JP2020008283A - ブリスター試験機及び方法 - Google Patents

ブリスター試験機及び方法 Download PDF

Info

Publication number
JP2020008283A
JP2020008283A JP2018126232A JP2018126232A JP2020008283A JP 2020008283 A JP2020008283 A JP 2020008283A JP 2018126232 A JP2018126232 A JP 2018126232A JP 2018126232 A JP2018126232 A JP 2018126232A JP 2020008283 A JP2020008283 A JP 2020008283A
Authority
JP
Japan
Prior art keywords
sample
temperature
infrared
blister
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018126232A
Other languages
English (en)
Other versions
JP7146490B2 (ja
Inventor
章浩 竹内
Akihiro Takeuchi
章浩 竹内
橋本 英明
Hideaki Hashimoto
英明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2018126232A priority Critical patent/JP7146490B2/ja
Publication of JP2020008283A publication Critical patent/JP2020008283A/ja
Application granted granted Critical
Publication of JP7146490B2 publication Critical patent/JP7146490B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

【課題】作動及び管理が容易且つ安全に行え、環境に優しく、検査時間が比較的に短いブリスター試験機,ブリスター試験方法を提供する。【解決手段】ブリスター試験機1は、サンプルを保持するサンプル台4と、内部にサンプル台4が配置される炉2と、炉2内へ熱風を供給するヒータ付きブロワ8と、炉2内に設けられており赤外線を発生する各赤外線ヒータ20と、を備えている。又、ブリスター試験機1は、各赤外線ヒータ20の出力を調節する制御手段を備えている。制御手段は、赤外線ヒータ20の出力について、サンプルの温度が軟化点へ到達する前に比べ、到達した後で低くする。【選択図】図1

Description

本発明は、ブリスター試験機、及び当該ブリスター試験機において実行可能なブリスター試験方法に関する。
ダイカスト等の鋳物の鋳造過程における空気あるいは離型材の分解ガス等の巻き込みにより、鋳物内部にガスが含まれることがある。
かようなガスの状況を検査するため、加熱あるいは溶融塩により鋳物のサンプルのガスを泡ぶく(ブリスター)として現出させるブリスター試験機が用いられている。ブリスター試験機にかけられたサンプルにおけるブリスターの様子(個数等)により、鋳物内のガスが検査される。
加熱によるブリスター試験機としては、一般的な熱風炉が用いられている。この場合、ブリスターを十分に現出させるため、サンプルの材質及び大きさ等によるものの、約30分以上の加熱が必要である。
他方、溶融塩によるブリスター試験機として、実用新案登録第3009463号公報(特許文献1)に記載されるものが知られている。この場合、サンプルは、溶融塩(硝酸塩を加熱溶融させてなる塩浴)に浸漬することで短時間で均一に加熱され、ブリスターが短時間で現出される。
実用新案登録第3009463号公報
上記の溶融塩によるブリスター試験機では、溶融塩を使用するため、溶融塩の取扱に細心の注意が必要であり、作動及び管理に手間がかかる。
又、気化した溶融塩の排出等が必要であり、環境に影響を与える可能性がある。
更に、サンプルに水の付着があった場合に、条件が揃うと溶融塩と水の反応による水蒸気爆発が発生する可能性があるし、溶融塩自体の分解による爆発の可能性が存在する。
そこで、本発明の主な目的は、作動及び管理が容易且つ安全に行え、環境に優しく、検査時間が比較的に短いブリスター試験機,ブリスター試験方法を提供することである。
請求項1に記載の発明は、ブリスター試験機において、サンプルを保持するサンプル保持部と、赤外線を発生する赤外線ヒータと、を備えており、前記赤外線ヒータは、前記サンプルに対し、前記赤外線を照射することを特徴とするものである。
請求項2に記載の発明は、ブリスター試験機において、サンプルを保持するサンプル保持部と、内部に前記サンプル保持部が配置される炉と、前記炉内へ熱風を供給する熱風供給部と、前記炉内に設けられており赤外線を発生する赤外線ヒータと、を備えていることを特徴とするものである。
請求項3に記載の発明は、上記発明において、更に、前記赤外線ヒータの出力を調節する制御手段を備えており、前記制御手段は、前記赤外線ヒータの出力について、前記サンプルの温度あるいは前記サンプルの周囲の温度の前記サンプルの軟化点への到達の前に比べ、その到達の後で低くすることを特徴とするものである。
請求項4に記載の発明は、上記発明において、前記赤外線ヒータは、発熱温度が1050℃以上1650℃以下であるカーボン製のフィラメントを有するカーボンヒータを含むことを特徴とするものである。
請求項5に記載の発明は、ブリスター試験方法において、サンプルに対し、熱風の供給と、赤外線の照射とが行われることで、前記サンプルが軟化点以上融点未満に加熱されることを特徴とするものである。
請求項6に記載の発明は、ブリスター試験方法において、サンプルに対し、熱風の供給と、赤外線の照射とが行われることで、前記サンプルが軟化点以上融点未満に加熱されることを特徴とするものである。
請求項7に記載の発明は、上記発明において、前記赤外線の照射の強度が、前記サンプルの温度あるいは前記サンプルの周囲の温度の前記サンプルの軟化点への到達の前に比べ、その到達の後で低くされることを特徴とするものである。
本発明の主な効果は、作動及び管理がより容易且つ安全に行え、より環境に優しく、検査時間が比較的に短いブリスター試験機,ブリスター試験方法が提供されることである。
本発明に係るブリスター試験機の模式的な縦断面図である。 カーボンヒータあるいはハロゲンヒータにおける所定の発熱温度毎の放射線波長と相対分光放射発散度との関係が示されたグラフである。 本発明に係るブリスター試験機の第1動作例及びその動作例に係るブリスター試験方法に関するフローチャートである。 第1動作例における試験開始からの経過時間(横軸)に対するサンプルの第1〜第5部分の温度(左縦軸,℃)及び赤外線ヒータの1本当たりの有効電力(右縦軸,kW)が示されるグラフである。 図4の内サンプルの各箇所の温度について縦軸の一部が拡大して示されるグラフである。 本発明に係るブリスター試験機の第2動作例及びその動作例に係るブリスター試験方法に関するフローチャートである。 試験開始からの経過時間(横軸)に対する各種の温度(縦軸)及び赤外線ヒータの1本当たりの有効電力(右縦軸,kW)が示されるグラフである。 図7の内サンプルの各箇所の温度について縦軸の一部が拡大して示されるグラフである。
以下、本発明に係る実施の形態の例が、その変更例と共に、適宜図面に基づいて説明される。
尚、当該形態は、下記の例及び変更例に限定されない。
[構成等]
図1は、本発明に係るブリスター試験機1の模式的な縦断面図である。尚、図1における上がブリスター試験機1の上であり、左がブリスター試験機1の前である。かようなブリスター試験機1の方向は、説明の便宜上定められたものであり、各種の部材又は部分の移動及び設置の状況等により、変化することがある。
ブリスター試験機1は、ダイカスト用アルミニウムとして多用されているADC12により鋳造されたダイカスト製品のサンプルについて検査するものである。ブリスター試験機1は、サンプルを、ADC12の軟化点である530℃程度に加熱可能である。
尚、検査対象である製品のサンプルは、他のアルミニウム合金製であっても良いし、アルミニウムマグネシウム合金製であっても良いし、亜鉛製であっても良いし、銅製であっても良いし、これらの内の少なくとも2つを組み合わせた合金製であっても良い。これらの場合であっても、その融点未満で融点に近い軟化点へ同様に加熱することができる。
ブリスター試験機1は、断熱材でケース状に形成される炉2と、炉2内に配置されるサンプル保持部としてのサンプル台4と、炉2の前面下部に形成された熱風入口6と、熱風入口6に接続された熱風供給部としてのヒータ付きブロワ8と、炉2の後面上部に形成された熱風出口10と、熱風出口10に接続された排気路12と、炉2内に設置された赤外線ヒータ部14と、炉2内の温度を測定する温度センサ16と、ヒータ付きブロワ8及び赤外線ヒータ部14を制御する制御手段(図示略)と、を備えている。
尚、排気路12及び温度センサ16の少なくとも一方は、省略されても良い。
サンプル台4は、炉2の上面から吊された網状のカゴであり、中でサンプルを保持する。
尚、サンプル台4は、サンプルを載置する載置台等であっても良い。
ヒータ付きブロワ8は、エアを導入して加熱し、熱風入口6を通じて炉2内に熱風を送る。
熱風は、炉2内を昇温し、熱風出口10から排気路12を通じて炉2外に排出される。
赤外線ヒータ部14は、それぞれ前後に延び左右に並ぶ二対の赤外線ヒータ20と、それぞれ左右に延び前後に並ぶ二対の赤外線ヒータ20と、を有する。これらの赤外線ヒータ20は、サンプル台4を囲んでいる。
尚、赤外線ヒータ20の配置は、サンプル台4を水平に囲むものに限られない。又、赤外線ヒータ20の本数は、7本以下であっても良いし、9本以上であっても良い。
各赤外線ヒータ20は、発熱体(フィラメント)の材料として導電性素材である炭素繊維(カーボン)が用いられ、発熱体が面状に形成されたカーボンヒータである。各赤外線ヒータ20には、図示されない電源が接続される。各赤外線ヒータ20の電力による発熱は、制御手段により制御される。
カーボンヒータは、ハロゲンランプが用いられるハロゲンヒータに比べ、多くのエネルギーが中赤外線領域に放射されるという特性を有する。
又、ハロゲンヒータは、ハロゲンガスを封入した石英管内に線状のタングステンが渡されたもので、赤外線が石英管の全周にわたり均等に放射される。これに対し、面状の発熱体を有するカーボンヒータは、不活性ガスを封入した石英管内に面状の炭素繊維が渡されたもので、赤外線は炭素繊維における一対の平面からその平面に垂直な方向を中心に放射され、その垂直な方向から30°程度以上倒れた方向には殆ど直接的に放射されない。各赤外線ヒータ20は、面状の炭素繊維の垂線がサンプル台4へ向かう姿勢で設けられ、赤外線が当該垂線方向を中心に両側に放射される。かような赤外線の内、外方(サンプル台4から離れる方向)に向かうものは、炉2の内面により反射され、内方に向かうものと同様に、サンプル台4へ向かう。尚、外方に向かう赤外線を反射する反射体が、炉2内及び各赤外線ヒータ20内の少なくとも何れかに設けられても良い。
各赤外線ヒータ20は、発熱温度(発熱時のフィラメント温度)が1050℃以上1650℃以下であり、より好ましくは1250℃以上1650℃以下であり、更に好ましくは1650℃である。
図2には、カーボンヒータあるいはハロゲンヒータにおける所定の発熱温度毎の放射線波長(マイクロメートル(μm),横軸)と分光エネルギー密度に相当する相対分光放射発散度(×10/m・μm,縦軸)との関係が示される。
ハロゲンヒータ(タングステン)に係る2300℃では、エネルギー密度のピークが波長1.1μm程度に位置しており、ハロゲンヒータ(タングステン)に係る2000℃では、エネルギー密度のピークが波長1.3μm程度に位置している。
これに対し、カーボンヒータ(カーボン)に係る1650℃では、エネルギー密度のピークが波長1.5μm程度(より詳しくは1.51μm)に位置している。又、図示されない1450℃の分光エネルギー密度(相対分光放射発散度)の分布は、1650℃と1250℃とのちょうど中央を辿るようなものとなり、エネルギー密度のピークが波長1.7μm程度に位置している。
更に、カーボンヒータ(カーボン)に係る1250℃では、エネルギー密度のピークが波長1.9μm程度に位置しており、カーボンヒータ(カーボン)に係る1050℃では、エネルギー密度のピークが波長2.2μm程度に位置している。
よって、各赤外線ヒータ20は、近赤外線(波長0.8μm以上1.5μm未満)より波長の長い中赤外線(波長1.5μm以上)を最も多く放射し、1.5μm以上1.7μm以下の波長領域内でエネルギー密度のピークを有している。
サンプルはADC12製であるところ、アルミニウムの酸化面の放射率(吸収率)は波長約1μm(2625℃)から約2.4μm(934℃)まで変わらず0.40であることが知られており、波長がこの範囲であれば、電磁波の波長による吸収率の変化はない。よって、吸収率のみを考慮すると、各赤外線ヒータ20の発熱温度は、934℃で十分である。しかし、エネルギー密度に関し図2に示されるように、発熱温度が高い方がエネルギーが高いため、サンプルの昇温能力が大きいこととなる。一方で、発熱温度が2000℃を超えるヒータ即ちタングステンヒータは、赤外線が360°全周に放射されてサンプルの昇温に直接寄与しないものが多く、かえって効率が悪い。これらの観点から、各赤外線ヒータ20の発熱温度は、上述のものが好適であることになる。
尚、各赤外線ヒータ20は、ハロゲンヒータを始めとする他の発熱体に係るヒータであっても良い。又、各赤外線ヒータ20の発熱温度は、1050℃以上1650℃以下であることが好ましいが、この範囲外であっても良い。各赤外線ヒータ20は、中赤外線を中心に(強度比で最も割合が多く)放射することが好ましいが、近赤外線あるいは遠赤外線(波長25μm以上1ミリメートル未満)を中心に放射されても良い。
温度センサ16は、制御手段に対し、検知した温度を送信可能である。
制御手段は、情報処理手段(CPU)、記憶手段(例えばメモリカード)及び入力手段(例えばキーボード及びポインティングデバイスの少なくとも一方)付きのコンピュータを含んでいる。
記憶手段は、各種の情報を記憶可能である。
入力手段は、ユーザの入力を受け付ける。
尚、制御手段は、コンピュータに代えて、あるいはコンピュータと共に設置される制御盤等であっても良い。又、制御手段は、複数の部材ないし部分に分散して設けられていても良い。更に、入力手段が省略されても良いし、各種の情報を表示可能な表示手段が追加されても良い。
[第1動作例(赤外線照射)等]
以下、このようなブリスター試験機1の第1の動作例(赤外線照射)、及びブリスター試験機1によって実行される第1動作例に係るブリスター試験方法の例が、主に図3により説明される。
サンプル台4にサンプルがセットされ、ユーザにより入力手段を介して制御手段に対し試験開始の入力がなされると、ブリスター試験機1の動作が開始される。第1動作例において、熱風は用いられない。
ここでは、サンプルは、ADC12による無塗装で板状のダイカスト製品であって、その重量は、およそ300g(グラム)である。
制御手段は、各赤外線ヒータ20を点灯して赤外線をサンプルに向けて放射させる(ステップS1)。
各赤外線ヒータ20は、温度センサ16からの温度を参照した制御手段により、目標温度が530℃とされた状態でPID制御される。各赤外線ヒータ20の設定出力は、16.0kW(キロワット)である。
ここでは、サンプルの温度分布を調査するため、温度センサ16はサンプルについて5個設けられており、表面及び裏面が上下方向となるように縦置きされたサンプルの、表面中央部(第1部分),裏面上中央部(第2部分),表面下辺部中央部(第3部分),裏面からみて右上のコーナー部(第4部分),表面側からみて右下のコーナー部(第5部分)に係る温度を検知する。制御手段は、サンプルの第1部分に係る温度(制御点)を参照して各赤外線ヒータ20の出力を制御し、5箇所の温度を記憶する(測定点)。
尚、温度センサ16の個数及び配置の少なくとも一方は、上述のもの以外のものとすることができる。又、制御手段による制御において参照する温度は、第2〜第5部分の内の何れかであっても良いし、これらの組合せの平均であっても良いし、サンプルに隣接する箇所の温度であっても良い。更に、各種の温度の内の少なくとも何れかは、記憶されなくても良い。
制御手段は、サンプルの軟化点を目標温度としたPID制御を行うことにより、サンプルの第1部分の温度が赤外線で軟化点に到達するまで(ステップS2でNo)、各赤外線ヒータ20の出力が設定出力程度に高くなるようにし、軟化点に到達した後では(ステップS2でYes)、各赤外線ヒータ20の出力がその前より低くなって赤外線の強度が低下するようにする(ステップS3)。
尚、制御手段は、PID制御を行えばきめ細かく赤外線ヒータ20の出力低下を行えるところ、PID制御に代えて、PD制御あるいはP制御等の他のフィードバック制御を行っても良いし、予め決められたパターン(経過時間に対する各赤外線ヒータ20への電力の関数)に従った制御等のフィードバック制御以外の制御を行っても良い。
制御手段は、加熱開始から所定時間(例えば3分(min))が経過すると、各赤外線ヒータ20を消灯する(ステップS4)。
ここでは、サンプルの温度変化を比較的長期間調べるため、6.8minの経過後、上記停止が行われる。
図4は試験開始からの経過時間(横軸,min)に対するサンプルの第1〜第5部分の温度(左縦軸,℃)及び赤外線ヒータ20の1本当たりの有効電力(右縦軸,kW)が示されるグラフであり、図5は図4の内サンプルの第1〜第5部分の温度について縦軸の一部が拡大して示されるグラフである。
加熱開始時のサンプルの温度(第1〜第5部分の平均即ちサンプル平均温度)は19.9℃であり、PID制御で設定出力(16kW)程度で点灯された赤外線ヒータ20からの赤外線の照射により、1.8分後にはサンプルの第1〜第5部分の何れも目標温度(530℃)付近に到達している。サンプルの最高温度は、534.2℃であり、サンプル平均温度が530℃に到達した際のサンプルにおける最大温度差は26.1℃である。
かような到達後、PID制御により赤外線ヒータ20の出力は2kW前後まで下がり(赤外線の強度が下がり)、サンプルの各部分の温度は530℃程度に維持され、530℃到達後1分後にはサンプルにおける最大温度差は8ないし9に縮小する。
このブリスター試験の完了後、サンプルが目視で観察され、サンプルの表面及び裏面にブリスターの発生が認められた。
ブリスターは、サンプルが均一に軟化点まで加熱されれば比較的短時間(サンプルの大きさ及び形状等にもよるが軟化点到達後1分程度)で発生する。よって、1.8分後の軟化点(目標温度)への到達及び1分間程度の維持により、3分間程度の加熱でブリスターがサンプルの全体に発生し得、ブリスター試験が完了する。尚、以上と異なり、サンプルが不均一に加熱されると、ある部分が軟化点以上となる一方で他の部分で軟化点に達しないこととなり、その軟化点に達しない部分においてブリスター試験が完全に行われないこととなる。又、サンプルがその融点以上に加熱されると、サンプルの少なくとも一部が融解して変形し、その変形した部分とブリスターとの区別がつかなかったり、ブリスター発生部分が融解したりして、検査の正確性が比較的に低くなる。
かような第1動作例に係るブリスター試験機1は、次のような作用効果を奏する。
即ち、ブリスター試験機1は、サンプルを保持するサンプル台4と、赤外線を発生する各赤外線ヒータ20と、を備えており、前記赤外線ヒータは、前記サンプルに対し、前記赤外線を照射する。
よって、サンプルを加熱する熱源は、赤外線であり、ブリスター試験機1の作動及び管理は容易且つ安全に行える。又、ブリスター試験機1が作動に際し排出するものは熱だけであり、環境への影響が低減される。更に、サンプルが赤外線で均一に加熱されるため、検査時間が3分程度と短時間で済み、検査が正確に行える。
又、ブリスター試験機1は、各赤外線ヒータ20の出力を調節する制御手段を備えており、制御手段は、赤外線ヒータ20の出力について、サンプルの温度が軟化点へ到達する前に比べ、到達した後で低くする。よって、ブリスター試験機1は、サンプルを軟化点に到達させた後は、比較的に弱い赤外線の作用により、サンプルを均一に加熱することができる。
更に、各赤外線ヒータ20は、発熱温度が1050℃以上1650℃以下であるカーボン製の面状フィラメントを有するカーボンヒータを含んでいる。よって、サンプルに対する作用の程度がより良い赤外線、即ち他の赤外線に比較して作用の程度が穏やかでありながら均一の加熱のために不足しない中赤外線が多く照射され、より短時間で均一なサンプルの加熱が行える。
他方、ブリスター試験機1で実行可能な第1動作例に係るブリスター試験方法では、サンプルに対し、各赤外線ヒータ20による赤外線の照射が行われることで、サンプルが軟化点以上融点未満に加熱される。よって、赤外線の作用により、作動及び管理がより容易且つ安全に行え、より環境に優しく、検査時間が比較的に短いブリスター試験方法が提供される。
又、各赤外線ヒータ20による赤外線の照射の強度が、サンプルの温度の軟化点への到達の前に比べ、その到達の後で低くされる。よって、赤外線の作用によりサンプルを軟化点に到達させた後において、比較的に弱い赤外線の作用によりサンプルが均一に加熱されて、より短時間で正確な検査が実現する。
尚、第1動作例に係る各赤外線ヒータ20の出力に係る軟化点到達後の低下は、発熱温度が1050℃以上1650℃以下に限定されない赤外線ヒータによる加熱においてもそれぞれ実行可能であり、それぞれ上述の作用効果を奏するものである。
又、第1動作例専用のブリスター試験機、即ち上述のブリスター試験機1から熱風入口6,ヒータ付きブロワ8,熱風出口10が省略されたブリスター試験機が形成されても良い。
[第2動作例(熱風供給及び赤外線照射)等]
次いで、ブリスター試験機1の第2の動作例(熱風供給及び赤外線照射)、及びブリスター試験機1によって実行される第2動作例に係るブリスター試験方法の例が、主に図6により説明される。
第2動作例では、第1動作例と同じ試験前のサンプルにおいて、第1動作例と同様にブリスター試験機1の動作が開始される。
制御手段は、ヒータ付きブロワ8を起動して熱風を炉2内に送る(ステップS11)と共に、各赤外線ヒータ20を点灯して赤外線をサンプルに向けて放射させる(ステップS12)。尚、ヒータ付きブロワ8の起動と各赤外線ヒータ20の点灯とは、互いにタイミングをずらして行われても良い。
ここでは、ヒータ付きブロワ8における熱風供給温度は、吐出温度で700℃に設定される。尚、当該熱風供給温度は、かようなものに限られない。
又、各赤外線ヒータ20は、温度センサ16からの温度を参照した制御手段により、目標温度が530℃とされた状態でPID制御される。各赤外線ヒータ20の設定出力は、16.0kW(キロワット)である。
第2動作例では、温度センサ16はサンプルについて第1動作例と同様に5個設けられており、制御手段は、第1動作例と同様に各赤外線ヒータ20の出力を制御し、5箇所の温度を記憶する。加えて、サンプルを離れた炉2の上部,下部の温度を検知する温度センサ16と、熱風入口6の温度を検知する温度センサ16と、が設けられる。制御手段は、これらの温度も記憶する。
尚、温度センサ16の個数及び配置の少なくとも一方は、上述のもの以外のものとすることができる。又、制御手段による制御において参照する温度は、第2〜第5部分の内の何れかであっても良いし、これらの組合せの平均であっても良いし、サンプルから離れた炉2内の温度であっても良い。更に、各種の温度の内の少なくとも何れかは、記憶されなくても良い。
制御手段は、サンプルの軟化点を目標温度としたPID制御を行うことにより、サンプルの第1部分の温度が熱風及び赤外線で軟化点に到達するまで(ステップS13でNo)、各赤外線ヒータ20の出力が設定出力程度に高くなるようにし、軟化点に到達した後では(ステップS13でYes)、各赤外線ヒータ20の出力がその前より低くなって赤外線の強度が低下するようにする(ステップS14)。
尚、制御手段は、PID制御を行えばきめ細かく赤外線ヒータ20の出力低下を行えるところ、PID制御に代えて、PD制御あるいはP制御等の他のフィードバック制御を行っても良いし、予め決められたパターン(経過時間に対する各赤外線ヒータ20への電力の関数)に従った制御等のフィードバック制御以外の制御を行っても良い。
制御手段は、加熱開始から所定時間(例えば3分(min))が経過すると、ヒータ付きブロワ8による熱風の供給と、各赤外線ヒータ20の点灯とを停止する(ステップS15,S16)。
ここでは、サンプルの温度変化を比較的長期間調べるため、6.8minの経過後、上記停止が行われる。
尚、ヒータ付きブロワ8の停止及び各赤外線ヒータ20の停止は、互いにタイミングをずらして行われても良い。
図7は試験開始からの経過時間(横軸,min)に対する各種の温度(左縦軸,℃)が示されるグラフであり、図8は図7の内サンプルの第1〜第5部分の温度について縦軸の一部が拡大して示されるグラフである。当該各種の温度は、サンプルの第1〜第5部分の温度,熱風入口6の温度,炉2の上部の温度,炉2の下部の温度である。又、図7では、試験開始からの経過時間に対する赤外線ヒータ20の1本当たりの有効電力(右縦軸,kW)が、併せて示される。
加熱開始時のサンプルの温度(第1〜第5部分の平均即ちサンプル平均温度)は16.1℃であり、熱風の導入と、PID制御で設定出力(16kW)程度で点灯された赤外線ヒータ20からの赤外線の照射とにより、1.8分後にはサンプルの第1〜第5部分の何れも目標温度(530℃)付近に到達している。サンプルの最高温度は、531.1℃であり、サンプル平均温度が530℃に到達した際のサンプルにおける最大温度差は17.4℃である。
かような到達後、PID制御により赤外線ヒータ20の出力は2kW前後まで下がり(赤外線の強度が下がり)、サンプルの各部分の温度は530℃程度に維持され、530℃到達後1分後にはサンプルにおける最大温度差は1ないし3℃に縮小する。かような温度差の縮小、即ちサンプル温度分布の均一化は、赤外線ヒータ20からの赤外線の照射によるサンプルの加熱と、熱風により炉2内の温度分布を緩和する作用(熱風の撹拌作用)との併用が寄与しているものと考えられる。
このブリスター試験の完了後、サンプルが目視で観察され、サンプルの表面及び裏面にブリスターの発生が認められた。
ブリスターは、サンプルが均一に軟化点まで加熱されれば比較的短時間(サンプルの大きさ及び形状等にもよるが軟化点到達後1分程度)で発生する。よって、1.8分後の軟化点(目標温度)への到達及び1分間程度の維持により、3分間程度の加熱でブリスターがサンプルの全体に発生し得、ブリスター試験が完了する。
かような第2動作例に係るブリスター試験機1は、次のような作用効果を奏する。
即ち、ブリスター試験機1は、サンプルを保持するサンプル台4と、内部にサンプル台4が配置される炉2と、炉2内へ熱風を供給するヒータ付きブロワ8と、炉2内に設けられており赤外線を発生する各赤外線ヒータ20と、を備えている。
よって、サンプルを加熱する熱源は、熱風及び赤外線であり、ブリスター試験機1の作動及び管理は容易且つ安全に行える。又、ブリスター試験機1が作動に際し排出するものは熱風だけであり、環境への影響が低減される。更に、サンプルが熱風と赤外線とで均一に加熱されるため、検査時間が3分程度と短時間で済み、検査が正確に行える。サンプルの加熱の均一性(最大温度差1ないし3℃)は、第1動作例(赤外線のみでの加熱)のもの(最大温度差8ないし9℃)に比べ、更に優れたものとなっている。
又、ブリスター試験機1は、各赤外線ヒータ20の出力を調節する制御手段を備えており、制御手段は、赤外線ヒータ20の出力について、サンプルの温度が軟化点へ到達する前に比べ、到達した後で低くする。よって、ブリスター試験機1は、熱風の撹拌作用と強力な赤外線の作用とにより、短時間でサンプルを軟化点に到達させ、その後は熱風の作用を補助する比較的に弱い赤外線の作用により、サンプルを均一に加熱することができる。
更に、各赤外線ヒータ20は、発熱温度が1050℃以上1650℃以下であるカーボン製の面状フィラメントを有するカーボンヒータを含んでいる。よって、サンプルに対する作用の程度がより良い赤外線、即ち他の赤外線に比較して作用の程度が穏やかでありながら均一の加熱のために不足しない中赤外線が多く照射され、より短時間で均一なサンプルの加熱が行える。
他方、ブリスター試験機1で実行可能な第2動作例に係るブリスター試験方法では、サンプルに対し、ヒータ付きブロワ8による熱風の供給と、各赤外線ヒータ20による赤外線の照射とが行われることで、サンプルが軟化点以上融点未満に加熱される。よって、熱風の撹拌作用と赤外線の作用とにより、作動及び管理がより容易且つ安全に行え、より環境に優しく、検査時間が比較的に短いブリスター試験方法が提供される。
又、各赤外線ヒータ20による赤外線の照射の強度が、サンプルの温度の軟化点への到達の前に比べ、その到達の後で低くされる。よって、熱風の撹拌作用と強力な赤外線の作用とにより、短時間でサンプルが軟化点に到達し、その後は熱風の作用を補助する比較的に弱い赤外線の作用により、サンプルが均一に加熱されて、より短時間で正確な検査が実現する。
尚、第2動作例に係る各赤外線ヒータ20の出力に係る軟化点到達後の低下は、発熱温度が1050℃以上1650℃以下に限定されない赤外線ヒータによる加熱においてもそれぞれ実行可能であり、それぞれ上述の作用効果を奏するものである。
1・・ブリスター試験機、2・・炉、4・・サンプル台(サンプル保持部)、8・・ヒータ付きブロワ(熱風供給部)、20・・赤外線ヒータ。

Claims (7)

  1. サンプルを保持するサンプル保持部と、
    赤外線を発生する赤外線ヒータと、
    を備えており、
    前記赤外線ヒータは、前記サンプルに対し、前記赤外線を照射する
    ことを特徴とするブリスター試験機。
  2. サンプルを保持するサンプル保持部と、
    内部に前記サンプル保持部が配置される炉と、
    前記炉内へ熱風を供給する熱風供給部と、
    前記炉内に設けられており赤外線を発生する赤外線ヒータと、
    を備えている
    ことを特徴とするブリスター試験機。
  3. 更に、前記赤外線ヒータの出力を調節する制御手段を備えており、
    前記制御手段は、前記赤外線ヒータの出力について、前記サンプルの温度あるいは前記サンプルの周囲の温度の前記サンプルの軟化点への到達の前に比べ、その到達の後で低くする
    ことを特徴とする請求項1又は請求項2に記載のブリスター試験機。
  4. 前記赤外線ヒータは、発熱温度が1050℃以上1650℃以下であるカーボン製の面状フィラメントを有するカーボンヒータを含む
    ことを特徴とする請求項1ないしは請求項3の何れかに記載のブリスター試験機。
  5. サンプルに対し、赤外線の照射が行われることで、前記サンプルが軟化点以上融点未満に加熱される
    ことを特徴とするブリスター試験方法。
  6. サンプルに対し、熱風の供給と、赤外線の照射とが行われることで、前記サンプルが軟化点以上融点未満に加熱される
    ことを特徴とするブリスター試験方法。
  7. 前記赤外線の照射の強度が、前記サンプルの温度あるいは前記サンプルの周囲の温度の前記サンプルの軟化点への到達の前に比べ、その到達の後で低くされる
    ことを特徴とする請求項5又は請求項6に記載のブリスター試験方法。
JP2018126232A 2018-07-02 2018-07-02 ブリスター試験機及び方法 Active JP7146490B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126232A JP7146490B2 (ja) 2018-07-02 2018-07-02 ブリスター試験機及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126232A JP7146490B2 (ja) 2018-07-02 2018-07-02 ブリスター試験機及び方法

Publications (2)

Publication Number Publication Date
JP2020008283A true JP2020008283A (ja) 2020-01-16
JP7146490B2 JP7146490B2 (ja) 2022-10-04

Family

ID=69151131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126232A Active JP7146490B2 (ja) 2018-07-02 2018-07-02 ブリスター試験機及び方法

Country Status (1)

Country Link
JP (1) JP7146490B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389820A (zh) * 2022-10-27 2022-11-25 广东微容电子科技有限公司 一种mlcc绝缘电阻检测装置及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167337A (ja) * 1986-01-17 1987-07-23 Takeda Chem Ind Ltd ラテツクス組成物
JPH041561A (ja) * 1990-04-18 1992-01-07 Ahresty Corp ダイカスト製品のブリスター試験方法
JP3009463U (ja) * 1994-09-26 1995-04-04 株式会社アーレスティ 鋳物のブリスタ試験機
JPH11241019A (ja) * 1998-02-25 1999-09-07 Dsmjsr Engineering Plastics Kk 難燃性樹脂組成物
US20040261968A1 (en) * 2002-06-21 2004-12-30 Arnie Fulton Die casting process incorporating computerized pattern recognition techniques
JP2006200954A (ja) * 2005-01-19 2006-08-03 Toyota Motor Corp 鋳巣検出方法および鋳巣検出装置
JP2010151721A (ja) * 2008-12-26 2010-07-08 Hamamatsu Heat Tec Kk ワーク検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167337A (ja) * 1986-01-17 1987-07-23 Takeda Chem Ind Ltd ラテツクス組成物
JPH041561A (ja) * 1990-04-18 1992-01-07 Ahresty Corp ダイカスト製品のブリスター試験方法
JP3009463U (ja) * 1994-09-26 1995-04-04 株式会社アーレスティ 鋳物のブリスタ試験機
JPH11241019A (ja) * 1998-02-25 1999-09-07 Dsmjsr Engineering Plastics Kk 難燃性樹脂組成物
US20040261968A1 (en) * 2002-06-21 2004-12-30 Arnie Fulton Die casting process incorporating computerized pattern recognition techniques
JP2006200954A (ja) * 2005-01-19 2006-08-03 Toyota Motor Corp 鋳巣検出方法および鋳巣検出装置
JP2010151721A (ja) * 2008-12-26 2010-07-08 Hamamatsu Heat Tec Kk ワーク検査装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389820A (zh) * 2022-10-27 2022-11-25 广东微容电子科技有限公司 一种mlcc绝缘电阻检测装置及使用方法

Also Published As

Publication number Publication date
JP7146490B2 (ja) 2022-10-04

Similar Documents

Publication Publication Date Title
KR101344560B1 (ko) 온도 검출 장치, 가열 장치
CN101086341B (zh) 加热烹调器
JP5819633B2 (ja) 熱処理装置および熱処理方法
TWI698936B (zh) 熱處理方法及熱處理裝置
JP2012238782A (ja) 熱処理装置および熱処理方法
JP2011099567A (ja) 赤外線加熱装置、赤外線照射装置、赤外線照射方向調整装置
JP7146490B2 (ja) ブリスター試験機及び方法
CN105628210A (zh) 高温检测装置、其校准方法及用于生产三维工件的设备
KR20190098039A (ko) 열처리 방법
JP2011112518A (ja) 加熱冷却試験方法および装置
JP2019149526A (ja) 熱処理方法および熱処理装置
JP7057940B2 (ja) 樹脂又は樹脂複合材料加熱装置及び方法
JP2007080701A (ja) 加熱調理器
JP5898258B2 (ja) 熱処理装置
US20110255847A1 (en) Rapid heat treatment apparatus that enables extended pyrometer life
JP2003323971A (ja) 超高温・超高速・均一加熱装置
JP7118777B2 (ja) ブリスター試験機及び方法
JP2018044915A (ja) 温度測定方法および熱処理装置
JP6164097B2 (ja) 熱処理装置
JP2018132272A (ja) 乾燥装置及び乾燥体の製造方法
CN108141916A (zh) 加热装置及板状部件的制造方法
JP6295674B2 (ja) 熱処理装置およびランプ制御方法
KR101996463B1 (ko) 소재 가열장치
JP2021103121A (ja) ブリスター試験機及びブリスター試験方法
JP2012134029A (ja) マイクロ波加熱装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220921

R150 Certificate of patent or registration of utility model

Ref document number: 7146490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150