JP7177385B2 - engine controller - Google Patents

engine controller Download PDF

Info

Publication number
JP7177385B2
JP7177385B2 JP2018128471A JP2018128471A JP7177385B2 JP 7177385 B2 JP7177385 B2 JP 7177385B2 JP 2018128471 A JP2018128471 A JP 2018128471A JP 2018128471 A JP2018128471 A JP 2018128471A JP 7177385 B2 JP7177385 B2 JP 7177385B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
engine
volumetric efficiency
efficiency coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128471A
Other languages
Japanese (ja)
Other versions
JP2020007940A (en
Inventor
昇平 宮嶋
敏行 宮田
仁司 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2018128471A priority Critical patent/JP7177385B2/en
Publication of JP2020007940A publication Critical patent/JP2020007940A/en
Application granted granted Critical
Publication of JP7177385B2 publication Critical patent/JP7177385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排気還流装置を備えたエンジンの制御技術に関する。 The present invention relates to control technology for an engine having an exhaust gas recirculation device.

エンジンの燃料噴射を適切に制御するために、筒内への吸気量を正確に演算する必要がある。筒内への吸気量については、例えば吸気スロットルバルブの上流部に設けられたフローセンサを用いて計測したり、スロットルバルブの下流側の吸気圧であるインマニ圧とエンジン回転速度から推定演算したりする方法が知られている。
また、特許文献1には、エンジンの定常運転時において、インマニ圧と体積効率相当値とを用いて筒内への吸気量を算出するとともにスロットル開度と吸気量との関係を学習し、過渡運転時においては、この学習結果を用いて筒内への吸気量を算出する方法が開示されている。
In order to properly control the fuel injection of the engine, it is necessary to accurately calculate the amount of intake air into the cylinder. The amount of intake air into the cylinder can be measured, for example, using a flow sensor installed upstream of the intake throttle valve, or estimated from the intake manifold pressure downstream of the throttle valve and the engine speed. It is known how to
Further, in Patent Document 1, during steady operation of the engine, the amount of intake air into the cylinder is calculated using the intake manifold pressure and the volumetric efficiency equivalent value, and the relationship between the throttle opening and the amount of intake air is learned. A method of calculating the intake air amount into the cylinder using this learning result during operation is disclosed.

特開2014-84817号公報JP 2014-84817 A

しかしながら、エンジンの多くには、NOx排出量を低減させるためにEGR装置(外部EGR装置)が搭載されている。EGR装置は、エンジンの排気の一部を吸気側に還流させて、筒内での燃焼温度を低下させることで、NOxの排出量を低減させる。したがって、EGR装置により排気を還流させると、燃焼に寄与する空気量である筒内への新気量が減少し、燃料噴射制御するために必要な筒内への吸気量(新気量)を正確に演算することが困難となってしまう。 However, many engines are equipped with an EGR device (external EGR device) to reduce NOx emissions. The EGR device reduces NOx emissions by recirculating part of the exhaust gas from the engine to the intake side to lower the combustion temperature in the cylinder. Therefore, when exhaust gas is recirculated by the EGR device, the amount of fresh air into the cylinder, which is the amount of air that contributes to combustion, decreases, and the amount of intake air (fresh air amount) into the cylinder necessary for controlling fuel injection is reduced. Accurate calculation becomes difficult.

特に、EGR装置は一般的にエンジンの運転状態に基づいてオンオフ制御されるので、過渡運転時のように排気の還流のオンオフが切り替わる際には、排気還流量が変化して、筒内への吸気量を正確に演算することが困難となってしまう。
本発明はこのような問題点を解決するためになされたもので、EGR装置を備えたエンジンにおいて、精度よく筒内への吸気量を演算することが可能となるエンジンの制御装置を提供することにある。
In particular, since the EGR system is generally on/off controlled based on the operating state of the engine, when on/off of exhaust gas recirculation is switched, such as during transient operation, the amount of exhaust gas recirculation changes and the amount of exhaust gas recirculated into the cylinder changes. It becomes difficult to calculate the intake air amount accurately.
SUMMARY OF THE INVENTION It is an object of the present invention to provide an engine control system capable of accurately calculating the amount of intake air into a cylinder in an engine equipped with an EGR system. It is in.

上記の目的を達成するために、本発明のエンジンの制御装置は、エンジンの排気の一部を吸気通路に還流する排気還流路と、前記エンジンの運転状態に基づいて前記排気還流弁を制御する排気還流制御部と、を備えたエンジンの制御装置であって、前記排気還流路による排気還流量相当値が前記エンジンの運転状態に基づいて設定される目標排気還流量相当値である目標排気還流状態での前記エンジンの体積効率係数を演算する目標排気還流時体積効率係数演算部と、前記排気還流量相当値が0である非排気還流状態での前記エンジンの体積効率係数を演算する非排気還流時体積効率係数演算部と、前記目標排気還流状態の排気還流量相当値を演算する目標排気還流時排気還流量演算部と、前記エンジンの運転状態に基づいて、現状の排気還流量相当値を演算する現排気還流量演算部と、前記目標排気還流状態の排気還流量相当値と前記現状の排気還流量相当値との比に基づいて、前記目標排気還流状態での前記体積効率係数と前記非排気還流状態での前記体積効率係数とを補間して、現状の前記エンジンの体積効率係数を演算する体積効率係数演算部と、前記エンジンの回転速度を検出するエンジン回転速度検出器と、前記エンジンの吸気圧を検出する吸気圧検出器と、を備え、前記目標排気還流時体積効率係数演算部及び前記非排気還流時体積効率係数演算部は、前記エンジンの回転速度と吸気圧とに基づいて、前記エンジンの体積効率係数を夫々演算し、前記目標排気還流時排気還流量演算部は、前記目標排気還流時体積効率係数演算部で演算した前記目標排気還流状態での前記体積効率係数と前記エンジンの回転速度と吸気圧とに基づいて、前記目標排気還流状態での排気還流量相当値を演算することを特徴とする。 To achieve the above object, an engine control apparatus according to the present invention controls an exhaust recirculation passage for recirculating a portion of engine exhaust to an intake passage, and an exhaust recirculation valve based on the operating state of the engine. and an exhaust gas recirculation control unit, wherein the value equivalent to the amount of exhaust gas recirculated by the exhaust gas recirculation path is a target exhaust gas recirculation amount equivalent value set based on the operating state of the engine. a target exhaust gas recirculation volumetric efficiency coefficient calculation unit that calculates the volumetric efficiency coefficient of the engine in a non-exhaust gas recirculation state; A recirculation volumetric efficiency coefficient calculation unit, a target exhaust gas recirculation amount calculation unit for calculating a value equivalent to the exhaust gas recirculation amount in the target exhaust gas recirculation state, and a current exhaust gas recirculation amount equivalent value based on the operating state of the engine. and the volumetric efficiency coefficient in the target exhaust gas recirculation state based on the ratio between the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state and the current exhaust gas recirculation amount equivalent value a volumetric efficiency coefficient calculation unit that calculates a current volumetric efficiency coefficient of the engine by interpolating the volumetric efficiency coefficient in the non-exhaust recirculation state, an engine rotation speed detector that detects the rotation speed of the engine; an intake pressure detector for detecting the intake pressure of the engine, wherein the volumetric efficiency coefficient calculation unit for target exhaust gas recirculation and the volumetric efficiency coefficient calculation unit for non-exhaust gas recirculation are adapted to the rotational speed of the engine and the intake pressure. The volumetric efficiency coefficient of the engine is respectively calculated based on the volumetric efficiency coefficient of the engine, and the target exhaust gas recirculation amount calculation section calculates the volumetric efficiency coefficient in the target exhaust gas recirculation state calculated by the target exhaust gas recirculation volumetric efficiency coefficient calculation section. and the engine speed and the intake pressure, the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state is calculated .

これにより、目標排気還流状態の排気還流量相当値と現状の排気還流量相当値との比に基づいて、目標排気還流状態の体積効率係数と非排気還流状態での体積効率係数との間に、現状の体積効率係数が演算される。したがって、目標排気還流状態でない排気還流状態であっても、体積効率係数を精度よく演算することができる。
更に、エンジンの回転速度と吸気圧を用いて、目標排気還流時体積効率係数演算部は目標排気還流状態でのエンジンの体積効率係数を、非排気還流時体積効率係数演算部は非排気還流状態でのエンジンの体積効率係数を、夫々容易に演算することが可能となる。
また、目標排気還流時体積効率係数演算部で演算した目標排気還流状態での体積効率係数を利用して、目標排気還流状態での排気還流量相当値を容易に演算することができる。
また、好ましくは、前記体積効率係数演算部は、前記現状の排気還流量相当値をa、前記目標排気還流状態の排気還流量相当値をb、前記目標排気還流状態での体積効率係数をwEGR、前記非排気還流状態での体積効率係数をwoEGRとした場合、Kve=(wEGR×(a/b)+(woEGR×(1-(a/b)))によって、前記現状のエンジンの体積効率係数Kveを演算するとよい。
As a result, based on the ratio between the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state and the current exhaust gas recirculation amount equivalent value, there is a difference between the volumetric efficiency coefficient in the target exhaust gas recirculation state and the volumetric efficiency coefficient in the non-exhaust gas recirculation state. , the current volume efficiency factor is calculated. Therefore, even in an exhaust gas recirculation state that is not the target exhaust gas recirculation state, the volumetric efficiency coefficient can be calculated with high accuracy.
Furthermore, using the engine speed and intake pressure, the target exhaust gas recirculation volumetric efficiency coefficient calculation unit calculates the volumetric efficiency coefficient of the engine in the target exhaust gas recirculation state, and the non-exhaust gas recirculation volumetric efficiency coefficient calculation unit calculates the volumetric efficiency coefficient in the non-exhaust gas recirculation state. It becomes possible to easily calculate the volumetric efficiency coefficient of the engine at .
Further, by using the volumetric efficiency coefficient in the target exhaust gas recirculation state calculated by the target exhaust gas recirculation volumetric efficiency coefficient calculator, the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state can be easily calculated.
Further, preferably, the volumetric efficiency coefficient calculating section calculates the current exhaust gas recirculation amount equivalent value as a, the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state as b, and the volumetric efficiency coefficient in the target exhaust gas recirculation state as wEGR. , where woEGR is the volumetric efficiency coefficient in the non-exhaust recirculation state, Kve=(wEGR×(a/b)+(woEGR×(1-(a/b))), the volumetric efficiency of the current engine It is preferable to calculate the coefficient Kve.

これにより、目標排気還流状態でない排気還流状態でのエンジンの体積効率係数を、目標排気還流状態の排気還流量相当値と現状の排気還流量相当値との比に基づいて、容易にかつ精度よく演算することが可能となる As a result, the volumetric efficiency coefficient of the engine in the exhaust gas recirculation state other than the target exhaust gas recirculation state can be easily and accurately calculated based on the ratio between the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state and the current exhaust gas recirculation amount equivalent value. can be calculated .

た、好ましくは、前記排気還流弁の開度を検出する還流弁開度検出器を備え、前記現排気還流量演算部は、前記排気還流弁の開度と前記エンジンの回転速度と吸気圧とに基づいて、前記現状の排気還流量相当値を演算するとよい。 Further , preferably , a recirculation valve opening degree detector for detecting the opening degree of the exhaust gas recirculation valve is provided, and the current exhaust gas recirculation amount calculation unit detects the opening degree of the exhaust gas recirculation valve, the rotational speed of the engine, and the intake air. The current exhaust gas recirculation amount equivalent value may be calculated based on the atmospheric pressure.

これにより、現状の排気還流量相当値を容易に演算することが可能となる。
また、好ましくは、前記排気還流量相当値は、前記エンジンの吸気量に対する前記排気還流量の割合である排気還流率であるとよい。
これにより、エンジンの体積効率係数を排気還流率に基づいて演算することが可能となる。
This makes it possible to easily calculate the current exhaust gas recirculation amount equivalent value.
Preferably, the exhaust gas recirculation amount equivalent value is an exhaust gas recirculation rate, which is a ratio of the exhaust gas recirculation amount to the intake air amount of the engine.
This makes it possible to calculate the volumetric efficiency coefficient of the engine based on the exhaust gas recirculation rate.

本発明のエンジンの制御装置によれば、目標排気還流状態でない排気還流状態であっても、体積効率係数を精度よく演算することができるので、排気還流弁の開閉切替直後のような過渡運転状態においても体積効率係数を精度よく演算し、筒内への新気の吸入量を精度よく演算することができる。これにより、新気の吸入量に基づいて燃料噴射量を精度よく制御することが可能となり、エンジンの燃費の向上を図ることができる。 According to the engine control apparatus of the present invention, even in an exhaust gas recirculation state other than the target exhaust gas recirculation state, the volumetric efficiency coefficient can be calculated with high accuracy. Also, the volumetric efficiency coefficient can be calculated with high accuracy, and the intake amount of fresh air into the cylinder can be calculated with high accuracy. As a result, the fuel injection amount can be accurately controlled based on the intake amount of fresh air, and the fuel efficiency of the engine can be improved.

本発明の実施形態におけるエンジンの制御装置の概略構成図である。1 is a schematic configuration diagram of an engine control device according to an embodiment of the present invention; FIG. エンジンの負荷とEGR率との関係を示すマップの一例である。It is an example of a map showing the relationship between the engine load and the EGR rate. エンジンの負荷と体積効率係数との関係を示すマップの一例である。It is an example of a map showing the relationship between engine load and volumetric efficiency coefficient. 本実施形態のエンジンコントロールユニットにおける体積効率係数演算部の構成を示すブロック図であるFIG. 3 is a block diagram showing the configuration of a volumetric efficiency coefficient calculator in the engine control unit of the present embodiment; エンジンの負荷に対するEGR率、インマニ圧、体積効率係数の関係を示すマップである。4 is a map showing the relationship between EGR rate, intake manifold pressure, and volumetric efficiency coefficient with respect to engine load.

以下、図面に基づき本発明の実施形態について説明する。
図1は、本発明の制御装置1が適用されたエンジン2の概略構成図である。
エンジン2は、走行駆動源として車両に搭載されており、例えば多気筒のガソリンエンジンであって、図1では簡略して1つの気筒のみ記載している。エンジン2は、各気筒に設けられた燃料噴射弁3から、任意の噴射時期及び噴射量で各気筒の吸気ポート内に燃料を噴射し、点火プラグ4によって燃焼室5内の混合気を点火して燃焼可能な構成となっている。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an engine 2 to which a control device 1 of the present invention is applied.
The engine 2 is mounted on the vehicle as a drive source for traveling, and is, for example, a multi-cylinder gasoline engine, and only one cylinder is shown for simplicity in FIG. The engine 2 injects fuel into the intake port of each cylinder at an arbitrary injection timing and injection amount from the fuel injection valve 3 provided in each cylinder, and ignites the air-fuel mixture in the combustion chamber 5 with the spark plug 4. and combustible.

エンジン2の吸気通路6には、新気の流量を調整するための電子制御スロットルバルブ7が設けられている。
また、エンジン2には、EGR装置10が備えられている。EGR装置10は、エンジン2の吸気通路6と排気通路8とを連通するEGR通路11(排気還流路)と、EGR通路11を開閉するEGRバルブ12(排気還流弁)とにより構成されている。EGR装置10は、排気通路8からEGR通路11を介して排気の一部を吸気通路6に還流させる。このように排気の一部(EGRガス)を吸気通路6に流入させることで、筒内の燃焼温度を低下させ、エンジン2からのNOxの排出量を低減させる。
An intake passage 6 of the engine 2 is provided with an electronically controlled throttle valve 7 for adjusting the flow rate of fresh air.
The engine 2 is also provided with an EGR device 10 . The EGR device 10 includes an EGR passage 11 (exhaust recirculation passage) that communicates an intake passage 6 and an exhaust passage 8 of the engine 2 , and an EGR valve 12 (exhaust recirculation valve) that opens and closes the EGR passage 11 . The EGR device 10 recirculates part of the exhaust gas from the exhaust passage 8 to the intake passage 6 via the EGR passage 11 . By allowing part of the exhaust gas (EGR gas) to flow into the intake passage 6 in this way, the combustion temperature in the cylinder is lowered, and the amount of NOx emissions from the engine 2 is reduced.

更に、エンジン2には、エンジン2の回転速度を検出する回転速度センサ15(エンジン回転速度検出器)が設けられている。吸気通路6のエンジン2側の端部である吸気マニホールド17には、吸気圧(インマニ圧)を検出するインマニ圧センサ18(吸気圧検出器)を備えている。また、EGRバルブ12には、EGRバルブの開度を検出するEGR開度センサ19(還流弁開度検出器)が設けられている。 Furthermore, the engine 2 is provided with a rotational speed sensor 15 (engine rotational speed detector) that detects the rotational speed of the engine 2 . An intake manifold 17, which is the end of the intake passage 6 on the engine 2 side, is provided with an intake manifold pressure sensor 18 (intake pressure detector) for detecting intake pressure (intake manifold pressure). Further, the EGR valve 12 is provided with an EGR opening sensor 19 (recirculation valve opening detector) that detects the opening of the EGR valve.

エンジンコントロールユニット20(排気還流制御部)は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成され、回転速度センサ15、インマニ圧センサ18、EGR開度センサ19等の各種センサの検出情報を入力し、当該各種情報に基づいて体積効率係数を演算する。なお、体積効率係数は、吸気通路6から筒内への新気の入りやすさの指標となるものであり、吸気管内と同じ密度の空気が行程容積を満たす場合の空気量に対する、シリンダーが吸入した空気量の割合である。 The engine control unit 20 (exhaust gas recirculation control unit) includes an input/output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a timer, a central processing unit (CPU), etc., and a rotation speed sensor 15, Detected information from various sensors such as the intake manifold pressure sensor 18 and the EGR opening sensor 19 is input, and the volumetric efficiency coefficient is calculated based on the various information. The volumetric efficiency coefficient is an index of how easily fresh air enters the cylinder from the intake passage 6, and the amount of air that the cylinder takes in when the stroke volume is filled with air having the same density as that in the intake pipe. It is the ratio of the amount of air

エンジンコントロールユニット20は、更に、体積効率係数を用いて新気の筒内への吸気量を演算し、当該吸気量に基づいて各気筒の燃料噴射量を演算して、燃料噴射弁3からの燃料噴射を制御する。また、エンジンコントロールユニット20は、点火プラグ4による点火、電子制御スロットルバルブ7の開度、EGRバルブ12の開度を制御して、エンジン2の運転制御を行う。 The engine control unit 20 further calculates the intake amount of fresh air into the cylinder using the volumetric efficiency coefficient, calculates the fuel injection amount of each cylinder based on the intake amount, and calculates the fuel injection amount from the fuel injection valve 3. Controls fuel injection. The engine control unit 20 controls the operation of the engine 2 by controlling the ignition by the spark plug 4, the opening of the electronically controlled throttle valve 7, and the opening of the EGR valve 12. FIG.

図2は、エンジン2の負荷とEGR率との関係を示すマップの一例である。図3は、エンジン2の負荷と体積効率係数との関係を示すマップの一例である。
エンジンコントロールユニット20は、エンジン2の負荷に基づいて目標EGR率(目標排気還流量相当値)を設定して、EGRバルブ12の開度を制御する。EGR率(排気還流率)は、新気の流量に対するEGRガスの流量の割合である。エンジン2の負荷は、例えば回転速度センサ15により検出したエンジン回転速度とインマニ圧センサ18により検出したインマニ圧とに基づいて演算すればよい。
FIG. 2 is an example of a map showing the relationship between the load of the engine 2 and the EGR rate. FIG. 3 is an example of a map showing the relationship between the load of the engine 2 and the volumetric efficiency coefficient.
The engine control unit 20 sets a target EGR rate (a value corresponding to the target exhaust gas recirculation amount) based on the load of the engine 2 and controls the opening of the EGR valve 12 . The EGR rate (exhaust gas recirculation rate) is the ratio of the flow rate of EGR gas to the flow rate of fresh air. The load of the engine 2 may be calculated based on the engine rotation speed detected by the rotation speed sensor 15 and the intake manifold pressure detected by the intake manifold pressure sensor 18, for example.

例えば図2に示すように、目標EGR率は、エンジン2の負荷に基づいて変化し、低負荷時及び高負荷時に減少し、中負荷時において増加するように設定される。これは、低負荷時においてはエンジン2の燃焼安定性を確保するためであり、高負荷時においてはインマニ圧が上昇することから排気が還流し難くなるためである。
また、エンジン2の体積効率係数は、負荷に応じて変化する。例えば図3に示すように、体積効率係数は、エンジン2の負荷が増加するに伴って増加する。また、体積効率係数は、EGR非導入時とEGR導入時とで異なる値となり、目標EGR率のEGR導入時である目標EGR導入時(目標排気還流状態)では、吸気中に排気の割合が増加するため、EGR非導入時(非排気還流状態)よりも小さい値となる。
For example, as shown in FIG. 2, the target EGR rate is set to change based on the load of the engine 2, decrease during low load and high load, and increase during medium load. This is to ensure combustion stability of the engine 2 when the load is low, and because the intake manifold pressure rises when the load is high, making it difficult for the exhaust gas to recirculate.
Also, the volumetric efficiency coefficient of the engine 2 changes according to the load. For example, as shown in FIG. 3, the volumetric efficiency coefficient increases as the load on the engine 2 increases. In addition, the volumetric efficiency coefficient has a different value when EGR is not introduced and when EGR is introduced, and when target EGR is introduced (target exhaust gas recirculation state), which is when EGR is introduced at the target EGR rate, the ratio of exhaust to intake increases. Therefore, the value is smaller than when EGR is not introduced (non-exhaust gas recirculation state).

次に、図4及び図5を用いて、EGR導入時における体積効率係数の演算方法について説明する。本実施形態のエンジンコントロールユニット20は、EGR非導入時及び目標EGR導入時だけでなく、目標EGR率でないEGR導入状態での体積効率係数について演算する。
図4は、エンジンコントロールユニット20における体積効率係数演算ユニット21のブロック図である。図5は、エンジン2の負荷に対するEGR率、インマニ圧、体積効率係数の関係を示すマップであり、実線が目標EGR率導入時、破線がEGR非導入時を示す。なお、図5中のEGR率のマップは図2に該当し、体積効率係数のマップは図3に該当する。
Next, a method of calculating the volumetric efficiency coefficient when EGR is introduced will be described with reference to FIGS. 4 and 5. FIG. The engine control unit 20 of this embodiment calculates the volumetric efficiency coefficient not only when EGR is not introduced and when target EGR is introduced, but also when EGR is introduced at a non-target EGR rate.
FIG. 4 is a block diagram of the volumetric efficiency calculation unit 21 in the engine control unit 20. As shown in FIG. FIG. 5 is a map showing the relationship between the load of the engine 2 and the EGR rate, the intake manifold pressure, and the volumetric efficiency coefficient. The EGR rate map in FIG. 5 corresponds to FIG. 2, and the volumetric efficiency coefficient map corresponds to FIG.

図4に示すように、エンジンコントロールユニット20には、エンジン2の現状の運転状態(現運転点)における体積効率係数Kveを演算する体積効率係数演算ユニット21として、EGR非導入時体積効率係数演算部22(非排気還流時体積効率係数演算部)、目標EGR導入時体積効率係数演算部23(目標排気還流時体積効率係数演算部)、筒内空気量演算部24(目標排気還流時排気還流量演算部)、体積効率係数補正用EGR率演算部25(目標排気還流時排気還流量演算部)、筒内EGR率演算部26(現排気還流量演算部)、体積効率係数演算部27を備えている。 As shown in FIG. 4, the engine control unit 20 includes a volumetric efficiency coefficient calculation unit 21 for calculating the volumetric efficiency coefficient Kve in the current operating state (current operating point) of the engine 2. 22 (non-exhaust gas recirculation volumetric efficiency coefficient calculation unit), target EGR introduction volumetric efficiency coefficient calculation unit 23 (target exhaust gas recirculation volumetric efficiency coefficient calculation unit), cylinder air amount calculation unit 24 (target exhaust gas recirculation exhaust gas recirculation volumetric efficiency coefficient correction EGR rate calculation section 25 (target exhaust gas recirculation amount calculation section), in-cylinder EGR rate calculation section 26 (current exhaust gas recirculation amount calculation section), and volumetric efficiency coefficient calculation section 27. I have it.

EGR非導入時体積効率係数演算部22は、インマニ圧センサ18からから入力したインマニ圧Pbと、回転速度センサ15から入力したエンジン回転速度Neとに基づいて、あらかじめ試験等によって確認し記憶しているマップを用いて、EGR非導入時の体積効率係数woEGRを演算する。
なお、負荷とインマニ圧との関係は、例えばエンジン回転速度Neが一定の場合に、図5中の破線cに示すように、EGR非導入時においては負荷が増加するに伴ってインマニ圧も増加する比例関係となる。そして、エンジン回転速度Ne毎に設けられたマップを用いて、インマニ圧Pbに対応する負荷dに基づいて、EGR非導入時の体積効率係数woEGRが求められる。
The EGR non-introduction volumetric efficiency coefficient calculation unit 22 confirms and stores the intake manifold pressure Pb input from the intake manifold pressure sensor 18 and the engine rotation speed Ne input from the rotation speed sensor 15 in advance through tests or the like. A volumetric efficiency coefficient woEGR when EGR is not introduced is calculated using the map in which EGR is not introduced.
The relationship between the load and the intake manifold pressure is such that when the engine rotation speed Ne is constant, the intake manifold pressure increases as the load increases when EGR is not introduced, as shown by the dashed line c in FIG. It becomes a proportional relationship to Then, using a map provided for each engine rotation speed Ne, the volumetric efficiency coefficient woEGR when EGR is not introduced is obtained based on the load d corresponding to the intake manifold pressure Pb.

目標EGR導入時体積効率係数演算部23は、インマニ圧センサ18からから入力したインマニ圧Pbと、回転速度センサ15から入力したエンジン回転速度Neとに基づいて、あらかじめ試験等によって確認し記憶しているマップを用いて目標EGR導入時の体積効率係数wEGRを演算する。
なお、目標EGR導入時においては、負荷とインマニ圧との関係は、例えばエンジン回転速度Neを一定とした場合に、図5の実線eに示すように、負荷が増加するに伴ってインマニ圧も増加するものの、EGR非導入時よりもインマニ圧が増加する。そして、エンジン回転速度Ne毎に設けられたマップを用いて、インマニ圧センサ18からから入力したインマニ圧Pbに対応する負荷fに基づいてEGR非導入時の体積効率係数wEGRが求められる。エンジン回転速度Neが一定である場合、目標EGR導入時における負荷fは、EGR非導入時における負荷dよりも小さくなるので、目標EGR導入時の体積効率係数wEGRは、EGR非導入時の体積効率係数woEGRよりも小さい値となる。
The target EGR introduction volumetric efficiency coefficient calculation unit 23 confirms and stores the intake manifold pressure Pb input from the intake manifold pressure sensor 18 and the engine rotation speed Ne input from the rotation speed sensor 15 by a test or the like in advance. A volumetric efficiency coefficient wEGR at the introduction of the target EGR is calculated using the existing map.
When the target EGR is introduced, the relationship between the load and the intake manifold pressure is such that when the engine rotation speed Ne is constant, the intake manifold pressure increases as the load increases, as shown by the solid line e in FIG. Although it increases, the intake manifold pressure increases more than when EGR is not introduced. Then, using a map provided for each engine speed Ne, the volumetric efficiency coefficient wEGR when EGR is not introduced is obtained based on the load f corresponding to the intake manifold pressure Pb input from the intake manifold pressure sensor 18 . When the engine rotation speed Ne is constant, the load f when the target EGR is introduced is smaller than the load d when the EGR is not introduced. It becomes a value smaller than the coefficient woEGR.

筒内空気量演算部24は、目標EGR導入時体積効率係数演算部23により演算した目標EGR率導入時の体積効率係数wEGRとインマニ圧センサ18から入力したインマニ圧Pbに基づいて、目標EGR率導入時における負荷(充填効率Ec)を演算する。負荷(充填効率Ec)は、例えば下記(1)式によって演算すればよい。
負荷(充填効率Ec)=wEGR×(Pb/大気圧)×100(%)・・・(1)
体積効率係数補正用EGR率演算部25は、筒内空気量演算部24で演算された負荷(充填効率Ec)とエンジン回転速度Neとに基づいて、目標EGR導入時におけるEGR率である体積効率係数補正用EGR率b(目標排気還流状態の排気還流量相当値)を演算する。
The in-cylinder air amount calculation unit 24 calculates the target EGR rate based on the volumetric efficiency coefficient wEGR at the introduction of the target EGR rate calculated by the target EGR introduction volumetric efficiency coefficient calculation unit 23 and the intake manifold pressure Pb input from the intake manifold pressure sensor 18. A load (charging efficiency Ec) at the time of introduction is calculated. The load (charging efficiency Ec) may be calculated, for example, by the following formula (1).
Load (charging efficiency Ec) = wEGR x (Pb/atmospheric pressure) x 100 (%) (1)
The volumetric efficiency coefficient correction EGR rate calculation unit 25 calculates the volumetric efficiency, which is the EGR rate at the time of target EGR introduction, based on the load (charging efficiency Ec) calculated by the in-cylinder air amount calculation unit 24 and the engine rotation speed Ne. An EGR rate b for coefficient correction (a value corresponding to the exhaust gas recirculation amount in the target exhaust gas recirculation state) is calculated.

筒内EGR率演算部26は、回転速度センサ15から入力したエンジン回転速度Neとインマニ圧センサ18からから入力したインマニ圧Pb、更にEGR開度センサ19から入力したEGRバルブ12の開度θegrに基づいて、例えばあらかじめ記憶しているマップを用いて現運転点でのEGR率a(現状の排気還流量相当値)を演算する。
体積効率係数演算部27は、EGR非導入時体積効率係数演算部22において演算したEGR非導入時における体積効率係数woEGRと、目標EGR導入時体積効率係数演算部23において演算した目標EGR導入時における体積効率係数wEGRと、体積効率係数補正用EGR率演算部25において演算した目標EGR導入時におけるEGR率bと、筒内EGR率演算部26において演算した現運転点でのEGR率aとに基づいて、現運転点での体積効率係数kveを演算する。
The in-cylinder EGR rate calculation unit 26 calculates the engine rotation speed Ne input from the rotation speed sensor 15, the intake manifold pressure Pb input from the intake manifold pressure sensor 18, and the opening degree θegr of the EGR valve 12 input from the EGR opening sensor 19. Based on this, the EGR rate a (value corresponding to the current exhaust gas recirculation amount) at the current operating point is calculated using, for example, a map stored in advance.
The volumetric efficiency coefficient calculation unit 27 calculates the volumetric efficiency coefficient woEGR at the time of EGR non-introduction calculated in the EGR non-introduction volumetric efficiency coefficient calculation unit 22 and the volumetric efficiency coefficient woEGR at the time of target EGR introduction calculated in the target EGR introduction volumetric efficiency coefficient calculation unit 23. Based on the volumetric efficiency coefficient wEGR, the EGR rate b at the time of introduction of the target EGR calculated by the EGR rate calculation unit 25 for correcting the volumetric efficiency coefficient, and the EGR rate a at the current operating point calculated by the in-cylinder EGR rate calculation unit 26 to calculate the volumetric efficiency coefficient kve at the current operating point.

現運転点での体積効率係数Kveは、以下の式(2)によって演算される。
Kve=wEGR×(a/b)+(woEGR×(1-(a/b))・・・(2)
以上のように、本実施形態のエンジン2は、EGR装置10を備えており、負荷に基づいて目標EGR率となるようにEGRバルブ12を制御する。そして、エンジン2の吸気量を演算するために使用する体積効率係数として、EGR非導入時の体積効率係数woEGRと目標EGR率導入時の体積効率係数wEGRを夫々演算する。しかし、EGRバルブ12を非導入(閉弁)と導入(開弁)との間で切り替えた直後では、体積効率係数はEGR非導入時の値woEGRと目標EGR率導入時の値wEGRとの間を移行するため、このような移行中においては、体積効率係数は目標EGR率導入時の値wEGRやEGR非導入時の値woEGRとは異なる値となる。
The volumetric efficiency coefficient Kve at the current operating point is calculated by the following equation (2).
Kve=wEGR×(a/b)+(woEGR×(1−(a/b)) (2)
As described above, the engine 2 of this embodiment includes the EGR device 10, and controls the EGR valve 12 so as to achieve the target EGR rate based on the load. Then, as the volumetric efficiency coefficients used to calculate the intake air amount of the engine 2, the volumetric efficiency coefficient woEGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when the target EGR rate is introduced are calculated. However, immediately after switching the EGR valve 12 between non-introduction (valve closed) and introduction (valve open), the volumetric efficiency coefficient is between the value woEGR when EGR is not introduced and the value wEGR when the target EGR rate is introduced. Therefore, during such a transition, the volumetric efficiency coefficient becomes a value different from the value wEGR when the target EGR rate is introduced and the value woEGR when EGR is not introduced.

これに対し、本実施形態では、EGR非導入時における体積効率係数woEGRと、目標EGR導入時における体積効率係数wEGRとを補間して、EGR導入時における体積効率係数Kveを演算する。
詳しくは、エンジン2の現状の運転点を表すインマニ圧Pb及びエンジン回転速度Neより、EGR非導入時の体積効率係数woEGRと、目標EGR率導入時の体積効率係数wEGRとを夫々演算して、EGR導入時と非導入時とで選択して現運転点での体積効率係数Kveとして使用するのではなく、目標EGR導入時のEGR率bと現運転点でのEGR率aとの比に対応して、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間の値に現状の体積効率係数Kveを設定する。
In contrast, in the present embodiment, the volumetric efficiency coefficient woEGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when target EGR is introduced are interpolated to calculate the volumetric efficiency coefficient Kve when EGR is introduced.
Specifically, the volumetric efficiency coefficient woEGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when the target EGR rate is introduced are calculated from the intake manifold pressure Pb and the engine rotation speed Ne, which represent the current operating point of the engine 2. Corresponds to the ratio between the EGR rate b at the time of target EGR introduction and the EGR rate a at the current operating point instead of selecting between when EGR is introduced and when not introduced and using it as the volumetric efficiency coefficient Kve at the current operating point. Then, the current volumetric efficiency coefficient Kve is set to a value between the volumetric efficiency coefficient woEGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when target EGR is introduced.

このようにEGR導入時における体積効率係数Kveを、エンジン2の運転状態に基づいてEGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間の値に設定するので、EGR導入時において目標EGR率となっていない状況でも、体積効率係数Kveを精度よく演算することができる。
これにより、エンジン2の過渡運転状態のようにEGRバルブ12の開度が変化している状況においても、体積効率係数Kveを用いて筒内への新気の吸入量を精度よく演算することができ、当該新気の吸入量に基づいて燃料供給量を精度よく制御することが可能となり、燃費の向上を図ることができる。
In this manner, the volumetric efficiency coefficient Kve when EGR is introduced is set to a value between the volumetric efficiency coefficient woEGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when target EGR is introduced based on the operating state of the engine 2. Even if the target EGR rate is not reached when EGR is introduced, the volumetric efficiency coefficient Kve can be calculated with high accuracy.
As a result, even in a situation where the opening of the EGR valve 12 is changing, such as in a transient operating state of the engine 2, the volumetric efficiency coefficient Kve can be used to accurately calculate the intake amount of fresh air into the cylinder. It is possible to accurately control the amount of fuel supply based on the intake amount of fresh air, thereby improving fuel efficiency.

また、体積効率係数演算部27は、Kve=(wEGR×(a/b)+(woEGR×(1-(a/b)))によって現状のエンジンの体積効率係数Kveを演算するので、現状のエンジンの体積効率係数Kveを容易にかつ精度よく求めることができる。
このように、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間に体積効率係数Kveを設定する際に、目標EGR導入時のEGR率bと現運転点でのEGR率aとの比(a/b)を用いることで、EGR非導入時の体積効率係数woEGRと目標EGR導入時の体積効率係数wEGRとの間で適切な重みづけをした加重平均を取り、現状のエンジンの体積効率係数Kveを正確に演算することができる。
Further, the volumetric efficiency coefficient calculator 27 calculates the current volumetric efficiency coefficient Kve of the engine by Kve=(wEGR×(a/b)+(woEGR×(1-(a/b))). The volumetric efficiency coefficient Kve of the engine can be obtained easily and accurately.
Thus, when setting the volumetric efficiency coefficient Kve between the volumetric efficiency coefficient woEGR when EGR is not introduced and the volumetric efficiency coefficient wEGR when target EGR is introduced, the EGR rate b when target EGR is introduced and the current operating point By using the ratio (a/b) to the EGR rate a, a weighted average with appropriate weighting between the volume efficiency coefficient woEGR when EGR is not introduced and the volume efficiency coefficient wEGR when target EGR is introduced is taken. , the volumetric efficiency coefficient Kve of the current engine can be calculated accurately.

なお、本願発明は、上記実施形態に限定するものではない。例えば上記実施形態では、
EGR非導入時体積効率係数演算部22や目標EGR導入時体積効率係数演算部23においてエンジン2の回転速度Neとインマニ圧Pbを用いて体積効率係数woEGRあるいはwEGRを演算しているが、エンジン2の負荷あるいは負荷に相当する指標を代わりに用いて演算してもよい。
In addition, this invention is not limited to the said embodiment. For example, in the above embodiment,
The volumetric efficiency coefficient woEGR or wEGR is calculated using the rotational speed Ne of the engine 2 and the intake manifold pressure Pb in the EGR non-introduction volumetric efficiency coefficient calculation unit 22 and the target EGR introduction volumetric efficiency coefficient calculation unit 23. Alternatively, the load of or an index corresponding to the load may be used for calculation.

また、体積効率係数補正用EGR率演算部25や筒内EGR率演算部26においてEGR率を演算しているが、EGR率の代わりにEGR量(排気還流量)あるいはEGR量に相当する指標を演算し、これらの比を体積効率係数演算部27において体積効率係数Kveの演算に使用してもよい。
また、本実施形態は、吸気ポートに燃料を噴射するガソリンエンジンに本発明を適用しているが、筒内に燃料を噴射するエンジンや、圧縮着火するディーゼルエンジン等のようなEGR装置を備えた各種エンジンに本発明を広く適用することができる。
Further, the EGR rate is calculated in the volumetric efficiency coefficient correction EGR rate calculation section 25 and the in-cylinder EGR rate calculation section 26, but instead of the EGR rate, the EGR amount (exhaust gas recirculation amount) or an index corresponding to the EGR amount is used. These ratios may be used for calculating the volumetric efficiency coefficient Kve in the volumetric efficiency coefficient calculator 27 .
In addition, in the present embodiment, the present invention is applied to a gasoline engine that injects fuel into an intake port. The present invention can be widely applied to various engines.

2 エンジン
11 EGR通路(排気還流路)
13 EGRバルブ(排気還流弁)
15 回転速度センサ(エンジン回転速度検出器)
18 インマニ圧センサ(吸気圧検出器)
19 EGR開度センサ(還流弁開度検出器)
20 エンジンコントロールユニット(排気還流制御部)
22 EGR非導入時体積効率係数演算部(非排気還流時体積効率係数演算部)
23 目標EGR導入時体積効率係数演算部(目標排気還流時体積効率係数演算部)
24 筒内空気量演算部(目標排気還流時排気還流量演算部)
25 体積効率係数補正用EGR率演算部(目標排気還流時排気還流量演算部)
26 筒内EGR率演算部(現排気還流量演算部)
27 体積効率係数演算部
2 engine 11 EGR passage (exhaust recirculation passage)
13 EGR valve (exhaust gas recirculation valve)
15 rotation speed sensor (engine rotation speed detector)
18 intake manifold pressure sensor (intake pressure detector)
19 EGR opening sensor (recirculation valve opening detector)
20 engine control unit (exhaust gas recirculation control unit)
22 EGR non-introduction volumetric efficiency coefficient calculation unit (non-exhaust recirculation volumetric efficiency coefficient calculation unit)
23 Target EGR Introduction Volumetric Efficiency Coefficient Calculator (Target Exhaust Recirculation Volumetric Efficiency Coefficient Calculator)
24 In-cylinder air amount calculation unit (exhaust gas recirculation amount calculation unit during target exhaust gas recirculation)
25 EGR rate calculation section for volumetric efficiency coefficient correction (calculation section for exhaust gas recirculation amount during target exhaust gas recirculation)
26 In-cylinder EGR rate calculation unit (current exhaust gas recirculation amount calculation unit)
27 volumetric efficiency coefficient calculator

Claims (4)

エンジンの排気の一部を吸気通路に還流する排気還流路と、前記排気還流路を開閉する排気還流弁と、前記エンジンの運転状態に基づいて前記排気還流弁を制御する排気還流制御部と、を備えたエンジンの制御装置であって、
前記排気還流路による排気還流量相当値が前記エンジンの運転状態に基づいて設定される目標排気還流量相当値である目標排気還流状態での前記エンジンの体積効率係数を演算する目標排気還流時体積効率係数演算部と、
前記排気還流量相当値が0である非排気還流状態での前記エンジンの体積効率係数を演算する非排気還流時体積効率係数演算部と、
前記目標排気還流状態の排気還流量相当値を演算する目標排気還流時排気還流量演算部と、
前記エンジンの運転状態に基づいて、現状の排気還流量相当値を演算する現排気還流量演算部と、
前記目標排気還流状態の排気還流量相当値と前記現状の排気還流量相当値との比に基づいて、前記目標排気還流状態での前記体積効率係数と前記非排気還流状態での前記体積効率係数とを補間して、現状の前記エンジンの体積効率係数を演算する体積効率係数演算部と、
前記エンジンの回転速度を検出するエンジン回転速度検出器と、
前記エンジンの吸気圧を検出する吸気圧検出器と、を備え、
前記目標排気還流時体積効率係数演算部及び前記非排気還流時体積効率係数演算部は、前記エンジンの回転速度と吸気圧とに基づいて、前記エンジンの体積効率係数を夫々演算し、
前記目標排気還流時排気還流量演算部は、前記目標排気還流時体積効率係数演算部で演算した前記目標排気還流状態での前記体積効率係数と前記エンジンの回転速度と吸気圧とに基づいて、前記目標排気還流状態での排気還流量相当値を演算する
ことを特徴とするエンジンの制御装置。
an exhaust gas recirculation passage for recirculating a portion of engine exhaust to an intake passage; an exhaust gas recirculation valve for opening and closing the exhaust gas recirculation passage; an exhaust gas recirculation control unit for controlling the exhaust gas recirculation valve based on the operating state of the engine; An engine control device comprising
A target volume during exhaust gas recirculation for calculating a volumetric efficiency coefficient of the engine in a target exhaust gas recirculation state in which a value equivalent to the exhaust gas recirculation amount by the exhaust gas recirculation path is a target exhaust gas recirculation amount equivalent value set based on the operating state of the engine. an efficiency coefficient calculator;
a non-exhaust gas recirculation volumetric efficiency coefficient calculation unit that calculates a volumetric efficiency coefficient of the engine in a non-exhaust gas recirculation state where the exhaust gas recirculation amount equivalent value is 0;
a target exhaust gas recirculation time exhaust gas recirculation amount calculation unit that calculates a value equivalent to the exhaust gas recirculation amount in the target exhaust gas recirculation state;
a current exhaust gas recirculation amount calculation unit that calculates a current exhaust gas recirculation amount equivalent value based on the operating state of the engine;
The volumetric efficiency coefficient in the target exhaust gas recirculation state and the volumetric efficiency coefficient in the non-exhaust gas recirculation state based on the ratio between the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state and the current exhaust gas recirculation amount equivalent value. A volumetric efficiency coefficient calculation unit that interpolates and calculates the current volumetric efficiency coefficient of the engine;
an engine rotation speed detector that detects the rotation speed of the engine;
and an intake pressure detector that detects the intake pressure of the engine,
The target exhaust gas recirculation volumetric efficiency coefficient calculation unit and the non-exhaust gas recirculation volumetric efficiency coefficient calculation unit respectively calculate a volumetric efficiency coefficient of the engine based on the rotational speed and intake pressure of the engine,
The target exhaust gas recirculation exhaust gas recirculation amount calculation unit calculates, based on the volumetric efficiency coefficient in the target exhaust gas recirculation state calculated by the target exhaust gas recirculation volumetric efficiency coefficient calculation unit, the rotational speed of the engine, and the intake pressure, Calculating a value equivalent to the exhaust gas recirculation amount in the target exhaust gas recirculation state
An engine control device characterized by:
前記体積効率係数演算部は、前記現状の排気還流量相当値をa、前記目標排気還流状態の排気還流量相当値をb、前記目標排気還流状態での体積効率係数をwEGR、前記非排気還流状態での体積効率係数をwoEGRとした場合、
Kve=(wEGR×(a/b)+(woEGR×(1-(a/b)))
によって、前記現状のエンジンの体積効率係数Kveを演算することを特徴とする請求項1に記載のエンジンの制御装置。
The volumetric efficiency coefficient calculating section calculates the current exhaust gas recirculation amount equivalent value a, the exhaust gas recirculation amount equivalent value in the target exhaust gas recirculation state b, the volumetric efficiency coefficient in the target exhaust gas recirculation state wEGR, and the non-exhaust gas recirculation If the volumetric efficiency coefficient in the state is woEGR,
Kve=(wEGR×(a/b)+(woEGR×(1-(a/b)))
2. The engine control device according to claim 1, wherein the volumetric efficiency coefficient Kve of the current engine is calculated by:
記排気還流弁の開度を検出する還流弁開度検出器を備え、
前記現排気還流量演算部は、前記排気還流弁の開度と前記エンジンの回転速度と吸気圧とに基づいて、前記現状の排気還流量相当値を演算することを特徴とする請求項1または2に記載のエンジンの制御装置。
a recirculation valve opening detector that detects the opening of the exhaust recirculation valve;
2. The current exhaust gas recirculation amount calculation unit calculates the current exhaust gas recirculation amount equivalent value based on the opening degree of the exhaust gas recirculation valve, the rotational speed of the engine, and the intake pressure. 3. The control device for the engine according to 2 .
前記排気還流量相当値は、前記エンジンの吸気量に対する排気還流量の割合である排気還流率であることを特徴とする請求項1からのいずれか1項に記載のエンジンの制御装置。 4. The engine control device according to claim 1 , wherein the exhaust gas recirculation amount equivalent value is an exhaust gas recirculation rate, which is a ratio of the exhaust gas recirculation amount to the intake air amount of the engine.
JP2018128471A 2018-07-05 2018-07-05 engine controller Active JP7177385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128471A JP7177385B2 (en) 2018-07-05 2018-07-05 engine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128471A JP7177385B2 (en) 2018-07-05 2018-07-05 engine controller

Publications (2)

Publication Number Publication Date
JP2020007940A JP2020007940A (en) 2020-01-16
JP7177385B2 true JP7177385B2 (en) 2022-11-24

Family

ID=69150947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128471A Active JP7177385B2 (en) 2018-07-05 2018-07-05 engine controller

Country Status (1)

Country Link
JP (1) JP7177385B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143964A (en) 2002-10-22 2004-05-20 Mitsubishi Motors Corp Egr flow rate calculating device of internal combustion engine and control device of internal combustion engine
JP2005194960A (en) 2004-01-08 2005-07-21 Hitachi Ltd Device for measuring intake air quantity for internal combustion engine
JP2014084817A (en) 2012-10-25 2014-05-12 Mitsubishi Electric Corp Cylinder intake air quantity estimating device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143964A (en) 2002-10-22 2004-05-20 Mitsubishi Motors Corp Egr flow rate calculating device of internal combustion engine and control device of internal combustion engine
JP2005194960A (en) 2004-01-08 2005-07-21 Hitachi Ltd Device for measuring intake air quantity for internal combustion engine
JP2014084817A (en) 2012-10-25 2014-05-12 Mitsubishi Electric Corp Cylinder intake air quantity estimating device for internal combustion engine

Also Published As

Publication number Publication date
JP2020007940A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP4683573B2 (en) Method for operating an internal combustion engine
US7620490B2 (en) Fuel injection control device for internal combustion engine
JP5905066B1 (en) Control device and control method for internal combustion engine
US11067041B2 (en) Control device for internal combustion engine
JP2014169684A (en) Egr control device of internal combustion engine
WO2011055431A1 (en) Apparatus for controlling internal combustion engine
US10590873B2 (en) Control device for internal combustion engine
US10138831B2 (en) Controller and control method for internal combustion engine
JP2005307847A (en) Air amount calculation device for internal combustion engine
JP4969546B2 (en) Control device and method for internal combustion engine
JP4192759B2 (en) Injection quantity control device for diesel engine
US20030075158A1 (en) Method and device for a mass flow determination via a control valve and for determining a modeled induction pipe pressure
US8751137B2 (en) Apparatus for estimating exhaust gas recirculation quantity
JP4154972B2 (en) Internal EGR amount estimation device for internal combustion engine
JP2006307668A (en) Egr flow rate estimating device of engine
WO2015060068A1 (en) Control device for internal combustion engine
JP7177385B2 (en) engine controller
JP5664463B2 (en) Control device for internal combustion engine
JP7323416B2 (en) Estimation method for determining the concentration of recirculated exhaust gas present in the cylinder of an internal combustion engine
JP2022168929A (en) Control device for internal combustion engine
EP3075991B1 (en) Control device for internal combustion engine
JP3757738B2 (en) Ignition timing control device for internal combustion engine
JP2006322363A (en) Estimation method of engine internal egr rate
JP2020153255A (en) Control device for engine
JP7431381B2 (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221025

R151 Written notification of patent or utility model registration

Ref document number: 7177385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151