路構造に対して電気信号を入力したり、または導波路構造から配線層に対して電気信号を出力したりすることができる。   The through electrode 46 provided inside the waveguide structure 48 may constitute a mode conversion mechanism. The mode conversion mechanism is connected to a wiring layer (not shown) provided outside the waveguide structure 48, and inputs an electric signal from the wiring layer to the waveguide structure, or inputs a signal from the waveguide structure to the wiring layer. To output electrical signals.

図3(d)に示されるように、導波路構造48等の受動部品を有する基板35において、基板35が複数の受動部品を搭載している場合は、受動部品ごとに基板を切断する個片化工程を有してもよい。基板を切断する手段としては、ブレードダイサー、レーザーなどの公知の加工手段が挙げられる。   As shown in FIG. 3D, in the case of a substrate 35 having passive components such as the waveguide structure 48, when the substrate 35 has a plurality of passive components mounted thereon, individual pieces for cutting the substrate for each passive component are provided. May be included. Examples of the means for cutting the substrate include known processing means such as a blade dicer and a laser.

図4には、基板35に導波路構造48が形成された受動部品40を、配線基板50と接合する工程の一例を示す。配線基板50は、絶縁基材51の少なくとも片面に配線層52を有する。図4(a)の場合は、受動部品40の第2導体層47が配線基板50と対向する側に重ね合わされている。また、受動部品40に対向する側の配線層52には、配線層52の保護等のため、絶縁層53が設けられている。これにより、第2導体層47と配線層52との間に、絶縁層53が介在した構造となる。受動部品40と配線基板50との接合手法は、特に限定されないが、接着剤、半田付け、嵌合や係合等の機械構造等が挙げられる。   FIG. 4 shows an example of a process of joining the passive component 40 having the waveguide structure 48 formed on the substrate 35 to the wiring substrate 50. The wiring board 50 has a wiring layer 52 on at least one surface of an insulating base material 51. In the case of FIG. 4A, the second conductor layer 47 of the passive component 40 is overlaid on the side facing the wiring board 50. The wiring layer 52 on the side facing the passive component 40 is provided with an insulating layer 53 for protecting the wiring layer 52 and the like. Thus, a structure in which the insulating layer 53 is interposed between the second conductor layer 47 and the wiring layer 52 is obtained. The joining method between the passive component 40 and the wiring board 50 is not particularly limited, and examples thereof include an adhesive, soldering, and a mechanical structure such as fitting or engaging.

受動部品40を、配線基板50と電気的に接続する場合、例えば、図4(b)に示すように、受動部品40と配線基板50とを貫通する連通孔55を形成した後、無電解メッキ等により、連通孔55に接続導体54を形成してもよい。これにより、基板35に形成される導波路構造48と配線基板50の配線層52とを電気的に接続することができる。接続導体54および連通孔55は、第2導体層47を貫通し、側壁45の間または貫通電極45の内部の絶縁材44に配置されてもよい。連通孔55を形成する手段は特に限定されないが、例えば、ドリル等の穿孔機械、レーザ等が挙げられる。   When the passive component 40 is electrically connected to the wiring board 50, for example, as shown in FIG. 4B, after forming a communication hole 55 penetrating the passive component 40 and the wiring board 50, electroless plating is performed. For example, the connection conductor 54 may be formed in the communication hole 55. Thereby, the waveguide structure 48 formed on the substrate 35 and the wiring layer 52 of the wiring substrate 50 can be electrically connected. The connection conductor 54 and the communication hole 55 may penetrate the second conductor layer 47 and may be arranged between the side walls 45 or in the insulating material 44 inside the through electrode 45. Means for forming the communication hole 55 is not particularly limited, and examples thereof include a drilling machine such as a drill and a laser.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。改変としては、各実施形態における構成要素の追加、置換、省略、その他の変更が挙げられる。   As described above, the present invention has been described based on the preferred embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. Modifications include addition, substitution, omission, and other changes of the components in each embodiment.

貫通孔に貫通電極を設ける方法は、上述の実施形態のように、基板の第2主面を研磨する前の凹部に導体層を形成する方法に限られない。例えば、基板の第2主面を研磨して、基板に貫通孔を形成した後で、貫通孔に導体層を形成してもよい。   The method of providing the through electrode in the through hole is not limited to the method of forming the conductor layer in the concave portion before polishing the second main surface of the substrate as in the above-described embodiment. For example, after the second main surface of the substrate is polished to form a through hole in the substrate, a conductor layer may be formed in the through hole.

上述の実施形態に係る高周波受動部品においては、同一の基板に複数の部品が構成されてもよい。基板に構成される他の部品は、高周波用の受動部品に限らず、他の受動部品や能動部品等を含んでもよい。部品をモジュール化することにより、高周波モジュールを構成することもできる。本実施形態の高周波モジュールは、例えば、上述の高周波受動部品を備えるモジュールである。モジュールには、機能に必要な種々の部品を組み込むことができる。   In the high-frequency passive component according to the above-described embodiment, a plurality of components may be configured on the same substrate. Other components configured on the substrate are not limited to high-frequency passive components, and may include other passive components, active components, and the like. By modularizing the components, a high-frequency module can be configured. The high-frequency module of the present embodiment is, for example, a module including the above-described high-frequency passive component. Various components necessary for the function can be incorporated in the module.

10…原型、11,12…原型の凹部、20…型、21,22…型の凸部、30…基板材料、31,32…凹部、35…基板、40…受動部品、41,42,43…第1導体層、44…絶縁材、45…側壁または貫通電極、46…貫通電極、47…第2導体層、48…導波路構造、50…配線基板、52…配線層、54…接続導体、55…連通孔。 Reference numerals 10: prototype, 11, 12: prototype recess, 20: mold, 21, 22, ... projection, 30: substrate material, 31, 32: recess, 35: substrate, 40: passive component, 41, 42, 43 .. 1st conductor layer, 44 ... insulating material, 45 ... side wall or through electrode, 46 ... through electrode, 47 ... second conductor layer, 48 ... waveguide structure, 50 ... wiring board, 52 ... wiring layer, 54 ... connection conductor , 55 ... communication holes.

Claims (7)

誘電体からなる基板と、前記基板に形成された側壁および/または貫通電極とを有する高周波受動部品の製造方法であって、
側壁および/または貫通電極に対応する凹部を有する原型をガラスから作製する工程と、
前記原型を用いて、前記凹部に対応する凸部を有する型を金属から作製する工程と、
前記型を用いて、前記凸部に対応する凹部を有する基板を樹脂から作製する工程と、
前記基板の前記凹部が開口する側とは反対側の面を研磨して、前記凹部を前記反対側の面に露出する工程と、
前記基板の前記凹部または前記基板の前記反対側の面に露出した凹部に、側壁および/または貫通電極となる導体層を形成する工程と、
を有することを特徴とする高周波受動部品の製造方法。
A method for manufacturing a high-frequency passive component having a substrate made of a dielectric and side walls and / or through electrodes formed on the substrate,
Manufacturing a mold having a concave portion corresponding to a side wall and / or a through electrode from glass;
Using the prototype, forming a mold having a projection corresponding to the recess from metal,
Using the mold, a step of manufacturing a substrate having a concave portion corresponding to the convex portion from a resin,
Polishing the surface of the substrate opposite to the side where the concave portion is opened, and exposing the concave portion to the opposite surface;
Forming a conductor layer serving as a side wall and / or a through electrode in the concave portion of the substrate or the concave portion exposed on the opposite surface of the substrate;
A method for manufacturing a high-frequency passive component, comprising:
前記側壁および/または前記貫通電極に対応する凹部を有する原型をガラスから作製する工程に、フェムト秒レーザアシストエッチングを使用することを特徴とする請求項1に記載の高周波受動部品の製造方法。   2. The method of manufacturing a high-frequency passive component according to claim 1, wherein femtosecond laser-assisted etching is used in the step of manufacturing a mold having a concave portion corresponding to the side wall and / or the through electrode from glass. 3. 前記凹部を有する前記基板の、前記凹部が開口する側に導体層を形成する工程と、
前記凹部を前記反対側の面に露出する工程の後に、前記反対側の面に導体層を形成する工程と、
を有することを特徴とする請求項1または2に記載の高周波受動部品の製造方法。
Forming a conductor layer on the side of the substrate having the concave portion where the concave portion opens,
After the step of exposing the recess on the opposite surface, a step of forming a conductor layer on the opposite surface,
The method for manufacturing a high-frequency passive component according to claim 1, wherein:
前記凹部を前記反対側の面に露出する工程に先立って、
前記凹部を有する前記基板の、前記凹部が開口する側に導体層を形成する工程と、
前記凹部が開口する側に形成された導体層を絶縁材で被覆する工程と、
を有することを特徴とする請求項1〜3のいずれか1項に記載の高周波受動部品の製造方法。
Prior to the step of exposing the concave portion to the opposite surface,
Forming a conductor layer on the side of the substrate having the concave portion where the concave portion opens,
A step of covering the conductor layer formed on the side where the concave portion opens with an insulating material,
The method for manufacturing a high-frequency passive component according to any one of claims 1 to 3, further comprising:
前記凹部を前記反対側の面に露出する工程に先立って、前記基板の前記凹部に、側壁および/または貫通電極となる導体層を形成する工程を有し、
前記凹部を前記反対側の面に露出する工程において、前記凹部に形成された前記導体層を、前記反対側の面に露出させて、側壁および/または貫通電極とすることを特徴とする請求項1〜4のいずれか1項に記載の高周波受動部品の製造方法。
Prior to the step of exposing the concave portion to the opposite surface, a step of forming a conductor layer serving as a side wall and / or a through electrode in the concave portion of the substrate;
In the step of exposing the concave portion on the opposite surface, the conductor layer formed in the concave portion is exposed on the opposite surface to form a side wall and / or a through electrode. The method for manufacturing a high-frequency passive component according to any one of claims 1 to 4.
前記高周波受動部品が、前記基板の両面に形成された導体層と、前記導体層に接続された側壁または貫通電極により導波領域を囲むように構成される導波路構造を有することを特徴とする請求項1〜5のいずれか1項に記載の高周波受動部品の製造方法。   The high-frequency passive component has a waveguide structure configured to surround a waveguide region by a conductor layer formed on both surfaces of the substrate and a side wall or a through electrode connected to the conductor layer. A method for manufacturing the high-frequency passive component according to claim 1. 前記基板を、他の配線基板上に接合する工程と、
前記基板と前記他の配線基板とを貫通する連通孔を形成する工程と、
前記連通孔に接続導体を形成して、前記基板に形成される高周波受動部品と前記他の配線基板の配線とを電気的に接続する工程と、
を有することを特徴とする請求項3〜6のいずれか1項に記載の高周波受動部品の製造方法。
Bonding the substrate to another wiring board;
Forming a communication hole penetrating the substrate and the other wiring board,
Forming a connection conductor in the communication hole, and electrically connecting a high-frequency passive component formed on the substrate and the wiring of the other wiring substrate,
The method for manufacturing a high-frequency passive component according to any one of claims 3 to 6, comprising:
JP2018129367A 2018-07-06 2018-07-06 Manufacturing method of high-frequency passive component Pending JP2020010179A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018129367A JP2020010179A (en) 2018-07-06 2018-07-06 Manufacturing method of high-frequency passive component
PCT/JP2019/026447 WO2020009145A1 (en) 2018-07-06 2019-07-03 Method for producing high-frequency passive component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018129367A JP2020010179A (en) 2018-07-06 2018-07-06 Manufacturing method of high-frequency passive component

Publications (1)

Publication Number Publication Date
JP2020010179A true JP2020010179A (en) 2020-01-16

Family

ID=69060924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018129367A Pending JP2020010179A (en) 2018-07-06 2018-07-06 Manufacturing method of high-frequency passive component

Country Status (2)

Country Link
JP (1) JP2020010179A (en)
WO (1) WO2020009145A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749530A (en) * 1980-09-08 1982-03-23 Mitsubishi Electric Corp Manufacture of replica
JP2012006233A (en) * 2010-06-24 2012-01-12 Toshiba Mach Co Ltd Method for manufacturing mold
JP2013043415A (en) * 2011-08-26 2013-03-04 Fujikura Ltd Imprint mold, and method for manufacturing printed circuit board
JP5978149B2 (en) * 2013-02-18 2016-08-24 株式会社フジクラ Mode converter manufacturing method
JP2014216541A (en) * 2013-04-26 2014-11-17 株式会社フジクラ Wiring board and manufacturing method of the same

Also Published As

Publication number Publication date
WO2020009145A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5978149B2 (en) Mode converter manufacturing method
WO2015111609A1 (en) Collectively laminated substrate in which dummy waveguide is formed
JP6372113B2 (en) High frequency module and manufacturing method thereof
US10314179B2 (en) Manufacturing method of circuit structure
JP5933103B1 (en) Method for manufacturing waveguide substrate
US9839135B2 (en) Method of producing electronic components and method of producing substrate-type terminals
TW201422082A (en) Substrate structure having component-disposing area and manufacturing process thereof
TWI502718B (en) Heterogeneous chip integration with low loss interconnection through adaptive patterning
JP4872619B2 (en) Method for manufacturing board-to-board connection structure
WO2011096539A1 (en) Wiring board and manufacturing method for same
US8569164B2 (en) Through substrate structure, device package having the same, and methods for manufacturing the same
WO2016084425A1 (en) Electronic device
TWI542271B (en) Package substrate and manufacturing method thereof
JP5728101B1 (en) MMIC integrated circuit module
WO2020009145A1 (en) Method for producing high-frequency passive component
US9060430B1 (en) Shielded trace structure and fabrication method
KR20050065289A (en) Semiconductor multilayer wiring substrate of coaxial wiring structure and method of fabricating the same
WO2020009146A1 (en) High-frequency passive component and method for producing high-frequency passive component
CN106489305B (en) Conductor series with a transition zone without widening between a line and a contact structure
WO2020004345A1 (en) High-frequency passive component
JP7492606B2 (en) Filter and manufacturing method thereof
JP2018170372A (en) Wiring board and manufacturing method thereof
JP2020092351A (en) High-frequency passive component
JP4287329B2 (en) Method for manufacturing waveguide-planar transmission line converter
JP3947499B2 (en) Package manufacturing method and package mold