JP2020153255A - Control device for engine - Google Patents

Control device for engine Download PDF

Info

Publication number
JP2020153255A
JP2020153255A JP2019050253A JP2019050253A JP2020153255A JP 2020153255 A JP2020153255 A JP 2020153255A JP 2019050253 A JP2019050253 A JP 2019050253A JP 2019050253 A JP2019050253 A JP 2019050253A JP 2020153255 A JP2020153255 A JP 2020153255A
Authority
JP
Japan
Prior art keywords
efficiency coefficient
volumetric efficiency
engine
exhaust recirculation
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019050253A
Other languages
Japanese (ja)
Inventor
昇平 宮嶋
Shohei Miyajima
昇平 宮嶋
敏行 宮田
Toshiyuki Miyata
敏行 宮田
戸田 仁司
Hitoshi Toda
仁司 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2019050253A priority Critical patent/JP2020153255A/en
Publication of JP2020153255A publication Critical patent/JP2020153255A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To accurately calculate a volume efficiency coefficient of an engine.SOLUTION: A control device for an engine 2 having an exhaust gas recirculation device and a control unit controlling an exhaust gas recirculation valve on the basis of a load of the engine includes: a target EGR introduction time volume efficiency coefficient calculation section 23 calculating a volume efficiency coefficient woEGR of the engine when an exhaust gas recirculation rate is in a target exhaust gas recirculation state; a volume efficiency coefficient correction EGR rate calculation section 25 calculating an EGR rate b in the target exhaust gas recirculation state; a cylinder internal EGR rate calculation section 26 calculating a current EGR rate a; and a volume efficiency coefficient calculation section 27 calculating a current volume efficiency coefficient Kve1 of the engine by correcting the volume efficiency coefficient wEGR in the target exhaust gas recirculation state, on the basis of a ratio between the current EGR rate a and the EGR rate b in the target exhaust gas recirculation state.SELECTED DRAWING: Figure 4

Description

本発明は、排気還流装置を備えたエンジンの制御技術に関する。 The present invention relates to a control technique for an engine including an exhaust recirculation device.

エンジンの燃料噴射を適切に制御するために、筒内への吸気量を正確に演算する必要がある。筒内への吸気量については、例えば吸気スロットルバルブの上流部に設けられたフローセンサを用いて計測したり、スロットルバルブの下流側の吸気圧であるインマニ圧とエンジン回転速度から推定演算したりする方法が知られている。
また、特許文献1には、エンジンの定常運転時において、インマニ圧と体積効率相当値とを用いて筒内への吸気量を算出するとともにスロットル開度と吸気量との関係を学習し、過渡運転時においては、学習結果を用いて筒内への吸入空気量を算出することが開示されている。
In order to properly control the fuel injection of the engine, it is necessary to accurately calculate the amount of intake air into the cylinder. The amount of intake air into the cylinder can be measured using, for example, a flow sensor provided upstream of the intake throttle valve, or estimated from the intake manifold pressure and engine rotation speed, which are the intake pressure on the downstream side of the throttle valve. There is a known way to do it.
Further, in Patent Document 1, during steady operation of the engine, the intake amount into the cylinder is calculated using the intake manifold pressure and the volumetric efficiency equivalent value, and the relationship between the throttle opening and the intake amount is learned, and the transition is made. It is disclosed that the amount of intake air into the cylinder is calculated using the learning result during operation.

特開2014−84817号公報Japanese Unexamined Patent Publication No. 2014-84417

しかしながら、エンジンの多くには、NOx排出量を低減させるため、または燃費向上のためにEGR装置(排気還流装置)が搭載されている。EGR装置は、エンジンの排気の一部を吸気側に還流させて、筒内での燃焼温度を低下させることで、NOxの排出量を低減させ、また、ポンピングロスを低減し燃費を向上させる。したがって、EGR装置により排気を還流させると、燃焼に寄与する空気量である筒内への新気量が減少し、燃料制御するために必要な筒内への吸気量(新気量)を正確に演算することが困難となってしまう。 However, many engines are equipped with an EGR device (exhaust gas recirculation device) in order to reduce NOx emissions or improve fuel efficiency. The EGR device returns a part of the exhaust gas of the engine to the intake side to lower the combustion temperature in the cylinder, thereby reducing NOx emissions, reducing pumping loss, and improving fuel efficiency. Therefore, when the exhaust gas is recirculated by the EGR device, the amount of fresh air in the cylinder, which is the amount of air that contributes to combustion, decreases, and the amount of intake air (new air amount) in the cylinder required for fuel control is accurate. It becomes difficult to calculate.

特に、EGR装置は例えば吸気量に基づいて設定された排気還流率となるようにオンオフ制御されるが、過渡運転時のように排気の還流のオンオフが切り替わる際には、排気還流率が変化し、吸気量に基づいて設定された排気還流率よりも小さくなる可能性があるだけでなく、切り替え直後においては大きくなる可能性もあり、筒内への吸気量を正確に演算することが困難となってしまう。 In particular, the EGR device is on / off controlled so as to have an exhaust gas recirculation rate set based on, for example, the intake amount, but the exhaust gas recirculation rate changes when the exhaust gas recirculation is switched on / off as in transient operation. , Not only may it be smaller than the exhaust gas recirculation rate set based on the intake amount, but it may also be large immediately after switching, making it difficult to accurately calculate the intake amount into the cylinder. turn into.

本発明はこのような問題点を解決するためになされたもので、排気還流装置を備えたエンジンにおいて、排気の還流が行われても広い状況で精度よく吸入空気量を演算することが可能となるエンジンの制御装置を提供することにある。 The present invention has been made to solve such a problem, and it is possible to accurately calculate the intake air amount in a wide range of situations even if the exhaust is recirculated in an engine equipped with an exhaust recirculation device. Is to provide a control device for the engine.

上記の目的を達成するために、本発明のエンジンの制御装置は、エンジンの排気の一部を吸気通路に還流する排気還流路と、前記排気還流路を開閉する排気還流弁と、前記エンジンの運転状態に基づいて前記排気還流弁を制御する排気還流制御部と、を備えたエンジンの制御装置であって、前記排気還流路による排気還流率が前記エンジンの運転状態に基づいて設定される目標排気還流率である目標排気還流状態での前記エンジンの体積効率係数を演算する目標排気還流時体積効率係数演算部と、前記目標排気還流状態の排気還流率を演算する目標排気還流時排気還流率演算部と、前記エンジンの運転状態に基づいて、現状の排気還流率を演算する現排気還流率演算部と、前記現状の排気還流率と前記目標排気還流状態の排気還流率との比に基づいて、前記目標排気還流状態での前記体積効率係数を補正して、現状の前記エンジンの体積効率係数を演算する第1の体積効率係数演算部と、を備えたことを特徴とする。 In order to achieve the above object, the engine control device of the present invention includes an exhaust recirculation path for returning a part of the exhaust of the engine to the intake passage, an exhaust recirculation valve for opening and closing the exhaust recirculation path, and the engine. An engine control device including an exhaust recirculation control unit that controls the exhaust recirculation valve based on an operating state, and a target in which an exhaust recirculation rate by the exhaust recirculation path is set based on the operating state of the engine. The target volumetric efficiency coefficient calculation unit that calculates the volumetric efficiency coefficient of the engine in the target exhaust recirculation state, which is the exhaust recirculation rate, and the target exhaust recirculation rate that calculates the exhaust recirculation rate in the target exhaust recirculation state. Based on the calculation unit, the current exhaust recirculation rate calculation unit that calculates the current exhaust recirculation rate based on the operating state of the engine, and the ratio of the current exhaust recirculation rate to the exhaust recirculation rate in the target exhaust recirculation state. The engine is provided with a first volumetric efficiency coefficient calculation unit that corrects the volumetric efficiency coefficient in the target exhaust recirculation state and calculates the current volumetric efficiency coefficient of the engine.

これにより、現状の排気還流率と前記目標排気還流状態の排気還流率との比に基づいて、目標排気還流状態での前記体積効率係数を補正して、現状の前記エンジンの体積効率係数が演算されるので、目標排気還流状態でない排気還流状態であっても、体積効率係数を精度よく演算することができる。
また、好ましくは、前記第1の体積効率係数演算部は、前記現状の排気還流率をa、前記目標排気還流状態の排気還流率をb、前記目標排気還流状態での体積効率係数をwEGRとした場合、Kve1=wEGR×(1+b)/(1+a)によって、第1の現状のエンジンの体積効率係数Kve1を演算するとよい。
As a result, the volumetric efficiency coefficient in the target exhaust recirculation state is corrected based on the ratio of the current exhaust recirculation rate to the exhaust recirculation rate in the target exhaust recirculation state, and the current volumetric efficiency coefficient of the engine is calculated. Therefore, the volumetric efficiency coefficient can be calculated accurately even in an exhaust recirculation state other than the target exhaust recirculation state.
Further, preferably, the first volumetric efficiency coefficient calculation unit sets the current exhaust recirculation rate as a, the exhaust recirculation rate in the target exhaust recirculation state as b, and the volumetric efficiency coefficient in the target exhaust recirculation state as wEGR. In this case, the volumetric efficiency coefficient Kve1 of the first current engine may be calculated by Kve1 = wEGR × (1 + b) / (1 + a).

これにより、目標排気還流状態でない排気還流状態でのエンジンの体積効率係数を、現状の排気還流率と目標排気還流状態の排気還流率との比に基づいて、容易にかつ精度よく演算することが可能となる。
また、好ましくは、前記エンジンの回転速度を検出するエンジン回転速度検出器と、前記エンジンの吸気圧を検出する吸気圧検出器と、を備え、前記目標排気還流時体積効率係数演算部は、前記エンジンの回転速度と吸気圧とに基づいて、前記目標排気還流状態での前記エンジンの体積効率係数を演算するとよい。
As a result, the volumetric efficiency coefficient of the engine in the exhaust recirculation state other than the target exhaust recirculation state can be easily and accurately calculated based on the ratio of the current exhaust recirculation rate and the exhaust recirculation rate in the target exhaust recirculation state. It will be possible.
Further, preferably, the engine rotation speed detector for detecting the rotation speed of the engine and the intake pressure detector for detecting the intake pressure of the engine are provided, and the target exhaust recirculation volumetric efficiency coefficient calculation unit is described as described above. The volumetric efficiency coefficient of the engine in the target exhaust recirculation state may be calculated based on the rotation speed of the engine and the intake pressure.

これにより、目標排気還流時体積効率係数演算部は、エンジンの回転速度と吸気圧を用いて、目標排気還流状態でのエンジンの体積効率係数を容易に演算することが可能となる。
また、好ましくは、前記排気還流率が0である非排気還流状態での前記エンジンの体積効率係数を演算する非排気還流時体積効率係数演算部と、前記目標排気還流状態の排気還流率と前記現状の排気還流率との比に基づいて、前記目標排気還流状態での前記体積効率係数と前記非排気還流状態での前記体積効率係数とを補間して、現状の前記エンジンの体積効率係数を演算する第2の体積効率係数演算部と、を備え、前記現状の排気還流率が前記前記目標排気還流状態の排気還流率以上である場合には、前記第1の体積効率係数演算部で前記現状の前記エンジンの体積効率係数を演算し、前記現状の排気還流率が前記目標排気還流状態の排気還流率未満である場合には、前記第2の体積効率係数演算部で前記現状の前記エンジンの体積効率係数を演算するとよい。
As a result, the volumetric efficiency coefficient calculation unit at the time of target exhaust gas recirculation can easily calculate the volumetric efficiency coefficient of the engine in the target exhaust gas recirculation state by using the rotation speed of the engine and the intake pressure.
Further, preferably, the volumetric efficiency coefficient calculation unit at the time of non-exhaust recirculation for calculating the volumetric efficiency coefficient of the engine in the non-exhaust recirculation state where the exhaust recirculation rate is 0, the exhaust recirculation rate in the target exhaust recirculation state, and the above. Based on the ratio with the current exhaust recirculation rate, the volumetric efficiency coefficient in the target exhaust recirculation state and the volumetric efficiency coefficient in the non-exhaust recirculation state are interpolated to obtain the current volumetric efficiency coefficient of the engine. A second volumetric efficiency coefficient calculation unit for calculation is provided, and when the current exhaust recirculation rate is equal to or higher than the exhaust recirculation rate in the target exhaust recirculation state, the first volumetric efficiency coefficient calculation unit is used. The current volumetric efficiency coefficient of the engine is calculated, and when the current exhaust recirculation rate is less than the exhaust recirculation rate in the target exhaust recirculation state, the second volumetric efficiency coefficient calculation unit uses the current engine. It is advisable to calculate the volumetric efficiency coefficient of.

これにより、現状の排気還流率が目標排気還流状態の排気還流率未満である場合には、第2の体積効率係数演算部によって、目標排気還流状態の体積効率係数と非排気還流状態での体積効率係数との間に、現状の体積効率係数が精度よく演算される。一方、現状の排気還流率が目標排気還流状態の排気還流率以上である場合には、第1の体積効率係数演算部で現状のエンジンの体積効率係数が演算されるので、幅広い排気還流率で現状の体積効率係数を演算することができる。 As a result, when the current exhaust recirculation rate is less than the exhaust recirculation rate in the target exhaust recirculation state, the volumetric efficiency coefficient in the target exhaust recirculation state and the volume in the non-exhaust recirculation state are performed by the second volumetric efficiency coefficient calculation unit. The current volumetric efficiency coefficient is calculated accurately between the efficiency coefficient and the efficiency coefficient. On the other hand, when the current exhaust recirculation rate is equal to or higher than the exhaust recirculation rate in the target exhaust recirculation state, the volumetric efficiency coefficient of the current engine is calculated by the first volumetric efficiency coefficient calculation unit, so that a wide range of exhaust recirculation rates can be used. The current volumetric efficiency coefficient can be calculated.

好ましくは、前記第2の体積効率係数演算部は、前記現状の排気還流率をa、前記目標排気還流状態の排気還流率をb、前記目標排気還流状態での体積効率係数をwEGR、前記非排気還流状態での体積効率係数をwoEGRとした場合、Kve2=(wEGR×(a/b)+(woEGR×(1−(a/b)))によって、前記現状のエンジンの体積効率係数Kve2を演算するとよい。 Preferably, the second volumetric efficiency coefficient calculation unit sets the current exhaust recirculation rate as a, the exhaust recirculation rate in the target exhaust recirculation state as b, and the volumetric efficiency coefficient in the target exhaust recirculation state as wEGR. When the volumetric efficiency coefficient in the exhaust recirculation state is woEGR, the volumetric efficiency coefficient Kve2 of the current engine is set by Kve2 = (wEGR × (a / b) + (woEGR × (1- (a / b))). It is good to calculate.

これにより、現状の排気還流率が目標排気還流状態の排気還流率未満である場合に、目標排気還流状態でない排気還流状態でのエンジンの体積効率係数を、目標排気還流状態の排気還流率と現状の排気還流率との比に基づいて、容易に演算することが可能となる。 As a result, when the current exhaust return rate is less than the exhaust return rate in the target exhaust return state, the volumetric efficiency coefficient of the engine in the exhaust return state other than the target exhaust return state is set to the exhaust return rate in the target exhaust return state. It is possible to easily calculate based on the ratio with the exhaust return rate of.

本発明のエンジンの制御装置によれば、目標排気還流状態でない排気還流状態であっても、体積効率係数を精度よく演算することができるので、排気還流弁の切替直後のような過渡運転状態においても体積効率係数を精度よく演算し、筒内への新気の吸入量を精度よく演算することができる。これにより、新気の吸入量に応じて燃料供給量を精度よく制御することが可能となり、燃費の向上または排ガス低減を図ることができる。 According to the engine control device of the present invention, the volumetric efficiency coefficient can be calculated accurately even in an exhaust recirculation state other than the target exhaust recirculation state, so that in a transient operation state such as immediately after switching the exhaust recirculation valve. Also, the volumetric efficiency coefficient can be calculated accurately, and the amount of fresh air sucked into the cylinder can be calculated accurately. As a result, it is possible to accurately control the fuel supply amount according to the intake amount of fresh air, and it is possible to improve fuel efficiency or reduce exhaust gas.

本発明の実施形態におけるエンジンの制御装置の概略構成図である。It is a schematic block diagram of the control device of the engine in embodiment of this invention. エンジンの負荷とEGR率との関係を示すマップの一例である。This is an example of a map showing the relationship between the engine load and the EGR rate. エンジンの負荷と体積効率係数との関係を示すマップの一例である。This is an example of a map showing the relationship between the engine load and the volumetric efficiency coefficient. エンジンコントロールユニットにおける第1の実施形態の体積効率係数演算ユニットの構成を示すブロック図である。It is a block diagram which shows the structure of the volumetric efficiency coefficient calculation unit of 1st Embodiment in an engine control unit. 第1の実施形態におけるエンジンの負荷に対するEGR率、体積効率係数の関係を示すマップの一例である。This is an example of a map showing the relationship between the EGR ratio and the volumetric efficiency coefficient with respect to the engine load in the first embodiment. エンジンコントロールユニットにおける第2の実施形態の体積効率係数演算ユニットの構成を示すブロック図である。It is a block diagram which shows the structure of the volumetric efficiency coefficient calculation unit of the 2nd Embodiment in an engine control unit. 第2の実施形態におけるエンジンの負荷に対するEGR率、インマニ圧、体積効率係数の関係を示すマップの一例である。This is an example of a map showing the relationship between the EGR ratio, the intake manifold pressure, and the volumetric efficiency coefficient with respect to the engine load in the second embodiment.

以下、図面に基づき本発明の実施形態について説明する。
図1は、本発明の制御装置1が適用されたエンジン2の概略構成図である。
エンジン2は、走行駆動源として車両に搭載されており、例えば多気筒のガソリンエンジンであって、図1では簡略して1つの気筒のみ記載している。エンジン2は、各気筒に設けられた燃料噴射弁3から、任意の噴射時期及び噴射量で各気筒の吸気ポート内に燃料を噴射し、点火プラグ4によって燃焼室5内の混合気を点火して燃焼可能な構成となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an engine 2 to which the control device 1 of the present invention is applied.
The engine 2 is mounted on a vehicle as a traveling drive source, and is, for example, a multi-cylinder gasoline engine. In FIG. 1, only one cylinder is briefly described. The engine 2 injects fuel into the intake port of each cylinder at an arbitrary injection timing and injection amount from the fuel injection valve 3 provided in each cylinder, and ignites the air-fuel mixture in the combustion chamber 5 by the spark plug 4. It has a structure that can be burned.

エンジン2の吸気通路6には、新気の流量を調整するための電子制御スロットルバルブ7が設けられている。
また、エンジン2には、EGR装置10が備えられている。EGR装置10は、エンジン2の吸気通路6と排気通路8とを連通するEGR通路11(排気還流路)と、EGR通路11を開閉するEGRバルブ12(排気還流弁)とにより構成されている。EGR装置10は、排気通路8からEGR通路11を介して排気の一部を吸気通路6に還流させる。このように排気の一部(EGRガス)を吸気通路6に流入させることで、筒内の燃焼温度を低下させ、エンジン2からのNOxの排出量を低減させ、また、燃費を向上させる。
An electronically controlled throttle valve 7 for adjusting the flow rate of fresh air is provided in the intake passage 6 of the engine 2.
Further, the engine 2 is provided with an EGR device 10. The EGR device 10 is composed of an EGR passage 11 (exhaust gas recirculation path) that connects the intake passage 6 and the exhaust passage 8 of the engine 2 and an EGR valve 12 (exhaust gas recirculation valve) that opens and closes the EGR passage 11. The EGR device 10 returns a part of the exhaust gas from the exhaust passage 8 to the intake passage 6 via the EGR passage 11. By allowing a part of the exhaust gas (EGR gas) to flow into the intake passage 6 in this way, the combustion temperature in the cylinder is lowered, the amount of NOx emitted from the engine 2 is reduced, and the fuel consumption is improved.

更に、エンジン2には、エンジン2の回転速度を検出する回転速度センサ15(エンジン回転速度検出器)が設けられている。吸気通路6のエンジン2側の端部である吸気マニホールド17には、吸気圧(インマニ圧)を検出するインマニ圧センサ18(吸気圧検出器)を備えている。また、EGRバルブ12には、EGRバルブの開度を検出するEGR開度センサ19が設けられている。 Further, the engine 2 is provided with a rotation speed sensor 15 (engine rotation speed detector) that detects the rotation speed of the engine 2. The intake manifold 17, which is the end of the intake passage 6 on the engine 2 side, is provided with an intake manifold pressure sensor 18 (intake pressure detector) that detects the intake air pressure (intake pressure). Further, the EGR valve 12 is provided with an EGR opening sensor 19 that detects the opening degree of the EGR valve.

エンジンコントロールユニット20(排気還流制御部)は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成され、回転速度センサ15、インマニ圧センサ18、EGR開度センサ19等の各種センサの検出情報を入力し、当該各種情報に基づいて体積効率係数を演算する。なお、体積効率係数は、吸気通路6から筒内への新気の入りやすさの指標となるものであり、吸気管内と同じ密度の空気が行程容積を満たす場合の空気量に対する、シリンダーが吸入した空気量の割合である。 The engine control unit 20 (exhaust gas recirculation control unit) includes an input / output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a timer, a central processing unit (CPU), and the like. The detection information of various sensors such as the in-mani pressure sensor 18 and the EGR opening sensor 19 is input, and the volume efficiency coefficient is calculated based on the various information. The volumetric efficiency coefficient is an index of the ease with which fresh air can enter the cylinder from the intake passage 6, and the cylinder sucks in the amount of air when the air having the same density as that in the intake pipe fills the stroke volume. It is the ratio of the amount of air that has been removed.

エンジンコントロールユニット20は、更に、体積効率係数を用いて新気の筒内への吸気量を演算し、当該吸気量に基づいて各気筒の燃料噴射量を演算して、燃料噴射弁3からの燃料噴射を制御する。また、エンジンコントロールユニット20は、点火プラグ4による点火、電子制御スロットルバルブ7の開度、EGRバルブ12の開度を制御して、エンジン2の運転制御を行う。 The engine control unit 20 further calculates the intake amount of fresh air into the cylinder using the volumetric efficiency coefficient, calculates the fuel injection amount of each cylinder based on the intake amount, and outputs the fuel injection amount from the fuel injection valve 3. Control fuel injection. Further, the engine control unit 20 controls the operation of the engine 2 by controlling the ignition by the spark plug 4, the opening degree of the electronically controlled throttle valve 7, and the opening degree of the EGR valve 12.

図2は、エンジン2の負荷とEGR率との関係を示すマップの一例である。図3はエンジン2の負荷と体積効率係数との関係を示すマップの一例である。
エンジンコントロールユニット20は、エンジン2の負荷に基づいて目標EGR率(目標排気還流率)を設定して、EGRバルブ12の開度を制御する。EGR率(排気還流率)は、新気の流量に対するEGRガスの流量の割合である。エンジン2の負荷は、例えば回転速度センサ15により検出したエンジン回転速度とインマニ圧センサ18により検出したインマニ圧とに基づいて演算すればよい。
FIG. 2 is an example of a map showing the relationship between the load of the engine 2 and the EGR rate. FIG. 3 is an example of a map showing the relationship between the load of the engine 2 and the volumetric efficiency coefficient.
The engine control unit 20 sets a target EGR rate (target exhaust gas recirculation rate) based on the load of the engine 2 and controls the opening degree of the EGR valve 12. The EGR rate (exhaust gas recirculation rate) is the ratio of the flow rate of EGR gas to the flow rate of fresh air. The load of the engine 2 may be calculated based on, for example, the engine rotation speed detected by the rotation speed sensor 15 and the intake manifold pressure detected by the intake manifold pressure sensor 18.

例えば図2に示すように、目標EGR率は、エンジン2の負荷に基づいて変化し、低負荷時及び高負荷時に減少し、中負荷時において増加するように設定される。これは、低負荷時においてはエンジン2の燃焼安定性を確保するためであり、高負荷時においてはインマニ圧が上昇することから排気が還流し難くなるためである。
また、エンジン2の体積効率係数は、負荷に応じて変化する。例えば図3に示すように、体積効率係数は、エンジン2の負荷が増加するに伴って増加する。また、体積効率係数は、EGR非導入時とEGR導入時とで異なる値となり、目標EGR率のEGR導入時である目標EGR導入時(目標排気還流状態)では、吸気中に排気の割合が増加するため、EGR非導入時(非排気還流状態)よりも小さい値となる。
For example, as shown in FIG. 2, the target EGR rate is set to change based on the load of the engine 2, decrease at low load and high load, and increase at medium load. This is to ensure the combustion stability of the engine 2 at a low load, and because the intake manifold pressure rises at a high load, it becomes difficult for the exhaust gas to return.
Further, the volumetric efficiency coefficient of the engine 2 changes according to the load. For example, as shown in FIG. 3, the volumetric efficiency coefficient increases as the load on the engine 2 increases. In addition, the volumetric efficiency coefficient becomes a different value when EGR is not introduced and when EGR is introduced, and when the target EGR is introduced (target exhaust gas recirculation state) when EGR is introduced at the target EGR rate, the proportion of exhaust gas during intake increases. Therefore, the value is smaller than that when EGR is not introduced (non-exhaust gas recirculation state).

次に、図4及び図5を用いて、本発明の第1の実施形態のEGR導入時における体積効率係数の演算方法について説明する。本実施形態のエンジンコントロールユニット20は、EGR非導入時及び目標EGR導入時だけでなく、目標EGR率でないEGR導入状態での体積効率係数について演算する。
図4は、エンジンコントロールユニット20における第1の実施形態の体積効率係数演算ユニット21の構成を示すブロック図である。図5は、第1の実施形態におけるエンジン2の負荷に対するEGR率、体積効率係数の関係を示すマップの一例であり、実線が目標EGR率導入時を示す。なお、図5中のEGR率のマップは図2に該当し、体積効率係数のマップは図3の目標EGR導入時のマップに該当する。
Next, a method of calculating the volumetric efficiency coefficient at the time of introducing EGR according to the first embodiment of the present invention will be described with reference to FIGS. 4 and 5. The engine control unit 20 of the present embodiment calculates the volumetric efficiency coefficient not only when the EGR is not introduced and when the target EGR is introduced, but also when the EGR is introduced, which is not the target EGR rate.
FIG. 4 is a block diagram showing the configuration of the volumetric efficiency coefficient calculation unit 21 of the first embodiment in the engine control unit 20. FIG. 5 is an example of a map showing the relationship between the EGR rate and the volumetric efficiency coefficient with respect to the load of the engine 2 in the first embodiment, and the solid line shows the time when the target EGR rate is introduced. The map of the EGR rate in FIG. 5 corresponds to FIG. 2, and the map of the volumetric efficiency coefficient corresponds to the map at the time of introducing the target EGR in FIG.

図4に示すように、エンジンコントロールユニット20には、エンジン2の現状の運転状態(現運転点)における体積効率係数Kveを演算する体積効率係数演算ユニット21として、目標EGR導入時体積効率係数演算部23(目標排気還流時体積効率係数演算部)、筒内空気量演算部24(目標排気還流時排気還流率演算部)、体積効率係数補正用EGR率演算部25(目標排気還流時排気還流率演算部)、筒内EGR率演算部26(現排気還流率演算部)、体積効率係数演算部27(第1の体積効率係数演算部)を備えている。 As shown in FIG. 4, the engine control unit 20 is used as a volumetric efficiency coefficient calculation unit 21 for calculating the volumetric efficiency coefficient Kve in the current operating state (current operating point) of the engine 2, and the volumetric efficiency coefficient is calculated when the target EGR is introduced. Unit 23 (target exhaust gas recirculation volumetric efficiency coefficient calculation unit), in-cylinder air volume calculation unit 24 (target exhaust gas recirculation rate calculation unit), volumetric efficiency coefficient correction EGR rate calculation unit 25 (target exhaust gas recirculation exhaust gas recirculation) A rate calculation unit), an in-cylinder EGR rate calculation unit 26 (current exhaust gas recirculation rate calculation unit), and a volumetric efficiency coefficient calculation unit 27 (first volumetric efficiency coefficient calculation unit) are provided.

目標EGR導入時体積効率係数演算部23は、インマニ圧センサ18からから入力したインマニ圧Pbと、回転速度センサ15から入力したエンジン回転速度Neとに基づいて、あらかじめ試験等によって確認し記憶しているマップを用いて目標EGR導入時の体積効率係数wEGRを演算する。
なお、目標EGR導入時においては、負荷とインマニ圧との関係は、例えばエンジン回転速度Neを一定とした場合に、負荷が増加するに伴ってインマニ圧も増加する。そして、エンジン回転速度Ne毎に設けられたマップを用いて、インマニ圧センサ18からから入力したインマニ圧Pbに対応する負荷fに基づいてEGR導入時の体積効率係数wEGRが求められる。
The volumetric efficiency coefficient calculation unit 23 at the time of introducing the target EGR confirms and stores in advance by a test or the like based on the intake manifold pressure Pb input from the intake manifold pressure sensor 18 and the engine rotation speed Ne input from the rotation speed sensor 15. The volumetric efficiency coefficient wEGR at the time of introducing the target EGR is calculated using the existing map.
When the target EGR is introduced, the relationship between the load and the intake manifold pressure increases, for example, when the engine speed Ne is constant, the intake manifold pressure increases as the load increases. Then, using the map provided for each engine rotation speed Ne, the volumetric efficiency coefficient wEGR at the time of EGR introduction is obtained based on the load f corresponding to the intake manifold pressure Pb input from the intake manifold pressure sensor 18.

筒内空気量演算部24は、目標EGR導入時体積効率係数演算部23により演算した目標EGR率導入時の体積効率係数wEGRとインマニ圧センサ18から入力したインマニ圧Pbに基づいて、目標EGR率導入時における負荷(充填効率Ec)を演算する。負荷(充填効率Ec)は、例えば下記(1)式によって演算すればよい。
負荷(充填効率Ec)=wEGR×(Pb/大気圧)×100(%)・・・(1)
体積効率係数補正用EGR率演算部25は、筒内空気量演算部24で演算された負荷(充填効率Ec)とエンジン回転速度Neとに基づいて、目標EGR導入時におけるEGR率である体積効率係数補正用EGR率b(目標排気還流状態の排気還流率)を演算する。
The in-cylinder air amount calculation unit 24 is based on the volumetric efficiency coefficient wEGR at the time of introduction of the target EGR rate calculated by the volumetric efficiency coefficient calculation unit 23 at the time of introduction of the target EGR and the intake manifold pressure Pb input from the intake manifold pressure sensor 18, and the target EGR rate. Calculate the load (filling efficiency Ec) at the time of introduction. The load (filling efficiency Ec) may be calculated by, for example, the following equation (1).
Load (filling efficiency Ec) = wEGR x (Pb / atmospheric pressure) x 100 (%) ... (1)
The EGR rate calculation unit 25 for correcting the volumetric efficiency coefficient is the volumetric efficiency which is the EGR rate at the time of introduction of the target EGR based on the load (filling efficiency Ec) calculated by the in-cylinder air amount calculation unit 24 and the engine rotation speed Ne. The EGR rate b for coefficient correction (exhaust gas recirculation rate in the target exhaust gas recirculation state) is calculated.

筒内EGR率演算部26は、回転速度センサ15から入力したエンジン回転速度Neとインマニ圧センサ18からから入力したインマニ圧Pb、更にEGR開度センサ19から入力したEGRバルブ12の開度θegrに基づいて、例えばあらかじめ記憶しているマップを用いて現運転点でのEGR率a(現状の排気還流率)を演算する。
体積効率係数演算部27は、目標EGR導入時体積効率係数演算部23において演算した目標EGR導入時における体積効率係数wEGRと、体積効率係数補正用EGR率演算部25において演算した目標EGR導入時におけるEGR率bと、筒内EGR率演算部26において演算した現運転点でのEGR率aとに基づいて、現運転点での体積効率係数kve1を演算する。
The in-cylinder EGR rate calculation unit 26 uses the engine rotation speed Ne input from the rotation speed sensor 15, the intake manifold pressure Pb input from the intake manifold pressure sensor 18, and the opening degree θegr of the EGR valve 12 input from the EGR opening sensor 19. Based on this, for example, the EGR rate a (current exhaust gas recirculation rate) at the current operating point is calculated using a map stored in advance.
The volumetric efficiency coefficient calculation unit 27 has a volumetric efficiency coefficient wEGR calculated by the volumetric efficiency coefficient calculation unit 23 at the time of introduction of the target EGR and an EGR rate calculation unit 25 at the time of introduction of the target EGR calculated by the volumetric efficiency coefficient correction EGR rate calculation unit 25. The volumetric efficiency coefficient kve1 at the current operating point is calculated based on the EGR rate b and the EGR rate a at the current operating point calculated by the in-cylinder EGR rate calculating unit 26.

現運転点での体積効率係数Kve1は、以下の式(2)によって演算される。
Kve1=wEGR×(1+b)/(1+a)・・・(2)
そして、この演算した体積効率係数Kve1を、現運転点での体積効率係数Kveとする。
以上のように、目標EGR率導入時の体積効率係数wEGRを補正して、エンジン2の吸気量を演算するために使用する体積効率係数kveが演算される。
The volumetric efficiency coefficient Kve1 at the current operating point is calculated by the following equation (2).
Kve1 = wEGR × (1 + b) / (1 + a) ... (2)
Then, the calculated volumetric efficiency coefficient Kve1 is defined as the volumetric efficiency coefficient Kve at the current operating point.
As described above, the volumetric efficiency coefficient wEGR at the time of introducing the target EGR rate is corrected, and the volumetric efficiency coefficient kve used for calculating the intake amount of the engine 2 is calculated.

エンジン2の吸気量を演算するために使用する体積効率係数kveとして、通常は目標EGR率導入時の体積効率係数wEGRが用いられる。しかし、EGR非導入時には、体積効率係数Kveは目標EGR率導入時の体積効率係数wEGRよりも増加する。また、EGRバルブ12を非導入(閉弁)から導入(開弁)に切り替えた直後に、EGR率が目標EGR率よりも瞬間的に大きくなり、体積効率係数Kveが目標EGR率導入時の体積効率係数wEGRよりも小さくなる場合もある。 As the volumetric efficiency coefficient kve used to calculate the intake amount of the engine 2, the volumetric efficiency coefficient wEGR at the time of introducing the target EGR rate is usually used. However, when EGR is not introduced, the volumetric efficiency coefficient Kve is higher than the volumetric efficiency coefficient wEGR when the target EGR rate is introduced. Immediately after the EGR valve 12 is switched from non-introduction (closed) to introduced (open), the EGR rate momentarily becomes larger than the target EGR rate, and the volumetric efficiency coefficient Kve is the volume at the time of introduction of the target EGR rate. It may be smaller than the efficiency coefficient wEGR.

これに対し、本実施形態では、現運転点でのEGR率aと目標EGR導入時におけるEGR率bとの比の割合で、目標EGR率導入時の体積効率係数wEGRを補正して、現運転点での体積効率係数Kve1を求める。
詳しくは、体積効率係数演算部27は、Kve=Kve1=wEGR×(1+b)/(1+a)の演算によって現状のエンジンの体積効率係数Kveを演算するので、現状のエンジンの体積効率係数Kveを容易にかつ精度よく求めることができる。
On the other hand, in the present embodiment, the volumetric efficiency coefficient wEGR at the time of introducing the target EGR rate is corrected by the ratio of the EGR rate a at the current operation point to the EGR rate b at the time of introducing the target EGR, and the current operation is performed. Find the volumetric efficiency coefficient Kve1 at the point.
Specifically, the volumetric efficiency coefficient calculation unit 27 calculates the volumetric efficiency coefficient Kve of the current engine by the calculation of Kve = Kve1 = wEGR × (1 + b) / (1 + a), so that the volumetric efficiency coefficient Kve of the current engine can be easily obtained. It can be obtained accurately and accurately.

特に、目標EGR導入時におけるEGR率bに対して現運転点でのEGR率aが高い場合に、現運転点での体積効率係数Kve1は目標EGR率導入時の体積効率係数wEGRよりも低下するが、このような場合に現運転点での体積効率係数Kve1を精度良く求めることができる。
一方、目標EGR導入時におけるEGR率bに対して現運転点でのEGR率aが低い場合には、現運転点での体積効率係数Kve1は目標EGR率導入時の体積効率係数wEGRよりも高くなるが、このような場合でも現運転点での体積効率係数Kve1を精度良く求めることができる。
In particular, when the EGR rate a at the current operating point is higher than the EGR rate b at the time of introducing the target EGR, the volumetric efficiency coefficient Kve1 at the current operating point is lower than the volumetric efficiency coefficient wEGR at the time of introducing the target EGR rate. However, in such a case, the volumetric efficiency coefficient Kve1 at the current operating point can be obtained with high accuracy.
On the other hand, when the EGR rate a at the current operating point is lower than the EGR rate b at the time of introducing the target EGR, the volumetric efficiency coefficient Kve1 at the current operating point is higher than the volumetric efficiency coefficient wEGR at the time of introducing the target EGR rate. However, even in such a case, the volumetric efficiency coefficient Kve1 at the current operating point can be obtained with high accuracy.

これにより、エンジン2の過渡運転状態のようにEGRバルブ12の開度が変化している状況においても、体積効率係数Kve(=Kve1)を用いて筒内への新気の吸入量を精度よく演算することができ、当該新気の吸入量に基づいて燃料供給量を精度よく制御することが可能となり、燃費の向上を図ることができる。
次に、図6及び図7を用いて、本発明の第2の実施形態のEGR導入時における体積効率係数の演算方法について説明する。
As a result, even in a situation where the opening degree of the EGR valve 12 is changing as in the transient operation state of the engine 2, the volumetric efficiency coefficient Kve (= Kve1) is used to accurately inhale the amount of fresh air into the cylinder. It can be calculated, and the fuel supply amount can be accurately controlled based on the intake amount of the fresh air, and the fuel consumption can be improved.
Next, a method of calculating the volumetric efficiency coefficient at the time of introducing EGR according to the second embodiment of the present invention will be described with reference to FIGS. 6 and 7.

図6は、エンジンコントロールユニット20における第2の実施形態の体積効率係数演算ユニット31のブロック図である。図7は、第2の実施形態におけるエンジン2の負荷に対するEGR率、インマニ圧、体積効率係数の関係を示すマップの一例であり、実線が目標EGR率導入時、破線がEGR非導入時を示す。なお、図7中のEGR率のマップは図2に該当し、体積効率係数のマップは図3に該当する。 FIG. 6 is a block diagram of the volumetric efficiency coefficient calculation unit 31 of the second embodiment in the engine control unit 20. FIG. 7 is an example of a map showing the relationship between the EGR rate, the intake manifold pressure, and the volumetric efficiency coefficient with respect to the load of the engine 2 in the second embodiment. The solid line shows the target EGR rate when the target EGR rate is introduced, and the broken line shows the EGR not introduced. .. The map of the EGR rate in FIG. 7 corresponds to FIG. 2, and the map of the volumetric efficiency coefficient corresponds to FIG.

図6に示すように、第2の実施形態の体積効率係数演算ユニット31は、第1の実施形態の体積効率係数演算ユニット21に対して、EGR非導入時体積効率係数演算部22(非排気還流時体積効率係数演算部)を更に備えている。
EGR非導入時体積効率係数演算部22は、インマニ圧センサ18からから入力したインマニ圧Pbと、回転速度センサ15から入力したエンジン回転速度Neとに基づいて、あらかじめ試験等によって確認し記憶しているマップを用いて、EGR非導入時の体積効率係数woEGRを演算する。
As shown in FIG. 6, the volumetric efficiency coefficient calculation unit 31 of the second embodiment has a volumetric efficiency coefficient calculation unit 22 (non-exhaust) with respect to the volumetric efficiency coefficient calculation unit 21 of the first embodiment when EGR is not introduced. It also has a volumetric efficiency coefficient calculation unit during recirculation).
The volumetric efficiency coefficient calculation unit 22 when the EGR is not introduced confirms and stores in advance by a test or the like based on the intake manifold pressure Pb input from the intake manifold pressure sensor 18 and the engine rotation speed Ne input from the rotation speed sensor 15. The volumetric efficiency coefficient woGR when EGR is not introduced is calculated using the map.

なお、負荷とインマニ圧との関係は、例えばエンジン回転速度Neが一定の場合に、図7中の破線cに示すように、EGR非導入時においては負荷が増加するに伴ってインマニ圧も増加する比例関係となる。そして、エンジン回転速度Ne毎に設けられたマップを用いて、インマニ圧Pbに対応する負荷dに基づいて、EGR非導入時の体積効率係数woEGRが求められる。一方、エンジン回転速度Neが一定である場合、目標EGR導入時における負荷fは、EGR非導入時における負荷dよりも小さくなるので、目標EGR導入時の体積効率係数wEGRは、EGR非導入時の体積効率係数woEGRよりも小さい値となる。 Regarding the relationship between the load and the intake manifold pressure, for example, when the engine rotation speed Ne is constant, as shown by the broken line c in FIG. 7, the intake manifold pressure increases as the load increases when EGR is not introduced. It becomes a proportional relationship. Then, using the map provided for each engine rotation speed Ne, the volumetric efficiency coefficient woGR when EGR is not introduced is obtained based on the load d corresponding to the intake manifold pressure Pb. On the other hand, when the engine speed Ne is constant, the load f when the target EGR is introduced is smaller than the load d when the target EGR is not introduced, so that the volumetric efficiency coefficient wEGR when the target EGR is introduced is the time when the EGR is not introduced. The value is smaller than the volumetric efficiency coefficient woGR.

第2の実施形態における体積効率係数演算部32(第1の体積効率係数演算部、第2の体積効率係数演算部)は、筒内EGR率演算部26において演算した現運転点でのEGR率aと体積効率係数補正用EGR率演算部25において演算した目標EGR導入時におけるEGR率bとに基づいて、体積効率係数Kveの演算方法を切り換える。
現運転点でのEGR率aが目標EGR導入時におけるEGR率b以上である場合には、上記第1の実施形態のように現運転点でのEGR率a、目標EGR導入時におけるEGR率b及び目標EGR率導入時の体積効率係数wEGRに基づいて演算した現運転点での体積効率係数Kve1を体積効率係数Kveとする。一方、現運転点でのEGR率aが目標EGR導入時におけるEGR率b未満の場合には、運転点でのEGR率a、目標EGR導入時におけるEGR率b、目標EGR率導入時の体積効率係数wEGRと、更にEGR非導入時体積効率係数演算部22において演算したEGR非導入時における体積効率係数woEGRと、に基づいて現運転点での体積効率係数Kve2を演算し、この体積効率係数Kve2を体積効率係数Kveとする。なお、体積効率係数演算部32において、現運転点での体積効率係数Kve1を演算する機能が本発明の第1の体積効率係数演算部に該当し、現運転点での体積効率係数Kve2を演算する機能が本発明の第2の体積効率係数演算部に該当する。
The volumetric efficiency coefficient calculation unit 32 (first volumetric efficiency coefficient calculation unit, second volumetric efficiency coefficient calculation unit) in the second embodiment is the EGR rate at the current operating point calculated by the in-cylinder EGR rate calculation unit 26. The calculation method of the volumetric efficiency coefficient Kve is switched based on a and the EGR rate b at the time of introduction of the target EGR calculated by the volumetric efficiency coefficient correction EGR rate calculation unit 25.
When the EGR rate a at the current operating point is equal to or greater than the EGR rate b at the time of introducing the target EGR, the EGR rate a at the current operating point and the EGR rate b at the time of introducing the target EGR as in the first embodiment are described above. And the volumetric efficiency coefficient Kve1 at the current operating point calculated based on the volumetric efficiency coefficient wEGR at the time of introducing the target EGR rate is defined as the volumetric efficiency coefficient Kve. On the other hand, when the EGR rate a at the current operating point is less than the EGR rate b at the time of introducing the target EGR, the EGR rate a at the operating point, the EGR rate b at the time of introducing the target EGR, and the volumetric efficiency at the time of introducing the target EGR rate. The volumetric efficiency coefficient Kve2 at the current operating point is calculated based on the coefficient wEGR and the volumetric efficiency coefficient woGR when EGR is not introduced, which is calculated by the volumetric efficiency coefficient calculation unit 22 when EGR is not introduced, and the volumetric efficiency coefficient Kve2 is calculated. Let be the volumetric efficiency coefficient Kve. In the volumetric efficiency coefficient calculation unit 32, the function of calculating the volumetric efficiency coefficient Kve1 at the current operating point corresponds to the first volumetric efficiency coefficient calculation unit of the present invention, and the volumetric efficiency coefficient Kve2 at the current operating point is calculated. The function to perform corresponds to the second volumetric efficiency coefficient calculation unit of the present invention.

現運転点での体積効率係数Kve2は、以下の式(3)によって演算される。
Kve2=wEGR×(a/b)+(woEGR×(1−(a/b))・・・(3)
そして、この演算した体積効率係数Kve1を、現運転点での体積効率係数Kveとする。
以上のように、第2の実施形態では、現運転点でのEGR率aが目標EGR導入時におけるEGR率b以上である場合には、上記第1の実施形態と同様に体積効率係数Kveを演算するが、現運転点でのEGR率aが目標EGR導入時におけるEGR率b未満の場合には、EGR非導入時における体積効率係数woEGRを加えて体積効率係数Kveを演算する。
The volumetric efficiency coefficient Kve2 at the current operating point is calculated by the following equation (3).
Kve2 = wEGR × (a / b) + (woEGR × (1- (a / b)) ... (3)
Then, the calculated volumetric efficiency coefficient Kve1 is defined as the volumetric efficiency coefficient Kve at the current operating point.
As described above, in the second embodiment, when the EGR rate a at the current operating point is equal to or higher than the EGR rate b at the time of introducing the target EGR, the volumetric efficiency coefficient Kve is set as in the first embodiment. When the EGR rate a at the current operating point is less than the EGR rate b at the time of introducing the target EGR, the volumetric efficiency coefficient wEGR at the time of not introducing the EGR is added to calculate the volumetric efficiency coefficient Kve.

例えばEGRバルブ12を非導入(閉弁)と導入(開弁)との間で切り替えた直後のように、体積効率係数はEGR非導入時の値woEGRと目標EGR率導入時の値wEGRとの間を移行しているときには、体積効率係数は目標EGR率導入時の値wEGRやEGR非導入時の値woEGRとは異なる値となる。
これに対し、本実施形態では、現運転点でのEGR率aが目標EGR導入時におけるEGR率b未満の場合には、EGR非導入時における体積効率係数woEGRと、目標EGR導入時における体積効率係数wEGRとを補間して、EGR低導入時における体積効率係数Kve2を演算する。
For example, immediately after switching the EGR valve 12 between non-introduction (closed valve) and introduction (open valve), the volumetric efficiency coefficient is the value wEGR when EGR is not introduced and the value wEGR when the target EGR rate is introduced. When the interval is changed, the volumetric efficiency coefficient becomes a value different from the value wEGR when the target EGR rate is introduced and the value woGR when EGR is not introduced.
On the other hand, in the present embodiment, when the EGR rate a at the current operating point is less than the EGR rate b at the time of introducing the target EGR, the volumetric efficiency coefficient woGR when the EGR is not introduced and the volumetric efficiency at the time of introducing the target EGR The volumetric efficiency coefficient Kve2 at the time of low EGR introduction is calculated by interpolating the coefficient wEGR.

詳しくは、エンジン2の現状の運転点を表すインマニ圧Pb及びエンジン回転速度Neより、EGR非導入時の体積効率係数woEGRと、目標EGR率導入時の体積効率係数wEGRとを夫々演算して、EGR導入時と非導入時とで選択して現運転点での体積効率係数Kve2として使用するのではなく、目標EGR導入時のEGR率bと現運転点でのEGR率aとの比に対応して、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間の値に現状の体積効率係数Kve2を設定する。 Specifically, the volumetric efficiency coefficient woGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when the target EGR rate is introduced are calculated from the immunity pressure Pb and the engine rotation speed Ne, which represent the current operating points of the engine 2, respectively. Instead of selecting between EGR introduction and non-introduction and using it as the volumetric efficiency coefficient Kve2 at the current operating point, it corresponds to the ratio of the EGR rate b at the time of introducing the target EGR and the EGR rate a at the current operating point. Then, the current volumetric efficiency coefficient Kve2 is set as a value between the volumetric efficiency coefficient woGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when the target EGR is introduced.

このようにEGR低導入時における体積効率係数Kve2を、エンジン2の運転状態に基づいてEGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間の値に設定するので、現運転点でのEGR率が目標EGR率となっていない状況でも、体積効率係数Kve2を精度よく演算することができる。
これにより、現運転点でのEGR率aが目標EGR導入時におけるEGR率b未満の場合、例えばEGRバルブ12を非導入(閉弁)のと導入(開弁)との間で切り替えた直後のように、体積効率係数がEGR非導入時の値woEGRと目標EGR率導入時の値wEGRとの間を推移している状態において、体積効率係数Kve2を精度よく演算することができる。
In this way, the volumetric efficiency coefficient Kve2 when EGR is low is set to a value between the volumetric efficiency coefficient woGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when EGR is introduced, based on the operating state of the engine 2. Even in a situation where the EGR rate at the current operating point is not the target EGR rate, the volumetric efficiency coefficient Kve2 can be calculated accurately.
As a result, when the EGR coefficient a at the current operating point is less than the EGR coefficient b at the time of introducing the target EGR, for example, immediately after switching the EGR valve 12 between non-introduction (closed valve) and introduction (open valve). As described above, the volumetric efficiency coefficient Kve2 can be calculated accurately in a state where the volumetric efficiency coefficient changes between the value woGR when EGR is not introduced and the value wEGR when the target EGR rate is introduced.

また、体積効率係数演算部32は、現運転点でのEGR率aが目標EGR導入時におけるEGR率b未満の場合に、Kve=Kve2=(wEGR×(a/b)+(woEGR×(1−(a/b)))の演算によって現状のエンジンの体積効率係数Kveを演算するので、現状のエンジンの体積効率係数Kveを容易にかつ精度よく求めることができる。
このように、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間に体積効率係数Kve2を設定する際に、目標EGR導入時のEGR率bと現運転点でのEGR率aとの比(a/b)を用いることで、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間で適切な重みづけをした加重平均を取り、現状のエンジンの体積効率係数Kve2をより正確に演算することができる。
Further, the volumetric efficiency coefficient calculation unit 32 determines that Kve = Kve2 = (wEGR × (a / b) + (woEGR × (1)) when the EGR rate a at the current operating point is less than the EGR rate b at the time of introducing the target EGR. Since the volumetric efficiency coefficient Kve of the current engine is calculated by the calculation of − (a / b))), the volumetric efficiency coefficient Kve of the current engine can be easily and accurately obtained.
In this way, when the volumetric efficiency coefficient Kve2 is set between the volumetric efficiency coefficient woeGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when the target EGR is introduced, the EGR rate b when the target EGR is introduced and the current operating point are used. By using the ratio (a / b) of EGR to EGR rate a, a weighted average with an appropriate weight is taken between the volumetric efficiency coefficient w EGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when EGR is introduced. , The volumetric efficiency coefficient Kve2 of the current engine can be calculated more accurately.

そして、エンジン2の過渡運転状態のようにEGRバルブ12の開度が変化している状況において、体積効率係数Kveを用いて筒内への新気の吸入量を更に精度よく演算することができ、当該新気の吸入量に基づいて燃料供給量を更に精度よく制御することが可能となり、燃費の向上を更に図ることができる。
また、現運転点でのEGR率aが目標EGR導入時におけるEGR率b以上の場合には、体積効率係数Kve1を演算し、体積効率係数Kveとすることで、広い範囲で体積効率係数Kveを精度よく演算することができる。
Then, in a situation where the opening degree of the EGR valve 12 is changing as in the transient operation state of the engine 2, the amount of fresh air sucked into the cylinder can be calculated more accurately using the volumetric efficiency coefficient Kve. , The fuel supply amount can be controlled more accurately based on the intake amount of the fresh air, and the fuel consumption can be further improved.
If the EGR rate a at the current operating point is equal to or greater than the EGR rate b at the time of introduction of the target EGR, the volumetric efficiency coefficient Kve1 is calculated and the volumetric efficiency coefficient Kve is used to obtain the volumetric efficiency coefficient Kve in a wide range. It can be calculated accurately.

なお、本願発明は、上記実施形態に限定するものではない。
例えば上記実施形態において、EGR非導入時体積効率係数演算部22や目標EGR導入時体積効率係数演算部23にてエンジン2の回転速度Neとインマニ圧Pbを用いて体積効率係数woEGRあるいはwEGRを演算しているが、エンジン2の負荷あるいは負荷に相当する指標を代わりに用いて演算してもよい。
The invention of the present application is not limited to the above embodiment.
For example, in the above embodiment, the volumetric efficiency coefficient calculation unit 22 when EGR is not introduced and the volumetric efficiency coefficient calculation unit 23 when target EGR is introduced calculate the volumetric efficiency coefficient woGR or wEGR using the rotation speed Ne of the engine 2 and the intake manifold pressure Pb. However, the load of the engine 2 or an index corresponding to the load may be used instead for the calculation.

また、本実施形態は、吸気ポートに燃料を噴射するガソリンエンジンに本発明を適用しているが、筒内に燃料を噴射するエンジンや、圧縮着火するディーゼルエンジン等のようなEGR装置を備えた各種エンジンに本発明を広く適用することができる。 Further, in the present embodiment, the present invention is applied to a gasoline engine that injects fuel into an intake port, but an EGR device such as an engine that injects fuel into a cylinder, a diesel engine that compresses and ignites, or the like is provided. The present invention can be widely applied to various engines.

2 エンジン
11 EGR通路(排気還流路)
13 EGRバルブ(排気還流弁)
15 回転速度センサ(エンジン回転速度検出器)
18 インマニ圧センサ(吸気圧検出器)
20 エンジンコントロールユニット(排気還流制御部)
22 EGR非導入時体積効率係数演算部(非排気還流時体積効率係数演算部)
23 目標EGR導入時体積効率係数演算部(目標排気還流時体積効率係数演算部)
24 筒内空気量演算部(目標排気還流時排気還流率演算部)
25 体積効率係数補正用EGR率演算部(目標排気還流時排気還流率演算部)
26 筒内EGR率演算部(現排気還流率演算部)
27 体積効率係数演算部(第1の体積効率係数演算部)
32 体積効率係数演算部(第1の体積効率係数演算部、第2の体積効率係数演算部)
2 Engine 11 EGR passage (exhaust gas recirculation path)
13 EGR valve (exhaust gas recirculation valve)
15 Rotation speed sensor (engine rotation speed detector)
18 Manifold pressure sensor (intake pressure detector)
20 Engine control unit (exhaust recirculation control unit)
22 Volumetric efficiency coefficient calculation unit when EGR is not introduced (Volume efficiency coefficient calculation unit when non-exhaust gas recirculation)
23 Volumetric efficiency coefficient calculation unit when target EGR is introduced (Volume efficiency coefficient calculation unit when target exhaust gas recirculation)
24 In-cylinder air amount calculation unit (exhaust recirculation rate calculation unit at target exhaust recirculation)
25 EGR rate calculation unit for volumetric efficiency coefficient correction (exhaust gas recirculation rate calculation unit at target exhaust gas recirculation)
26 In-cylinder EGR rate calculation unit (current exhaust gas recirculation rate calculation unit)
27 Volumetric efficiency coefficient calculation unit (first volumetric efficiency coefficient calculation unit)
32 Volumetric efficiency coefficient calculation unit (first volumetric efficiency coefficient calculation unit, second volumetric efficiency coefficient calculation unit)

Claims (5)

エンジンの排気の一部を吸気通路に還流する排気還流路と、前記排気還流路を開閉する排気還流弁と、前記エンジンの運転状態に基づいて前記排気還流弁を制御する排気還流制御部と、を備えたエンジンの制御装置であって、
前記排気還流路による排気還流率が前記エンジンの運転状態に基づいて設定される目標排気還流率である目標排気還流状態での前記エンジンの体積効率係数を演算する目標排気還流時体積効率係数演算部と、
前記目標排気還流状態の排気還流率を演算する目標排気還流時排気還流率演算部と、
前記エンジンの運転状態に基づいて、現状の排気還流率を演算する現排気還流率演算部と、
前記現状の排気還流率と前記目標排気還流状態の排気還流率との比に基づいて、前記目標排気還流状態での前記体積効率係数を補正して、現状の前記エンジンの体積効率係数を演算する第1の体積効率係数演算部と、を備えたことを特徴とするエンジンの制御装置。
An exhaust return path that returns a part of the exhaust gas of the engine to the intake passage, an exhaust return valve that opens and closes the exhaust return path, and an exhaust return control unit that controls the exhaust return valve based on the operating state of the engine. It is an engine control device equipped with
Target exhaust recirculation volumetric efficiency coefficient calculation unit for calculating the volumetric efficiency coefficient of the engine in the target exhaust recirculation state, which is the target exhaust recirculation rate set based on the operating state of the engine. When,
The exhaust recirculation rate calculation unit at the time of target exhaust recirculation, which calculates the exhaust recirculation rate in the target exhaust recirculation state,
The current exhaust recirculation rate calculation unit that calculates the current exhaust recirculation rate based on the operating state of the engine,
Based on the ratio of the current exhaust recirculation rate to the exhaust recirculation rate in the target exhaust recirculation state, the volumetric efficiency coefficient in the target exhaust recirculation state is corrected to calculate the current volumetric efficiency coefficient of the engine. An engine control device including a first volumetric efficiency coefficient calculation unit.
前記第1の体積効率係数演算部は、前記現状の排気還流率をa、前記目標排気還流状態の排気還流率をb、前記目標排気還流状態での体積効率係数をwEGRとした場合、
Kve1=wEGR×(1+b)/(1+a)
によって、現状のエンジンの体積効率係数Kve1を演算することを特徴とする請求項1に記載のエンジンの制御装置。
When the current exhaust gas return rate is a, the exhaust return rate in the target exhaust return state is b, and the volumetric efficiency coefficient in the target exhaust return state is wEGR, the first volumetric efficiency coefficient calculation unit
Kve1 = wEGR × (1 + b) / (1 + a)
The engine control device according to claim 1, wherein the volumetric efficiency coefficient Kve1 of the current engine is calculated.
前記エンジンの回転速度を検出するエンジン回転速度検出器と、
前記エンジンの吸気圧を検出する吸気圧検出器と、を備え、
前記目標排気還流時体積効率係数演算部は、前記エンジンの回転速度と吸気圧とに基づいて、前記目標排気還流状態での前記エンジンの体積効率係数を演算することを特徴とする請求項1又は2に記載のエンジンの制御装置。
An engine rotation speed detector that detects the rotation speed of the engine,
An intake pressure detector for detecting the intake pressure of the engine is provided.
The target exhaust recirculation volumetric efficiency coefficient calculation unit calculates the volumetric efficiency coefficient of the engine in the target exhaust recirculation state based on the rotation speed of the engine and the intake pressure. 2. The engine control device according to 2.
前記排気還流率が0である非排気還流状態での前記エンジンの体積効率係数を演算する非排気還流時体積効率係数演算部と、
前記目標排気還流状態の排気還流率と前記現状の排気還流率との比に基づいて、前記目標排気還流状態での前記体積効率係数と前記非排気還流状態での前記体積効率係数とを補間して、現状の前記エンジンの体積効率係数を演算する第2の体積効率係数演算部と、を備え、
前記現状の排気還流率が前記目標排気還流状態の排気還流率以上である場合には、前記第1の体積効率係数演算部で前記現状の前記エンジンの体積効率係数を演算し、
前記現状の排気還流率が前記目標排気還流状態の排気還流率未満である場合には、前記第2の体積効率係数演算部で前記現状の前記エンジンの体積効率係数を演算することを特徴とする請求項1から3のいずれか1項に記載のエンジンの制御装置。
A volumetric efficiency coefficient calculation unit for non-exhaust recirculation that calculates the volumetric efficiency coefficient of the engine in a non-exhaust recirculation state in which the exhaust recirculation rate is 0,
Based on the ratio of the exhaust recirculation rate in the target exhaust recirculation state to the current exhaust recirculation rate, the volumetric efficiency coefficient in the target exhaust recirculation state and the volumetric efficiency coefficient in the non-exhaust recirculation state are interpolated. A second volumetric efficiency coefficient calculation unit for calculating the volumetric efficiency coefficient of the current engine is provided.
When the current exhaust recirculation rate is equal to or higher than the exhaust recirculation rate in the target exhaust recirculation state, the first volumetric efficiency coefficient calculation unit calculates the current volumetric efficiency coefficient of the engine.
When the current exhaust recirculation rate is less than the exhaust recirculation rate in the target exhaust recirculation state, the second volumetric efficiency coefficient calculation unit calculates the current volumetric efficiency coefficient of the engine. The engine control device according to any one of claims 1 to 3.
前記第2の体積効率係数演算部は、前記現状の排気還流率をa、前記目標排気還流状態の排気還流率をb、前記目標排気還流状態での体積効率係数をwEGR、前記非排気還流状態での体積効率係数をwoEGRとした場合、
Kve2=(wEGR×(a/b)+(woEGR×(1−(a/b)))
によって、前記現状のエンジンの体積効率係数Kve2を演算することを特徴とする請求項4に記載のエンジンの制御装置。
The second volumetric efficiency coefficient calculation unit sets the current exhaust recirculation rate as a, the exhaust recirculation rate in the target exhaust recirculation state as b, the volumetric efficiency coefficient in the target exhaust recirculation state as wEGR, and the non-exhaust recirculation state. When the volumetric efficiency coefficient in is woEGR,
Kve2 = (wEGR × (a / b) + (woEGR × (1- (a / b))))
The engine control device according to claim 4, wherein the volumetric efficiency coefficient Kve2 of the current engine is calculated.
JP2019050253A 2019-03-18 2019-03-18 Control device for engine Pending JP2020153255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050253A JP2020153255A (en) 2019-03-18 2019-03-18 Control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050253A JP2020153255A (en) 2019-03-18 2019-03-18 Control device for engine

Publications (1)

Publication Number Publication Date
JP2020153255A true JP2020153255A (en) 2020-09-24

Family

ID=72558194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050253A Pending JP2020153255A (en) 2019-03-18 2019-03-18 Control device for engine

Country Status (1)

Country Link
JP (1) JP2020153255A (en)

Similar Documents

Publication Publication Date Title
JP5905066B1 (en) Control device and control method for internal combustion engine
US7620490B2 (en) Fuel injection control device for internal combustion engine
US8612120B2 (en) Control apparatus for internal combustion engine
US7347183B2 (en) Control apparatus and control method for engine
JP5478657B2 (en) Control device for internal combustion engine and control method for internal combustion engine
US10590873B2 (en) Control device for internal combustion engine
JP6320587B1 (en) Control device and control method for internal combustion engine
JP2005307847A (en) Air amount calculation device for internal combustion engine
JP4969546B2 (en) Control device and method for internal combustion engine
JPWO2010114127A1 (en) Internal combustion engine control system
US20030075158A1 (en) Method and device for a mass flow determination via a control valve and for determining a modeled induction pipe pressure
JP2005069141A (en) Intake air quantity control device and intake air quantity control method of internal combustion engine
JP4154972B2 (en) Internal EGR amount estimation device for internal combustion engine
JP4747977B2 (en) In-cylinder pressure sensor calibration device
JP2008231995A (en) Method and device of controlling operation of spark-ignition engine
JP2006307668A (en) Egr flow rate estimating device of engine
US8532912B2 (en) Engine control system
JP5664463B2 (en) Control device for internal combustion engine
JP2020153255A (en) Control device for engine
WO2016190092A1 (en) Engine control device
JP7177385B2 (en) engine controller
JP2022168929A (en) Control device for internal combustion engine
JP3757738B2 (en) Ignition timing control device for internal combustion engine
JP2021131032A (en) Controller of internal combustion engine
EP3075991B1 (en) Control device for internal combustion engine