JPH10220304A - Air-fuel ratio controller for internal combustion engine - Google Patents

Air-fuel ratio controller for internal combustion engine

Info

Publication number
JPH10220304A
JPH10220304A JP9025531A JP2553197A JPH10220304A JP H10220304 A JPH10220304 A JP H10220304A JP 9025531 A JP9025531 A JP 9025531A JP 2553197 A JP2553197 A JP 2553197A JP H10220304 A JPH10220304 A JP H10220304A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio
control valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9025531A
Other languages
Japanese (ja)
Other versions
JP3767063B2 (en
Inventor
Yasuo Harada
泰生 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP02553197A priority Critical patent/JP3767063B2/en
Publication of JPH10220304A publication Critical patent/JPH10220304A/en
Application granted granted Critical
Publication of JP3767063B2 publication Critical patent/JP3767063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable an air-fuel ratio to accurately accord with a target air-fuel ratio while securing responsiveness of an opening degree of an EGR control valve. SOLUTION: In this controller, an EGR control valve 19 for controlling a quantity of EGR gas is disposed on an EGR passage 18 for connecting an intake duct 13 to an exhaust manifold 17. A target air-fuel ratio is calculated according to an engine operating state. An air excess rate is calculated based on a fuel injection quantity and an intake air quantity. A smoothening coefficient is calculated according to an opening degree of the EGR control valve 19. A smoothening air excess rate is calculated using smoothening coefficient. The opening degree of the EGR control valve 19 controlled in such a manner that the air excess rate becomes the target a excess rate based on the smoothening air-fuel ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の空燃比制
御装置に関する。
The present invention relates to an air-fuel ratio control device for an internal combustion engine.

【0002】[0002]

【従来の技術】機関の吸気通路と排気通路とを連結する
EGR通路内にEGRガス量を制御するEGR制御弁を
配置し、排気通路内に空燃比センサを取り付け、空燃比
が目標空燃比となるようにEGR制御弁の開度または開
弁割合をフィードバック制御するようにした内燃機関の
空燃比制御装置が公知である(特開昭63−94061
号公報参照)。同一の機関運転状態においてEGR制御
弁の開度を変更してEGRガス量を増減させるとそれに
見合った分だけ新気量が増減される。したがって、EG
Rガス量を変更することによって空燃比を変更すること
ができる。そこで、上述の空燃比制御装置ではEGR制
御弁の開度を制御することによって空燃比が目標空燃比
となるようにしている。
2. Description of the Related Art An EGR control valve for controlling an EGR gas amount is disposed in an EGR passage connecting an intake passage and an exhaust passage of an engine, and an air-fuel ratio sensor is mounted in the exhaust passage so that the air-fuel ratio is equal to a target air-fuel ratio. An air-fuel ratio control device for an internal combustion engine in which the opening degree or the valve opening ratio of an EGR control valve is feedback-controlled in such a manner is known (JP-A-63-94061).
Reference). When the EGR gas amount is increased or decreased by changing the opening of the EGR control valve in the same engine operating state, the fresh air amount is increased or decreased by an amount corresponding thereto. Therefore, EG
The air-fuel ratio can be changed by changing the R gas amount. Therefore, in the above-described air-fuel ratio control device, the opening degree of the EGR control valve is controlled so that the air-fuel ratio becomes the target air-fuel ratio.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述の空燃
比制御装置におけるように空燃比をフィードバック制御
すると、たとえ機関運転状態が定常であるといっても吸
気脈動や回転変動などによって空燃比は変動する。とこ
ろが、このように変動する空燃比に基づいてEGR制御
弁の開度を制御するとEGR制御弁の開度が変動するの
でEGRガス量が変動し、その結果空燃比が目標空燃比
から発散する恐れがある。
By the way, when the air-fuel ratio is feedback-controlled as in the above-described air-fuel ratio control apparatus, the air-fuel ratio fluctuates due to intake pulsation and rotation fluctuation even if the engine operation state is steady. I do. However, if the opening degree of the EGR control valve is controlled based on the fluctuating air-fuel ratio, the opening degree of the EGR control valve fluctuates, so that the EGR gas amount fluctuates. As a result, the air-fuel ratio may diverge from the target air-fuel ratio. There is.

【0004】そこで、検出された空燃比を平滑化して得
られる平滑化空燃比に基づいてEGR制御弁の開度を制
御すればEGR制御弁の開度の変動を低減することがで
き、したがって空燃比が発散するのを阻止することがで
きる。しかしながら、平滑化空燃比に基づいてEGR制
御弁の開度を制御するとEGR制御弁の開度の応答性が
悪化する。したがって、ただ単に平滑化空燃比を用いて
EGR制御弁の開度を制御するようにしただけでは空燃
比を目標空燃比に正確に一致させることができないとい
う問題がある。
[0004] Therefore, if the opening of the EGR control valve is controlled based on the smoothed air-fuel ratio obtained by smoothing the detected air-fuel ratio, the fluctuation of the opening of the EGR control valve can be reduced. The divergence of the fuel ratio can be prevented. However, if the opening of the EGR control valve is controlled based on the smoothed air-fuel ratio, the responsiveness of the opening of the EGR control valve deteriorates. Therefore, there is a problem that the air-fuel ratio cannot be made to exactly match the target air-fuel ratio simply by controlling the opening of the EGR control valve using the smoothed air-fuel ratio.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に1番目の発明によれば、機関の吸気通路と排気通路と
を連結するEGR通路内にEGRガス量を制御するEG
R制御弁を配置した内燃機関において、機関運転状態に
応じて目標空燃比を算出する目標空燃比算出手段と、空
燃比を検出する空燃比検出手段と、EGR制御弁の開度
に応じて定まる平滑化係数を用いて平滑化空燃比を算出
する平滑化空燃比算出手段と、この平滑化空燃比に基づ
いて空燃比が目標空燃比となるようにEGR制御弁の開
度を制御するEGR制御弁開度制御手段とを具備してい
る。空燃比に対するEGR制御弁の開度の変動の影響は
EGR制御弁の開度に応じて異なる。そこで1番目の発
明では、EGR制御弁の開度に応じて定まる平滑化係数
を用いて平滑化空燃比を算出し、この平滑化空燃比に基
づいてEGR制御弁の開度を制御するようにしている。
その結果、EGR制御弁の開度の応答性が確保されつつ
空燃比が良好に目標空燃比に一致せしめられる。
According to a first aspect of the present invention, there is provided an EG for controlling an EGR gas amount in an EGR passage connecting an intake passage and an exhaust passage of an engine.
In an internal combustion engine provided with an R control valve, the target air-fuel ratio is calculated in accordance with the engine operating state, the air-fuel ratio is detected in accordance with the air-fuel ratio, and the opening of the EGR control valve is determined. Smoothing air-fuel ratio calculating means for calculating a smoothing air-fuel ratio using a smoothing coefficient, and EGR control for controlling an opening of an EGR control valve based on the smoothed air-fuel ratio so that the air-fuel ratio becomes a target air-fuel ratio. Valve opening control means. The effect of the variation in the opening of the EGR control valve on the air-fuel ratio differs depending on the opening of the EGR control valve. Therefore, in the first invention, a smoothed air-fuel ratio is calculated using a smoothing coefficient determined according to the opening of the EGR control valve, and the opening of the EGR control valve is controlled based on the smoothed air-fuel ratio. ing.
As a result, the responsiveness of the opening degree of the EGR control valve is ensured, and the air-fuel ratio is favorably matched with the target air-fuel ratio.

【0006】2番目の発明によれば1番目の発明におい
て、機関過渡運転時には平滑化されていない検出された
空燃比に基づいてEGR制御弁の開度を制御するように
している。機関過渡運転が行われて目標空燃比が急激に
変更されるとEGR制御弁の開度を急激に変更する必要
がある。そこで2番目の発明では、機関過渡運転時には
平滑化されていない検出された空燃比に基づいてEGR
制御弁の開度を制御するようにし、それによってEGR
制御弁の開度の良好な応答性を確保するようにしてい
る。
According to a second aspect, in the first aspect, the opening of the EGR control valve is controlled based on the detected air-fuel ratio which is not smoothed during the transient operation of the engine. If the target air-fuel ratio is suddenly changed due to engine transient operation, the opening of the EGR control valve must be suddenly changed. Therefore, in the second invention, the EGR is performed based on the detected air-fuel ratio that is not smoothed during the transient operation of the engine.
The opening of the control valve is controlled so that the EGR
A good response of the opening of the control valve is ensured.

【0007】[0007]

【発明の実施の形態】以下では、本発明をディーゼル機
関に適用した場合について説明する。しかしながら、本
発明を火花点火式機関に適用することもできる。図1を
参照すると、1はシリンダブロック、2はピストン、3
はシリンダヘッド、4は燃焼室、5は吸気ポート、6は
吸気弁、7は排気ポート、8は排気弁、9は燃焼室4内
に燃料を直接噴射する燃料噴射弁、10は燃料噴射弁9
に燃料を圧送する機関駆動式の燃料ポンプをそれぞれ示
す。各気筒の吸気ポート5はそれぞれ対応する吸気枝管
11を介して共通のサージタンク12に接続され、サー
ジタンク12は吸気ダクト13を介してエアフロメータ
14およびエアクリーナ15に接続される。吸気ダクト
13内には負圧式または電磁式のアクチュエータ、また
はアクセルペダル39に直結したワイヤにより駆動され
る吸気絞り弁16が配置される。一方、各気筒の排気ポ
ート7は共通の排気マニホルド17に接続される。な
お、燃料ポンプ10は電子制御ユニット30からの出力
信号に基づいて制御される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case where the present invention is applied to a diesel engine will be described below. However, the present invention can also be applied to a spark ignition type engine. Referring to FIG. 1, 1 is a cylinder block, 2 is a piston, 3
Represents a cylinder head, 4 represents a combustion chamber, 5 represents an intake port, 6 represents an intake valve, 7 represents an exhaust port, 8 represents an exhaust valve, 9 represents a fuel injection valve for directly injecting fuel into the combustion chamber 4, and 10 represents a fuel injection valve. 9
1 shows an engine-driven fuel pump for pumping fuel. The intake port 5 of each cylinder is connected to a common surge tank 12 via a corresponding intake branch pipe 11, and the surge tank 12 is connected to an air flow meter 14 and an air cleaner 15 via an intake duct 13. In the intake duct 13, an intake throttle valve 16 driven by a negative pressure type or electromagnetic actuator or a wire directly connected to an accelerator pedal 39 is arranged. On the other hand, the exhaust port 7 of each cylinder is connected to a common exhaust manifold 17. The fuel pump 10 is controlled based on an output signal from the electronic control unit 30.

【0008】排気マニホルド17と、吸気絞り弁16下
流の吸気ダクト13とを互いに接続するEGR通路18
内には、EGR通路18内を流通するEGRガス量を制
御するためのEGR制御弁19が配置される。EGR制
御弁19の弁体はダイアフラム20に固定されており、
EGR制御弁19の開度はダイアフラム20の一側に形
成される負圧室21内の圧力に応じて制御される。この
負圧室21内には電磁式の三方弁22を介して機関駆動
式のバキュームポンプ23により形成される負圧、また
は大気が選択的に導入される。なお、三方弁22は電子
制御ユニット30からの出力信号に基づいて制御され
る。また、三方弁22は、周期時間に対する負圧室21
をバキュームポンプ23に接続すべき時間の割合である
デューティ比DUTYでもって制御される。したがっ
て、デューティ比DUTYが大きいとき程EGR制御弁
19の開度が大きくされる。
An EGR passage 18 connects the exhaust manifold 17 and the intake duct 13 downstream of the intake throttle valve 16 to each other.
Inside, an EGR control valve 19 for controlling the amount of EGR gas flowing through the EGR passage 18 is arranged. The valve element of the EGR control valve 19 is fixed to the diaphragm 20,
The opening of the EGR control valve 19 is controlled in accordance with the pressure in a negative pressure chamber 21 formed on one side of the diaphragm 20. A negative pressure formed by an engine driven vacuum pump 23 or the atmosphere is selectively introduced into the negative pressure chamber 21 via an electromagnetic three-way valve 22. The three-way valve 22 is controlled based on an output signal from the electronic control unit 30. Further, the three-way valve 22 is connected to the negative pressure chamber 21 with respect to the cycle time.
Is controlled by a duty ratio DUTY which is a ratio of a time during which the vacuum pump 23 should be connected to the vacuum pump 23. Therefore, the opening degree of the EGR control valve 19 increases as the duty ratio DUTY increases.

【0009】電子制御ユニット(ECU)30はデジタ
ルコンピュータからなり、双方向性バス31を介して相
互に接続されたROM(リードオンリメモリ)32、R
AM(ランダムアクセスメモリ)33、CPU(マイク
ロプロセッサ)34、入力ポート35、および出力ポー
ト36を具備する。エアフロメータ14は吸入空気量G
aに比例した出力電圧を発生し、エアフロメータ14の
出力電圧はAD変換器37を介して入力ポート35に入
力される。また、入力ポート35にはクランクシャフト
が例えば30度回転する毎に出力パルスを発生するクラ
ンク角センサ38が接続される。CPU34ではこの出
力パルスに基づいて機関回転数Nが算出される。さら
に、アクセルペダル39の踏み込み量DEPに比例した
出力電圧を発生する踏み込み量センサ40の出力電圧が
AD変換器41を介して入力ポート35に入力される。
一方、出力ポート36はそれぞれ対応する駆動回路42
を介して燃料ポンプ10および三方弁22にそれぞれ接
続される。
An electronic control unit (ECU) 30 is composed of a digital computer, and is connected to a ROM (Read Only Memory) 32, R
An AM (random access memory) 33, a CPU (microprocessor) 34, an input port 35, and an output port 36 are provided. The air flow meter 14 has an intake air amount G
An output voltage proportional to a is generated, and the output voltage of the air flow meter 14 is input to the input port 35 via the AD converter 37. The input port 35 is connected to a crank angle sensor 38 that generates an output pulse each time the crankshaft rotates, for example, 30 degrees. The CPU 34 calculates the engine speed N based on the output pulse. Further, the output voltage of the depression amount sensor 40 that generates an output voltage proportional to the depression amount DEP of the accelerator pedal 39 is input to the input port 35 via the AD converter 41.
On the other hand, the output port 36 is connected to the corresponding drive circuit 42
Are connected to the fuel pump 10 and the three-way valve 22, respectively.

【0010】図1の内燃機関ではEGR制御弁19の開
度、すなわちデューティ比DUTYを制御することによ
って空気過剰率を制御するようにしている。この場合、
検出された空気過剰率LACTに基づいてデューティ比
DUTYを制御するようにすると空気過剰率の変動によ
りデューティ比DUTYが変動し、斯くして空気過剰率
が発散する場合がある。そこで、図1の内燃機関では検
出された空気過剰率LACTを平滑化して得られる平滑
化空気過剰率LSMに基づいてデューティ比DUTYを
制御するようにしている。この平滑化空気過剰率LSM
は次式に基づいて算出される。
In the internal combustion engine shown in FIG. 1, the excess air ratio is controlled by controlling the opening of the EGR control valve 19, that is, the duty ratio DUTY. in this case,
If the duty ratio DUTY is controlled based on the detected excess air ratio LACT, the duty ratio DUTY fluctuates due to the fluctuation of the excess air ratio, and thus the excess air ratio may diverge. Therefore, in the internal combustion engine of FIG. 1, the duty ratio DUTY is controlled based on the smoothed excess air ratio LSM obtained by smoothing the detected excess air ratio LACT. This excess air ratio LSM
Is calculated based on the following equation.

【0011】 LSM=LSM+K・(LACT−LSM) ここでKは平滑化係数である。このように平滑化空気過
剰率LSMを用いてデューティ比DUTYを制御すると
空気過剰率の変動の影響を低減することができ、したが
って空気過剰率が発散するのを阻止することができる。
ところが、平滑化空気過剰率LSMを用いてデューティ
比DUTYを制御するとデューティ比DUTYの応答性
が悪化する。一方、空気過剰率に対するデューティ比D
UTYの変動の影響は例えば機関負荷やデューティ比D
UTYに応じて異なる。すなわち、機関負荷が高いとき
には低いときに比べて空気過剰率の変動の影響は小さく
なり、デューティ比DUTYが大きいときには小さいと
きに比べて空気過剰率の変動の影響は小さくなる。この
ように空気過剰率の変動の影響が小さいときにはこの変
動の影響を低減するよりもデューティ比DUTYの応答
性を確保するのが好ましい。そこで、本実施態様では、
機関負荷を表す燃料噴射量Qが多いときには少ないとき
に比べて平滑化度合いを低くし、デューティ比DUTY
が大きいときには小さいときに比べて平滑化度合いを低
くしている。その結果、空気過剰率が発散するのを確実
に阻止しつつデューティ比DUTYの良好な応答性を確
保することができる。
LSM = LSM + K · (LACT−LSM) where K is a smoothing coefficient. When the duty ratio DUTY is controlled using the smoothed excess air ratio LSM in this manner, the influence of the fluctuation of the excess air ratio can be reduced, and therefore, the divergence of the excess air ratio can be prevented.
However, if the duty ratio DUTY is controlled using the smoothed excess air ratio LSM, the responsiveness of the duty ratio DUTY deteriorates. On the other hand, duty ratio D to excess air ratio
The influence of the UTY fluctuation is, for example, the engine load and the duty ratio D.
It depends on UTY. That is, when the engine load is high, the influence of the fluctuation of the excess air ratio is smaller than when it is low, and when the duty ratio DUTY is large, the influence of the fluctuation of the excess air ratio is smaller than when it is small. As described above, when the influence of the fluctuation of the excess air ratio is small, it is preferable to secure the response of the duty ratio DUTY rather than to reduce the influence of the fluctuation. Therefore, in this embodiment,
When the fuel injection amount Q representing the engine load is large, the degree of smoothing is reduced as compared with when the fuel injection amount Q is small, and the duty ratio DUTY
Is large, the degree of smoothing is lower than when it is small. As a result, good responsiveness of the duty ratio DUTY can be ensured while reliably preventing the excess air ratio from diverging.

【0012】本実施態様では、平滑化度合いを表す平滑
化係数Kは燃料噴射量Qに基づく平滑化係数KQと、デ
ューティ比DUTYに基づく平滑化係数KEGRとの積
(K=KQ・KEGR)として算出される。平滑化係数
KQは図2に示されるように燃料噴射量Qが少ないとき
には多いときに比べて小さくされ、すなわち上述した平
滑化空気過剰率LSMの算出式からわかるように燃料噴
射量Qが少ないときには多いときに比べて平滑化度合い
が大きくされる。この平滑化係数KQは図2に示される
ようなマップの形で予めROM32内に記憶されてい
る。一方、平滑化係数KEGRは図3に示されるように
デューティ比DUTYが小さいときには大きいときに比
べて小さくされ、すなわちデューティ比DUTYが小さ
いときには大きいときに比べて平滑化度合いが大きくさ
れる。この平滑化係数KEGRは図3に示されるような
マップの形で予めROM32内に記憶されている。な
お、これら平滑化係数KQ,KEGRはそれぞれ0から
1までの間で定められる。また、燃料噴射量Qをポンプ
指令値、インジェクタ通電時間、ポンプ圧送値などによ
り表わすこともできる。
In this embodiment, the smoothing coefficient K representing the degree of smoothing is defined as the product (K = KQ.KEGR) of the smoothing coefficient KQ based on the fuel injection amount Q and the smoothing coefficient KEGR based on the duty ratio DUTY. Is calculated. As shown in FIG. 2, when the fuel injection amount Q is small, the smoothing coefficient KQ is smaller than when the fuel injection amount Q is large, that is, when the fuel injection amount Q is small, as can be seen from the above-described equation for calculating the smoothed air excess ratio LSM. The degree of smoothing is increased compared to when the number is large. This smoothing coefficient KQ is stored in advance in the ROM 32 in the form of a map as shown in FIG. On the other hand, as shown in FIG. 3, when the duty ratio DUTY is small, the smoothing coefficient KEGR is made smaller than when it is large, that is, when the duty ratio DUTY is small, the degree of smoothing is made larger than when it is large. The smoothing coefficient KEGR is stored in the ROM 32 in advance in the form of a map as shown in FIG. Note that these smoothing coefficients KQ and KEGR are determined between 0 and 1, respectively. Further, the fuel injection amount Q can be represented by a pump command value, injector energizing time, pump pumping value, and the like.

【0013】ところが、機関過渡運転が行われて目標空
気過剰率が急激に変更されるとデューティ比DUTYを
急激に変更する必要がある。すなわち、デューティ比D
UTYの応答性を確保する必要がある。そこで本実施態
様では、機関過渡運転時には平滑化されていない検出さ
れた空気過剰率LACTに基づいてデューティ比DUT
Yを算出するようにし、機関過渡運転時でないときに平
滑化空気過剰率LSMに基づいてデューティ比DUTY
を算出するようにしている。このようにすると過渡運転
時にデューティ比DUTYの良好な応答性を維持するこ
とができる。
However, if the target excess air ratio is suddenly changed due to the engine transient operation, the duty ratio DUTY needs to be suddenly changed. That is, the duty ratio D
It is necessary to ensure the responsiveness of UTY. Therefore, in the present embodiment, the duty ratio DUT is determined based on the detected excess air ratio LACT that is not smoothed during the transient operation of the engine.
And calculate the duty ratio DUTY based on the smoothed excess air ratio LSM when the engine is not in transient operation.
Is calculated. This makes it possible to maintain good responsiveness of the duty ratio DUTY during the transient operation.

【0014】図4は上述した空気過剰率制御方法を実行
するルーチンを示している。図4に示す空気過剰率制御
ルーチンは予め定められた設定時間毎の割り込みによっ
て実行される。図4を参照すると、まずステップ40で
は燃料噴射量Qが読み込まれる。この燃料噴射量Qは図
示しないルーチンにおいて例えば基本燃料噴射量QBと
補正係数との積として算出される。基本燃料噴射量QB
は機関出力トルクを要求トルクとするのに必要な噴射量
であって、アクセルペダル39の踏み込み量DEPと機
関回転数Nとの関数として予めROM32内に記憶され
ている。続くステップ41では目標空気過剰率LTGT
が算出される。この目標空気過剰率LTGTは機関から
スモークが排出されるのを阻止しつつ機関から排出され
るNOx を低減するのに最適な空気過剰率であって、予
め実験により求められている。この目標空気過剰率LT
GTは機関運転状態、すなわち例えば燃料噴射量Qおよ
び機関回転数Nの関数として図5に示されるマップの形
で予めROM32内に記憶されている。続くステップ4
2では実際の空気過剰率LACTが算出される。図1の
内燃機関では、エアフロメータ14により検出される吸
入空気量Gaと、燃料噴射量Qとを用いて実際の空気過
剰率LACTが算出される。なお、機関排気通路内に、
空気過剰率または空燃比に対応した出力電圧を発生する
空気過剰率センサまたは空燃比センサを配置してこのセ
ンサにより空気過剰率LACTを検出することもでき
る。
FIG. 4 shows a routine for executing the above-described excess air ratio control method. The excess air ratio control routine shown in FIG. 4 is executed by interruption every predetermined time. Referring to FIG. 4, first, at step 40, the fuel injection amount Q is read. The fuel injection amount Q is calculated as a product of a basic fuel injection amount QB and a correction coefficient in a routine not shown. Basic fuel injection amount QB
Is an injection amount necessary for setting the engine output torque to the required torque, and is stored in the ROM 32 in advance as a function of the depression amount DEP of the accelerator pedal 39 and the engine speed N. In the following step 41, the target excess air ratio LTGT
Is calculated. The target excess air ratio LTGT is a best excess air ratio to reduce the NO x exhausted from the engine while preventing the smoke discharged from the engine, it is determined by experiment. This target excess air ratio LT
The GT is stored in the ROM 32 in advance in the form of a map shown in FIG. 5 as a function of the engine operating state, for example, the fuel injection amount Q and the engine speed N. Next step 4
In step 2, the actual excess air ratio LACT is calculated. In the internal combustion engine of FIG. 1, the actual excess air ratio LACT is calculated using the intake air amount Ga detected by the air flow meter 14 and the fuel injection amount Q. In the engine exhaust passage,
An excess air ratio sensor or an air-fuel ratio sensor that generates an output voltage corresponding to the excess air ratio or the air-fuel ratio may be provided, and the excess air ratio LACT may be detected by this sensor.

【0015】続くステップ43では機関が現在、過渡運
転時であるか否かが判別される。過渡運転時であるか否
かをどのように判別してもよいが、図1の内燃機関では
アクセルペダル39の踏み込み量DEP、吸入空気量G
a、燃料噴射量Q、機関回転数Nなどの変化率が予め定
められた設定変化率よりも大きいときに過渡運転時であ
ると判別され、この変化率が設定変化率よりも小さいと
きに過渡運転時でないと判別される。過渡運転時でない
と判別されたときには次いでステップ44に進む。
In the following step 43, it is determined whether or not the engine is currently in a transient operation. Although it may be determined in any way whether or not the engine is in the transient operation, in the internal combustion engine of FIG. 1, the depression amount DEP of the accelerator pedal 39 and the intake air amount G
a, when the change rate of the fuel injection amount Q, the engine speed N, or the like is larger than a predetermined set change rate, it is determined that the engine is in the transient operation. When the change rate is smaller than the set change rate, the transient operation is performed. It is determined that the vehicle is not driving. When it is determined that the vehicle is not in the transient operation, the process proceeds to step 44.

【0016】ステップ44から46までは平滑化係数K
を算出する部分である。まずステップ44では燃料噴射
量に基づく平滑化係数KQが図2のマップから算出され
る。続くステップ45ではEGR制御弁19の開度すな
わちデューティ比DUTYに基づく平滑化係数KEGR
が図3のマップから算出される。続くステップ46で
は、平滑化係数KQと平滑化係数KEGRとの積(KQ
・KEGR)として平滑化係数Kが算出される。続くス
テップ47では検出された空気過剰率LACTを平滑化
して得られる平滑化空気過剰率LSMが次式に基づいて
算出される。
In steps 44 to 46, the smoothing coefficient K
Is a part for calculating. First, at step 44, a smoothing coefficient KQ based on the fuel injection amount is calculated from the map of FIG. In the following step 45, the smoothing coefficient KEGR based on the opening degree of the EGR control valve 19, that is, the duty ratio DUTY
Is calculated from the map of FIG. In the following step 46, the product of the smoothing coefficient KQ and the smoothing coefficient KEGR (KQ
A smoothing coefficient K is calculated as (KEGR). In the following step 47, a smoothed excess air ratio LSM obtained by smoothing the detected excess air ratio LACT is calculated based on the following equation.

【0017】 LSM=LSM+K・(LACT−LSM) 続くステップ48ではLSMがLとされ、次いでステッ
プ50にジャンプする。一方、ステップ43において過
渡運転時であると判別されたときには次いでステップ4
9に進み、平滑化されていない検出された空気過剰率L
ACTがLとされる。次いでステップ50に進む。
LSM = LSM + K · (LACT−LSM) In the following step 48, the LSM is set to L, and then the process jumps to step 50. On the other hand, if it is determined in step 43 that the vehicle is in the transient operation, then step 4 is executed.
9, the detected excess air ratio L that has not been smoothed
ACT is set to L. Next, the routine proceeds to step 50.

【0018】続くステップ50から53まではデューテ
ィ比DUTYを算出するための部分である。まずステッ
プ50では次式に基づいて比例項Pが算出される。 P=KP・(LTGT−L) ここでKPは比例ゲイン定数である。続くステップ51
では次式に基づいて積分項Iが算出される。
The following steps 50 to 53 are for calculating the duty ratio DUTY. First, in step 50, a proportional term P is calculated based on the following equation. P = KP · (LTGT−L) where KP is a proportional gain constant. Next step 51
Then, the integral term I is calculated based on the following equation.

【0019】I=I+KI・(LTGT−L) ここでKIは積分ゲイン定数である。続くステップ52
では次式に基づいて微分項Dが算出される。 D=KD・(L−LOLD) ここでKDは微分ゲイン定数、LOLDは前回の処理ル
ーチンにおけるLである。続くステップ53ではこれら
比例項P、積分項I、および微分項Dの和(P+I+
D)としてデューティ比DUTYが算出される。三方弁
22はこのデューティ比DUTYでもって駆動せしめら
れる。続くステップ54ではLがLOLDとされる。
I = I + KI. (LTGT-L) Here, KI is an integral gain constant. Subsequent step 52
Then, the differential term D is calculated based on the following equation. D = KD · (L−HOLD) Here, KD is a differential gain constant, and OLD is L in the previous processing routine. In the following step 53, the sum (P + I +) of these proportional term P, integral term I, and differential term D
The duty ratio DUTY is calculated as D). The three-way valve 22 is driven with this duty ratio DUTY. In the following step 54, L is set to LOLD.

【0020】このように本実施態様では空気過剰率の変
動の影響を低減することができ、空気過剰率を安定させ
ることができる。その結果、各ゲイン定数KP,KI,
KDを比較的大きく定めることができ、したがって過渡
運転時における初期応答性をさらに高めることができ
る。なお、本実施態様において各ゲイン定数KP,K
I,KDは一定値であるが、デューティ比DUTYが小
さいときには大きいときに比べて各ゲイン定数KP,K
I,KDを小さくし、それによりデューティ比DUTY
が小さいときには大きいときに比べて比例項P、積分項
I、および微分項Dがそれぞれ小さくなるようにしても
よい。
As described above, in this embodiment, the influence of the fluctuation of the excess air ratio can be reduced, and the excess air ratio can be stabilized. As a result, each gain constant KP, KI,
KD can be set relatively large, so that the initial response during transient operation can be further enhanced. In this embodiment, each gain constant KP, K
Although I and KD are constant values, the gain constants KP and KP are smaller when the duty ratio DUTY is smaller than when they are large.
I and KD are reduced, and the duty ratio DUTY
Is small, the proportional term P, the integral term I, and the derivative term D may each be smaller than when it is large.

【0021】[0021]

【発明の効果】EGR制御弁の開度の応答性を確保しつ
つ空燃比を目標空燃比に正確に一致させることができ
る。
The air-fuel ratio can be made to exactly match the target air-fuel ratio while ensuring the responsiveness of the opening of the EGR control valve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】燃料噴射量に基づく平滑化係数を示す線図であ
る。
FIG. 2 is a diagram showing a smoothing coefficient based on a fuel injection amount.

【図3】デューティ比に基づく平滑化係数を示す線図で
ある。
FIG. 3 is a diagram illustrating a smoothing coefficient based on a duty ratio.

【図4】空気過剰率制御を実行するためのフローチャー
トである。
FIG. 4 is a flowchart for executing an excess air ratio control.

【図5】目標空気過剰率を示す線図である。FIG. 5 is a diagram showing a target excess air ratio.

【符号の説明】[Explanation of symbols]

4…燃焼室 9…燃料噴射弁 13…吸気ダクト 14…エアフロメータ 17…排気マニホルド 18…EGR通路 19…EGR制御弁 4 Combustion chamber 9 Fuel injection valve 13 Intake duct 14 Air flow meter 17 Exhaust manifold 18 EGR passage 19 EGR control valve

フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 41/14 310 F02D 41/14 310L Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 41/14 310 F02D 41/14 310L

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関の吸気通路と排気通路とを連結する
EGR通路内にEGRガス量を制御するEGR制御弁を
配置した内燃機関において、機関運転状態に応じて目標
空燃比を算出する目標空燃比算出手段と、空燃比を検出
する空燃比検出手段と、EGR制御弁の開度に応じて定
まる平滑化係数を用いて平滑化空燃比を算出する平滑化
空燃比算出手段と、該平滑化空燃比に基づいて空燃比が
目標空燃比となるようにEGR制御弁の開度を制御する
EGR制御弁開度制御手段とを具備した空燃比制御装
置。
In an internal combustion engine in which an EGR control valve for controlling an EGR gas amount is disposed in an EGR passage connecting an intake passage and an exhaust passage of the engine, a target air-fuel ratio is calculated according to an engine operating state. Fuel-ratio calculating means, air-fuel-ratio detecting means for detecting an air-fuel ratio, smoothed air-fuel-ratio calculating means for calculating a smoothed air-fuel ratio using a smoothing coefficient determined according to an opening of an EGR control valve, An air-fuel ratio control device comprising: an EGR control valve opening control means for controlling the opening of the EGR control valve so that the air-fuel ratio becomes a target air-fuel ratio based on the air-fuel ratio.
【請求項2】 機関過渡運転時には平滑化されていない
検出された空燃比に基づいて空燃比が目標空燃比となる
ようにEGR制御弁の開度を制御するようにした請求項
1に記載の空燃比制御装置。
2. The EGR control valve according to claim 1, wherein the opening degree of the EGR control valve is controlled so that the air-fuel ratio becomes the target air-fuel ratio based on the detected air-fuel ratio that has not been smoothed during the transient operation of the engine. Air-fuel ratio control device.
JP02553197A 1997-02-07 1997-02-07 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP3767063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02553197A JP3767063B2 (en) 1997-02-07 1997-02-07 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02553197A JP3767063B2 (en) 1997-02-07 1997-02-07 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10220304A true JPH10220304A (en) 1998-08-18
JP3767063B2 JP3767063B2 (en) 2006-04-19

Family

ID=12168621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02553197A Expired - Fee Related JP3767063B2 (en) 1997-02-07 1997-02-07 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3767063B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705303B2 (en) 2001-03-27 2004-03-16 Nissan Motor Co., Ltd. Air-fuel ratio control apparatus and method for internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6481659B2 (en) 2016-06-09 2019-03-13 トヨタ自動車株式会社 Control device for internal combustion engine
JP6332335B2 (en) 2016-06-09 2018-05-30 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705303B2 (en) 2001-03-27 2004-03-16 Nissan Motor Co., Ltd. Air-fuel ratio control apparatus and method for internal combustion engine

Also Published As

Publication number Publication date
JP3767063B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
US7143741B2 (en) Torque controller for internal combustion engine
US6397830B1 (en) Air-fuel ratio control system and method using control model of engine
JP3378640B2 (en) Idling control method
JP4415509B2 (en) Control device for internal combustion engine
JP3767063B2 (en) Air-fuel ratio control device for internal combustion engine
JP2832422B2 (en) Exhaust gas recirculation system for internal combustion engine
JPH08200119A (en) Fuel injection amount controller of internal combustion engine
JP2841001B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP3478092B2 (en) Engine control device with idle intake pressure learning function
JPH1162658A (en) Control device for internal combustion engine
JP3835167B2 (en) Control device for internal combustion engine
JP3932022B2 (en) Idle rotational speed control device for internal combustion engine
JP2591318B2 (en) Diesel engine exhaust recirculation system
JPH10274108A (en) Evaporated fuel purging device for engine
JP2023166659A (en) Fuel injection control device for internal combustion engine
JP2757097B2 (en) Fuel supply control device for internal combustion engine with assist air supply device
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JP2921202B2 (en) Fuel control device for internal combustion engine
JPS6221735Y2 (en)
JPS6312861A (en) Ignition timing controller for internal combustion engine
JPH01155046A (en) Electronic control fuel injection system for internal combustion engine
JPH08291732A (en) Fuel injection control device for internal combustion engine
JP2561248B2 (en) Fuel cut control device for internal combustion engine
JP2020007940A (en) Engine control device
JPH0830460B2 (en) Ignition timing control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees