JP3767063B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP3767063B2
JP3767063B2 JP02553197A JP2553197A JP3767063B2 JP 3767063 B2 JP3767063 B2 JP 3767063B2 JP 02553197 A JP02553197 A JP 02553197A JP 2553197 A JP2553197 A JP 2553197A JP 3767063 B2 JP3767063 B2 JP 3767063B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio
control valve
duty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02553197A
Other languages
Japanese (ja)
Other versions
JPH10220304A (en
Inventor
泰生 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP02553197A priority Critical patent/JP3767063B2/en
Publication of JPH10220304A publication Critical patent/JPH10220304A/en
Application granted granted Critical
Publication of JP3767063B2 publication Critical patent/JP3767063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の空燃比制御装置に関する。
【0002】
【従来の技術】
機関の吸気通路と排気通路とを連結するEGR通路内にEGRガス量を制御するEGR制御弁を配置し、排気通路内に空燃比センサを取り付け、空燃比が目標空燃比となるようにEGR制御弁の開度または開弁割合をフィードバック制御するようにした内燃機関の空燃比制御装置が公知である(特開昭63−94061号公報参照)。同一の機関運転状態においてEGR制御弁の開度を変更してEGRガス量を増減させるとそれに見合った分だけ新気量が増減される。したがって、EGRガス量を変更することによって空燃比を変更することができる。そこで、上述の空燃比制御装置ではEGR制御弁の開度を制御することによって空燃比が目標空燃比となるようにしている。
【0003】
【発明が解決しようとする課題】
ところで、上述の空燃比制御装置におけるように空燃比をフィードバック制御すると、たとえ機関運転状態が定常であるといっても吸気脈動や回転変動などによって空燃比は変動する。ところが、このように変動する空燃比に基づいてEGR制御弁の開度を制御するとEGR制御弁の開度が変動するのでEGRガス量が変動し、その結果空燃比が目標空燃比から発散する恐れがある。
【0004】
そこで、検出された空燃比を平滑化して得られる平滑化空燃比に基づいてEGR制御弁の開度を制御すればEGR制御弁の開度の変動を低減することができ、したがって空燃比が発散するのを阻止することができる。しかしながら、平滑化空燃比に基づいてEGR制御弁の開度を制御するとEGR制御弁の開度の応答性が悪化する。したがって、ただ単に平滑化空燃比を用いてEGR制御弁の開度を制御するようにしただけでは空燃比を目標空燃比に正確に一致させることができないという問題がある。
【0005】
【課題を解決するための手段】
上記課題を解決するために1番目の発明によれば、機関の吸気通路と排気通路とを連結するEGR通路内にEGRガス量を制御するEGR制御弁を配置した内燃機関において、機関運転状態に応じて目標空燃比を算出する目標空燃比算出手段と、空燃比を検出する空燃比検出手段と、EGR制御弁の開度に応じて定まる平滑化係数を算出する平滑化係数算出手段と、該平滑化係数を用いて該検出された空燃比を平滑化することにより平滑化空燃比を算出する平滑化空燃比算出手段と、この平滑化空燃比に基づいて空燃比が目標空燃比となるようにEGR制御弁の開度を制御するEGR制御弁開度制御手段とを具備し、前記平滑化係数は、EGR制御弁の開度が大きいときには小さいときに比べて平滑化度合いが低くなるように定められている空燃比制御装置が提供される。空燃比に対するEGR制御弁の開度の変動の影響はEGR制御弁の開度に応じて異なる。そこで1番目の発明では、EGR制御弁の開度に応じて定まる平滑化係数を用いて平滑化空燃比を算出し、この平滑化空燃比に基づいてEGR制御弁の開度を制御するようにしている。その結果、EGR制御弁の開度の応答性が確保されつつ空燃比が良好に目標空燃比に一致せしめられる。
【0006】
2番目の発明によれば1番目の発明において、機関過渡運転時には平滑化されていない検出された空燃比に基づいてEGR制御弁の開度を制御するようにしている。機関過渡運転が行われて目標空燃比が急激に変更されるとEGR制御弁の開度を急激に変更する必要がある。そこで2番目の発明では、機関過渡運転時には平滑化されていない検出された空燃比に基づいてEGR制御弁の開度を制御するようにし、それによってEGR制御弁の開度の良好な応答性を確保するようにしている。
【0007】
【発明の実施の形態】
以下では、本発明をディーゼル機関に適用した場合について説明する。しかしながら、本発明を火花点火式機関に適用することもできる。
図1を参照すると、1はシリンダブロック、2はピストン、3はシリンダヘッド、4は燃焼室、5は吸気ポート、6は吸気弁、7は排気ポート、8は排気弁、9は燃焼室4内に燃料を直接噴射する燃料噴射弁、10は燃料噴射弁9に燃料を圧送する機関駆動式の燃料ポンプをそれぞれ示す。各気筒の吸気ポート5はそれぞれ対応する吸気枝管11を介して共通のサージタンク12に接続され、サージタンク12は吸気ダクト13を介してエアフロメータ14およびエアクリーナ15に接続される。吸気ダクト13内には負圧式または電磁式のアクチュエータ、またはアクセルペダル39に直結したワイヤにより駆動される吸気絞り弁16が配置される。一方、各気筒の排気ポート7は共通の排気マニホルド17に接続される。なお、燃料ポンプ10は電子制御ユニット30からの出力信号に基づいて制御される。
【0008】
排気マニホルド17と、吸気絞り弁16下流の吸気ダクト13とを互いに接続するEGR通路18内には、EGR通路18内を流通するEGRガス量を制御するためのEGR制御弁19が配置される。EGR制御弁19の弁体はダイアフラム20に固定されており、EGR制御弁19の開度はダイアフラム20の一側に形成される負圧室21内の圧力に応じて制御される。この負圧室21内には電磁式の三方弁22を介して機関駆動式のバキュームポンプ23により形成される負圧、または大気が選択的に導入される。なお、三方弁22は電子制御ユニット30からの出力信号に基づいて制御される。また、三方弁22は、周期時間に対する負圧室21をバキュームポンプ23に接続すべき時間の割合であるデューティ比DUTYでもって制御される。したがって、デューティ比DUTYが大きいとき程EGR制御弁19の開度が大きくされる。
【0009】
電子制御ユニット(ECU)30はデジタルコンピュータからなり、双方向性バス31を介して相互に接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35、および出力ポート36を具備する。エアフロメータ14は吸入空気量Gaに比例した出力電圧を発生し、エアフロメータ14の出力電圧はAD変換器37を介して入力ポート35に入力される。また、入力ポート35にはクランクシャフトが例えば30度回転する毎に出力パルスを発生するクランク角センサ38が接続される。CPU34ではこの出力パルスに基づいて機関回転数Nが算出される。さらに、アクセルペダル39の踏み込み量DEPに比例した出力電圧を発生する踏み込み量センサ40の出力電圧がAD変換器41を介して入力ポート35に入力される。一方、出力ポート36はそれぞれ対応する駆動回路42を介して燃料ポンプ10および三方弁22にそれぞれ接続される。
【0010】
図1の内燃機関ではEGR制御弁19の開度、すなわちデューティ比DUTYを制御することによって空気過剰率を制御するようにしている。この場合、検出された空気過剰率LACTに基づいてデューティ比DUTYを制御するようにすると空気過剰率の変動によりデューティ比DUTYが変動し、斯くして空気過剰率が発散する場合がある。そこで、図1の内燃機関では検出された空気過剰率LACTを平滑化して得られる平滑化空気過剰率LSMに基づいてデューティ比DUTYを制御するようにしている。この平滑化空気過剰率LSMは次式に基づいて算出される。
【0011】
LSM=LSM+K・(LACT−LSM)
ここでKは平滑化係数である。このように平滑化空気過剰率LSMを用いてデューティ比DUTYを制御すると空気過剰率の変動の影響を低減することができ、したがって空気過剰率が発散するのを阻止することができる。
ところが、平滑化空気過剰率LSMを用いてデューティ比DUTYを制御するとデューティ比DUTYの応答性が悪化する。一方、空気過剰率に対するデューティ比DUTYの変動の影響は例えば機関負荷やデューティ比DUTYに応じて異なる。すなわち、機関負荷が高いときには低いときに比べて空気過剰率の変動の影響は小さくなり、デューティ比DUTYが大きいときには小さいときに比べて空気過剰率の変動の影響は小さくなる。このように空気過剰率の変動の影響が小さいときにはこの変動の影響を低減するよりもデューティ比DUTYの応答性を確保するのが好ましい。そこで、本実施態様では、機関負荷を表す燃料噴射量Qが多いときには少ないときに比べて平滑化度合いを低くし、デューティ比DUTYが大きいときには小さいときに比べて平滑化度合いを低くしている。その結果、空気過剰率が発散するのを確実に阻止しつつデューティ比DUTYの良好な応答性を確保することができる。
【0012】
本実施態様では、平滑化度合いを表す平滑化係数Kは燃料噴射量Qに基づく平滑化係数KQと、デューティ比DUTYに基づく平滑化係数KEGRとの積(K=KQ・KEGR)として算出される。平滑化係数KQは図2に示されるように燃料噴射量Qが少ないときには多いときに比べて小さくされ、すなわち上述した平滑化空気過剰率LSMの算出式からわかるように燃料噴射量Qが少ないときには多いときに比べて平滑化度合いが大きくされる。この平滑化係数KQは図2に示されるようなマップの形で予めROM32内に記憶されている。一方、平滑化係数KEGRは図3に示されるようにデューティ比DUTYが小さいときには大きいときに比べて小さくされ、すなわちデューティ比DUTYが小さいときには大きいときに比べて平滑化度合いが大きくされる。この平滑化係数KEGRは図3に示されるようなマップの形で予めROM32内に記憶されている。なお、これら平滑化係数KQ,KEGRはそれぞれ0から1までの間で定められる。また、燃料噴射量Qをポンプ指令値、インジェクタ通電時間、ポンプ圧送値などにより表わすこともできる。
【0013】
ところが、機関過渡運転が行われて目標空気過剰率が急激に変更されるとデューティ比DUTYを急激に変更する必要がある。すなわち、デューティ比DUTYの応答性を確保する必要がある。そこで本実施態様では、機関過渡運転時には平滑化されていない検出された空気過剰率LACTに基づいてデューティ比DUTYを算出するようにし、機関過渡運転時でないときに平滑化空気過剰率LSMに基づいてデューティ比DUTYを算出するようにしている。このようにすると過渡運転時にデューティ比DUTYの良好な応答性を維持することができる。
【0014】
図4は上述した空気過剰率制御方法を実行するルーチンを示している。図4に示す空気過剰率制御ルーチンは予め定められた設定時間毎の割り込みによって実行される。
図4を参照すると、まずステップ40では燃料噴射量Qが読み込まれる。この燃料噴射量Qは図示しないルーチンにおいて例えば基本燃料噴射量QBと補正係数との積として算出される。基本燃料噴射量QBは機関出力トルクを要求トルクとするのに必要な噴射量であって、アクセルペダル39の踏み込み量DEPと機関回転数Nとの関数として予めROM32内に記憶されている。続くステップ41では目標空気過剰率LTGTが算出される。この目標空気過剰率LTGTは機関からスモークが排出されるのを阻止しつつ機関から排出されるNOx を低減するのに最適な空気過剰率であって、予め実験により求められている。この目標空気過剰率LTGTは機関運転状態、すなわち例えば燃料噴射量Qおよび機関回転数Nの関数として図5に示されるマップの形で予めROM32内に記憶されている。続くステップ42では実際の空気過剰率LACTが算出される。図1の内燃機関では、エアフロメータ14により検出される吸入空気量Gaと、燃料噴射量Qとを用いて実際の空気過剰率LACTが算出される。なお、機関排気通路内に、空気過剰率または空燃比に対応した出力電圧を発生する空気過剰率センサまたは空燃比センサを配置してこのセンサにより空気過剰率LACTを検出することもできる。
【0015】
続くステップ43では機関が現在、過渡運転時であるか否かが判別される。過渡運転時であるか否かをどのように判別してもよいが、図1の内燃機関ではアクセルペダル39の踏み込み量DEP、吸入空気量Ga、燃料噴射量Q、機関回転数Nなどの変化率が予め定められた設定変化率よりも大きいときに過渡運転時であると判別され、この変化率が設定変化率よりも小さいときに過渡運転時でないと判別される。過渡運転時でないと判別されたときには次いでステップ44に進む。
【0016】
ステップ44から46までは平滑化係数Kを算出する部分である。まずステップ44では燃料噴射量に基づく平滑化係数KQが図2のマップから算出される。続くステップ45ではEGR制御弁19の開度すなわちデューティ比DUTYに基づく平滑化係数KEGRが図3のマップから算出される。続くステップ46では、平滑化係数KQと平滑化係数KEGRとの積(KQ・KEGR)として平滑化係数Kが算出される。続くステップ47では検出された空気過剰率LACTを平滑化して得られる平滑化空気過剰率LSMが次式に基づいて算出される。
【0017】
LSM=LSM+K・(LACT−LSM)
続くステップ48ではLSMがLとされ、次いでステップ50にジャンプする。
一方、ステップ43において過渡運転時であると判別されたときには次いでステップ49に進み、平滑化されていない検出された空気過剰率LACTがLとされる。次いでステップ50に進む。
【0018】
続くステップ50から53まではデューティ比DUTYを算出するための部分である。まずステップ50では次式に基づいて比例項Pが算出される。
P=KP・(LTGT−L)
ここでKPは比例ゲイン定数である。続くステップ51では次式に基づいて積分項Iが算出される。
【0019】
I=I+KI・(LTGT−L)
ここでKIは積分ゲイン定数である。続くステップ52では次式に基づいて微分項Dが算出される。
D=KD・(L−LOLD)
ここでKDは微分ゲイン定数、LOLDは前回の処理ルーチンにおけるLである。続くステップ53ではこれら比例項P、積分項I、および微分項Dの和(P+I+D)としてデューティ比DUTYが算出される。三方弁22はこのデューティ比DUTYでもって駆動せしめられる。続くステップ54ではLがLOLDとされる。
【0020】
このように本実施態様では空気過剰率の変動の影響を低減することができ、空気過剰率を安定させることができる。その結果、各ゲイン定数KP,KI,KDを比較的大きく定めることができ、したがって過渡運転時における初期応答性をさらに高めることができる。
なお、本実施態様において各ゲイン定数KP,KI,KDは一定値であるが、デューティ比DUTYが小さいときには大きいときに比べて各ゲイン定数KP,KI,KDを小さくし、それによりデューティ比DUTYが小さいときには大きいときに比べて比例項P、積分項I、および微分項Dがそれぞれ小さくなるようにしてもよい。
【0021】
【発明の効果】
EGR制御弁の開度の応答性を確保しつつ空燃比を目標空燃比に正確に一致させることができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】燃料噴射量に基づく平滑化係数を示す線図である。
【図3】デューティ比に基づく平滑化係数を示す線図である。
【図4】空気過剰率制御を実行するためのフローチャートである。
【図5】目標空気過剰率を示す線図である。
【符号の説明】
4…燃焼室
9…燃料噴射弁
13…吸気ダクト
14…エアフロメータ
17…排気マニホルド
18…EGR通路
19…EGR制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine.
[0002]
[Prior art]
An EGR control valve that controls the amount of EGR gas is disposed in the EGR passage that connects the intake passage and the exhaust passage of the engine, and an air-fuel ratio sensor is installed in the exhaust passage so that the air-fuel ratio becomes the target air-fuel ratio. An air-fuel ratio control apparatus for an internal combustion engine in which the valve opening degree or the valve opening ratio is feedback-controlled is known (see Japanese Patent Laid-Open No. 63-94061). When the opening degree of the EGR control valve is changed and the EGR gas amount is increased or decreased in the same engine operating state, the fresh air amount is increased or decreased by the corresponding amount. Therefore, the air-fuel ratio can be changed by changing the EGR gas amount. Therefore, in the above-described air-fuel ratio control apparatus, the air-fuel ratio becomes the target air-fuel ratio by controlling the opening degree of the EGR control valve.
[0003]
[Problems to be solved by the invention]
By the way, when the air-fuel ratio is feedback controlled as in the above-described air-fuel ratio control apparatus, the air-fuel ratio fluctuates due to intake pulsation, rotational fluctuation, etc. even if the engine operating state is steady. However, if the opening degree of the EGR control valve is controlled based on the air-fuel ratio that varies in this way, the opening degree of the EGR control valve changes, so that the EGR gas amount fluctuates, and as a result, the air-fuel ratio may diverge from the target air-fuel ratio There is.
[0004]
Therefore, if the opening degree of the EGR control valve is controlled based on the smoothed air-fuel ratio obtained by smoothing the detected air-fuel ratio, fluctuations in the opening degree of the EGR control valve can be reduced, and therefore the air-fuel ratio is diverged. Can be prevented. However, if the opening degree of the EGR control valve is controlled based on the smoothed air-fuel ratio, the responsiveness of the opening degree of the EGR control valve is deteriorated. Therefore, there is a problem that the air-fuel ratio cannot be made to exactly match the target air-fuel ratio simply by controlling the opening degree of the EGR control valve using the smoothed air-fuel ratio.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, according to a first invention, in an internal combustion engine in which an EGR control valve for controlling the amount of EGR gas is disposed in an EGR passage that connects an intake passage and an exhaust passage of the engine, A target air-fuel ratio calculating means for calculating the target air-fuel ratio in response, an air-fuel ratio detecting means for detecting the air-fuel ratio, a smoothing coefficient calculating means for calculating a smoothing coefficient determined according to the opening of the EGR control valve , Smoothed air-fuel ratio calculating means for calculating a smoothed air-fuel ratio by smoothing the detected air-fuel ratio using a smoothing coefficient, and so that the air-fuel ratio becomes a target air-fuel ratio based on the smoothed air-fuel ratio. And an EGR control valve opening degree control means for controlling the opening degree of the EGR control valve , and the smoothing coefficient is such that the degree of smoothing is lower when the opening degree of the EGR control valve is large than when it is small. Stipulated Ratio control system is provided. The influence of the variation of the opening degree of the EGR control valve on the air-fuel ratio varies depending on the opening degree of the EGR control valve. Therefore, in the first invention, the smoothed air-fuel ratio is calculated using a smoothing coefficient determined according to the opening degree of the EGR control valve, and the opening degree of the EGR control valve is controlled based on this smoothed air-fuel ratio. ing. As a result, the air-fuel ratio can be matched to the target air-fuel ratio satisfactorily while ensuring the responsiveness of the opening degree of the EGR control valve.
[0006]
According to the second invention, in the first invention, the opening degree of the EGR control valve is controlled based on the detected air-fuel ratio which is not smoothed during engine transient operation. When the engine transient operation is performed and the target air-fuel ratio is rapidly changed, the opening degree of the EGR control valve needs to be rapidly changed. Accordingly, in the second aspect of the invention, the opening degree of the EGR control valve is controlled based on the detected air-fuel ratio that is not smoothed during engine transient operation, thereby providing a good responsiveness of the opening degree of the EGR control valve. I try to secure it.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Below, the case where this invention is applied to a diesel engine is demonstrated. However, the present invention can also be applied to a spark ignition engine.
Referring to FIG. 1, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber, 5 is an intake port, 6 is an intake valve, 7 is an exhaust port, 8 is an exhaust valve, and 9 is a combustion chamber 4. A fuel injection valve 10 for directly injecting fuel into the fuel injection valve 10 and an engine drive type fuel pump for pumping fuel to the fuel injection valve 9 are shown. The intake port 5 of each cylinder is connected to a common surge tank 12 via a corresponding intake branch pipe 11, and the surge tank 12 is connected to an air flow meter 14 and an air cleaner 15 via an intake duct 13. An intake throttle valve 16 driven by a negative pressure or electromagnetic actuator or a wire directly connected to the accelerator pedal 39 is disposed in the intake duct 13. On the other hand, the exhaust port 7 of each cylinder is connected to a common exhaust manifold 17. The fuel pump 10 is controlled based on an output signal from the electronic control unit 30.
[0008]
An EGR control valve 19 for controlling the amount of EGR gas flowing in the EGR passage 18 is disposed in the EGR passage 18 that connects the exhaust manifold 17 and the intake duct 13 downstream of the intake throttle valve 16. The valve body of the EGR control valve 19 is fixed to the diaphragm 20, and the opening degree of the EGR control valve 19 is controlled according to the pressure in the negative pressure chamber 21 formed on one side of the diaphragm 20. A negative pressure formed by an engine-driven vacuum pump 23 or the atmosphere is selectively introduced into the negative pressure chamber 21 via an electromagnetic three-way valve 22. The three-way valve 22 is controlled based on an output signal from the electronic control unit 30. The three-way valve 22 is controlled with a duty ratio DUTY, which is the ratio of the time during which the negative pressure chamber 21 should be connected to the vacuum pump 23 with respect to the cycle time. Therefore, the opening degree of the EGR control valve 19 is increased as the duty ratio DUTY is increased.
[0009]
An electronic control unit (ECU) 30 comprises a digital computer, and is connected to a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, and an input connected to each other via a bidirectional bus 31. A port 35 and an output port 36 are provided. The air flow meter 14 generates an output voltage proportional to the intake air amount Ga, and the output voltage of the air flow meter 14 is input to the input port 35 via the AD converter 37. The input port 35 is connected to a crank angle sensor 38 that generates an output pulse every time the crankshaft rotates, for example, 30 degrees. The CPU 34 calculates the engine speed N based on this output pulse. Further, the output voltage of the depression amount sensor 40 that generates an output voltage proportional to the depression amount DEP of the accelerator pedal 39 is input to the input port 35 via the AD converter 41. On the other hand, the output ports 36 are respectively connected to the fuel pump 10 and the three-way valve 22 via corresponding drive circuits 42.
[0010]
In the internal combustion engine of FIG. 1, the excess air ratio is controlled by controlling the opening of the EGR control valve 19, that is, the duty ratio DUTY. In this case, if the duty ratio DUTY is controlled based on the detected excess air ratio LACT, the duty ratio DUTY may fluctuate due to fluctuations in the excess air ratio, and thus the excess air ratio may diverge. Therefore, in the internal combustion engine of FIG. 1, the duty ratio DUTY is controlled based on the smoothed excess air ratio LSM obtained by smoothing the detected excess air ratio LACT. This smoothed excess air ratio LSM is calculated based on the following equation.
[0011]
LSM = LSM + K ・ (LACT-LSM)
Here, K is a smoothing coefficient. By controlling the duty ratio DUTY using the smoothed excess air ratio LSM in this way, the influence of fluctuations in the excess air ratio can be reduced, and therefore, the excess air ratio can be prevented from diverging.
However, when the duty ratio DUTY is controlled using the smoothed excess air ratio LSM, the responsiveness of the duty ratio DUTY deteriorates. On the other hand, the influence of the variation of the duty ratio DUTY on the excess air ratio varies depending on, for example, the engine load and the duty ratio DUTY. That is, when the engine load is high, the influence of the fluctuation of the excess air ratio becomes smaller than when the engine load is low, and when the duty ratio DUTY is large, the influence of the fluctuation of the excess air ratio becomes smaller than when the duty ratio DUTY is small. Thus, when the influence of the fluctuation of the excess air ratio is small, it is preferable to ensure the responsiveness of the duty ratio DUTY rather than reducing the influence of the fluctuation. Therefore, in this embodiment, when the fuel injection amount Q representing the engine load is large, the degree of smoothing is made lower than when it is small, and when the duty ratio DUTY is large, the degree of smoothing is made lower than when it is small. As a result, good responsiveness of the duty ratio DUTY can be ensured while reliably preventing the excess air ratio from diverging.
[0012]
In the present embodiment, the smoothing coefficient K representing the degree of smoothing is calculated as the product of the smoothing coefficient KQ based on the fuel injection amount Q and the smoothing coefficient KEGR based on the duty ratio DUTY (K = KQ · KEGR). . As shown in FIG. 2, the smoothing coefficient KQ is made smaller than when the fuel injection amount Q is small, that is, when the fuel injection amount Q is small as can be seen from the above-described calculation formula for the smoothed excess air ratio LSM. The degree of smoothing is increased compared to when there are many. The smoothing coefficient KQ is stored in advance in the ROM 32 in the form of a map as shown in FIG. On the other hand, as shown in FIG. 3, the smoothing coefficient KEGR is made smaller when the duty ratio DUTY is small than when it is large, that is, when the duty ratio DUTY is small, the degree of smoothing is made larger than when it is large. The smoothing coefficient KEGR is stored in advance in the ROM 32 in the form of a map as shown in FIG. Note that the smoothing coefficients KQ and KEGR are determined between 0 and 1, respectively. Further, the fuel injection amount Q can be expressed by a pump command value, an injector energization time, a pump pressure feed value, and the like.
[0013]
However, when the engine transient operation is performed and the target excess air ratio is rapidly changed, the duty ratio DUTY needs to be rapidly changed. That is, it is necessary to ensure the responsiveness of the duty ratio DUTY. Therefore, in this embodiment, the duty ratio DUTY is calculated based on the detected excess air ratio LACT that is not smoothed during engine transient operation, and based on the smoothed excess air ratio LSM when not during engine transient operation. The duty ratio DUTY is calculated. In this way, it is possible to maintain good responsiveness of the duty ratio DUTY during transient operation.
[0014]
FIG. 4 shows a routine for executing the above-described excess air ratio control method. The excess air ratio control routine shown in FIG. 4 is executed by interruption every predetermined time.
Referring to FIG. 4, first, at step 40, the fuel injection amount Q is read. This fuel injection amount Q is calculated as a product of the basic fuel injection amount QB and the correction coefficient in a routine (not shown), for example. The basic fuel injection amount QB is an injection amount required to make the engine output torque a required torque, and is stored in advance in the ROM 32 as a function of the depression amount DEP of the accelerator pedal 39 and the engine speed N. In the following step 41, the target excess air ratio LTGT is calculated. The target excess air ratio LTGT is a best excess air ratio to reduce the NO x exhausted from the engine while preventing the smoke discharged from the engine, it is determined by experiment. This target excess air ratio LTGT is stored in advance in the ROM 32 in the form of a map shown in FIG. 5 as a function of the engine operating state, that is, for example, the fuel injection amount Q and the engine speed N. In the subsequent step 42, the actual excess air ratio LACT is calculated. In the internal combustion engine of FIG. 1, the actual excess air ratio LACT is calculated using the intake air amount Ga detected by the air flow meter 14 and the fuel injection amount Q. An excess air ratio sensor or an air / fuel ratio sensor that generates an output voltage corresponding to the excess air ratio or the air / fuel ratio may be arranged in the engine exhaust passage, and the excess air ratio LACT may be detected by this sensor.
[0015]
In the following step 43, it is determined whether or not the engine is currently in transient operation. In the internal combustion engine of FIG. 1, it is possible to determine whether or not the engine is in transient operation. However, in the internal combustion engine of FIG. 1, changes in the depression amount DEP of the accelerator pedal 39, the intake air amount Ga, the fuel injection amount Q, the engine speed N When the rate is greater than a predetermined set change rate, it is determined that the operation is in transient operation. When the change rate is less than the set change rate, it is determined that the operation is not during transient operation. If it is determined that it is not during transient operation, then the routine proceeds to step 44.
[0016]
Steps 44 to 46 are parts for calculating the smoothing coefficient K. First, at step 44, a smoothing coefficient KQ based on the fuel injection amount is calculated from the map of FIG. In the following step 45, the opening degree of the EGR control valve 19, that is, the smoothing coefficient KEGR based on the duty ratio DUTY is calculated from the map of FIG. In the following step 46, the smoothing coefficient K is calculated as the product (KQ · KEGR) of the smoothing coefficient KQ and the smoothing coefficient KEGR. In the following step 47, a smoothed excess air ratio LSM obtained by smoothing the detected excess air ratio LACT is calculated based on the following equation.
[0017]
LSM = LSM + K ・ (LACT-LSM)
In the following step 48, LSM is set to L and then jumps to step 50.
On the other hand, when it is determined in step 43 that the engine is in a transient operation, the routine proceeds to step 49 where the detected excess air ratio LACT that is not smoothed is set to L. Next, the routine proceeds to step 50.
[0018]
Subsequent steps 50 to 53 are parts for calculating the duty ratio DUTY. First, at step 50, the proportional term P is calculated based on the following equation.
P = KP · (LTGT-L)
Here, KP is a proportional gain constant. In the following step 51, the integral term I is calculated based on the following equation.
[0019]
I = I + KI · (LTGT-L)
Here, KI is an integral gain constant. In the following step 52, the differential term D is calculated based on the following equation.
D = KD ・ (L-LOLD)
Here, KD is a differential gain constant, and LOLD is L in the previous processing routine. In the subsequent step 53, the duty ratio DUTY is calculated as the sum (P + I + D) of the proportional term P, the integral term I, and the derivative term D. The three-way valve 22 is driven with this duty ratio DUTY. In the next step 54, L is set to LOLD.
[0020]
Thus, in this embodiment, the influence of fluctuations in the excess air ratio can be reduced, and the excess air ratio can be stabilized. As a result, the gain constants KP, KI, and KD can be set relatively large, and therefore the initial response during transient operation can be further enhanced.
In this embodiment, the gain constants KP, KI, and KD are constant values. However, when the duty ratio DUTY is small, the gain constants KP, KI, and KD are made smaller than when the duty ratio DUTY is large. When it is small, the proportional term P, the integral term I, and the differential term D may be smaller than when it is large.
[0021]
【The invention's effect】
The air-fuel ratio can be accurately matched with the target air-fuel ratio while ensuring the responsiveness of the opening degree of the EGR control valve.
[Brief description of the drawings]
FIG. 1 is an overall view of an internal combustion engine.
FIG. 2 is a diagram showing a smoothing coefficient based on a fuel injection amount.
FIG. 3 is a diagram showing a smoothing coefficient based on a duty ratio.
FIG. 4 is a flowchart for executing excess air ratio control.
FIG. 5 is a diagram showing a target excess air ratio.
[Explanation of symbols]
4 ... Combustion chamber 9 ... Fuel injection valve 13 ... Intake duct 14 ... Air flow meter 17 ... Exhaust manifold 18 ... EGR passage 19 ... EGR control valve

Claims (2)

機関の吸気通路と排気通路とを連結するEGR通路内にEGRガス量を制御するEGR制御弁を配置した内燃機関において、機関運転状態に応じて目標空燃比を算出する目標空燃比算出手段と、空燃比を検出する空燃比検出手段と、EGR制御弁の開度に応じて定まる平滑化係数を算出する平滑化係数算出手段と、該平滑化係数を用いて該検出された空燃比を平滑化することにより平滑化空燃比を算出する平滑化空燃比算出手段と、該平滑化空燃比に基づいて空燃比が目標空燃比となるようにEGR制御弁の開度を制御するEGR制御弁開度制御手段とを具備し、前記平滑化係数は、EGR制御弁の開度が大きいときには小さいときに比べて平滑化度合いが低くなるように定められている空燃比制御装置。In an internal combustion engine in which an EGR control valve that controls the amount of EGR gas is arranged in an EGR passage that connects an intake passage and an exhaust passage of the engine, target air-fuel ratio calculating means that calculates a target air-fuel ratio according to the engine operating state; and air-fuel ratio detecting means for detecting an air-fuel ratio, smoothing and smoothing coefficient calculation means for calculating a smoothing coefficient determined in accordance with the opening degree of the EGR control valve, the air-fuel ratio issued該検 using the smoothing coefficient And a smoothed air-fuel ratio calculating means for calculating a smoothed air-fuel ratio, and an EGR control valve opening for controlling the opening of the EGR control valve so that the air-fuel ratio becomes the target air-fuel ratio based on the smoothed air-fuel ratio An air-fuel ratio control apparatus , wherein the smoothing coefficient is determined such that when the opening degree of the EGR control valve is large, the degree of smoothing is lower than when it is small . 機関過渡運転時には平滑化されていない検出された空燃比に基づいて空燃比が目標空燃比となるようにEGR制御弁の開度を制御するようにした請求項1に記載の空燃比制御装置。  The air-fuel ratio control apparatus according to claim 1, wherein the opening degree of the EGR control valve is controlled so that the air-fuel ratio becomes a target air-fuel ratio based on the detected air-fuel ratio that has not been smoothed during engine transient operation.
JP02553197A 1997-02-07 1997-02-07 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP3767063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02553197A JP3767063B2 (en) 1997-02-07 1997-02-07 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02553197A JP3767063B2 (en) 1997-02-07 1997-02-07 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10220304A JPH10220304A (en) 1998-08-18
JP3767063B2 true JP3767063B2 (en) 2006-04-19

Family

ID=12168621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02553197A Expired - Fee Related JP3767063B2 (en) 1997-02-07 1997-02-07 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3767063B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255267A1 (en) 2016-06-09 2017-12-13 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
DE102017112541A1 (en) 2016-06-09 2017-12-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245818B1 (en) 2001-03-27 2008-07-09 Nissan Motor Company, Limited Air-fuel ratio control apparatus and method for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255267A1 (en) 2016-06-09 2017-12-13 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
DE102017112541A1 (en) 2016-06-09 2017-12-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
DE102017112541B4 (en) 2016-06-09 2018-06-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10087867B2 (en) 2016-06-09 2018-10-02 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
JPH10220304A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
US20060225698A1 (en) Internal combustion engine, and control apparatus and method thereof
JPH10151971A (en) Negative pressure controller of internal combustion engine
JPH10151970A (en) Negative pressure controller of internal combustion engine
US7165533B2 (en) Internal combustion engine
JP3317228B2 (en) Combustion control device for stratified combustion internal combustion engine
JP3175601B2 (en) Air intake control system for lean burn engine
JP3063400B2 (en) Air-fuel ratio control device for internal combustion engine
JP3767063B2 (en) Air-fuel ratio control device for internal combustion engine
JP2002332872A (en) Controller of internal combustion engine
JP4066764B2 (en) Control device for internal combustion engine
JP2021131032A (en) Controller of internal combustion engine
JP3907262B2 (en) Evaporative fuel purge system for engine
JP2586515B2 (en) Assist air control device for internal combustion engine
JP3478092B2 (en) Engine control device with idle intake pressure learning function
JP3835167B2 (en) Control device for internal combustion engine
JP2591318B2 (en) Diesel engine exhaust recirculation system
JPS6312861A (en) Ignition timing controller for internal combustion engine
JP3397584B2 (en) Electric throttle type internal combustion engine
JP2020007940A (en) Engine control device
EP0809006A2 (en) Apparatus for controlling engine intake air
JP3953991B2 (en) Intake air amount control device for internal combustion engine
JPH0718389B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH10231746A (en) Combustion system control device for internal combustion engine
JP2535705Y2 (en) Fuel injection valve assist air control system
JP2757097B2 (en) Fuel supply control device for internal combustion engine with assist air supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees