JP3757738B2 - Ignition timing control device for internal combustion engine - Google Patents

Ignition timing control device for internal combustion engine Download PDF

Info

Publication number
JP3757738B2
JP3757738B2 JP2000066238A JP2000066238A JP3757738B2 JP 3757738 B2 JP3757738 B2 JP 3757738B2 JP 2000066238 A JP2000066238 A JP 2000066238A JP 2000066238 A JP2000066238 A JP 2000066238A JP 3757738 B2 JP3757738 B2 JP 3757738B2
Authority
JP
Japan
Prior art keywords
egr
egr rate
ignition timing
intake
enlarged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000066238A
Other languages
Japanese (ja)
Other versions
JP2001254659A (en
Inventor
克則 上田
啓介 浅倉
徹夫 片岡
卓也 松本
広信 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2000066238A priority Critical patent/JP3757738B2/en
Publication of JP2001254659A publication Critical patent/JP2001254659A/en
Application granted granted Critical
Publication of JP3757738B2 publication Critical patent/JP3757738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の点火時期制御装置に関し、特に、排ガス還流装置を備える内燃機関において、燃焼室に供給されるEGRガス量の経時的変化を考慮して点火時期を適正化する内燃機関の点火時期制御装置に関するものである。
【0002】
【従来の技術】
吸気中に所定量の排ガスを還流させて所定EGR率の混合気を燃焼させるようにした排ガス還流装置が知られており、同装置を用いた場合、燃焼室での混合気の燃焼が比較的遅くなり、NOxや酸化物の排出量が低下し排ガス改善を行える。しかも、通常、エンジンが所定のトルクを発するには吸気量を所定量絞るが、この際、絞り弁の下流側が負圧化してポンピングロスを招くのに対し、排ガス還流装置を用いた場合は、出力発生に関与しない不燃性の排ガスを新気中に供給することで、ポンピングロスを低減でき、燃費を改善できる。このような利点のある排ガス還流装置を用いた場合、混合気の燃焼が比較的遅くなることに対処すべくEGR率(=EGRガス/新気)の変化に応じて、点火時期を進める処理を行っている。
【0003】
ところで、EGR弁を開閉調整してEGR率を変化させた場合,吸気系の蓄圧効果のため、直ちに燃焼室のEGR率がEGR弁の開度相当のEGR率に変化せず、特に、そのEGR率の遅れの状況はEGR弁より下流の吸気路構造に応じて変化した上でEGR弁開度相当のEGR率に収束する。このため、EGR弁開度相当のEGR率をそのまま各気筒のEGR率と見做し、そのEGR率に相当する点火時期を算出して、点火処理を行った場合、点火時期が実情にあわず、失火する可能性もある。そこでEGR弁開度を変化させた後における点火時期の経時的な補正が問題となる。
【0004】
たとえば、特開平9−242654号公報に開示の技術では、運転状態によって設定される基本点火時期を目標EGR率に応じて補正するにあたり、EGR弁の開閉速度を考慮している。即ち、目標開度に対する実開度の比を用いて目標EGR率より実EGR率を算出し、しかも、基本燃料噴射量およびエンジン回転数相当のEGR率1%あたりの進角幅を求め、これに実EGR率を乗算して進角補正量を求め、これと基本点火時期とより最終的な点火時期を算出している。
【0005】
更に、特登録2914192号公報に開示の技術では、機関運転状態の変化に対応してEGR弁がEGR無しより所定のEGR率に変化した場合に、無しの場合の点火時期(基本点火時期)と有りの場合の点火時期との間を一次遅れフィルタを使って平滑化し、即ち、回転数、充填効率、吸気管容積、EGR弁開度に基づいてEGRガスの遅れ応答の時定数を算出し、この時定数が反映される移動平均式により点火時期を動かし、これにより、機関運転状態が変化しEGR率が変化した際にも、点火時期制御を的確に行えるようにしている。
【0006】
【発明が解決しようとする課題】
しかしながら、EGR弁を通過後にサージタンクに流入したEGRガスと混合する吸気(混合気)は、これより各気筒に連結される吸気ブランチを経て各燃焼室に流入する。この場合、EGR弁が、即ちEGR率が変化しても、各気筒の燃焼室には以前のEGR率を保持する吸気ブランチの混合気が流入することより、例え、EGR弁が切り替わってもそのEGR弁開度相当の目標EGR率に達するには遅れを伴うという点を考慮する必要がある。しかも、その流動遅れの後にあって、EGR弁の有限の開弁速度により規制を受けたEGR率の混合気が順次流入してくる点を考慮しないと正しいEGR率の変化を考慮することはできない。
【0007】
この点を考慮して、たとえば、特開平9−242654号公報の場合のような手法を用いた場合には、EGR弁の実開度を推定または検出して吸気管内のEGR率を求めることも考えられるが、特に、サージタンクを有する内燃機関においては、サージタンク内に滞留しているEGR混合気が存在し、これが過渡的な値をなますように作用するため、EGR弁の実開度に応じた実際のサージタンク内のEGR率とは異なってくるという問題があり、EGR弁の実開度に応じたEGR率を単純には適用できない問題がある。
【0008】
更に、特登録2914192号公報の技術の場合、EGR弁開度に反比例して時定数を設定するのみ、即ち、遅れ応答を適正化しようとする技術思想でしかないので、過渡時のEGR率までは考慮されてはおらず、過渡状態での点火時期の適正化には改良の余地がある。このように、いずれの従来例も時定数や、近似式を用いてEGR率を修正しているが、吸気ブランチでの吸気の流動遅れを的確に考慮しておらず、改善が望まれている。
本発明は、上述の課題に基づき、気筒内に流入する吸気のEGR率を用いて基本点火時期を補正し、排ガス還流時においても適正な点火時期制御を行える内燃機関の点火時期制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明では、内燃機関の吸気系に設けられた吸気路拡径部またはその上流側吸気系に排気の一部を還流するEGR通路と、同EGR通路に介装され機関運転状態に応じて作動が制御されるEGR弁と、上記EGR弁の最新の開度と機関運転状態とに基づき瞬時EGR率を導出する瞬時EGR率導出手段と、同瞬時EGR率と予め算出されている上記吸気路拡径部の拡径部内EGR率とに基づいて同拡径部内EGR率を更新する拡径部内EGR率導出手段と、機関運転状態に基づき基本点火時期を設定する基本点火時期設定手段と、順次更新される上記拡径部内EGR率を記憶処理すると共に、気筒内に流入する吸気のEGR率として、上記拡径部と燃焼室の間の吸気路容量に適応する内燃機関の行程数だけ前の上記拡径部内EGR率を用いて上記基本点火時期を補正する点火時期補正手段とを備えている。
瞬時EGR率と予め算出済の拡径部内EGR率とに基づいて拡径部内EGR率を順次更新するので、吸気路拡径部に滞留するEGRガスを含む混合気と新たに導入されるEGRガスとが混合された後の拡径部内EGR率を正確に求めることができ、順次更新される拡径部内EGR率を記憶すると共に、気筒内に流入する吸気のEGR率として、拡径部と燃焼室の間の吸気路容量に適応する内燃機関の行程数だけ前の拡径部内EGR率を用いることで、気筒に流入する吸気のEGR率を正確に求めることができる。
【0010】
このため、このEGR率に基づき基本点火時期を補正することによりEGR率の変化する過渡時の点火時期を適正に設定できる。
本発明の好ましい形態として、上記吸気路拡径部はサージタンクであっても良い。この場合、特に、サージタンクに滞留するEGRガスを含む混合気と新たに導入されるEGRガスとが混合され、その混合気が吸気ブランチを通過後に気筒に流入する際のEGR率を正確に求めることができ、このEGR率に応じた進角補正をしてEGR率の変化する過渡時の点火時期を適正に設定できる。
【0011】
【発明の実施の形態】
図1には本発明の一実施形態としての内燃機関の点火時期制御装置を装備したエンジン1を示した。このエンジン1は4気筒(図2参照)の筒内噴射式エンジンであり、後述の排気ガス還流装置23を装備する。このエンジン1の各シリンダ2の上部とシリンダヘッド20とで囲まれる部分には燃焼室3が形成される。エンジン1のクランクシャフト4の一端には単位クランク角信号θc、基準信号θ及びこれらに基づくエンジン回転速度Ne情報を検出するクランク角センサ5が対設され、これは後述のエンジンコントロールユニット(以後単にECUと記す)6に検出信号を出力する。
【0012】
各シリンダ2の上側内壁面には吸気弁V1に開放可能に閉鎖された吸気ポート9および排気弁V2に開放可能に閉鎖された排気ポート10が形成される。しかもこれら両弁と干渉しない位置の内でのほぼ中央位置には点火プラグ7が、側端位置には燃料噴射用のインジェクタ8が配備される。インジェクタ8はインジェクタ駆動回路34を介して後述のECU6に接続され、同ECU6の噴射信号に応じて燃料噴射を行うように構成される。
【0013】
燃焼室3に接続された吸気ポート9には、インテークマニホールド(吸気ブランチを含む)11、各気筒の吸気ブランチが接続されると共に吸気路拡径部を成すサージタンク12、サージタンク12に続く延長管13及びエアクリーナ14がこの順で接続される。エアクリーナ14内には、吸気量Qa情報を得るエアフローセンサ15と、吸気温度Ta情報を出力する吸気温センサ16及び大気圧Pa情報を出力する大気圧センサ17が装着され、これら各情報はECU6に出力される。さらに、延長管13内にはスロットル弁18が配備され、同弁のスロットル開度θs情報がスロットル開度センサ19によりECU6に出力される。またエンジン1の水温Tw情報を検出する水温センサ21が配備され、その検出信号はECU6に出力されている。
排気ポート10にはエキゾーストマニホールド22および図示しない排気管やマフラーが接続される。
【0014】
エンジン1の吸気路r1と排気路r2との間には排気ガス還流装置23が配備される。この排気ガス還流装置23は排気路r2側のエキゾーストマニホールド22と吸気路r1側のサージタンク12を結ぶ排気ガス還流路(以下、単にEGR通路と記す)24を備え、EGR通路24の途中にEGR弁25を備える。
EGR弁25はサージタンク12と一部が一体化した弁ハウジング26を備え、その内部にEGR通路24を確保した弁座28設け、同弁座28を弁部材29で開閉できるように形成している。弁部材29は弁ハウジング26の上部に支持されたステッパモータ30に弁軸31を介して連結される。ステッパモータ30は後述のECU6にモータ駆動回路32を介して連結され、同モータ駆動回路32に制御信号(ステップ数)を出力するECU6はその制御信号(ステップ数)に応じて現在の弁部材29の開度(EGR実開度)を判定するように構成されている。
【0015】
点火プラグ7は点火ユニット33に接続され、点火ユニット33は、ECU6に接続されて、ECU6により点火プラグ7の点火作動が制御される。
ECU6はエンジン1の燃料噴射量制御、スロットル弁駆動制御等の周知の制御処理に加え、点火制御処理およびEGR制御処理を行う。
EGR制御処理において、ECU6はあらかじめ設定されたEGR域マップme(図5参照)を用い、全運転域でのEGR率を設定しておく。なお、ここでは吸気路拡径部であるサージタンクに流入する新気量に対してのEGRガスの流入量をEGR率(=EGRガス量/新気量)と設定する。
【0016】
このEGR域マップmeは、エンジンの運転域が、中速中負荷域A1側での運転時にあると多量のEGRガスを供給する高EGR率q1が確保されるべく設定される。即ち、この領域では、弁部材29を弁リフト方向である上側に移動させる高EGR率(高ステップ数)が領域中央D1ほど大きくなるように設定される。
更に、エンジンの運転域が、高速高負荷域A2側に移行すると、ECU6はEGRガスの流動を低減すべく設定される。即ち、この領域では、弁部材29を閉鎖方向である下側に移動させる低EGR率(低ステップ数)が設定され、領域外周側D2ではEGR率がゼロに設定されている。
【0017】
次に、ECU6は点火制御処理において、図4に示すように、瞬時EGR率導出手段E1と拡径部内EGR率導出手段E2と、基本点火時期設定手段E3と、点火時期補正手段E4との各機能を発揮すべく制御作動する。
ここで瞬時EGR率導出手段E1はEGR弁25の最新の開度(EGR実開度)と最新の機関運転状態である、エンジン回転速度Neおよび新気量(吸入空気量Qa/Ne)EVとに基づき瞬時EGR率(EGR弁のメカニカルな変位途中の開度を考慮したもので、図6の符号m線を参照)を下記の(1)式のように導出する。ここで、定常EGR開度heは弁部材29が所定のEGR率を確保する際、定常状態に達した場合の開度を示す。
【0018】
瞬時EGR率=定常EGR率×EGR実開度/定常EGR開度・・・・(1)なお、上述の図6はEGR弁開度の経時変化特性を説明する線図で、符号t1はEGR弁開度の変化時点を示し、2点鎖線Uは静的EGR弁開度変化を示す。
拡径部内EGR率導出手段E2は瞬時EGR率と予め算出されているサージタンク(吸気路拡径部)12の拡径部内EGR率とに基づいて同拡径部内EGR率を(2)式のように算出し、エンジンの1行程毎に更新を繰り返す。なお、符号CはEGR時定数であり、重み平均を採る上での取り込み定数で、たとえば、0、3に設定され、これにより瞬時EGR率のなまし処理がなされ、図6の符号n線を得ることとなる。
【0019】
C×拡径部内EGR率(n)+(1−C)×瞬時EGR率・・・・(2)
基本点火時期設定手段E3は機関運転状態であるエンジン回転速度Neおよび新気量(吸入空気量Qa/Ne)EVとに基づき基本点火時期θbを設定する。ここでは予め、エンジン回転速度Neおよび新気量(吸入空気量Qa/Ne)EV相当の基本点火時期θbを基本点火時期マップm6で設定しておくる。
【0020】
点火時期補正手段E4は、順次更新される拡径部内EGR率を記憶処理し、かつ、記憶された拡径部内EGR率の吸気が気筒内に流入するタイミングで対応する記憶値を使用する。この場合、サージタンク(吸気路拡径部)12の拡径部内EGR率(n)を、エンジンの1行程毎に順次記憶処理する。即ち、次ぎの第2行程時には第1行程時の拡径部内EGR率(n)の値を拡径部内EGR率(n−1)の記憶エリアに押し出し入替えし、同様に8行程分(拡径部内EGR率(n−7)まで)の各記憶エリアの値を順次記憶処理し、各値を順送りで更新できるように構成する。なお、ここで、8行程分を記憶処理したのは、次の理由による。
【0021】
即ち、図3,4に示すように、このエンジン1のサージタンク12と各気筒の燃焼室3との間の吸気ブランチ(インテークマニホールドの枝部)11の容量はここではシリンダ容積の2倍に設定されており、2回の吸気行程の後にサージタンク12の混合気が燃焼室3に流入すると見做される。このため、サージタンク12で新気とEGRガスとが混合された後に、その混合気である吸気は8行程後に吸気ブランチ11を通過して燃焼室3に流入することになることから、ここでは8行程分の値(拡径部内EGR率(n−7)までを記憶処理しておく。これら8行程分の記憶値のうちの最も古い値、すなわち拡径部内EGR率(n−7)は、次に気筒内に流入する吸気の正確なEGR率であり、この値は後述の(5)、(6)式で、吸気ブランチ内より燃焼室に供給される新気a1の量EV’の算出に利用される。
【0022】
次に、新気a1の量EV’の算出式の説明をしておく。
ここでは新気に対してのEGRガスの流入量をEGR率(=EGRガス量/新気量)とすることより、この式は(3)式に書き替えできる。
1+EGR率=(新気量+EGRガス量)/新気量・・・・(3)
これは、更に(4)式に変換される。
【0023】
(新気量+EGRガス量)=新気量×(1+EGR率)・・・・(4)
この式の左辺(新気量+EGRガス量)は、容積一定のマニホールド(サージタンクや吸気ブランチ)の密度(∝内部圧力)に概略比例する値と見做せ、この点より、右辺の、新気量×(1+EGR率)も同様の値に見做される。
【0024】
ここで、サージタンク12内の混合気は8行程後に各吸気ブランチを通過して各燃焼室3に流入すると仮定し、更に、今回、燃焼室3に流入する混合気の密度(∝内部圧力)である、EV’(ブランチ新気量)×(1+EGR率(n−7))と、今回、サージタンク12に流入した混合気a1の密度(∝内部圧力)である、EV(サージタンク新気量)×(1+EGR率(n))は等しいとして、(5)式を得るとする。
EV’×(1+EGR率(n−7))=EV×(1+EGR率(n))・・・・(5)
この(5)式は、(6)式に変換でき、吸気ブランチ内より燃焼室に供給される新気a1の量EV’を算出可能となる。
【0025】
EV’=EV×(1+EGR率(n))/(1+EGR率(n−7))・・・・(6)
ここで、たとえば、今回のEGR率がゼロ%とし、8回前のEGR率が10%としてこれらの値を(6)式に代入すると、今回、吸気ブランチ内より燃焼室に供給される新気a1の量EV’は
EV’=100×(1+0)/(1+0、1)≒90%
となり、EGRガスは略10%と算出可能となる。
【0026】
更に、点火時期補正手段E4は、サージタンク(吸気路拡径部)12の吸気が気筒内に流入するタイミングを判定してその判定に適応する記憶済みの拡径部内EGR率、即ち、8行程前の値(拡径部内EGR率(n−7))に基づき、EGR過渡時の点火進角δθを求め、この値に基づき基本点火時期θbを補正する。
【0027】
この場合、前述の(6)式により求められる吸気ブランチ内より燃焼室に供給される新気a1の量EV’とエンジン回転速度Neとより、EGRしない時の進角値である進角W/O値をマップm4より読み取り、EGRする時の進角値である進角W/値をマップm5より読み取り、更に,定常EGR率をマップm2よりそれぞれ読み取り、これら各値と8行程前の拡径部内EGR率(拡径部内EGR率(n−7))の値を、下記の(7)式に代入してEGR過渡時における点火進角δθ値を算出する。これにより吸気ブランチ11内より燃焼室12に供給される最新の新気a1の量EV’に適応した瞬時EGR率相当の点火進角δθを得る。
【0028】
点火進角δθ=進角W/O+(進角W/−進角W/O)×(拡径部内EGR率(n−7))/(定常EGR率)・・・・(7)
次に、点火時期補正手段E4は最新の点火進角δθと基本点火時期マップm6で求めた基本点火時期θbとより(8)式に沿って今回の補正済み点火時期θb’を算出する。
θb+δθ=θb’・・・・・(8)
この後、点火制御手段E5は、補正済み点火時期θb’に従い点火ユニット33を介して点火処理を実行する。
【0029】
次に、本実施形態のエンジンの点火制御装置の作動を図4の制御ブロック図、図7の点火制御ルーチン等を用いて説明する。
図示しないメインスイッチのキーオンによりECU6は図示しないメインルーチンでの制御に入り、このメインルーチンの途中でインジェクタの噴射処理,点火制御処理およびEGR制御処理等を実行する。
図示しないインジェクタの噴射量算出ルーチンでは、吸入空気量Qa/Neを算出し、同吸入空気量Qa/Neより基本燃料パルス幅Tfを算出し、メインルーチン側より取り込んだ現空燃比A/F相当の補正係数KAF、吸気温Ta及び大気圧Paに応じた補正係数KDT等により目標インジェクタ駆動時間を算出するという周知の制御を行うこととなる。
【0030】
EGR制御処理に達すると、ここではエンジン運転情報である水温Tw情報、エンジン回転速度Neおよび新気量EV(吸入空気量Qa/Ne)を取り込む。ここで水温Twが所定のEGR温度値を上回ると以下のEGR率制御に進み、EGR域にないと、EGR制御処理を中止する。EGR率制御に進むと、ここでは、EGR域マップme(図5参照)を用い、現在のエンジンの運転域が、中速中負荷域A1から高速高負荷域A2のいずれの位置にあるかを判定する。その上でこの運転域に応じたEGR弁開度を読み取り、同値相当のステップ数と現在のステップ数の差を排除するだけステッパモータ30を駆動するよう同モータに出力して駆動し、今回のEGR弁開度を確保する。
【0031】
図7に示すように、点火制御処理に達すると、まず、ステップs1でEGR弁25の最新の開度(EGR実開度θ1)と、エンジン回転速度Neおよび新気量EV(吸入空気量Qa/Ne)を取り込む。その上で、ステップs2で、定常EGR開度heをマップm1から、定常EGR率α1をマップm2からそれぞれ読み取り、次いで、ステップs3で、これら各値を、(1)式に代入し、今回のサージタンクに流入する吸気の瞬時EGR率α2を算出する。
【0032】
ステップs4では、予め算出記憶しておいたサージタンク12の拡径部内EGR率(n)を読み出す。ここで、予め算出しておいた拡径部内EGR率(n)の初期値は適宜設定しておくこととなる。更に、ステップs5では、エンジン回転速度Neおよび新気量EV(吸入空気量Qa/Ne)を取り込み、EGR時定数Cをマップm3より読み取る。続くステップs6ではステップs3〜s5で求めた各値を、(2)式に代入し、瞬時EGR率α2のなまし処理がなされ、今回の拡径部内EGR率(n)を更新する。
【0033】
ステップs7では、ステップs4で読み出した前回の拡径部内EGR率(n)を1行程前の拡径部内EGR率(n−1)の記憶エリアに順送りして、7行程前の拡径部内EGR率(n−7)までのすべての値を順次更新して記憶処理する。そして今まで記憶処理していた拡径部内EGR率(n−7)、すなわち、8行程前のサージタンク12内のEGR率を今回の吸気行程で気筒内に流入する吸気のEGR率と見做す(判定する)。
【0034】
次に、ステップs8では今回の拡径部内EGR率(n)と8行程前の拡径部内EGR率(n−7)とを(6)式に代入し、今回、吸気ブランチ内より燃焼室に供給される新気a1の量EV’を算出する。次いで、ステップs9ではエンジン回転速度Neを取り込み、その上で、EGRしない時の進角値である進角W/O値をマップm4より、EGRする時の進角値である進角値をマップm5よりそれぞれ読み取る。更に,定常EGR率α1をマップm2より読み取り、これら各値を、(7)式に代入してEGR過渡時における点火進角δθ値を算出する。
ステップs10では、エンジン回転速度Neおよび新気量(吸入空気量Qa/Ne)EVを取り込み、同値に応じた基本点火時期θbをマップm6に基づき算出する。
【0035】
更に、ステップs11では最新の点火進角δθおよび基本点火時期θbとに応じた補正済み点火時期θb’を(8)式に沿って演算し、同値を点火ユニット33に出力し、今回の制御周期での処理を終了する。
この後、点火ユニット33は、補正済み点火時期θb’に従って点火プラグ7をスパークさせ、EGR過渡時における適正な点火進角済の点火処理を行える。
【0036】
このように、サージタンク12に滞留するEGRガスを含む混合気と新たに導入されるEGRガスとが混合された後の拡径部内EGR率を正確に求めると共に、燃焼室3に流入する吸気のEGR率の判定にあたり、吸気ブランチの容量との関係で8行程前の拡径部内EGR率(n−7)を燃焼室に流入する吸気の拡径部内EGR率として求めた。このため、実際に燃焼室3に流入する吸気のEGR率を正確に求めることができ、このEGR率に応じた点火進角δθ値により基本点火時期θbを進角補正するので、EGR通路付きの内燃機関の点火時期を制御するにあたり、EGR弁切り換え過渡時の点火時期を適正に制御できる。
【0037】
図1の内燃機関の点火時期制御装置では吸気路拡径部としてサージタンク12を説明したが、これに限定されるものではなく、ここでの吸気路拡径部は流入する新気とEGRガスの混合を可能とする比較的大容量部で有ればよい。
図1の内燃機関の点火時期制御装置では、燃焼室3に流入する吸気のEGR率の判定にあたり、8行程前の拡径部内EGR率(n−7)をその判定に適応する拡径部内EGR率として求めたが、この値はサージタンク12と燃焼室3の間の吸気路容量により変化するもので、その他の吸気ブランチを採用すればその場合に適応する行程数だけ前の拡径部内EGR率を採用すれば良く、この場合も同様の作用効果が得られる。また、気筒内に流入する吸気と記憶済み拡径部内EGR率との対応は行程数に限らずクランク角を使用して対応させるようにしても良い。
【0038】
図1の内燃機関の点火時期制御装置では、サージタンク12にEGR通路24が排気の一部を還流していたが、場合によりEGR通路24が排気の一部をサージタンク12の上流側に還流させるように構成することもでき、この場合も同様の作用効果が得られる。
【0039】
【発明の効果】
以上のように、請求項1の発明は、吸気路拡径部に滞留するEGRガスを含む混合気と新たに導入されるEGRガスとが混合された後の拡径部内EGR率を正確に求めると共に、燃焼室に流入する吸気のEGR率の判定にあたり、吸気路容量に応じた行程前の拡径部内EGR率を燃焼室に流入する吸気の拡径部内EGR率として求めるため、実際に燃焼室に流入する吸気のEGR率を正確に求めることができ、このEGR率に応じた進角補正をしてEGR率の変化する、即ち、EGR弁切り換え過渡時の点火時期を適正に設定できる。
【図面の簡単な説明】
【図1】本発明の一実施形態としての内燃機関の点火時期制御装置を備えたエンジンの概略構成図である。
【図2】図1中のサージタンク及び吸気ブランチの平面視での吸気流動特性説明図である。
【図3】図1中のサージタンク及び吸気ブランチの側面視での吸気流動特性説明図である。
【図4】図1の内燃機関の点火時期制御装置で用いる点火時期制御処理を説明するフロック図である。
【図5】図1の内燃機関の点火時期制御装置で用いるEGR域マップの特性線図である。
【図6】図1の内燃機関の点火時期制御装置で用いるEGR弁開度の制御特性説明図である。
【図7】図1の内燃機関の点火時期制御装置で用いる点火制御ルーチンのフローチャートである。
【符号の説明】
1 エンジン
3 燃焼室
12 サージタンク(吸気路拡径部)
23 EGR弁
24 EGR通路
α2 瞬時EGR率
E1 瞬時EGR率導出手段
E2 拡径部内EGR率導出手段
θb 基本点火時期
E3 基本点火時期設定手段
E4 点火時期補正手段
E5 点火時期制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ignition timing control device for an internal combustion engine, and more particularly, to an internal combustion engine that optimizes an ignition timing in consideration of a temporal change in the amount of EGR gas supplied to a combustion chamber in an internal combustion engine equipped with an exhaust gas recirculation device. The present invention relates to an ignition timing control device.
[0002]
[Prior art]
An exhaust gas recirculation device is known in which a predetermined amount of exhaust gas is recirculated during intake to burn an air-fuel mixture having a predetermined EGR rate. When this device is used, combustion of the air-fuel mixture in the combustion chamber is relatively Slower, NOx and oxide emissions are reduced, and exhaust gas can be improved. In addition, the intake amount is usually reduced by a predetermined amount in order for the engine to generate a predetermined torque.At this time, the downstream side of the throttle valve becomes negative pressure and causes a pumping loss, whereas when an exhaust gas recirculation device is used, By supplying nonflammable exhaust gas that does not contribute to output generation into fresh air, pumping loss can be reduced and fuel efficiency can be improved. When the exhaust gas recirculation device having such an advantage is used, a process of advancing the ignition timing in accordance with the change in the EGR rate (= EGR gas / fresh air) to cope with the relatively slow combustion of the air-fuel mixture. Is going.
[0003]
However, when the EGR rate is changed by adjusting the opening and closing of the EGR valve, the EGR rate in the combustion chamber does not immediately change to the EGR rate corresponding to the opening degree of the EGR valve due to the pressure accumulation effect of the intake system. The rate lag situation changes according to the intake passage structure downstream from the EGR valve, and then converges to an EGR rate corresponding to the EGR valve opening. For this reason, when the EGR rate corresponding to the EGR valve opening is regarded as the EGR rate of each cylinder as it is, and the ignition timing corresponding to the EGR rate is calculated and the ignition process is performed, the ignition timing does not match the actual situation. There is a possibility of misfire. Therefore, correction of the ignition timing with time after changing the EGR valve opening degree becomes a problem.
[0004]
For example, in the technique disclosed in Japanese Patent Laid-Open No. 9-242654, the opening / closing speed of the EGR valve is taken into account when correcting the basic ignition timing set according to the operating state in accordance with the target EGR rate. That is, the actual EGR rate is calculated from the target EGR rate using the ratio of the actual opening to the target opening, and the advance angle width per 1% of the EGR rate corresponding to the basic fuel injection amount and the engine speed is obtained. Is multiplied by the actual EGR rate to obtain the advance correction amount, and the final ignition timing is calculated from this and the basic ignition timing.
[0005]
Further, according to the technology disclosed in Japanese Patent Registration No. 2914192, when the EGR valve changes from the absence of EGR to a predetermined EGR rate in response to a change in the engine operating state, the ignition timing (basic ignition timing) in the absence of the EGR valve The time between the ignition timing and the ignition timing when there is smoothed by using a first-order lag filter, that is, the time constant of the delay response of EGR gas is calculated based on the rotational speed, charging efficiency, intake pipe volume, EGR valve opening, The ignition timing is moved by a moving average formula that reflects this time constant, so that the ignition timing can be accurately controlled even when the engine operating state changes and the EGR rate changes.
[0006]
[Problems to be solved by the invention]
However, the intake air (air mixture) mixed with the EGR gas flowing into the surge tank after passing through the EGR valve flows into the combustion chambers through the intake branches connected to the cylinders. In this case, even if the EGR valve changes, that is, even if the EGR rate changes, the mixture of the intake branch that holds the previous EGR rate flows into the combustion chamber of each cylinder. It is necessary to consider that there is a delay in reaching the target EGR rate corresponding to the EGR valve opening degree. In addition, after the flow delay, the correct change in the EGR rate cannot be considered unless the point where the mixture of the EGR rate regulated by the finite valve opening speed of the EGR valve sequentially flows in is taken into consideration. .
[0007]
In consideration of this point, for example, when a technique such as that of JP-A-9-242654 is used, the EGR rate in the intake pipe may be obtained by estimating or detecting the actual opening of the EGR valve. Although it is conceivable, especially in an internal combustion engine having a surge tank, there is an EGR mixture remaining in the surge tank, and this acts so as to make a transient value. There is a problem that it differs from the actual EGR rate in the surge tank according to the above, and there is a problem that the EGR rate according to the actual opening of the EGR valve cannot be simply applied.
[0008]
Furthermore, in the case of the technique of Japanese Patent Registration No. 2914192, only the time constant is set in inverse proportion to the EGR valve opening, that is, only the technical idea of optimizing the delay response, so that the EGR rate at the time of transition can be increased. Is not considered, and there is room for improvement in optimizing the ignition timing in the transient state. As described above, in each of the conventional examples, the EGR rate is corrected using a time constant or an approximate expression, but the flow delay of the intake air in the intake branch is not accurately taken into consideration, and an improvement is desired. .
The present invention provides an ignition timing control device for an internal combustion engine that corrects the basic ignition timing using the EGR rate of the intake air flowing into the cylinder and can perform appropriate ignition timing control even when exhaust gas recirculates based on the above-described problems. The purpose is to do.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, according to the first aspect of the present invention, there is provided an EGR passage that recirculates a part of exhaust gas to an intake passage enlarged diameter portion provided in an intake system of an internal combustion engine or an upstream intake system thereof, and the EGR An EGR valve that is interposed in the passage and whose operation is controlled in accordance with the engine operating state; an instantaneous EGR rate deriving unit that derives an instantaneous EGR rate based on the latest opening degree of the EGR valve and the engine operating state; An enlarged-diameter EGR rate deriving unit that updates the EGR rate in the enlarged-diameter portion based on the EGR rate and a pre-calculated EGR rate in the enlarged-diameter portion of the intake passage enlarged portion, and a basic ignition timing based on the engine operating state The basic ignition timing setting means for setting the EGR rate, and the EGR rate in the enlarged diameter portion that is sequentially updated is stored. In addition, as the EGR rate of the intake air flowing into the cylinder, the EGR rate in the enlarged diameter portion before the number of strokes of the internal combustion engine adapted to the intake passage capacity between the enlarged diameter portion and the combustion chamber is used. Ignition timing correction means for correcting the basic ignition timing.
Since the EGR rate in the enlarged-diameter portion is sequentially updated based on the instantaneous EGR rate and the EGR rate in the enlarged-diameter portion calculated in advance, the air-fuel mixture containing the EGR gas staying in the intake passage enlarged portion and the newly introduced EGR gas The EGR rate in the enlarged diameter portion after the mixture is accurately obtained, and the EGR rate in the enlarged diameter portion that is sequentially updated is stored. In addition, as the EGR rate of the intake air flowing into the cylinder, the EGR rate in the enlarged-diameter portion that is the number of strokes before the internal combustion engine adapted to the intake passage capacity between the enlarged-diameter portion and the combustion chamber is used. Thus, the EGR rate of the intake air flowing into the cylinder can be accurately obtained.
[0010]
For this reason, by correcting the basic ignition timing based on the EGR rate, it is possible to appropriately set the ignition timing at the time of transition in which the EGR rate changes.
As a preferred embodiment of the present invention, the intake passage enlarged diameter portion may be a surge tank. In this case, in particular, the mixture containing the EGR gas staying in the surge tank and the newly introduced EGR gas are mixed, and the EGR rate when the mixture flows into the cylinder after passing through the intake branch is accurately obtained. It is possible to correct the advance angle according to the EGR rate, and to appropriately set the ignition timing at the time of transition in which the EGR rate changes.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an engine 1 equipped with an internal combustion engine ignition timing control device as one embodiment of the present invention. The engine 1 is a four-cylinder (see FIG. 2) in-cylinder injection engine and is equipped with an exhaust gas recirculation device 23 described later. A combustion chamber 3 is formed in a portion surrounded by the upper part of each cylinder 2 of the engine 1 and the cylinder head 20. One end of the crankshaft 4 of the engine 1 is provided with a unit crank angle signal θc, a reference signal θ, and a crank angle sensor 5 for detecting engine rotational speed Ne information based on the unit crank angle signal θc. The detection signal is output to 6) (denoted as ECU).
[0012]
An intake port 9 that is releasably closed to the intake valve V1 and an exhaust port 10 that is releasably closed to the exhaust valve V2 are formed on the upper inner wall surface of each cylinder 2. In addition, a spark plug 7 is provided at a substantially central position within a position where the valves do not interfere with both valves, and an injector 8 for fuel injection is provided at a side end position. The injector 8 is connected to an ECU 6 to be described later via an injector drive circuit 34, and is configured to inject fuel according to an injection signal of the ECU 6.
[0013]
An intake port 9 connected to the combustion chamber 3 is connected to an intake manifold (including an intake branch) 11, an intake branch of each cylinder, and a surge tank 12 that forms an intake passage diameter increasing portion, and an extension following the surge tank 12. The tube 13 and the air cleaner 14 are connected in this order. In the air cleaner 14, an air flow sensor 15 for obtaining intake air amount Qa information, an intake air temperature sensor 16 for outputting intake air temperature Ta information, and an atmospheric pressure sensor 17 for outputting atmospheric pressure Pa information are mounted. Is output. Further, a throttle valve 18 is provided in the extension pipe 13, and throttle opening θs information of the valve is output to the ECU 6 by a throttle opening sensor 19. Further, a water temperature sensor 21 for detecting the water temperature Tw information of the engine 1 is provided, and the detection signal is output to the ECU 6.
An exhaust manifold 22 and an exhaust pipe and a muffler (not shown) are connected to the exhaust port 10.
[0014]
An exhaust gas recirculation device 23 is disposed between the intake passage r1 and the exhaust passage r2 of the engine 1. The exhaust gas recirculation device 23 includes an exhaust gas recirculation path (hereinafter simply referred to as an EGR path) 24 that connects the exhaust manifold 22 on the exhaust path r2 side and the surge tank 12 on the intake path r1 side. A valve 25 is provided.
The EGR valve 25 includes a valve housing 26 partially integrated with the surge tank 12. A valve seat 28 that secures an EGR passage 24 is provided in the EGR valve 25. The valve seat 28 can be opened and closed by a valve member 29. Yes. The valve member 29 is connected to a stepper motor 30 supported on the upper portion of the valve housing 26 via a valve shaft 31. The stepper motor 30 is connected to an ECU 6 described later via a motor drive circuit 32, and the ECU 6 that outputs a control signal (number of steps) to the motor drive circuit 32 responds to the control signal (number of steps) to the current valve member 29. The opening degree (EGR actual opening degree) is determined.
[0015]
The spark plug 7 is connected to the ignition unit 33, and the ignition unit 33 is connected to the ECU 6. The ECU 6 controls the ignition operation of the spark plug 7.
The ECU 6 performs ignition control processing and EGR control processing in addition to known control processing such as fuel injection amount control of the engine 1 and throttle valve drive control.
In the EGR control process, the ECU 6 sets the EGR rate in the entire operation region using a preset EGR region map me (see FIG. 5). Here, the inflow amount of EGR gas with respect to the new air amount flowing into the surge tank, which is the intake passage enlarged diameter portion, is set as the EGR rate (= EGR gas amount / new air amount).
[0016]
This EGR range map me is set so as to ensure a high EGR rate q1 for supplying a large amount of EGR gas when the engine operating range is during operation on the medium speed / medium load range A1 side. That is, in this region, the high EGR rate (high step number) for moving the valve member 29 upward in the valve lift direction is set so as to increase toward the region center D1.
Further, when the engine operating range shifts to the high speed and high load range A2, the ECU 6 is set to reduce the flow of EGR gas. That is, in this region, the low EGR rate (low step number) for moving the valve member 29 downward in the closing direction is set, and the EGR rate is set to zero on the region outer peripheral side D2.
[0017]
Next, as shown in FIG. 4, the ECU 6 in the ignition control process includes an instantaneous EGR rate deriving unit E1, an in-diameter EGR rate deriving unit E2, a basic ignition timing setting unit E3, and an ignition timing correcting unit E4. Operates to perform its function.
Here, the instantaneous EGR rate deriving means E1 includes the latest opening degree (EGR actual opening degree) of the EGR valve 25, the latest engine operating state, the engine speed Ne and the fresh air amount (intake air amount Qa / Ne) EV. Based on the above, the instantaneous EGR rate (considering the opening degree during the mechanical displacement of the EGR valve, see the m line in FIG. 6) is derived as shown in the following equation (1). Here, the steady EGR opening degree he indicates the opening degree when the valve member 29 reaches a steady state when the valve member 29 secures a predetermined EGR rate.
[0018]
Instantaneous EGR rate = steady EGR rate × EGR actual opening / steady EGR opening ··················· (1) Note that FIG. 6 described above is a diagram illustrating the time-dependent change characteristic of the EGR valve opening, and t1 is EGR. The change point of the valve opening is shown, and the two-dot chain line U shows the static EGR valve opening change.
The in-diameter enlarged EGR rate deriving means E2 calculates the EGR rate in the in-diameter enlarged portion based on the instantaneous EGR rate and the EGR rate in the enlarged diameter portion of the surge tank (intake passage enlarged portion) 12 calculated in advance. And the update is repeated for each stroke of the engine. Note that symbol C is an EGR time constant, which is a capturing constant for taking a weighted average, and is set to 0, 3, for example, whereby the instantaneous EGR rate is smoothed, and the symbol n line in FIG. Will get.
[0019]
C x EGR rate in the expanded diameter part (n) + (1-C) x instantaneous EGR rate (2)
The basic ignition timing setting means E3 sets the basic ignition timing θb based on the engine rotational speed Ne and the fresh air amount (intake air amount Qa / Ne) EV in the engine operating state. Here, a basic ignition timing θb corresponding to the engine rotational speed Ne and the fresh air amount (intake air amount Qa / Ne) EV is set in advance in the basic ignition timing map m6.
[0020]
The ignition timing correction means E4 stores the diameter-increasing portion EGR rate that is sequentially updated, and uses the corresponding stored value at the timing at which the intake of the stored inside-expansion-portion EGR rate flows into the cylinder. In this case, the EGR rate (n) in the enlarged diameter portion of the surge tank (intake passage enlarged diameter portion) 12 is sequentially stored for each stroke of the engine. That is, in the next second stroke, the value of the EGR rate (n) in the enlarged diameter portion in the first stroke is pushed out into the storage area of the EGR rate (n-1) in the enlarged diameter portion, and similarly, it is equivalent to eight strokes (expanded diameter). The storage area values of the internal EGR rate (up to n-7) are sequentially stored, and each value can be updated by forward feeding. Here, the reason why the memory for eight strokes is stored is as follows.
[0021]
That is, as shown in FIGS. 3 and 4, the capacity of the intake branch (branch portion of the intake manifold) 11 between the surge tank 12 of the engine 1 and the combustion chamber 3 of each cylinder is twice the cylinder volume here. It is assumed that the air-fuel mixture in the surge tank 12 flows into the combustion chamber 3 after two intake strokes. For this reason, after fresh air and EGR gas are mixed in the surge tank 12, the intake air that is the air-fuel mixture passes through the intake branch 11 after 8 strokes and flows into the combustion chamber 3. A value for 8 strokes (up to EGR rate (n-7) in the enlarged diameter part is stored). The oldest value among the stored values for 8 strokes, that is, the EGR rate (n-7) in the enlarged diameter part is This is the accurate EGR rate of the intake air that flows into the cylinder next, and this value is expressed by the following equations (5) and (6), and is the amount EV ′ of the fresh air a1 supplied from the intake branch to the combustion chamber. Used for calculation.
[0022]
Next, a calculation formula for the amount EV ′ of fresh air a1 will be described.
Here, the inflow amount of EGR gas with respect to the fresh air is set to the EGR rate (= EGR gas amount / new air amount), so that this equation can be rewritten into the equation (3).
1 + EGR rate = (fresh air amount + EGR gas amount) / new air amount (3)
This is further converted into equation (4).
[0023]
(New air amount + EGR gas amount) = New air amount × (1 + EGR rate) (4)
The left side of this equation (new air volume + EGR gas volume) can be regarded as a value roughly proportional to the density (密度 internal pressure) of a manifold (surge tank or intake branch) with a constant volume. Air volume × (1 + EGR rate) is also regarded as a similar value.
[0024]
Here, it is assumed that the air-fuel mixture in the surge tank 12 passes through each intake branch after 8 strokes and flows into each combustion chamber 3, and the density of the air-fuel mixture flowing into the combustion chamber 3 this time (室 internal pressure) EV ′ (branch fresh air amount) × (1 + EGR rate (n−7)) and EV (surge tank fresh air), which is the density of the air-fuel mixture a1 flowing into the surge tank 12 (サ ー ジ internal pressure) this time. Suppose that (quantity) × (1 + EGR rate (n)) is equal and formula (5) is obtained.
EV ′ × (1 + EGR rate (n−7)) = EV × (1 + EGR rate (n)) (5)
This equation (5) can be converted to equation (6), and the amount EV ′ of fresh air a1 supplied from the intake branch to the combustion chamber can be calculated.
[0025]
EV ′ = EV × (1 + EGR rate (n)) / (1 + EGR rate (n−7)) (6)
Here, for example, if the current EGR rate is set to zero% and the EGR rate of the previous eight times is set to 10% and these values are substituted into the equation (6), fresh air supplied from the intake branch to the combustion chamber this time. The amount EV ′ of a1 is
EV ′ = 100 × (1 + 0) / (1 + 0, 1) ≈90%
Thus, EGR gas can be calculated as approximately 10%.
[0026]
Further, the ignition timing correction means E4 determines the timing at which the intake air from the surge tank (intake passage diameter increasing portion) 12 flows into the cylinder, and stores the stored EGR ratio in the expanded diameter portion, that is, the 8 strokes. Based on the previous value (the EGR rate (n-7) in the enlarged diameter portion), the ignition advance angle δθ during the EGR transition is obtained, and the basic ignition timing θb is corrected based on this value.
[0027]
In this case, based on the amount EV ′ of fresh air a1 supplied to the combustion chamber from the intake branch obtained by the above equation (6) and the engine speed Ne, the advance angle W / that is an advance value when EGR is not performed. Read the O value from the map m4, read the advance angle W / value, which is the advance value at the time of EGR, from the map m5, read the steady EGR rate from the map m2, respectively, and expand these values and the diameter before 8 strokes. By substituting the value of the in-portion EGR rate (the expanded-in-portion EGR rate (n-7)) into the following equation (7), the ignition advance angle δθ value during the EGR transition is calculated. As a result, an ignition advance δθ corresponding to the instantaneous EGR rate adapted to the latest amount EV ′ of fresh air a1 supplied from the intake branch 11 to the combustion chamber 12 is obtained.
[0028]
Ignition advance angle δθ = Advance angle W / O + (Advance angle W / −Advance angle W / O) × (EGR ratio in expanded diameter portion (n−7)) / (steady EGR ratio) (7)
Next, the ignition timing correction means E4 calculates the current corrected ignition timing θb ′ according to the equation (8) from the latest ignition advance angle δθ and the basic ignition timing θb obtained from the basic ignition timing map m6.
θb + δθ = θb ′ (8)
Thereafter, the ignition control means E5 executes an ignition process via the ignition unit 33 in accordance with the corrected ignition timing θb ′.
[0029]
Next, the operation of the engine ignition control device of this embodiment will be described with reference to the control block diagram of FIG. 4, the ignition control routine of FIG.
When the main switch (not shown) is turned on, the ECU 6 enters control in a main routine (not shown), and executes an injector injection process, an ignition control process, an EGR control process, and the like in the middle of the main routine.
In an injector injection amount calculation routine (not shown), the intake air amount Qa / Ne is calculated, the basic fuel pulse width Tf is calculated from the intake air amount Qa / Ne, and it corresponds to the current air-fuel ratio A / F taken in from the main routine side. The well-known control of calculating the target injector drive time based on the correction coefficient KAF, the correction coefficient KDT corresponding to the intake air temperature Ta, and the atmospheric pressure Pa is performed.
[0030]
When the EGR control process is reached, the engine temperature information, that is, the water temperature Tw information, the engine rotational speed Ne, and the fresh air amount EV (intake air amount Qa / Ne) are taken in here. If the water temperature Tw exceeds a predetermined EGR temperature value, the process proceeds to the following EGR rate control. If the water temperature Tw is not in the EGR range, the EGR control process is stopped. When proceeding to EGR rate control, here, using the EGR region map me (see FIG. 5), it is determined whether the current engine operating region is in the middle to middle load region A1 to the high speed and high load region A2. judge. Then, the EGR valve opening corresponding to this operating range is read, and the stepper motor 30 is output and driven so as to drive the stepper motor 30 only to eliminate the difference between the number of steps corresponding to the same value and the current number of steps. Ensure the EGR valve opening.
[0031]
As shown in FIG. 7, when the ignition control process is reached, first, in step s1, the latest opening (EGR actual opening θ1) of the EGR valve 25, the engine speed Ne, and the fresh air amount EV (intake air amount Qa). / Ne). After that, in step s2, the steady EGR opening degree he is read from the map m1 and the steady EGR rate α1 is read from the map m2. Then, in step s3, these values are substituted into the equation (1). The instantaneous EGR rate α2 of the intake air flowing into the surge tank is calculated.
[0032]
In step s4, the EGR rate (n) in the enlarged diameter portion of the surge tank 12 previously calculated and stored is read. Here, the initial value of the EGR rate (n) that has been calculated in advance is appropriately set. In step s5, the engine speed Ne and the fresh air amount EV (intake air amount Qa / Ne) are taken in, and the EGR time constant C is read from the map m3. In the subsequent step s6, the values obtained in steps s3 to s5 are substituted into the equation (2), the instantaneous EGR rate α2 is smoothed, and the current expanded EGR rate (n) is updated.
[0033]
In step s7, the previous expanded diameter EGR rate (n) read out in step s4 is forwarded to the storage area of the expanded diameter EGR rate (n-1) in the previous stroke, and the expanded diameter EGR in the expanded stroke before the seventh stroke. All values up to the rate (n-7) are sequentially updated and stored. Then, the EGR rate (n-7) in the enlarged diameter portion that has been memorized up to now, that is, the EGR rate in the surge tank 12 before 8 strokes, is regarded as the EGR rate of the intake air flowing into the cylinder in the current intake stroke. (Determine)
[0034]
Next, in step s8, the current expanded EGR rate (n) and the expanded EGR rate (n−7) before 8 strokes are substituted into the equation (6), and this time, the intake branch enters the combustion chamber. An amount EV ′ of the supplied fresh air a1 is calculated. Next, in step s9, the engine rotational speed Ne is taken, and then the advance value W / O value that is an advance value when EGR is not performed is mapped from the map m4 to the advance value that is the advance value when EGR is performed. Read from m5. Further, the steady EGR rate α1 is read from the map m2, and these values are substituted into the equation (7) to calculate the ignition advance δθ value at the EGR transition time.
In step s10, the engine speed Ne and the fresh air amount (intake air amount Qa / Ne) EV are taken in, and the basic ignition timing θb corresponding to the same value is calculated based on the map m6.
[0035]
Furthermore, in step s11, a corrected ignition timing θb ′ corresponding to the latest ignition advance angle δθ and basic ignition timing θb is calculated according to the equation (8), and the same value is output to the ignition unit 33, and this control cycle The process in is terminated.
Thereafter, the ignition unit 33 sparks the spark plug 7 in accordance with the corrected ignition timing θb ′, and can perform ignition processing with an appropriate ignition advance at the time of EGR transition.
[0036]
In this way, the EGR rate in the enlarged diameter portion after the mixture containing the EGR gas staying in the surge tank 12 and the newly introduced EGR gas are mixed is accurately obtained, and the intake air flowing into the combustion chamber 3 is determined. In the determination of the EGR rate, the EGR rate (n-7) in the enlarged diameter portion before 8 strokes was obtained as the EGR rate in the enlarged diameter portion of the intake air flowing into the combustion chamber in relation to the capacity of the intake branch. For this reason, the EGR rate of the intake air actually flowing into the combustion chamber 3 can be accurately obtained, and the basic ignition timing θb is advanced by the ignition advance angle δθ value corresponding to the EGR rate. In controlling the ignition timing of the internal combustion engine, the ignition timing at the EGR valve switching transition can be appropriately controlled.
[0037]
In the ignition timing control device for the internal combustion engine of FIG. 1, the surge tank 12 has been described as an intake passage enlarged portion. However, the present invention is not limited to this, and the intake passage enlarged portion here includes inflowing fresh air and EGR gas. It suffices to have a relatively large capacity part that enables mixing of the above.
In the ignition timing control device for the internal combustion engine of FIG. 1, when determining the EGR rate of the intake air flowing into the combustion chamber 3, the EGR rate (n-7) in the enlarged diameter portion before the eight strokes is applied to the determination. This value varies depending on the capacity of the intake passage between the surge tank 12 and the combustion chamber 3, and if other intake branches are employed, the EGR in the enlarged diameter portion before the number of strokes adapted to that case can be used. The rate may be adopted, and in this case, the same effect can be obtained. Further, the correspondence between the intake air flowing into the cylinder and the stored EGR rate in the enlarged diameter portion is not limited to the number of strokes, and may be made to correspond using the crank angle.
[0038]
In the ignition timing control device for the internal combustion engine of FIG. 1, the EGR passage 24 recirculates part of the exhaust gas to the surge tank 12, but in some cases, the EGR passage 24 recirculates part of the exhaust gas to the upstream side of the surge tank 12. In this case, the same effect can be obtained.
[0039]
【The invention's effect】
As described above, the invention of claim 1 The EGR rate in the enlarged diameter portion after the mixture containing the EGR gas staying in the intake passage enlarged portion and the newly introduced EGR gas is mixed is accurately obtained, and the EGR rate of the intake air flowing into the combustion chamber is determined. In the determination, in order to obtain the EGR rate in the enlarged diameter portion before the stroke according to the intake passage capacity as the EGR rate in the enlarged diameter portion of the intake air flowing into the combustion chamber, the EGR rate of the intake air actually flowing into the combustion chamber is accurately obtained. Can It is possible to appropriately set the ignition timing at the time when the EGR rate changes by correcting the advance angle according to the EGR rate, that is, when the EGR valve switching transition is transient.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an engine provided with an ignition timing control device for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of intake flow characteristics in a plan view of the surge tank and intake branch in FIG. 1;
FIG. 3 is an explanatory view of intake flow characteristics in a side view of the surge tank and intake branch in FIG. 1;
4 is a flock diagram illustrating an ignition timing control process used in the internal combustion engine ignition timing control device of FIG. 1; FIG.
FIG. 5 is a characteristic diagram of an EGR region map used in the ignition timing control device for the internal combustion engine of FIG. 1;
6 is an explanatory diagram of EGR valve opening control characteristics used in the ignition timing control device for the internal combustion engine of FIG. 1; FIG.
7 is a flowchart of an ignition control routine used in the ignition timing control device for the internal combustion engine of FIG. 1;
[Explanation of symbols]
1 engine
3 Combustion chamber
12 Surge tank (intake channel diameter expansion part)
23 EGR valve
24 EGR passage
α2 Instantaneous EGR rate
E1 Instantaneous EGR rate deriving means
E2 EGR ratio deriving means in expanded diameter section
θb Basic ignition timing
E3 Basic ignition timing setting means
E4 ignition timing correction means
E5 ignition timing control means

Claims (1)

内燃機関の吸気系に設けられた吸気路拡径部またはその上流側吸気系に排気の一部を還流するEGR通路と、
同EGR通路に介装され機関運転状態に応じて作動が制御されるEGR弁と、
上記EGR弁の最新の開度と機関運転状態とに基づき瞬時EGR率を導出する瞬時EGR率導出手段と、
同瞬時EGR率と予め算出されている上記吸気路拡径部の拡径部内EGR率とに基づいて同拡径部内EGR率を更新する拡径部内EGR率導出手段と、
機関運転状態に基づき基本点火時期を設定する基本点火時期設定手段と、
順次更新される上記拡径部内EGR率を記憶すると共に、気筒内に流入する吸気のEGR率として、上記拡径部と燃焼室の間の吸気路容量に適応する内燃機関の行程数だけ前の上記拡径部内EGR率を用いて上記基本点火時期を補正する点火時期補正手段と
を備えたことを特徴とする内燃機関の点火時期制御装置。
An EGR passage that recirculates a portion of the exhaust to the intake passage enlarged diameter portion provided in the intake system of the internal combustion engine or the upstream intake system thereof;
An EGR valve which is interposed in the EGR passage and whose operation is controlled according to the engine operating state;
Instantaneous EGR rate deriving means for deriving an instantaneous EGR rate based on the latest opening of the EGR valve and the engine operating state;
An enlarged-diameter EGR rate deriving unit that updates the EGR rate in the enlarged-diameter portion based on the instantaneous EGR rate and the EGR rate in the enlarged-diameter portion of the intake passage enlarged portion calculated in advance;
Basic ignition timing setting means for setting the basic ignition timing based on the engine operating state;
The EGR rate in the enlarged-diameter portion that is sequentially updated is stored , and the EGR rate of the intake air flowing into the cylinder is the previous number of strokes of the internal combustion engine that adapts to the intake passage capacity between the enlarged-diameter portion and the combustion chamber. An ignition timing control device for an internal combustion engine, comprising: an ignition timing correction unit that corrects the basic ignition timing using the EGR rate in the enlarged diameter portion .
JP2000066238A 2000-03-10 2000-03-10 Ignition timing control device for internal combustion engine Expired - Fee Related JP3757738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066238A JP3757738B2 (en) 2000-03-10 2000-03-10 Ignition timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066238A JP3757738B2 (en) 2000-03-10 2000-03-10 Ignition timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001254659A JP2001254659A (en) 2001-09-21
JP3757738B2 true JP3757738B2 (en) 2006-03-22

Family

ID=18585624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066238A Expired - Fee Related JP3757738B2 (en) 2000-03-10 2000-03-10 Ignition timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3757738B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069361B2 (en) 2002-06-11 2008-04-02 三菱自動車工業株式会社 Ignition timing control device for internal combustion engine
JP4962404B2 (en) * 2008-05-08 2012-06-27 トヨタ自動車株式会社 Internal combustion engine device and vehicle, and control method for internal combustion engine device
JP2015014257A (en) * 2013-07-05 2015-01-22 スズキ株式会社 Ignition timing control device for internal combustion engine
EP3153695B1 (en) * 2014-05-21 2019-10-23 Nissan Motor Co., Ltd Egr control device and egr control method

Also Published As

Publication number Publication date
JP2001254659A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
JP5348242B2 (en) Internal combustion engine control system
JP2005307847A (en) Air amount calculation device for internal combustion engine
JPH1047121A (en) Control device of in-cylinder injection type spark ignition type internal combustion engine
CN110645110B (en) Control device for internal combustion engine
JP4969546B2 (en) Control device and method for internal combustion engine
US20030075158A1 (en) Method and device for a mass flow determination via a control valve and for determining a modeled induction pipe pressure
JP2004108262A (en) Internal egr amount estimating device of internal combustion engine
JP2006307668A (en) Egr flow rate estimating device of engine
JP3757738B2 (en) Ignition timing control device for internal combustion engine
JP2006329003A (en) Secondary air supply device for internal combustion engine
JP3985419B2 (en) Control device for internal combustion engine
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JP4019265B2 (en) EGR flow rate calculation device for internal combustion engine and control device for internal combustion engine
JP6576520B1 (en) Control device for internal combustion engine
JP4100806B2 (en) In-cylinder injection internal combustion engine control device
CN114026316A (en) Control method and control device for internal combustion engine
JPH0563609B2 (en)
JP7177385B2 (en) engine controller
JP4160745B2 (en) Control method for internal combustion engine
JP3307306B2 (en) Combustion system control device for internal combustion engine
JP4241560B2 (en) Intake air amount estimation device for internal combustion engine
JP2019090330A (en) Intake pressure estimation device for engine
JP2003049682A (en) Control system for internal combustion engine
JP2004245062A (en) Variable intake device for internal combustion engine
JP6979315B2 (en) Engine control unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R151 Written notification of patent or utility model registration

Ref document number: 3757738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees