JP2020007940A - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
JP2020007940A
JP2020007940A JP2018128471A JP2018128471A JP2020007940A JP 2020007940 A JP2020007940 A JP 2020007940A JP 2018128471 A JP2018128471 A JP 2018128471A JP 2018128471 A JP2018128471 A JP 2018128471A JP 2020007940 A JP2020007940 A JP 2020007940A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
engine
efficiency coefficient
volume efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018128471A
Other languages
Japanese (ja)
Inventor
昇平 宮嶋
Shohei Miyajima
昇平 宮嶋
敏行 宮田
Toshiyuki Miyata
敏行 宮田
戸田 仁司
Hitoshi Toda
仁司 戸田
Original Assignee
三菱自動車工業株式会社
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社, Mitsubishi Motors Corp filed Critical 三菱自動車工業株式会社
Priority to JP2018128471A priority Critical patent/JP2020007940A/en
Publication of JP2020007940A publication Critical patent/JP2020007940A/en
Pending legal-status Critical Current

Links

Images

Abstract

To accurately calculate volumetric efficiency of an engine.SOLUTION: An engine control device comprises: an exhaust gas recirculation device including an exhaust gas recirculation passage and an exhaust gas recirculation valve; and a control unit for controlling the exhaust gas recirculation valve on the basis of an operation state of an engine. The control device comprises: a target EGR introduction-time volumetric efficiency coefficient calculation part 23 for calculating a volumetric efficiency coefficient EGR of the engine in a target exhaust gas circulation state; an EGR non-introduction-time volumetric efficiency coefficient calculation part 22 for calculating a volumetric efficiency coefficient woEGR of the engine in a non-exhaust gas circulation state; an EGR rate calculation part 25 for correcting a volumetric efficiency coefficient to calculate an EGR rate b in the target exhaust gas circulation state; an in-cylinder EGR rate calculation part 26 for calculating a current EGR rate a; and a volumetric efficiency coefficient calculation part 27 for calculating a volumetric efficiency coefficient Kve of the current engine by interpolating the volumetric efficiency coefficient woEGR in the target exhaust gas circulation state and the volumetric efficiency coefficient woEGR in the non-exhaust gas circulation state on the basis of a ratio between the EGR rate b in the target exhaust gas circulation state and the current EGR rate a.SELECTED DRAWING: Figure 4

Description

本発明は、排気還流装置を備えたエンジンの制御技術に関する。   The present invention relates to a control technique for an engine including an exhaust gas recirculation device.
エンジンの燃料噴射を適切に制御するために、筒内への吸気量を正確に演算する必要がある。筒内への吸気量については、例えば吸気スロットルバルブの上流部に設けられたフローセンサを用いて計測したり、スロットルバルブの下流側の吸気圧であるインマニ圧とエンジン回転速度から推定演算したりする方法が知られている。
また、特許文献1には、エンジンの定常運転時において、インマニ圧と体積効率相当値とを用いて筒内への吸気量を算出するとともにスロットル開度と吸気量との関係を学習し、過渡運転時においては、この学習結果を用いて筒内への吸気量を算出する方法が開示されている。
In order to properly control the fuel injection of the engine, it is necessary to accurately calculate the amount of intake air into the cylinder. The amount of intake air into the cylinder is measured using, for example, a flow sensor provided upstream of the intake throttle valve, or estimated from the intake manifold pressure, which is the intake pressure downstream of the throttle valve, and the engine speed. There are known ways to do this.
Japanese Patent Application Laid-Open No. H11-157, in Japanese Patent Application Laid-Open No. H11-157, calculates the intake air amount into the cylinder using the intake manifold pressure and the value corresponding to the volume efficiency during steady operation of the engine, learns the relationship between the throttle opening and the intake air amount, At the time of operation, a method of calculating the intake air amount into the cylinder using the learning result is disclosed.
特開2014−84817号公報JP 2014-84817 A
しかしながら、エンジンの多くには、NOx排出量を低減させるためにEGR装置(外部EGR装置)が搭載されている。EGR装置は、エンジンの排気の一部を吸気側に還流させて、筒内での燃焼温度を低下させることで、NOxの排出量を低減させる。したがって、EGR装置により排気を還流させると、燃焼に寄与する空気量である筒内への新気量が減少し、燃料噴射制御するために必要な筒内への吸気量(新気量)を正確に演算することが困難となってしまう。   However, many engines are equipped with an EGR device (external EGR device) to reduce NOx emissions. The EGR device recirculates part of the exhaust gas of the engine to the intake side to lower the combustion temperature in the cylinder, thereby reducing the amount of NOx emission. Therefore, when exhaust gas is recirculated by the EGR device, the amount of fresh air into the cylinder, which is the amount of air contributing to combustion, decreases, and the amount of intake air (fresh air) into the cylinder required for fuel injection control is reduced. It becomes difficult to calculate accurately.
特に、EGR装置は一般的にエンジンの運転状態に基づいてオンオフ制御されるので、過渡運転時のように排気の還流のオンオフが切り替わる際には、排気還流量が変化して、筒内への吸気量を正確に演算することが困難となってしまう。
本発明はこのような問題点を解決するためになされたもので、EGR装置を備えたエンジンにおいて、精度よく筒内への吸気量を演算することが可能となるエンジンの制御装置を提供することにある。
In particular, since the EGR device is generally controlled to be turned on / off based on the operating state of the engine, when the on / off of the recirculation of the exhaust is switched as in the transient operation, the amount of the recirculated exhaust gas changes, and the amount of the recirculated exhaust gas into the cylinder is changed. It becomes difficult to accurately calculate the intake air amount.
The present invention has been made in order to solve such a problem, and provides an engine control device that can accurately calculate an intake air amount into a cylinder in an engine including an EGR device. It is in.
上記の目的を達成するために、本発明のエンジンの制御装置は、エンジンの排気の一部を吸気通路に還流する排気還流路と、前記エンジンの運転状態に基づいて前記排気還流弁を制御する排気還流制御部と、を備えたエンジンの制御装置であって、前記排気還流路による排気還流量相当値が前記エンジンの運転状態に基づいて設定される目標排気還流量相当値である目標排気還流状態での前記エンジンの体積効率係数を演算する目標排気還流時体積効率係数演算部と、前記排気還流量相当値が0である非排気還流状態での前記エンジンの体積効率係数を演算する非排気還流時体積効率係数演算部と、前記目標排気還流状態の排気還流量相当値を演算する目標排気還流時排気還流量演算部と、前記エンジンの運転状態に基づいて、現状の排気還流量相当値を演算する現排気還流量演算部と、前記目標排気還流状態の排気還流量相当値と前記現状の排気還流量相当値との比に基づいて、前記目標排気還流状態での前記体積効率係数と前記非排気還流状態での前記体積効率係数とを補間して、現状の前記エンジンの体積効率係数を演算する体積効率係数演算部と、を備えたことを特徴とする。   In order to achieve the above object, an engine control device of the present invention controls an exhaust gas recirculation valve that recirculates a part of exhaust gas of an engine to an intake passage, and the exhaust gas recirculation valve based on an operation state of the engine. An exhaust gas recirculation control unit, wherein the value corresponding to the amount of exhaust gas recirculated by the exhaust gas recirculation path is a value corresponding to a target amount of exhaust gas recirculated set based on the operating state of the engine. A target exhaust gas recirculation volume efficiency coefficient calculation unit for calculating a volume efficiency coefficient of the engine in a state, and a non-exhaust gas calculating a volume efficiency coefficient of the engine in a non-exhaust gas recirculation state in which the exhaust gas recirculation amount equivalent value is 0. A recirculation-time volume efficiency coefficient calculation unit, a target recirculation-time exhaust recirculation amount calculation unit for calculating an exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state, and a current exhaust gas recirculation amount based on the operating state of the engine. A current exhaust gas recirculation amount calculating unit for calculating an amount equivalent value, and the volume in the target exhaust gas recirculation state based on a ratio of the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state to the current exhaust gas recirculation amount equivalent value. A volume efficiency coefficient calculating unit configured to calculate a current volume efficiency coefficient of the engine by interpolating the efficiency coefficient and the volume efficiency coefficient in the non-exhaust gas recirculation state.
これにより、目標排気還流状態の排気還流量相当値と現状の排気還流量相当値との比に基づいて、目標排気還流状態の体積効率係数と非排気還流状態での体積効率係数との間に、現状の体積効率係数が演算される。したがって、目標排気還流状態でない排気還流状態であっても、体積効率係数を精度よく演算することができる。
また、好ましくは、前記体積効率係数演算部は、前記現状の排気還流量相当値をa、前記目標排気還流状態の排気還流量相当値をb、前記目標排気還流状態での体積効率係数をwEGR、前記非排気還流状態での体積効率係数をwoEGRとした場合、Kve=(wEGR×(a/b)+(woEGR×(1−(a/b)))によって、前記現状のエンジンの体積効率係数Kveを演算するとよい。
Thereby, based on the ratio between the value corresponding to the exhaust gas recirculation amount in the target exhaust gas recirculation state and the value equivalent to the current amount of exhaust gas recirculation, the volume efficiency coefficient in the target exhaust gas recirculation state and the volume efficiency coefficient in the non-exhaust gas recirculation state are , The current volume efficiency coefficient is calculated. Therefore, even in the exhaust gas recirculation state other than the target exhaust gas recirculation state, the volume efficiency coefficient can be accurately calculated.
Preferably, the volume efficiency coefficient calculation unit calculates the current exhaust gas recirculation amount equivalent value a, the target exhaust gas recirculation amount equivalent value b in the target exhaust gas recirculation state, and the volume efficiency coefficient wEGR in the target exhaust gas recirculation state. When the volume efficiency coefficient in the non-exhaust gas recirculation state is woGR, Kve = (wEGR × (a / b) + (woEGR × (1− (a / b))). The coefficient Kve may be calculated.
これにより、目標排気還流状態でない排気還流状態でのエンジンの体積効率係数を、目標排気還流状態の排気還流量相当値と現状の排気還流量相当値との比に基づいて、容易にかつ精度よく演算することが可能となる。
また、好ましくは、前記エンジンの回転速度を検出するエンジン回転速度検出器と、前記エンジンの吸気圧を検出する吸気圧検出器と、を備え、前記目標排気還流時体積効率係数演算部及び前記非排気還流時体積効率係数演算部は、前記エンジンの回転速度と吸気圧とに基づいて、前記エンジンの体積効率係数を夫々演算するとよい。
Thus, the volumetric efficiency coefficient of the engine in the exhaust gas recirculation state other than the target exhaust gas recirculation state can be easily and accurately determined based on the ratio between the target exhaust gas recirculation state equivalent value and the current exhaust gas recirculation amount equivalent value. It becomes possible to calculate.
Preferably, the engine further includes an engine rotational speed detector that detects a rotational speed of the engine, and an intake pressure detector that detects an intake pressure of the engine. The exhaust gas recirculation volume efficiency coefficient calculation unit may calculate the volume efficiency coefficient of the engine based on the rotation speed and the intake pressure of the engine.
これにより、エンジンの回転速度と吸気圧を用いて、目標排気還流時体積効率係数演算部は目標排気還流状態でのエンジンの体積効率係数を、非排気還流時体積効率係数演算部は非排気還流状態でのエンジンの体積効率係数を、夫々容易に演算することが可能となる。
また、好ましくは、前記目標排気還流時排気還流量演算部は、前記目標排気還流時体積効率係数演算部で演算した前記目標排気還流状態での前記体積効率係数と前記エンジンの回転速度と吸気圧とに基づいて、前記目標排気還流状態での排気還流量相当値を演算するとよい。
Thus, using the engine speed and intake pressure, the target exhaust gas recirculation volume efficiency coefficient calculation unit calculates the engine volume efficiency coefficient in the target exhaust gas recirculation state, and the non-exhaust gas recirculation volume efficiency coefficient calculation unit calculates the non-exhaust gas recirculation volume efficiency coefficient. It is possible to easily calculate the volumetric efficiency coefficient of the engine in each state.
Also, preferably, the target exhaust gas recirculation exhaust gas recirculation amount calculation unit calculates the volume efficiency coefficient in the target exhaust gas recirculation state calculated by the target exhaust gas recirculation volume efficiency coefficient calculation unit, the rotation speed of the engine, and the intake pressure. Based on the above, a value corresponding to the exhaust gas recirculation amount in the target exhaust gas recirculation state may be calculated.
これにより、目標排気還流時体積効率係数演算部で演算した目標排気還流状態での体積効率係数を利用して、目標排気還流状態での排気還流量相当値を容易に演算することができる。
また、好ましくは、前記エンジンの回転速度を検出するエンジン回転速度検出器と、前記エンジンの吸気圧を検出する吸気圧検出器と、前記排気還流弁の開度を検出する還流弁開度検出器を備え、前記現排気還流量演算部は、前記排気還流弁の開度と前記エンジンの回転速度と吸気圧とに基づいて、前記現状の排気還流量相当値を演算するとよい。
Thus, the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state can be easily calculated by using the volume efficiency coefficient in the target exhaust gas recirculation state calculated by the target exhaust gas recirculation volume efficiency coefficient operation unit.
Preferably, an engine rotational speed detector for detecting a rotational speed of the engine, an intake pressure detector for detecting an intake pressure of the engine, and a recirculation valve opening detector for detecting an opening of the exhaust recirculation valve The current exhaust gas recirculation amount calculation unit may calculate the current value of the exhaust gas recirculation amount based on the opening degree of the exhaust gas recirculation valve, the rotation speed of the engine, and the intake pressure.
これにより、現状の排気還流量相当値を容易に演算することが可能となる。
また、好ましくは、前記排気還流量相当値は、前記エンジンの吸気量に対する前記排気還流量の割合である排気還流率であるとよい。
これにより、エンジンの体積効率係数を排気還流率に基づいて演算することが可能となる。
This makes it possible to easily calculate the current value corresponding to the exhaust gas recirculation amount.
Preferably, the exhaust gas recirculation amount equivalent value is an exhaust gas recirculation rate that is a ratio of the exhaust gas recirculation amount to the intake air amount of the engine.
This makes it possible to calculate the volumetric efficiency coefficient of the engine based on the exhaust gas recirculation rate.
本発明のエンジンの制御装置によれば、目標排気還流状態でない排気還流状態であっても、体積効率係数を精度よく演算することができるので、排気還流弁の開閉切替直後のような過渡運転状態においても体積効率係数を精度よく演算し、筒内への新気の吸入量を精度よく演算することができる。これにより、新気の吸入量に基づいて燃料噴射量を精度よく制御することが可能となり、エンジンの燃費の向上を図ることができる。   According to the engine control device of the present invention, the volume efficiency coefficient can be accurately calculated even in the exhaust gas recirculation state other than the target exhaust gas recirculation state. In this case, the volume efficiency coefficient can be accurately calculated, and the amount of fresh air sucked into the cylinder can be accurately calculated. As a result, the fuel injection amount can be accurately controlled based on the intake amount of fresh air, and the fuel efficiency of the engine can be improved.
本発明の実施形態におけるエンジンの制御装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an engine control device according to an embodiment of the present invention. エンジンの負荷とEGR率との関係を示すマップの一例である。4 is an example of a map showing a relationship between an engine load and an EGR rate. エンジンの負荷と体積効率係数との関係を示すマップの一例である。4 is an example of a map showing a relationship between an engine load and a volume efficiency coefficient. 本実施形態のエンジンコントロールユニットにおける体積効率係数演算部の構成を示すブロック図であるFIG. 3 is a block diagram illustrating a configuration of a volume efficiency coefficient calculation unit in the engine control unit of the embodiment. エンジンの負荷に対するEGR率、インマニ圧、体積効率係数の関係を示すマップである。4 is a map showing a relationship between an EGR rate, an intake manifold pressure, and a volume efficiency coefficient with respect to an engine load.
以下、図面に基づき本発明の実施形態について説明する。
図1は、本発明の制御装置1が適用されたエンジン2の概略構成図である。
エンジン2は、走行駆動源として車両に搭載されており、例えば多気筒のガソリンエンジンであって、図1では簡略して1つの気筒のみ記載している。エンジン2は、各気筒に設けられた燃料噴射弁3から、任意の噴射時期及び噴射量で各気筒の吸気ポート内に燃料を噴射し、点火プラグ4によって燃焼室5内の混合気を点火して燃焼可能な構成となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an engine 2 to which a control device 1 of the present invention is applied.
The engine 2 is mounted on a vehicle as a traveling drive source, and is, for example, a multi-cylinder gasoline engine, and FIG. 1 simply shows only one cylinder. The engine 2 injects fuel into an intake port of each cylinder at an arbitrary injection timing and injection amount from a fuel injection valve 3 provided in each cylinder, and ignites an air-fuel mixture in a combustion chamber 5 by a spark plug 4. It can be burned.
エンジン2の吸気通路6には、新気の流量を調整するための電子制御スロットルバルブ7が設けられている。
また、エンジン2には、EGR装置10が備えられている。EGR装置10は、エンジン2の吸気通路6と排気通路8とを連通するEGR通路11(排気還流路)と、EGR通路11を開閉するEGRバルブ12(排気還流弁)とにより構成されている。EGR装置10は、排気通路8からEGR通路11を介して排気の一部を吸気通路6に還流させる。このように排気の一部(EGRガス)を吸気通路6に流入させることで、筒内の燃焼温度を低下させ、エンジン2からのNOxの排出量を低減させる。
An electronically controlled throttle valve 7 for adjusting the flow rate of fresh air is provided in the intake passage 6 of the engine 2.
The engine 2 includes an EGR device 10. The EGR device 10 includes an EGR passage 11 (exhaust gas recirculation passage) that connects the intake passage 6 and the exhaust gas passage 8 of the engine 2, and an EGR valve 12 (exhaust gas recirculation valve) that opens and closes the EGR passage 11. The EGR device 10 recirculates part of the exhaust gas from the exhaust passage 8 to the intake passage 6 via the EGR passage 11. By causing a part of the exhaust gas (EGR gas) to flow into the intake passage 6 in this manner, the combustion temperature in the cylinder is reduced, and the emission amount of NOx from the engine 2 is reduced.
更に、エンジン2には、エンジン2の回転速度を検出する回転速度センサ15(エンジン回転速度検出器)が設けられている。吸気通路6のエンジン2側の端部である吸気マニホールド17には、吸気圧(インマニ圧)を検出するインマニ圧センサ18(吸気圧検出器)を備えている。また、EGRバルブ12には、EGRバルブの開度を検出するEGR開度センサ19(還流弁開度検出器)が設けられている。   Further, the engine 2 is provided with a rotation speed sensor 15 (engine rotation speed detector) for detecting the rotation speed of the engine 2. An intake manifold 17 at the end of the intake passage 6 on the engine 2 side is provided with an intake manifold pressure sensor 18 (intake pressure detector) for detecting intake pressure (intake pressure). Further, the EGR valve 12 is provided with an EGR opening sensor 19 (recirculation valve opening detector) for detecting the opening of the EGR valve.
エンジンコントロールユニット20(排気還流制御部)は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成され、回転速度センサ15、インマニ圧センサ18、EGR開度センサ19等の各種センサの検出情報を入力し、当該各種情報に基づいて体積効率係数を演算する。なお、体積効率係数は、吸気通路6から筒内への新気の入りやすさの指標となるものであり、吸気管内と同じ密度の空気が行程容積を満たす場合の空気量に対する、シリンダーが吸入した空気量の割合である。   The engine control unit 20 (exhaust gas recirculation control unit) includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, and the like), a timer, a central processing unit (CPU), and the like. The detection information of various sensors such as the intake manifold pressure sensor 18 and the EGR opening degree sensor 19 is input, and the volume efficiency coefficient is calculated based on the various information. The volumetric efficiency coefficient is an index of the ease with which fresh air can enter the cylinder from the intake passage 6, and the cylinder takes in the amount of air when the air of the same density as in the intake pipe fills the stroke volume. It is the ratio of the amount of air that was removed.
エンジンコントロールユニット20は、更に、体積効率係数を用いて新気の筒内への吸気量を演算し、当該吸気量に基づいて各気筒の燃料噴射量を演算して、燃料噴射弁3からの燃料噴射を制御する。また、エンジンコントロールユニット20は、点火プラグ4による点火、電子制御スロットルバルブ7の開度、EGRバルブ12の開度を制御して、エンジン2の運転制御を行う。   The engine control unit 20 further calculates the intake amount of fresh air into the cylinder using the volume efficiency coefficient, calculates the fuel injection amount of each cylinder based on the intake amount, and calculates the fuel injection amount from the fuel injection valve 3. Control fuel injection. The engine control unit 20 controls the operation of the engine 2 by controlling the ignition by the spark plug 4, the opening of the electronic control throttle valve 7, and the opening of the EGR valve 12.
図2は、エンジン2の負荷とEGR率との関係を示すマップの一例である。図3は、エンジン2の負荷と体積効率係数との関係を示すマップの一例である。
エンジンコントロールユニット20は、エンジン2の負荷に基づいて目標EGR率(目標排気還流量相当値)を設定して、EGRバルブ12の開度を制御する。EGR率(排気還流率)は、新気の流量に対するEGRガスの流量の割合である。エンジン2の負荷は、例えば回転速度センサ15により検出したエンジン回転速度とインマニ圧センサ18により検出したインマニ圧とに基づいて演算すればよい。
FIG. 2 is an example of a map showing the relationship between the load of the engine 2 and the EGR rate. FIG. 3 is an example of a map showing the relationship between the load of the engine 2 and the volumetric efficiency coefficient.
The engine control unit 20 controls the opening of the EGR valve 12 by setting a target EGR rate (a value corresponding to a target exhaust gas recirculation amount) based on the load of the engine 2. The EGR rate (exhaust gas recirculation rate) is a ratio of the flow rate of the EGR gas to the flow rate of the fresh air. The load of the engine 2 may be calculated based on, for example, the engine rotation speed detected by the rotation speed sensor 15 and the intake manifold pressure detected by the intake manifold pressure sensor 18.
例えば図2に示すように、目標EGR率は、エンジン2の負荷に基づいて変化し、低負荷時及び高負荷時に減少し、中負荷時において増加するように設定される。これは、低負荷時においてはエンジン2の燃焼安定性を確保するためであり、高負荷時においてはインマニ圧が上昇することから排気が還流し難くなるためである。
また、エンジン2の体積効率係数は、負荷に応じて変化する。例えば図3に示すように、体積効率係数は、エンジン2の負荷が増加するに伴って増加する。また、体積効率係数は、EGR非導入時とEGR導入時とで異なる値となり、目標EGR率のEGR導入時である目標EGR導入時(目標排気還流状態)では、吸気中に排気の割合が増加するため、EGR非導入時(非排気還流状態)よりも小さい値となる。
For example, as shown in FIG. 2, the target EGR rate changes based on the load of the engine 2, and is set to decrease at low load and high load, and increase at medium load. This is because the combustion stability of the engine 2 is ensured at a low load, and the exhaust gas hardly recirculates at a high load because the intake manifold pressure increases.
Further, the volumetric efficiency coefficient of the engine 2 changes according to the load. For example, as shown in FIG. 3, the volumetric efficiency coefficient increases as the load on the engine 2 increases. Further, the volumetric efficiency coefficient is different between when the EGR is not introduced and when the EGR is introduced, and when the target EGR is introduced (target exhaust gas recirculation state), which is the time when the EGR is introduced at the target EGR rate, the ratio of exhaust gas increases during intake. Therefore, the value becomes smaller than when EGR is not introduced (non-exhaust gas recirculation state).
次に、図4及び図5を用いて、EGR導入時における体積効率係数の演算方法について説明する。本実施形態のエンジンコントロールユニット20は、EGR非導入時及び目標EGR導入時だけでなく、目標EGR率でないEGR導入状態での体積効率係数について演算する。
図4は、エンジンコントロールユニット20における体積効率係数演算ユニット21のブロック図である。図5は、エンジン2の負荷に対するEGR率、インマニ圧、体積効率係数の関係を示すマップであり、実線が目標EGR率導入時、破線がEGR非導入時を示す。なお、図5中のEGR率のマップは図2に該当し、体積効率係数のマップは図3に該当する。
Next, a method of calculating the volumetric efficiency coefficient when introducing EGR will be described with reference to FIGS. 4 and 5. The engine control unit 20 of the present embodiment calculates the volume efficiency coefficient not only when the EGR is not introduced and when the target EGR is introduced but also when the EGR is not the target EGR rate.
FIG. 4 is a block diagram of the volume efficiency coefficient calculation unit 21 in the engine control unit 20. FIG. 5 is a map showing the relationship between the EGR rate, the intake manifold pressure, and the volumetric efficiency coefficient with respect to the load of the engine 2. The solid line indicates when the target EGR rate is introduced, and the broken line indicates when EGR is not introduced. The map of the EGR rate in FIG. 5 corresponds to FIG. 2, and the map of the volume efficiency coefficient corresponds to FIG.
図4に示すように、エンジンコントロールユニット20には、エンジン2の現状の運転状態(現運転点)における体積効率係数Kveを演算する体積効率係数演算ユニット21として、EGR非導入時体積効率係数演算部22(非排気還流時体積効率係数演算部)、目標EGR導入時体積効率係数演算部23(目標排気還流時体積効率係数演算部)、筒内空気量演算部24(目標排気還流時排気還流量演算部)、体積効率係数補正用EGR率演算部25(目標排気還流時排気還流量演算部)、筒内EGR率演算部26(現排気還流量演算部)、体積効率係数演算部27を備えている。   As shown in FIG. 4, the engine control unit 20 includes a volume efficiency coefficient calculation unit 21 for calculating a volume efficiency coefficient Kve in the current operating state (current operating point) of the engine 2 and calculates a volume efficiency coefficient when no EGR is introduced. Unit 22 (volume efficiency coefficient calculating unit at non-exhaust gas recirculation), volume efficiency coefficient calculating unit at target EGR introduction 23 (volume efficiency coefficient calculating unit at target exhaust gas recirculation), in-cylinder air amount calculating unit 24 (target exhaust gas recirculation at exhaust gas recirculation) A flow rate calculating section), a volume efficiency coefficient correcting EGR rate calculating section 25 (target exhaust gas recirculation amount calculating section), an in-cylinder EGR rate calculating section 26 (current exhaust gas recirculating amount calculating section), and a volume efficiency coefficient calculating section 27. Have.
EGR非導入時体積効率係数演算部22は、インマニ圧センサ18からから入力したインマニ圧Pbと、回転速度センサ15から入力したエンジン回転速度Neとに基づいて、あらかじめ試験等によって確認し記憶しているマップを用いて、EGR非導入時の体積効率係数woEGRを演算する。
なお、負荷とインマニ圧との関係は、例えばエンジン回転速度Neが一定の場合に、図5中の破線cに示すように、EGR非導入時においては負荷が増加するに伴ってインマニ圧も増加する比例関係となる。そして、エンジン回転速度Ne毎に設けられたマップを用いて、インマニ圧Pbに対応する負荷dに基づいて、EGR非導入時の体積効率係数woEGRが求められる。
The EGR non-introduction volume efficiency coefficient calculation unit 22 confirms and stores in advance a test or the like based on the intake manifold pressure Pb input from the intake manifold pressure sensor 18 and the engine rotation speed Ne input from the rotation speed sensor 15, and stores the same. The volume efficiency coefficient woEGR when EGR is not introduced is calculated using the map.
The relationship between the load and the intake manifold pressure is, for example, when the engine rotational speed Ne is constant, as shown by the broken line c in FIG. 5, when the EGR is not introduced, the intake manifold pressure increases as the load increases. Is proportional. Then, using a map provided for each engine rotation speed Ne, a volume efficiency coefficient woEGR when EGR is not introduced is obtained based on the load d corresponding to the intake manifold pressure Pb.
目標EGR導入時体積効率係数演算部23は、インマニ圧センサ18からから入力したインマニ圧Pbと、回転速度センサ15から入力したエンジン回転速度Neとに基づいて、あらかじめ試験等によって確認し記憶しているマップを用いて目標EGR導入時の体積効率係数wEGRを演算する。
なお、目標EGR導入時においては、負荷とインマニ圧との関係は、例えばエンジン回転速度Neを一定とした場合に、図5の実線eに示すように、負荷が増加するに伴ってインマニ圧も増加するものの、EGR非導入時よりもインマニ圧が増加する。そして、エンジン回転速度Ne毎に設けられたマップを用いて、インマニ圧センサ18からから入力したインマニ圧Pbに対応する負荷fに基づいてEGR非導入時の体積効率係数wEGRが求められる。エンジン回転速度Neが一定である場合、目標EGR導入時における負荷fは、EGR非導入時における負荷dよりも小さくなるので、目標EGR導入時の体積効率係数wEGRは、EGR非導入時の体積効率係数woEGRよりも小さい値となる。
The target EGR introduction volume efficiency coefficient calculation unit 23 confirms and stores in advance a test or the like based on the intake manifold pressure Pb input from the intake manifold pressure sensor 18 and the engine rotation speed Ne input from the rotation speed sensor 15 in advance. The volume efficiency coefficient wEGR at the time of introducing the target EGR is calculated using the map.
When the target EGR is introduced, the relationship between the load and the intake manifold pressure is, for example, assuming that the engine rotation speed Ne is constant, as shown by the solid line e in FIG. Although it increases, the intake manifold pressure increases more than when EGR is not introduced. Then, using a map provided for each engine rotation speed Ne, a volume efficiency coefficient wEGR when EGR is not introduced is obtained based on the load f corresponding to the intake manifold pressure Pb input from the intake manifold pressure sensor 18. When the engine rotation speed Ne is constant, the load f when the target EGR is introduced is smaller than the load d when the EGR is not introduced. Therefore, the volume efficiency coefficient wEGR when the target EGR is introduced is the volume efficiency when the EGR is not introduced. The value is smaller than the coefficient woEGR.
筒内空気量演算部24は、目標EGR導入時体積効率係数演算部23により演算した目標EGR率導入時の体積効率係数wEGRとインマニ圧センサ18から入力したインマニ圧Pbに基づいて、目標EGR率導入時における負荷(充填効率Ec)を演算する。負荷(充填効率Ec)は、例えば下記(1)式によって演算すればよい。
負荷(充填効率Ec)=wEGR×(Pb/大気圧)×100(%)・・・(1)
体積効率係数補正用EGR率演算部25は、筒内空気量演算部24で演算された負荷(充填効率Ec)とエンジン回転速度Neとに基づいて、目標EGR導入時におけるEGR率である体積効率係数補正用EGR率b(目標排気還流状態の排気還流量相当値)を演算する。
The in-cylinder air amount calculation unit 24 calculates the target EGR rate based on the volume efficiency coefficient wEGR at the time of introduction of the target EGR rate calculated by the target EGR introduction volume efficiency coefficient calculation unit 23 and the intake manifold pressure Pb input from the intake manifold pressure sensor 18. The load (filling efficiency Ec) at the time of introduction is calculated. The load (filling efficiency Ec) may be calculated by, for example, the following equation (1).
Load (filling efficiency Ec) = wEGR × (Pb / atmospheric pressure) × 100 (%) (1)
Based on the load (filling efficiency Ec) and the engine rotation speed Ne calculated by the in-cylinder air amount calculation unit 24, the volume efficiency coefficient correction EGR rate calculation unit 25 is a volume efficiency that is the EGR rate when the target EGR is introduced. A coefficient correction EGR rate b (a value corresponding to the exhaust gas recirculation amount in the target exhaust gas recirculation state) is calculated.
筒内EGR率演算部26は、回転速度センサ15から入力したエンジン回転速度Neとインマニ圧センサ18からから入力したインマニ圧Pb、更にEGR開度センサ19から入力したEGRバルブ12の開度θegrに基づいて、例えばあらかじめ記憶しているマップを用いて現運転点でのEGR率a(現状の排気還流量相当値)を演算する。
体積効率係数演算部27は、EGR非導入時体積効率係数演算部22において演算したEGR非導入時における体積効率係数woEGRと、目標EGR導入時体積効率係数演算部23において演算した目標EGR導入時における体積効率係数wEGRと、体積効率係数補正用EGR率演算部25において演算した目標EGR導入時におけるEGR率bと、筒内EGR率演算部26において演算した現運転点でのEGR率aとに基づいて、現運転点での体積効率係数kveを演算する。
The in-cylinder EGR rate calculation unit 26 calculates the engine rotation speed Ne input from the rotation speed sensor 15, the intake manifold pressure Pb input from the intake manifold pressure sensor 18, and the opening θegr of the EGR valve 12 input from the EGR opening sensor 19. Based on this, for example, an EGR rate a (current exhaust gas recirculation amount equivalent value) at the current operating point is calculated using a map stored in advance.
The volume efficiency coefficient calculator 27 calculates the volume efficiency coefficient woEGR when the EGR is not introduced and is calculated by the EGR non-introduction volume efficiency coefficient calculator 22 and the volume efficiency coefficient when the target EGR is calculated and the target EGR is calculated when the target EGR is introduced. Based on the volume efficiency coefficient wEGR, the EGR rate b at the time of introducing the target EGR calculated by the volume efficiency coefficient correction EGR rate calculation section 25, and the EGR rate a at the current operating point calculated by the in-cylinder EGR rate calculation section 26. Then, the volume efficiency coefficient kve at the current operating point is calculated.
現運転点での体積効率係数Kveは、以下の式(2)によって演算される。
Kve=wEGR×(a/b)+(woEGR×(1−(a/b))・・・(2)
以上のように、本実施形態のエンジン2は、EGR装置10を備えており、負荷に基づいて目標EGR率となるようにEGRバルブ12を制御する。そして、エンジン2の吸気量を演算するために使用する体積効率係数として、EGR非導入時の体積効率係数woEGRと目標EGR率導入時の体積効率係数wEGRを夫々演算する。しかし、EGRバルブ12を非導入(閉弁)と導入(開弁)との間で切り替えた直後では、体積効率係数はEGR非導入時の値woEGRと目標EGR率導入時の値wEGRとの間を移行するため、このような移行中においては、体積効率係数は目標EGR率導入時の値wEGRやEGR非導入時の値woEGRとは異なる値となる。
The volume efficiency coefficient Kve at the current operating point is calculated by the following equation (2).
Kve = wEGR × (a / b) + (woEGR × (1- (a / b)) (2)
As described above, the engine 2 of the present embodiment includes the EGR device 10 and controls the EGR valve 12 so that the target EGR rate is attained based on the load. Then, a volume efficiency coefficient woEGR when EGR is not introduced and a volume efficiency coefficient wEGR when the target EGR rate is introduced are respectively calculated as volume efficiency coefficients used for calculating the intake air amount of the engine 2. However, immediately after the EGR valve 12 is switched between non-introduction (closing) and introduction (opening), the volumetric efficiency coefficient is between the value woGR when the EGR is not introduced and the value wEGR when the target EGR rate is introduced. During such a shift, the volumetric efficiency coefficient is different from the value wEGR when the target EGR rate is introduced and the value woEGR when the EGR is not introduced.
これに対し、本実施形態では、EGR非導入時における体積効率係数woEGRと、目標EGR導入時における体積効率係数wEGRとを補間して、EGR導入時における体積効率係数Kveを演算する。
詳しくは、エンジン2の現状の運転点を表すインマニ圧Pb及びエンジン回転速度Neより、EGR非導入時の体積効率係数woEGRと、目標EGR率導入時の体積効率係数wEGRとを夫々演算して、EGR導入時と非導入時とで選択して現運転点での体積効率係数Kveとして使用するのではなく、目標EGR導入時のEGR率bと現運転点でのEGR率aとの比に対応して、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間の値に現状の体積効率係数Kveを設定する。
On the other hand, in the present embodiment, the volume efficiency coefficient wve when the EGR is introduced is calculated by interpolating the volume efficiency coefficient woGR when the EGR is not introduced and the volume efficiency coefficient wEGR when the target EGR is introduced.
Specifically, a volume efficiency coefficient woEGR when the EGR is not introduced and a volume efficiency coefficient wEGR when the target EGR rate is introduced are calculated from the intake manifold pressure Pb and the engine rotation speed Ne representing the current operating point of the engine 2, respectively. Rather than selecting between EGR introduction and non-introduction to use as the volume efficiency coefficient Kve at the current operating point, it corresponds to the ratio between the EGR rate b at the time of introducing the target EGR and the EGR rate a at the current operating point. Then, the current volume efficiency coefficient Kve is set to a value between the volume efficiency coefficient woGR when the EGR is not introduced and the volume efficiency coefficient wEGR when the target EGR is introduced.
このようにEGR導入時における体積効率係数Kveを、エンジン2の運転状態に基づいてEGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間の値に設定するので、EGR導入時において目標EGR率となっていない状況でも、体積効率係数Kveを精度よく演算することができる。
これにより、エンジン2の過渡運転状態のようにEGRバルブ12の開度が変化している状況においても、体積効率係数Kveを用いて筒内への新気の吸入量を精度よく演算することができ、当該新気の吸入量に基づいて燃料供給量を精度よく制御することが可能となり、燃費の向上を図ることができる。
As described above, the volume efficiency coefficient Kve when the EGR is introduced is set to a value between the volume efficiency coefficient woEGR when the EGR is not introduced and the volume efficiency coefficient wEGR when the target EGR is introduced based on the operating state of the engine 2. Even when the target EGR rate does not reach the target EGR rate at the time of EGR introduction, the volume efficiency coefficient Kve can be accurately calculated.
Thus, even in a situation where the opening of the EGR valve 12 is changing, such as in a transient operation state of the engine 2, it is possible to accurately calculate the intake amount of fresh air into the cylinder using the volume efficiency coefficient Kve. Thus, the fuel supply amount can be accurately controlled based on the fresh air intake amount, and the fuel efficiency can be improved.
また、体積効率係数演算部27は、Kve=(wEGR×(a/b)+(woEGR×(1−(a/b)))によって現状のエンジンの体積効率係数Kveを演算するので、現状のエンジンの体積効率係数Kveを容易にかつ精度よく求めることができる。
このように、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間に体積効率係数Kveを設定する際に、目標EGR導入時のEGR率bと現運転点でのEGR率aとの比(a/b)を用いることで、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間で適切な重みづけをした加重平均を取り、現状のエンジンの体積効率係数Kveを正確に演算することができる。
Further, the volume efficiency coefficient calculation unit 27 calculates the current volume efficiency coefficient Kve of the engine by Kve = (wEGR × (a / b) + (woEGR × (1− (a / b))). The volume efficiency coefficient Kve of the engine can be easily and accurately obtained.
As described above, when the volume efficiency coefficient Kve is set between the volume efficiency coefficient woGR when the EGR is not introduced and the volume efficiency coefficient wEGR when the target EGR is introduced, the EGR rate b when the target EGR is introduced and the current operation point By using the ratio (a / b) of the EGR rate a to the volume efficiency coefficient woGR when the EGR is not introduced and the volume efficiency coefficient wEGR when the target EGR is introduced, a weighted average is obtained. Thus, the volume efficiency coefficient Kve of the current engine can be accurately calculated.
なお、本願発明は、上記実施形態に限定するものではない。例えば上記実施形態では、
EGR非導入時体積効率係数演算部22や目標EGR導入時体積効率係数演算部23においてエンジン2の回転速度Neとインマニ圧Pbを用いて体積効率係数woEGRあるいはwEGRを演算しているが、エンジン2の負荷あるいは負荷に相当する指標を代わりに用いて演算してもよい。
Note that the present invention is not limited to the above embodiment. For example, in the above embodiment,
The EGR non-introduction volume efficiency coefficient calculation unit 22 and the target EGR inception volume efficiency coefficient calculation unit 23 calculate the volume efficiency coefficient woGR or wEGR using the rotation speed Ne of the engine 2 and the intake manifold pressure Pb. Alternatively, the calculation may be performed using the load or the index corresponding to the load.
また、体積効率係数補正用EGR率演算部25や筒内EGR率演算部26においてEGR率を演算しているが、EGR率の代わりにEGR量(排気還流量)あるいはEGR量に相当する指標を演算し、これらの比を体積効率係数演算部27において体積効率係数Kveの演算に使用してもよい。
また、本実施形態は、吸気ポートに燃料を噴射するガソリンエンジンに本発明を適用しているが、筒内に燃料を噴射するエンジンや、圧縮着火するディーゼルエンジン等のようなEGR装置を備えた各種エンジンに本発明を広く適用することができる。
Although the EGR rate is calculated by the volume efficiency coefficient correcting EGR rate calculation unit 25 and the in-cylinder EGR rate calculation unit 26, an EGR amount (exhaust gas recirculation amount) or an index corresponding to the EGR amount is used instead of the EGR rate. These ratios may be used to calculate the volume efficiency coefficient Kve in the volume efficiency coefficient calculation unit 27.
In the present embodiment, the present invention is applied to a gasoline engine that injects fuel into an intake port, but includes an EGR device such as an engine that injects fuel into a cylinder and a diesel engine that compresses and ignites. The present invention can be widely applied to various engines.
2 エンジン
11 EGR通路(排気還流路)
13 EGRバルブ(排気還流弁)
15 回転速度センサ(エンジン回転速度検出器)
18 インマニ圧センサ(吸気圧検出器)
19 EGR開度センサ(還流弁開度検出器)
20 エンジンコントロールユニット(排気還流制御部)
22 EGR非導入時体積効率係数演算部(非排気還流時体積効率係数演算部)
23 目標EGR導入時体積効率係数演算部(目標排気還流時体積効率係数演算部)
24 筒内空気量演算部(目標排気還流時排気還流量演算部)
25 体積効率係数補正用EGR率演算部(目標排気還流時排気還流量演算部)
26 筒内EGR率演算部(現排気還流量演算部)
27 体積効率係数演算部
2 Engine 11 EGR passage (exhaust gas recirculation passage)
13 EGR valve (exhaust gas recirculation valve)
15 Rotation speed sensor (engine rotation speed detector)
18 intake manifold pressure sensor (intake pressure detector)
19 EGR opening sensor (reflux valve opening detector)
20 Engine control unit (exhaust recirculation control unit)
22 EGR non-introduction volume efficiency coefficient calculation unit (non-exhaust gas recirculation volume efficiency coefficient calculation unit)
23 Target EGR introduction volume efficiency coefficient calculation unit (Target exhaust gas recirculation volume efficiency coefficient calculation unit)
24 In-cylinder air amount calculation unit (target exhaust gas recirculation amount exhaust recirculation amount calculation unit)
25 Volume Efficiency Coefficient Correction EGR Rate Calculation Unit (Target Exhaust Gas Recirculation Exhaust Amount Calculation Unit)
26 In-cylinder EGR rate calculator (current exhaust gas recirculation amount calculator)
27 Volume efficiency coefficient calculator

Claims (6)

  1. エンジンの排気の一部を吸気通路に還流する排気還流路と、前記排気還流路を開閉する排気還流弁と、前記エンジンの運転状態に基づいて前記排気還流弁を制御する排気還流制御部と、を備えたエンジンの制御装置であって、
    前記排気還流路による排気還流量相当値が前記エンジンの運転状態に基づいて設定される目標排気還流量相当値である目標排気還流状態での前記エンジンの体積効率係数を演算する目標排気還流時体積効率係数演算部と、
    前記排気還流量相当値が0である非排気還流状態での前記エンジンの体積効率係数を演算する非排気還流時体積効率係数演算部と、
    前記目標排気還流状態の排気還流量相当値を演算する目標排気還流時排気還流量演算部と、
    前記エンジンの運転状態に基づいて、現状の排気還流量相当値を演算する現排気還流量演算部と、
    前記目標排気還流状態の排気還流量相当値と前記現状の排気還流量相当値との比に基づいて、前記目標排気還流状態での前記体積効率係数と前記非排気還流状態での前記体積効率係数とを補間して、現状の前記エンジンの体積効率係数を演算する体積効率係数演算部と、を備えたことを特徴とするエンジンの制御装置。
    An exhaust gas recirculation path that recirculates part of the exhaust gas of the engine to the intake passage, an exhaust gas recirculation valve that opens and closes the exhaust gas recirculation path, and an exhaust gas recirculation control unit that controls the exhaust gas recirculation valve based on an operation state of the engine. An engine control device comprising:
    A target exhaust gas recirculation volume for calculating a volume efficiency coefficient of the engine in a target exhaust gas recirculation state in which a value corresponding to the amount of exhaust gas recirculation by the exhaust gas recirculation path is a value corresponding to a target amount of exhaust gas recirculation set based on the operating state of the engine. An efficiency coefficient calculator,
    A non-exhaust gas recirculation amount equivalent value of 0, a non-exhaust gas recirculation-time volume efficiency coefficient calculation unit for calculating a volume efficiency coefficient of the engine in a non-exhaust gas recirculation state,
    A target exhaust gas recirculation amount calculating section for calculating an exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state,
    A current exhaust gas recirculation amount calculation unit that calculates a current exhaust gas recirculation amount equivalent value based on the operating state of the engine;
    The volume efficiency coefficient in the target exhaust gas recirculation state and the volume efficiency coefficient in the non-exhaust gas recirculation state based on a ratio of the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state to the current exhaust gas recirculation amount equivalent value. And a volume efficiency coefficient calculator for calculating the current volume efficiency coefficient of the engine by interpolating the above.
  2. 前記体積効率係数演算部は、前記現状の排気還流量相当値をa、前記目標排気還流状態の排気還流量相当値をb、前記目標排気還流状態での体積効率係数をwEGR、前記非排気還流状態での体積効率係数をwoEGRとした場合、
    Kve=(wEGR×(a/b)+(woEGR×(1−(a/b)))
    によって、前記現状のエンジンの体積効率係数Kveを演算することを特徴とする請求項1に記載のエンジンの制御装置。
    The volume efficiency coefficient calculation unit calculates the current exhaust gas recirculation amount equivalent value a, the target exhaust gas recirculation amount equivalent value b in the target exhaust gas recirculation state, the volume efficiency coefficient in the target exhaust gas recirculation state wEGR, the non-exhaust gas recirculation When the volume efficiency coefficient in the state is woEGR,
    Kve = (wEGR × (a / b) + (woEGR × (1− (a / b)))
    2. The engine control device according to claim 1, wherein a volume efficiency coefficient Kve of the current engine is calculated by the calculation.
  3. 前記エンジンの回転速度を検出するエンジン回転速度検出器と、
    前記エンジンの吸気圧を検出する吸気圧検出器と、を備え、
    前記目標排気還流時体積効率係数演算部及び前記非排気還流時体積効率係数演算部は、前記エンジンの回転速度と吸気圧とに基づいて、前記エンジンの体積効率係数を夫々演算することを特徴とする請求項1または2に記載のエンジンの制御装置。
    An engine rotation speed detector that detects the rotation speed of the engine;
    An intake pressure detector for detecting an intake pressure of the engine,
    The target exhaust gas recirculation volume efficiency coefficient calculation unit and the non-exhaust gas recirculation volume efficiency coefficient calculation unit each calculate a volume efficiency coefficient of the engine based on a rotation speed and an intake pressure of the engine. The engine control device according to claim 1 or 2, wherein:
  4. 前記目標排気還流時排気還流量演算部は、前記目標排気還流時体積効率係数演算部で演算した前記目標排気還流状態での前記体積効率係数と前記エンジンの回転速度と吸気圧とに基づいて、前記目標排気還流状態での排気還流量相当値を演算することを特徴とする請求項3に記載のエンジンの制御装置。   The target exhaust gas recirculation-time exhaust gas recirculation amount calculation unit is based on the volumetric efficiency coefficient in the target exhaust gas recirculation state calculated by the target exhaust gas recirculation-time volume efficiency coefficient operation unit, the rotation speed of the engine, and the intake pressure. The engine control device according to claim 3, wherein an exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state is calculated.
  5. 前記エンジンの回転速度を検出するエンジン回転速度検出器と、
    前記エンジンの吸気圧を検出する吸気圧検出器と、
    前記排気還流弁の開度を検出する還流弁開度検出器を備え、
    前記現排気還流量演算部は、前記排気還流弁の開度と前記エンジンの回転速度と吸気圧とに基づいて、前記現状の排気還流量相当値を演算することを特徴とする請求項1から4のいずれか1項に記載のエンジンの制御装置。
    An engine rotation speed detector that detects the rotation speed of the engine;
    An intake pressure detector for detecting an intake pressure of the engine;
    A recirculation valve opening detector for detecting an opening of the exhaust gas recirculation valve,
    2. The current exhaust gas recirculation amount calculation unit calculates the current exhaust gas recirculation amount equivalent value based on an opening degree of the exhaust gas recirculation valve, a rotation speed of the engine, and intake pressure. The control device for an engine according to any one of claims 4 to 10.
  6. 前記排気還流量相当値は、前記エンジンの吸気量に対する排気還流量の割合である排気還流率であることを特徴とする請求項1から5のいずれか1項に記載のエンジンの制御装置。   The engine control device according to any one of claims 1 to 5, wherein the exhaust gas recirculation amount equivalent value is an exhaust gas recirculation rate that is a ratio of an exhaust gas recirculation amount to an intake amount of the engine.
JP2018128471A 2018-07-05 2018-07-05 Engine control device Pending JP2020007940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128471A JP2020007940A (en) 2018-07-05 2018-07-05 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128471A JP2020007940A (en) 2018-07-05 2018-07-05 Engine control device

Publications (1)

Publication Number Publication Date
JP2020007940A true JP2020007940A (en) 2020-01-16

Family

ID=69150947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128471A Pending JP2020007940A (en) 2018-07-05 2018-07-05 Engine control device

Country Status (1)

Country Link
JP (1) JP2020007940A (en)

Similar Documents

Publication Publication Date Title
JP4192759B2 (en) Injection quantity control device for diesel engine
US8612120B2 (en) Control apparatus for internal combustion engine
JP2005188392A (en) Control device for internal combustion engine
US10590873B2 (en) Control device for internal combustion engine
US8739760B2 (en) Control system of an internal combustion engine
JPWO2012153403A1 (en) Control device for internal combustion engine
US8751137B2 (en) Apparatus for estimating exhaust gas recirculation quantity
CN108571391B (en) Control device and control method for internal combustion engine
US20150120170A1 (en) Control apparatus for internal combustion engine
US8532912B2 (en) Engine control system
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
JP4232710B2 (en) Control device for hydrogenated internal combustion engine
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JP5110119B2 (en) Control device for multi-cylinder internal combustion engine
JP2020007940A (en) Engine control device
JP4969546B2 (en) Control device and method for internal combustion engine
US10233854B1 (en) Engine control systems and methods for regulating emissions during scavenging
JP5240385B2 (en) Control device for multi-cylinder internal combustion engine
JP2020153255A (en) Control device for engine
JP5644342B2 (en) Control device for multi-cylinder internal combustion engine
JP5240384B2 (en) Control device for multi-cylinder internal combustion engine
JP5260770B2 (en) Engine control device
JP3767063B2 (en) Air-fuel ratio control device for internal combustion engine
JP6860313B2 (en) Engine control method and engine
WO2016157700A1 (en) Control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210625