JP2019528324A - 1−ヒドロキシエチルホルムアミド及びn−ビニルホルムアミドの合成 - Google Patents

1−ヒドロキシエチルホルムアミド及びn−ビニルホルムアミドの合成 Download PDF

Info

Publication number
JP2019528324A
JP2019528324A JP2019532173A JP2019532173A JP2019528324A JP 2019528324 A JP2019528324 A JP 2019528324A JP 2019532173 A JP2019532173 A JP 2019532173A JP 2019532173 A JP2019532173 A JP 2019532173A JP 2019528324 A JP2019528324 A JP 2019528324A
Authority
JP
Japan
Prior art keywords
weight
reaction
methyl
hydroxyethylformamide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019532173A
Other languages
English (en)
Other versions
JP7055138B2 (ja
Inventor
デュモレイン,キム
ムーンアン,クリストフ
アンリコ,アレクシス
ハン,ツァイ・シン・シモン
Original Assignee
タミンコ・ビー・ヴイ・ビー・エイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タミンコ・ビー・ヴイ・ビー・エイ filed Critical タミンコ・ビー・ヴイ・ビー・エイ
Publication of JP2019528324A publication Critical patent/JP2019528324A/ja
Application granted granted Critical
Publication of JP7055138B2 publication Critical patent/JP7055138B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/08Preparation of carboxylic acid amides from amides by reaction at nitrogen atoms of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/03Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/18Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明においては、N−ビニルカルボン酸アミドを製造するための方法及びシステムが提供される。本発明の幾つかの形態によれば、中間体化合物の形成中における中間の固体処理工程を排除し、それによって効率を増加させてコストを減少させるN−ビニルカルボン酸アミドを製造する方法を記載する。ここに記載する方法及びシステムは、N−ビニルホルムアミド、並びに1−ヒドロキシエチルホルムアミド及び1−アルコキシエチルホルムアミドなどのその中間体を合成するため、或いはN−メチル,N−ビニルホルムアミド、並びにN−メチル,1−ヒドロキシエチルホルムアミド及びN−メチル,1−アルコキシエチルホルムアミドなどのその中間体を合成するために用いることができる。【選択図】図1

Description

[0001]本発明は概してカルボン酸アミドに関する。特に、本発明は、N−ビニルホルムアミド及びN−メチル,N−ビニルホルムアミド並びにそれらの中間体を合成する方法、並びにこれらの1以上を含む組成物に関する。
[0002]N−ビニルホルムアミドはエナミド族の最も単純な物質であり、反応性第1級アミノ基を有するカチオン性ポリマーの合成において用いられる重要な化合物である。かかるポリマーは、それらの第1級アミン官能性及び水溶性の両方に関して望ましく、それらの低い毒性により、それらは多くの技術分野における広範囲の用途において有用である。例えば、N−ビニルホルムアミドから誘導されるポリビニルアミンは、水処理において凝集剤として、並びに製紙産業、化学産業、及び石油精製産業のための添加剤として成功裏に用いられている。これらのポリマーはまた、非吸収性食用色素、触媒、医薬のためのキャリアとして、並びに合成繊維のための染料受容体としても有用である。更に、かかるカチオン性ポリビニルアミンポリマーはまた、種々のインク、接着剤、及び顔料配合物において、並びに商業用及び工業用塗料及び被覆のための他の配合物において、並びに幾つかのタイプのパーソナルケア製品、バイオメディカル製品、及び消費者製品において用いることもできる。同様に、N−メチル,N−ビニルホルムアミドは、反応性第2級アミノ基を有するカチオン性ポリマーの合成における重要な化合物であり、製紙産業及び石油精製産業において幾つかの用途を有する。
[0003]N−ビニルホルムアミド及びN−メチル,N−ビニルホルムアミドを合成するための幾つかの方法が存在する。工業的には、文献において記載されているN−ビニルホルムアミドのための3種類の最も実用的な反応経路には、アセトアルデヒドとホルムアミドを、シアン化水素又はアルコールのような他の化合物の存在下で反応させて少なくとも1種類の中間体を形成し、次に中間体を熱的及び/又は化学的に分解してN−ビニルホルムアミドを形成する一般的な工程が含まれる。より具体的には、EP−0184074においては、アセトアルデヒド及びシアン化水素をホルムアミドと反応させて1−シアノエチルホルムアミドを形成し、次にこれを分解してN−ビニルホルムアミドを形成することを含む最も通常的な工業プロセスの1番目のものが記載されている。米国特許4,567,300及び5,527,963において記載されている最も通常的なプロセスの2番目のものは、アセトアルデヒドとホルムアミドを反応させて中間体の1−ヒドロキシエチルホルムアミドを形成し、これを次にメタノールと反応させて1−メトキシエチルホルムアミドを形成することを含む。1−メトキシエチルホルムアミドをその後に熱的及び/又は化学的に分解することによってメタノールを脱離させて、N−ビニルホルムアミドを形成する。米国特許4,578,515においては、大剰のホルムアミドをアセトアルデヒドと反応させてN−(α−N’−ホルムアミドエチル)ホルムアミドを形成し、これを次に分解してホルムアミド及び所望のN−ビニルホルムアミドを形成することを含む第3のプロセスが記載されている。N−メチル,N−ビニルホルムアミドの合成に関しては、文献において記載されている合成経路は1つしかない。WO−2010079774においては、アセトアルデヒドをN−メチルホルムアミドと反応させて中間体のN−メチル,1−ヒドロキシエチルホルムアミドを形成し、これを次にメタノールと反応させてN−メチル,1−メトキシエチルホルムアミドを形成することを含む、N−メチル,N−ビニルホルムアミドの合成が記載されている。この化合物をその後に熱的及び/又は化学的に分解することによってメタノールを解離して、N−メチル,N−ビニルホルムアミドを形成する。
[0004]しかしながら、上記の合成方法に関連して幾つかの欠点が存在する。シアン化水素は、取り扱うのが困難で貯蔵することができない毒性の気体状成分である。したがって、この経路を工業的に用いることを可能にするためには、徹底的な安全対策を取らなければならない。更に、それぞれ1−メトキシエチルホルムアミド及びN−メチル,1−メトキシエチルホルムアミドを経由するN−ビニルホルムアミド及びN−メチル,N−ビニルホルムアミドの工業的合成は、それぞれ1−ヒドロキシエチルホルムアミド及びN−メチル,1−ヒドロキシエチルホルムアミドに関する中間的な沈澱工程が必要である。これらの成分は適用される反応媒体中に不溶であるので、中間体化合物は形成された時点で溶液から沈澱析出する。工業的には、これは固体の中間体を濾過、洗浄、及び再溶解する固体処理工程をプロセス中に含ませ、その後に、新しい溶液を、上記に記載したようにN−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドへ更に処理するためのその後の反応区域に導入することによって対処されている。残念なことに、かかる固体処理工程の実施は、コスト及び処理時間の両方の点で費用がかかる傾向があり、その結果、工業規模の製造施設においては望ましくない。3番目に言及したプロセスであるN−(α−N’−ホルムアミドエチル)ホルムアミドを経由するN−ビニルホルムアミドの合成は、用いる触媒の失活が非常に迅速に起こり、中間体生成物の高い純度及び収率を維持することが困難であるという欠点を有する。
EP−0184074 米国特許4,567,300 米国特許5,527,963 米国特許4,578,515 WO−2010079774
[0005]したがって、反応溶液からの中間体化合物の沈澱を最小にするか又は阻止し、毒性のより少ない成分を用いる、N−ビニルホルムアミド及びN−メチル,N−ビニルホルムアミドを製造するためのより効率的な方法に対する必要性が存在する。理想的には、かかる方法は工業規模で容易に実施され、最小のコストで連続的に高い製品収率を与える。
[0006]本発明の幾つかの態様は、中間体の1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを合成し、次にこれを引き続く工程において用いて、それぞれN−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドを生成させる方法に関する。本方法には、ホルムアミド又はN−メチルホルムアミドとアセトアルデヒドを溶媒の存在下で反応させる工程(ここで第1の反応区域に加えるホルムアミド又はN−メチルホルムアミドとアセトアルデヒドとのモル比は少なくとも1.1:1である)を含ませることができる。本方法にはまた、ホルムアミド又はN−メチルホルムアミドの少なくとも一部を、塩基性触媒の存在下でアセトアルデヒドの少なくとも一部と反応させて、それによって溶媒の不存在下で1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを含む反応混合物を形成する工程(ここで、第1の反応区域に加えるホルムアミド又はN−メチルホルムアミドとアセトアルデヒドとのモル比は少なくとも1.5:1である)を含ませることもできる。ホルムアミド又はN−メチルホルムアミドの少なくとも一部を、塩基性触媒の存在下でアセトアルデヒドの少なくとも一部と反応させて、それによって、それぞれ過剰のホルムアミド又はN−メチルホルムアミド中に、又は溶媒の存在下で1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを含む反応混合物を形成することができる。第1の反応混合物がホルムアミド又はN−メチルホルムアミド以外の溶媒を含む場合には、1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドは、溶媒中において少なくとも20重量%の溶解度を有する。更に、反応工程中に形成される1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドの少なくとも90重量%を、第1の反応混合物中に溶解状態で維持することができる。
[0007]本発明の他の態様は、上記に記載したようにホルムアミド又はN−メチルホルムアミド及びアセトアルデヒドを第1の反応区域中に導入すること、及び次に1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドの反応混合物を、更なる溶媒、又は過剰のホルムアミド又はN−メチルホルムアミド、及び少なくとも1種類のアルコール及び酸触媒と混合すること、並びに1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドの少なくとも一部をアルコキシル化して、それによって1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドを含む他の反応混合物を形成することを含む、N−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドを製造する方法に関する。また、1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドを含み、場合によってはホルムアミド又はN−メチルホルムアミドを含む流れを与えるために、1以上の中間分離工程を行うこともできる。
[0008]本発明の更に他の態様は、1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミド、及び供給流の全重量を基準として少なくとも1重量%のホルムアミドを含む供給流を熱分解区域中に導入し、1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドの少なくとも一部を熱分解して、それによってN−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミド及びアルコールを形成し、粗生成物流を熱分解区域から排出することに関する。粗生成物流は、N−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミド、及び粗生成物流の全重量を基準として少なくとも1重量%のホルムアミド又はN−メチルホルムアミドを含む。その後、N−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドを粗生成物流から回収することができる。
[0009]本発明の更なる態様は、少なくとも1重量%のホルムアミド又はN−メチルホルムアミド、及び少なくとも35重量%の1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドを含む組成物に関する。
[0010]下記において、添付の図面を参照して本発明の種々の態様を詳細に記載する。
[0011]図1は、本発明の種々の態様にしたがってN−ビニルカルボン酸アミドを製造するための施設の概要図であり、特に合成プロセスの主工程を示す。 [0012]図2は、実施例3に記載するように行った幾つかの反応における、反応温度と1−ヒドロキシエチルホルムアミドの収率との間の関係を示すグラフである。 [0013]図3は、実施例4に記載するように行った幾つかの反応における、ホルムアミド−アセトアルデヒドのモル比と1−ヒドロキシエチルホルムアミドの収率との間の関係を示すグラフである。 [0014]図4は、実施例4において記載するように行った幾つかの反応における、種々の溶媒に関するホルムアミド−アセトアルデヒドのモル比と1−ヒドロキシエチルホルムアミドの収率との間の関係を示すグラフである。
[0015]本発明の種々の態様は、N−ビニルホルムアミド及びN−メチル,N−ビニルホルムアミドを製造するための方法及びシステム、並びにそれを含む組成物に関する。より具体的には、幾つかの態様においては、本発明は、アセトアルデヒドとホルムアミド又はN−メチルホルムアミドを反応させて、それぞれ1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを形成する方法、及び1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを、少なくとも1種類のアルコールと反応させて、それぞれ1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドを形成する方法に関する。得られる成分は、次に熱的及び/又は化学的に分解して、アルコール、及びそれぞれN−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドを与えることができる。また、下記において更に詳細に議論するように、種々の分離工程を用いることもできる。幾つかの態様によれば、本明細書に記載する方法は、固体処理工程の必要性を排除するために、1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミド、並びに1−アルコキシエチルホルムアミド及びN−メチル,1−アルコキシエチルホルムアミドのような1種類以上の中間体生成物の沈澱を最小にするか又は阻止する。その結果、本方法はより効率的であり、N−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドのようなN−ビニルカルボン酸アミドを、反応時間を最小にして収率を最大にするように連続的に製造することができる。
[0016]まず図1を参照すると、本発明の種々の態様にしたがって構成される、N−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドを製造するための施設10の主要処理区域の概要を示す概略図が与えられている。図1に示されるように、施設10は、第1の反応区域20、第2の反応区域30、中間体分離区域40、熱分解区域50、及び最終分離区域60を含む。通常はホルムアミド又はN−メチルホルムアミドのような少なくとも1種類のアミド、及びアセトアルデヒドを含む反応物質を、塩基性触媒と一緒に第1の反応区域20中に導入し、反応させて、1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドのような1−ヒドロキシエチルカルボキサミドを形成する。第1の反応区域20から排出される流れは、次に、第2の反応区域30中に導入する前に少なくとも1種類のアルコール及び他の触媒と混合することができ、第2の反応区域30内で、1−ヒドロキシエチルカルボキサミドをアルコキシル化して、1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドのような1−アルコキシエチルカルボキサミドを形成する。他の態様においては、1−ヒドロキシエチルカルボキサミドを他の成分と更に反応させることができ、例えばホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)と反応させてN,N’−エチリデンビスカルボキサミドを形成するか、シアン化水素と反応させて1−シアノエチルカルボキサミドを形成するか、或いは酸と反応させて1−カルボキサミド−エチルカルボキシレートを形成することができる。
[0017]1−ヒドロキシエチルカルボキサミドを反応させて1−アルコキシエチルカルボキサミドを形成する場合には、第2の反応区域30から排出される1−アルコキシエチルカルボキサミドを中間体分離区域40に通して、残留触媒、未反応の出発材料、及び種々の副生成物などの種々の不純物を1−アルコキシエチルカルボキサミド流から除去した後に、得られる精製1−アルコキシエチルカルボキサミドを熱分解区域50中に導入することができる。熱分解区域50においては、1−アルコキシエチルカルボキサミドを化学的及び/又は熱的に分解して、所望のN−ビニルカルボン酸アミド及びアルコール副生成物を与えることができる。図1に示されるように、粗生成物流を最終分離区域60に通すことによって精製された生成物流及び再循環流が与えられ、これを、更なる処理、貯蔵、及び/又は再使用のために施設10内又は施設10の外側の1以上の場所に送ることができる。
[0018]幾つかの態様においては、図1に示されるように、施設10を用いて、第1の反応区域20内でホルムアミドとアセトアルデヒドを反応させて1−ヒドロキシエチルホルムアミドを生成させ、1−ヒドロキシエチルホルムアミドの少なくとも一部を第2の反応区域30内でアルコキシル化して1−アルコキシエチルホルムアミドを形成し、粗N−ビニルホルムアミドを与えるために1−アルコキシエチルホルムアミドの少なくとも一部を熱分解区域50内で熱分解し、これを次に最終分離区域60内で精製することができる。ここでは一般にN−ビニルホルムアミドの形成に関して記載しているが、本発明の方法及びシステムは、他のタイプのアミドモノマー、特にN−メチル,N−ビニルホルムアミドのような他のタイプのN−ビニルカルボン酸アミドの製造において用いることもできることを理解すべきである。更に、ここでは1−ヒドロキシエチルホルムアミド及び1−アルコキシエチルホルムアミドなどの中間体化合物に関して記載しているが、施設10内で合成するN−ビニルカルボン酸アミドのタイプに応じて、他の1−ヒドロキシエチルカルボキサミド及び1−アルコキシエチルカルボキサミド中間体が、更に、又は代わりに存在する場合もあることを理解すべきである。例えば、施設10を用いてN−メチル,N−ビニルホルムアミドを製造する場合には、下記において1−ヒドロキシエチルホルムアミド及び1−アルコキシエチルホルムアミドを含むものとして詳細に記載する種々のプロセス流中に、中間体化合物のN−メチル,1−ヒドロキシエチルホルムアミド及びN−メチル,1−アルコキシエチルホルムアミドが存在する。
[0019]再び図1を参照すると、例えばホルムアミド及びアセトアルデヒドのような2種類以上の試薬を、それぞれライン110及び112を通して、第1の反応区域20内の少なくとも1つの反応容器(図示せず)中に導入することができる。更に、図1におけるように、ライン114を通して少なくとも1種類の塩基性触媒を第1の反応区域20に加えることもできる。図1においては、別々のライン110、112、及び114を通して導入するように示されているが、幾つかの態様においては、1種類以上の出発材料を、第1の反応区域20に導入する前に1種類以上の他の出発材料と混合することができ、一方で他の態様においては、1種類以上の出発材料を別々に加えることができる。例えば、それぞれのライン110及び114内のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)及び触媒を、第1の反応区域20に導入する前に混合して単一の流れにすることができ(図示せず)、アセトアルデヒドをライン112を通して加えることができる。或いは、出発成分のそれぞれを別々に加えることができ、第1の反応区域20内の反応容器中に導入することによって混合することができる。別々に加える場合には、これらの成分を任意の好適な順番で加えることができ、或いは2以上の成分を同時に加えることができる。出発材料のそれぞれを加える順番及び方法は、用いる反応容器のタイプ及び数、並びに実施する具体的な合成反応によって定めることができる。
[0020]上記で議論したように、ライン110及び112を通して第1の反応区域20中に導入する試薬には、それぞれホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)及びアセトアルデヒドを含ませることができる。ホルムアミド及びアセトアルデヒドの量は化学量論量に近い量で存在させることができるが、材料の1つを化学量論的に過剰に存在させることもできる。例えば、幾つかの態様においては、過剰のホルムアミド又は他のカルボン酸アミドを用いて、第1の反応区域20中に導入されるホルムアミドとアセトアルデヒドとの比を、モル基準で少なくとも約1.1:1、少なくとも約1.2:1、少なくとも約1.3:1、少なくとも約1.4:1、少なくとも約1.5:1、少なくとも約1.6:1、少なくとも約1.7:1、少なくとも約1.75:1、少なくとも約1.8:1、少なくとも約1.9:1、少なくとも約2:1、少なくとも約2.1:1、又は少なくとも約2.2:1、及び/又は約5:1以下、約4:1以下、約3:1以下、約2.5:1以下、又は約2.25:1以下にすることができる。
[0021]ホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)とアセトアルデヒドとのモル比は、約1.1:1〜約5:1、約1.2:1〜約5:1、約1.3:1〜約5:1、約1.4:1〜約5:1、約1.5:1〜約5:1、約1.6:1〜約5:1、約1.7:1〜約5:1、約1.75:1〜約5:1、約1.8:1〜約5:1、約1.9:1〜約5:1、約2:1〜約5:1、約2.1:1〜約5:1、約2.2:1〜約5:1、約1.1:1〜約4:1、約1.2:1〜約4:1、約1.3:1〜約4:1、約1.4:1〜約4:1、約1.5:1〜約4:1、約1.6:1〜約4:1、約1.7:1〜約4:1、約1.75:1〜約4:1、約1.8:1〜約4:1、約1.9:1〜約4:1、約2:1〜約4:1、約2.1:1〜約4:1、約2.2:1〜約4:1、約1.1:1〜約3:1、約1.2:1〜約3:1、約1.3:1〜約3:1、約1.4:1〜約3:1、約1.5:1〜約3:1、約1.6:1〜約3:1、約1.7:1〜約3:1、約1.75:1〜約3:1、約1.8:1〜約3:1、約1.9:1〜約3:1、約2:1〜約3:1、約2.1:1〜約3:1、約2.2:1〜約3:1、約1.1:1〜約2.5:1、約1.2:1〜約2.5:1、約1.3:1〜約2.5:1、約1.4:1〜約2.5:1、約1.5:1〜約2.5:1、約1.6:1〜約2.5:1、約1.7:1〜約2.5:1、約1.75:1〜約2.5:1、約1.8:1〜約2.5:1、約1.9:1〜約2.5:1、約2:1〜約2.5:1、約2.1:1〜約2.5:1、約2.2:1〜約2.5:1、約1.1:1〜約2.25:1、約1.2:1〜約2.25:1、約1.3:1〜約2.25:1、約1.4:1〜約2.25:1、約1.5:1〜約2.25:1、約1.6:1〜約2.25:1、約1.7:1〜約2.25:1、約1.75:1〜約2.25:1、約1.8:1〜約2.25:1、約1.9:1〜約2.25:1、約2:1〜約2.25:1、約2.1:1〜約2.25:1、又は約2.2:1〜約2.25:1の範囲であってよい。或いは、幾つかの態様においては、過剰のアセトアルデヒドを用いて、アセトアルデヒドとホルムアミドとの比が1以上の上記の範囲内になるようにすることができる。
[0022]ライン114を通して第1の反応区域20に加える触媒の量は、ホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)とアセトアルデヒドとの間の反応を所望の収率まで触媒するのに十分な量であってよい。幾つかの態様においては、ライン114を通して第1の反応区域20中に導入する触媒の量は、最初の反応混合物の全重量を基準として、少なくとも約0.2重量%、少なくとも約0.3重量%、少なくとも約0.4重量%、少なくとも約0.5重量%、少なくとも約0.6重量%、少なくとも約0.7重量%、少なくとも約0.75重量%、少なくとも約0.8重量%、少なくとも約0.85重量%、少なくとも約0.9重量%、少なくとも約0.95重量%、少なくとも約1.0重量%、少なくとも約1.05重量%、少なくとも約1.1重量%、少なくとも約1.15重量%、少なくとも約1.2重量%、少なくとも約1.25重量%、少なくとも約1.3重量%、少なくとも約1.4重量%、又は少なくとも約1.5重量%、及び/又は約10重量%以下、約5重量%以下、約2.5重量%以下、約2.25重量%以下、約2.0重量%以下、約1.75重量%以下、又は約1.5重量%以下であってよい。
[0023]ライン114を通して第1の反応区域20に加える触媒は、約0.2〜約10重量%、約0.3〜約10重量%、約0.4〜約10重量%、約0.5〜約10重量%、約0.6〜約10重量%、約0.7〜約10重量%、約0.75〜約10重量%、約0.8〜約10重量%、約0.85〜約10重量%、約0.9〜約10重量%、約0.95〜約10重量%、約1.0〜約10重量%、約1.05〜約10重量%、約1.1〜約10重量%、約1.15〜約10重量%、約1.2〜約10重量%、約1.25〜約10重量%、約1.3〜約10重量%、約1.4〜約10重量%、約1.5〜約10重量%、約0.2〜約5重量%、約0.3〜約5重量%、約0.4〜約5重量%、約0.5〜約5重量%、約0.6〜約5重量%、約0.7〜約5重量%、約0.75〜約5重量%、約0.8〜約5重量%、約0.85〜約5重量%、約0.9〜約5重量%、約0.95〜約5重量%、約1.0〜約5重量%、約1.05〜約5重量%、約1.1〜約5重量%、約1.15〜約5重量%、約1.2〜約5重量%、約1.25〜約5重量%、約1.3〜約5重量%、約1.4〜約5重量%、約1.5〜約5重量%の範囲の量で存在させることができる。
[001]ライン114を通して第1の反応区域20に加える触媒は、最初の反応混合物の全重量を基準として、約0.2〜約2.5重量%、約0.3〜約2.5重量%、約0.4〜約2.5重量%、約0.5〜約2.5重量%、約0.6〜約2.5重量%、約0.7〜約2.5重量%、約0.75〜約2.5重量%、約0.8〜約2.5重量%、約0.85〜約2.5重量%、約0.9〜約2.5重量%、約0.95〜約2.5重量%、約1.0〜約2.5重量%、約1.05〜約2.5重量%、約1.1〜約2.5重量%、約1.15〜約2.5重量%、約1.2〜約2.5重量%、約1.25〜約2.5重量%、約1.3〜約2.5重量%、約1.4〜約2.5重量%、約1.5〜約2.5重量%、約0.2〜約2.25重量%、約0.3〜約2.25重量%、約0.4〜約2.25重量%、約0.5〜約2.25重量%、約0.6〜約2.25重量%、約0.7〜約2.25重量%、約0.75〜約2.25重量%、約0.8〜約2.25重量%、約0.85〜約2.25重量%、約0.9〜約2.25重量%、約0.95〜約2.25重量%、約1.0〜約2.25重量%、約1.05〜約2.25重量%、約1.1〜約2.25重量%、約1.15〜約2.25重量%、約1.2〜約2.25重量%、約1.25〜約2.25重量%、約1.3〜約2.25重量%、約1.4〜約2.25重量%、約1.5〜約2.25重量%、約0.2〜約2.0重量%、約0.3〜約2.0重量%、約0.4〜約2.0重量%、約0.5〜約2.0重量%、約0.6〜約2.0重量%、約0.7〜約2.0重量%、約0.75〜約2.0重量%、約0.8〜約2.0重量%、約0.85〜約2.0重量%、約0.9〜約2.0重量%、約0.95〜約2.0重量%、約1.0〜約2.0重量%、約1.05〜約2.0重量%、約1.1〜約2.0重量%、約1.15〜約2.0重量%、約1.2〜約2.0重量%、約1.25〜約2.0重量%、約1.3〜約2.0重量%、約1.4〜約2.0重量%、約1.5〜約2.0重量%、約0.2〜約1.75重量%、約0.3〜約1.75重量%、約0.4〜約1.75重量%、約0.5〜約1.75重量%、約0.6〜約1.75重量%、約0.7〜約1.75重量%、約0.75〜約1.75重量%、約0.8〜約1.75重量%、約0.85〜約1.75重量%、約0.9〜約1.75重量%、約0.95〜約1.75重量%、約1.0〜約1.75重量%、約1.05〜約1.75重量%、約1.1〜約1.75重量%、約1.15〜約1.75重量%、約1.2〜約1.75重量%、約1.25〜約1.75重量%、約1.3〜約1.75重量%、約1.4〜約1.75重量%、約1.5〜約1.75重量%、約0.2〜約1.5重量%、約0.3〜約1.5重量%、約0.4〜約1.5重量%、約0.5〜約1.5重量%、約0.6〜約1.5重量%、約0.7〜約1.5重量%、約0.75〜約1.5重量%、約0.8〜約1.5重量%、約0.85〜約1.5重量%、約0.9〜約1.5重量%、約0.95〜約1.5重量%、約1.0〜約1.5重量%、約1.05〜約1.5重量%、約1.1〜約1.5重量%、約1.15〜約1.5重量%、約1.2〜約1.5重量%、約1.25〜約1.5重量%、約1.3〜約1.5重量%、又は約1.4〜約1.5重量%の範囲の量で存在させることができる。
[0024]ホルムアミドとアセトアルデヒドの反応を促進するための任意の好適なタイプの触媒を第1の反応区域20内で用いることができる。幾つかの態様においては、触媒は、例えば強塩基性触媒、弱塩基性触媒、又は強塩基及び弱酸を含む弱塩基性の塩などの塩基性触媒であってよい。幾つかの態様においては、触媒は、望ましくない副反応を抑止するために非求核性強塩基であってよい。触媒は、有機又は無機塩基であってよく、例えばアルカリ金属の水酸化物、炭酸塩、重炭酸塩、リン酸塩、ピロリン酸塩、及びリン酸水素塩を挙げることができ、及び/又はこれとしては、第4級アンモニウム化合物、第3級アミン、イオン交換樹脂、グアニジン誘導体、アミジン化合物、及びこれらの組合せを挙げることができる。第1の反応区域20において用いるのに好適な塩基性触媒の具体例としては、炭酸カリウム、炭酸ナトリウム、リン酸カリウム、リン酸ナトリウム、ピロリン酸カリウム、ピロリン酸ナトリウム、重炭酸カリウム、重炭酸ナトリウム、重炭酸リチウム、リン酸水素カリウム、リン酸水素ナトリウム、リン酸水素リチウム、トリメチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、8−ジアザビシクロ[5.4.0]ウンデス−7−エン、1,1,3,3−テトラメチルグアニジン、及びこれらの組合せを挙げることができるが、これらに限定されない。
[0025]ライン110、112、及び/又は114内の1以上の出発材料を、場合によって、第1の反応区域20の前か又はその中で少なくとも1種類の溶媒と混合することができる。存在させる場合には、溶媒は別のライン(図示せず)を通して第1の反応区域20に加えることができ、或いはこれはライン110、112、及び/又は114内で1以上の出発材料と混合することができる。用いる場合には、第1の反応区域20内に存在させる溶媒の量は、最初の反応混合物の全重量を基準として、少なくとも約20重量%、少なくとも約25重量%、少なくとも約30重量%、少なくとも約35重量%、少なくとも約40重量%、又は少なくとも約45重量%、及び/又は約80重量%以下、約75重量%以下、約70重量%以下、約65重量%以下、約60重量%以下、又は約55重量%以下であってよい。
[0026]用いる場合には、溶媒は、最初の反応混合物の全重量を基準として、約20〜約80重量%、約20〜約75重量%、約20〜約70重量%、約20〜約65重量%、約20〜約60重量%、約20〜約55重量%、約20〜約80重量%、約20〜約75重量%、約20〜約70重量%、約20〜約65重量%、約20〜約60重量%、約20〜約55重量%、約25〜約80重量%、約25〜約75重量%、約25〜約70重量%、約25〜約65重量%、約25〜約60重量%、約25〜約55重量%、約30〜約80重量%、約30〜約75重量%、約30〜約70重量%、約30〜約65重量%、約30〜約60重量%、約30〜約55重量%、約35〜約80重量%、約35〜約75重量%、約35〜約70重量%、約35〜約65重量%、約35〜約60重量%、約35〜約55重量%、約40〜約80重量%、約40〜約75重量%、約40〜約70重量%、約40〜約65重量%、約40〜約60重量%、約40〜約55重量%、約45〜約80重量%、約45〜約75重量%、約45〜約70重量%、約45〜約65重量%、約45〜約60重量%、又は約45〜約55重量%の範囲の量で存在させることができる。
[0027]用いる場合には、第1の反応区域20中に導入する溶媒は、任意の好適なタイプの溶媒であってよい。溶媒には単一の溶媒を含ませることができ、或いはこれに2種類以上の溶媒の混合物を含ませることができる。幾つかの態様においては、溶媒は、ライン110、112、及び/又は114内の1種類以上の出発材料、及び/又は第1の反応区域20内で生成する反応生成物に関するその溶解度に基づいて選択することができる。例えば、第1の反応区域20中に導入される出発材料、及び/又はこれから排出される生成物の少なくとも一方は、第1の反応区域20中に導入される溶媒中において、少なくとも約20重量%、少なくとも約25重量%、少なくとも約30重量%、少なくとも約35重量%、少なくとも約40重量%、少なくとも約45重量%、少なくとも約50重量%、少なくとも約55重量%の溶解度を有していてよい。更に、又は或いは、第1の反応区域20中に導入される試薬、及び/又はそれから排出される反応生成物の少なくとも一方は、第1の反応区域20中に導入される溶媒中において、約80重量%以下、約75重量%以下、約70重量%以下、約65重量%の溶解度を有していてよい。溶解度は、他に示さない限りにおいてCIPAC法MT181を用いて20℃において測定する。
[0028]第1の反応区域20中に導入される出発材料、及び/又はそれから排出される生成物の少なくとも一方は、第1の反応区域20中に導入される溶媒中において、20〜約80重量%、約20〜約75重量%、約20〜約70重量%、約20〜約65重量%、約20〜約60重量%、約20〜約55重量%、約20〜約80重量%、約20〜約75重量%、約20〜約70重量%、約20〜約65重量%、約20〜約60重量%、約20〜約55重量%、約25〜約80重量%、約25〜約75重量%、約25〜約70重量%、約25〜約65重量%、約25〜約60重量%、約25〜約55重量%、約30〜約80重量%、約30〜約75重量%、約30〜約70重量%、約30〜約65重量%、約30〜約60重量%、約30〜約55重量%、約35〜約80重量%、約35〜約75重量%、約35〜約70重量%、約35〜約65重量%、約35〜約60重量%、約35〜約55重量%、約40〜約80重量%、約40〜約75重量%、約40〜約70重量%、約40〜約65重量%、約40〜約60重量%、約40〜約55重量%、約45〜約80重量%、約45〜約75重量%、約45〜約70重量%、約45〜約65重量%、約45〜約60重量%、又は約45〜約55重量%の溶解度を有していてよい。施設10を用いてN−ビニルホルムアミドを製造し、且つ溶媒を第1の反応区域20内で用いる場合には、アセトアルデヒド、ホルムアミド、及び1−ヒドロキシエチルホルムアミドの少なくとも1つは、1以上の上記の範囲内の選択された溶媒中における溶解度を有していてよい。
[0029]好適な溶媒としては、例えば、一官能性、二官能性、及び/又は多官能性アルコールのような極性有機溶媒、又は水を挙げることができる。幾つかの態様においては、用いる場合には、第1の反応区域20中に導入する溶媒には、少なくとも1種類のC〜C20アルコール、少なくとも1種類のC〜C18アルコール、少なくとも1種類のC〜C16アルコール、少なくとも1種類のC〜Cアルコール、又は少なくとも1種類のC〜Cアルコールを含ませることができる。存在させる場合には、かかるアルコールは、第1の反応区域20内の溶媒の少なくとも約50重量%、少なくとも約60重量%、少なくとも約70重量%、少なくとも約80重量%、少なくとも約90重量%、又は少なくとも約95重量%、或いは全部を構成することができる。好適な溶媒の更なる例としては、水、メタノール、エタノール、イソプロパノール、イソブタノール、ブタノール、ヘキサノール、ヘプタノール、n−オクタノール、2−エチルヘキサノール、グリセロール、及びこれらの組合せを挙げることができるが、これらに限定されない。幾つかの態様においては、特定の溶媒は第1の反応区域20内では用いず、その結果、これらの溶媒は、第1の反応区域20中に導入される溶媒の全重量を基準として、約20重量%以下、約15重量%以下、約10重量%以下、約5重量%以下、約2重量%以下、又は約1重量%以下の量で存在していてよい。第1の反応区域20内では用いない溶媒の例としては、例えばヘキサン、シクロヘキサン、ヘプタン、オクタン、イソオクタン、デカン、及びメチルシクロヘキサンのような脂肪族炭化水素、並びにトルエン、キシレン、ベンゼン、及びシクロヘキサンのような芳香族炭化水素、並びに上記の2以上の組合せを挙げることができる。幾つかの態様においては、溶媒はホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)を含まない場合がある。
[0030]本発明の幾つかの態様においては、第1の反応区域20中には溶媒は導入せず、又は実質的に導入しない。例えば、第1の反応区域20中に導入される溶媒及び/又は第1の反応区域20内の反応混合物中の溶媒の全量は、最初の反応混合物の全重量を基準として、約20重量%以下、約15重量%以下、約10重量%以下、約5重量%以下、約2重量%以下、又は約1重量%以下であってよい。更なる溶媒を用いない幾つかの態様においては、ライン110及び112を通して第1の反応区域20中に導入される出発材料の一方は、上記で議論した1以上の範囲内で化学量論的に過剰に存在させることができる。
[0031]第1の反応区域20中に導入したら、ホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)及びアセトアルデヒドの少なくとも一部を、塩基性触媒の存在下で反応させて、1−ヒドロキシエチルホルムアミド(又はN−メチル,1−ヒドロキシエチルホルムアミドのような他の1−ヒドロキシエチルカルボキサミド)を形成することができる。第1の反応区域20内の反応媒体の平均温度は、少なくとも約0℃、少なくとも約2℃、少なくとも約5℃、少なくとも約10℃、少なくとも約15℃、又は少なくとも約20℃、及び/又は約55℃以下、約50℃以下、約45℃以下、約40℃以下、約35℃以下、約30℃以下、約25℃以下、又は約20℃以下であってよく、或いはこれは約0〜約55℃、約0〜約50℃、約0〜約45℃、約0〜約40℃、約0〜約35℃、約0〜約30℃、約0〜約25℃、約0〜約20℃、約2〜約55℃、約2〜約50℃、約2〜約45℃、約2〜約40℃、約2〜約35℃、約2〜約30℃、約2〜約25℃、約2〜約20℃、約5〜約55℃、約5〜約50℃、約5〜約45℃、約5〜約40℃、約5〜約35℃、約5〜約30℃、約5〜約25℃、約5〜約20℃、約10〜約55℃、約10〜約50℃、約10〜約45℃、約10〜約40℃、約10〜約35℃、約10〜約30℃、約10〜約25℃、約10〜約20℃、約15〜約55℃、約15〜約50℃、約15〜約45℃、約15〜約40℃、約15〜約35℃、約15〜約30℃、約15〜約25℃、約15〜約20℃、約20〜約55℃、約20〜約50℃、約20〜約45℃、約20〜約40℃、約20〜約35℃、約20〜約30℃、又は約20〜約25℃の範囲であってよい。
[0032]第1の反応区域20内の圧力は、反応混合物を液相中に維持するのに十分な任意の圧力であってよく、例えば、少なくとも約1barゲージ圧、少なくとも約2barゲージ圧、少なくとも約5barゲージ圧、少なくとも約10barゲージ圧、及び/又は約25barゲージ圧以下、約20barゲージ圧以下、約15barゲージ圧以下、又は約12barゲージ圧以下であってよい。圧力は、約1〜約25barゲージ圧、約1〜約20barゲージ圧、約1〜約15barゲージ圧、約1〜約12barゲージ圧、約2〜約25barゲージ圧、約2〜約20barゲージ圧、約2〜約15barゲージ圧、約2〜約12barゲージ圧、約5〜約25barゲージ圧、約5〜約20barゲージ圧、約5〜約15barゲージ圧、約5〜約12barゲージ圧、約10〜約25barゲージ圧、約10〜約20barゲージ圧、約10〜約15barゲージ圧、又は約10〜約12barゲージ圧の範囲であってよい。反応混合物の実際の組成、及び実施する具体的な合成反応によって、他の圧力が好適である可能性がある。
[0033]幾つかの態様においては、第1の反応区域20内で行う反応はバッチ反応であってよく、一方で他の態様においては、それは半バッチ又は連続法で行うことができる。反応は単一の反応容器内で行うことができ、或いは直列又は並列に配列されている2以上の反応容器内で行うことができる。連続撹拌タンク反応器、パイプ反応器又はチューブ状反応器のような栓流反応器、及びこれらの組合せなど(しかしながらこれらに限定されない)の任意の好適なタイプの反応容器を用いることができる。2以上の容器内で実施する場合には、容器は同様のタイプの反応容器(例えば直列又は並列の2つのCSTR反応器)であってよく、或いは反応容器の1以上は異なっていてよい。幾つかの態様においては、第1の反応区域20内での平均滞留時間は、少なくとも約2分、少なくとも約5分、少なくとも約10分、少なくとも約15分、又は少なくとも約20分、及び/又は約5時間以下、約3時間以下、約2時間以下、約1時間以下、又は約45分以下であってよい。他の態様においては、平均滞留時間は、少なくとも約30分、少なくとも約45分、少なくとも約1時間、少なくとも約2時間、又は少なくとも約2.5時間、及び/又は約10時間以下、約8時間以下、約6時間以下、又は約4時間以下であってよい。
[0034]平均滞留時間は、約2分〜約5時間、約2分〜3時間、約2分〜約2時間、約2分〜約1時間、約2分〜約45分、約5分〜約5時間、約5分〜3時間、約5分〜約2時間、約5分〜約1時間、約5分〜約45分、約10分〜約5時間、約10分〜3時間、約10分〜約2時間、約10分〜約1時間、約10分〜約45分、約15分〜約5時間、約15分〜3時間、約15分〜約2時間、約15分〜約1時間、約15分〜約45分、約20分〜約5時間、約20分〜3時間、約20分〜約2時間、約20分〜約1時間、又は約20分〜約45分の範囲であってよい。
[0035]第1の反応区域20内での平均滞留時間は、約30分〜約10時間、約30分〜約8時間、約30分〜約6時間、約30分〜約4時間、約45分〜約10時間、約45分〜約8時間、約45分〜約6時間、約45分〜約4時間、約1時間〜約10時間、約1時間〜約8時間、約1時間〜約6時間、約1時間〜約4時間、約2時間〜約10時間、約2時間〜約8時間、約2時間〜約6時間、約2時間〜約4時間、約2.5時間〜約10時間、約2.5時間〜約8時間、約2.5時間〜約6時間、又は約2.5時間〜約4時間の範囲であってよい。
[0036]本発明の種々の態様によれば、第1の反応区域内で形成される反応生成物の全部又は実質的に全部をその形成時に溶解状態に維持して、反応生成物の全量の例えば約20%以下、約15%以下、約10%以下、約5%以下、約2%以下、又は約1%以下が第1の反応区域20内で溶液から晶析又は沈澱析出するようにすることができる。幾つかの態様においては、反応生成物の少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、少なくとも約95重量%、少なくとも約97重量%、又は少なくとも約99重量%、或いは全部を、その形成時に溶解状態に維持することができる。幾つかの場合においては、反応生成物は1−ヒドロキシエチルホルムアミドであってよく、或いはそれは、例えばN−メチル,1−ヒドロキシエチルホルムアミドのような任意の他の好適な1−ヒドロキシエチルカルボキサミドであってよい。その結果、第1の反応区域内における反応混合物の全固形分含量は、約15重量%以下、約10重量%以下、約8重量%以下、約5重量%以下、約3重量%以下、約2重量%以下、約1重量%以下、又は約0.5重量%以下にすることができる。本明細書において用いる「全固形分含量」という用語は、与えられた流れの中の固形分の、流れの全重量を基準とする重量基準の濃度を指す。流れの乾燥重量は、濾過後の試料の残渣を秤量することによって測定される。
[0037]N−ビニルカルボン酸アミドを製造するための殆どの従来の方法とは異なり、施設10には、第1の反応区域20と第2の反応区域30の間に介在する固体処理工程を含めないことができる。施設10に存在しないかかる固体処理工程としては、第1の反応区域20内で形成される中間体生成物の結晶化又は沈澱、洗浄、濾過、及び再溶解を挙げることができるが、これらに限定されない。第1の反応区域20内で形成される反応生成物の少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、少なくとも約95重量%、少なくとも約97重量%、又は少なくとも約99重量%を溶解状態に維持することによって、かかる更なる工程を排除することができる。更に、第1の反応区域20内でシード結晶を加えること、又は反応混合物を冷却することのような工程を除外して、それによって中間体反応生成物の可能な限り多くを反応媒体と共に溶解状態に維持することもできる。
[0038]第1の反応区域20内で行う反応によって達成される全収率は、少なくとも約45%、少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は少なくとも約97%にすることができる。ここで用いる「収率」という用語は、パーセントとして表される理論収量に対する実際の収量の比を指す。ここで用いる「理論収量」という用語は、限定試薬の求められる生成物への完全な反応に基づいて期待される生成物の量を指し、「実際の収量」という用語は、実際に製造された生成物の量を指す。更に、第1の反応区域20内で行う反応は、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は少なくとも約97%の所望の反応生成物への選択率を示すことができる。N−ビニルホルムアミドを製造するために施設10を用いる場合には、第1の反応区域20からの1−ヒドロキシエチルホルムアミドの収率及び選択率は、1以上の上記の範囲内にすることができる。ここで用いる「選択率」という用語は、反応区域内で形成される生成物の全量に対する所望の最終生成物のモル比を指す。例えば、第1の反応区域20において、1−ヒドロキシエチルホルムアミドの選択率は、反応区域20中に導入される試薬の1つから生成する生成物の全モル数に対する1−ヒドロキシエチルホルムアミドの全モル数の比として定義することができる。同様に、施設10を用いてN−メチル,N−ビニルホルムアミドを製造する場合には、第1の反応区域20におけるN−メチル,1−ヒドロキシエチルホルムアミドの選択率は、第1の反応区域20中に導入されるN−メチルホルムアミドから生成する生成物の全モル数に対するN−メチル,1−ヒドロキシエチルホルムアミドの全モル数として定義することができる。他のN−ビニルカルボン酸アミドを製造する方法は、同じようにして定義される第1の反応区域20の選択率を有する。
[0039]第1の反応区域20内の反応が完了したら、図1に示されるように、1−ヒドロキシエチルホルムアミド(又はN−メチル,1−ヒドロキシエチルホルムアミドのような他の1−ヒドロキシエチルカルボキサミド)を含む液体反応混合物を、ライン116を通して第1の反応区域20から排出することができる。幾つかの態様においては、反応混合物は単一相の液体流であってよく、一方で他の態様においては、それは2相の液体流であってよい。しかしながら、幾つかの従来の方法とは異なり、ライン116内の流れはスラリーではない可能性がある。1−ヒドロキシエチルホルムアミドに加えて、ライン116内の流れは、ホルムアミド、及び場合によっては1種類以上の溶媒を更に含んでいてよい。ライン116内の流れが溶媒を含む場合には、溶媒は、流れの全重量を基準として少なくとも約5重量%、少なくとも約10重量%、少なくとも約15重量%、少なくとも約20重量%、少なくとも約30重量%、又は少なくとも約40重量%の量で存在していてよい。溶媒としては、上記に記載した溶媒の1以上を挙げることができ、用いる場合には、通常は第1の反応区域20内で用いる溶媒と同じである。しかしながら、上記で議論したように、幾つかの態様においては、第1の反応区域20において溶媒を用いない可能性があり、かかる場合においては、ライン116内の流れは、流れの全重量を基準として約20重量%以下、約15重量%以下、約10重量%以下、約5重量%以下、約2重量%以下、又は約1重量%以下の溶媒を含んでいてよい。
[0040]更に、幾つかの態様においては、ライン116を通して第1の反応区域20から排出される反応混合物は、過剰のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)を含んでいてよい。例えば、幾つかの態様においては、ライン116内の流れは、ライン116内の流れの全重量を基準として、少なくとも約1重量%、少なくとも約2重量%、少なくとも約5重量%、少なくとも約8重量%、少なくとも約10重量%、少なくとも約15重量%、少なくとも約20重量%、少なくとも約25重量%、又は少なくとも約30重量%のホルムアミド、及び/又は約60重量%以下、約55重量%以下、約50重量%以下、約45重量%以下、約40重量%以下、又は約35重量%以下のホルムアミドを含んでいてよい。
[0041]第1の反応区域20から排出されるライン116内の流れの中のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)の量は、ライン116内の流れの全重量を基準として、約1〜約60重量%、約1〜約55重量%、約1〜約50重量%、約1〜約45重量%、約1〜約40重量%、約1〜約35重量%、約2〜約60重量%、約2〜約55重量%、約2〜約50重量%、約2〜約45重量%、約2〜約40重量%、約2〜約35重量%、約5〜約60重量%、約5〜約55重量%、約5〜約50重量%、約5〜約45重量%、約5〜約40重量%、約5〜約35重量%、約8〜約60重量%、約8〜約55重量%、約8〜約50重量%、約8〜約45重量%、約8〜約40重量%、約8〜約35重量%、約10〜約60重量%、約10〜約55重量%、約10〜約50重量%、約10〜約45重量%、約10〜約40重量%、約10〜約35重量%、約15〜約60重量%、約15〜約55重量%、約15〜約50重量%、約15〜約45重量%、約15〜約40重量%、約15〜約35重量%、約20〜約60重量%、約20〜約55重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、約20〜約35重量%、約25〜約60重量%、約25〜約55重量%、約25〜約50重量%、約25〜約45重量%、約25〜約40重量%、又は約25〜約35重量%の範囲であってよい。
[0042]ライン116を通して第1の反応区域20から排出される流れの中のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)と1−ヒドロキシエチルホルムアミド(又はN−メチル,1−ヒドロキシエチルホルムアミドのような他の1−ヒドロキシエチルカルボキサミド)とのモル比は、少なくとも約1.05:1、少なくとも約1.1:1、少なくとも約1.15:1、又は少なくとも約1.2:1、及び/又は約5:1以下、約3:1以下、約2.5:1以下、約2:1以下、約1.75:1以下であってよく、或いはこれは約1.05:1〜約5:1、約1.05:1〜約3:1、約1.05:1〜約2.5:1、約1.05:1〜約2:1、約1.05:1〜約1.75:1、約1.1:1〜約5:1、約1.1:1〜約3:1、約1.1:1〜約2.5:1、約1.1:1〜約2:1、約1.1:1〜約1.75:1、約1.15:1〜約5:1、約1.15:1〜約3:1、約1.15:1〜約2.5:1、約1.15:1〜約2:1、約1.15:1〜約1.75:1、約1.2:1〜約5:1、約1.2:1〜約3:1、約1.2:1〜約2.5:1、約1.2:1〜約2:1、又は約1.2:1〜約1.75:1の範囲であってよい。
[0043]更に、ライン116を通して第1の反応区域20から排出される反応混合物は、例えば未反応の出発材料、望ましくない副反応生成物、残留溶媒、及び/又は触媒のような少量の他の成分を含む可能性がある。幾つかの態様においては、存在する場合には、触媒、未反応のアセトアルデヒド、残留溶媒、及び/又は反応副生成物などのこれらの他の成分の全量は、ライン116内の流れの全重量を基準として約10重量%以下、約8重量%以下、約5重量%以下、約3重量%以下、約2重量%以下、又は約1重量%以下であってよい。
[0044]幾つかの態様においては、第1の反応区域20中に導入されるホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)の少なくとも一部は、施設10の他の部分から再循環することができる。例えば、幾つかの態様においては、第1の反応区域20に加えるホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)の全量の少なくとも約10重量%、少なくとも約20重量%、少なくとも約30重量%、少なくとも約40重量%、少なくとも約50重量%、少なくとも約60重量%、少なくとも約70重量%、少なくとも約80重量%、又は少なくとも約90重量%は、施設10の他の部分から再循環することができる。他の態様においては、第1の反応区域中に導入するホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)の全量の約40重量%以下、約30重量%以下、約25重量%以下、約20重量%以下、約10重量%以下、又は約5重量%以下は、施設10の他の部分から再循環することができる。
[0045]例えば、図1に示されるように、ライン110を通して第1の反応区域20中に導入されるホルムアミドの少なくとも一部は、まだ議論していないホルムアミド精製及び再循環区域64及び74から、ライン150内でもたらすことができ、一方で、ライン110を通して第1の反応区域20中に導入されるホルムアミドの少なくとも一部は、初めて施設10中に導入される「新しい」ホルムアミドであってよい。幾つかの態様においては、ホルムアミドの全部又は実質的に全部が新しいホルムアミドであってよく、一方で他の態様においては、ホルムアミドの全部又は実質的に全部が、ライン150を通して第1の反応区域20に再循環されるものであってよい。そうでなければ、第1の反応区域20中に導入されるホルムアミドの少なくとも一部は新しいものであってよく、一方で他の部分は施設10内から再循環することができる。
[0046]図1に戻って参照すると、ライン116内の流れは、次に第2の反応区域30中に導入することができる。既に議論したように、且つN−ビニルホルムアミドを製造するための従来の方法とは正反対に、これは介在する固体処理工程を用いずに行って、ライン116内の第1の反応区域20から排出される流れの主要部分(又は全部)を、介在するプロセス工程を行うことなく第2の反応区域30に連続して送ることができるようにすることができる。幾つかの態様においては、ライン116を通して第1の反応区域20から排出される流れの少なくとも約60重量%、少なくとも約70重量%、少なくとも約80重量%、少なくとも約90重量%、又は少なくとも約95重量%を、濾過、洗浄、再溶解などのような固体処理工程などの介在するプロセス工程を行わずに第2の反応区域30に送ることができる。
[0047]第2の反応区域30中に導入したら、ライン116内の流れを、ライン118内の少なくとも1種類のアルコール、及びライン120内の触媒と混合することができる。混合は任意の好適な方法で行うことができ、例えば、混合した流れを反応容器中に導入する前に、単一の導管内で第1の反応混合物をアルコール及び/又は触媒と混合することを含めることができ、或いは第1の反応混合物をアルコール及び/又は触媒と一緒に反応容器中に同時に加えることを含めることができる(図示せず)。混合したら、第1の反応混合物中の1−ヒドロキシエチルホルムアミドの少なくとも一部をアルコールによってアルコキシル化して、1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)を含む第2の反応混合物を与えることができる。図1においては別々の反応区域20及び30において実施するように示されているが、アセトアルデヒドとホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)との間の反応は、1−ヒドロキシエチルホルムアミド(又はN−メチル,1−ヒドロキシエチルホルムアミドのような他の1−ヒドロキシエチルカルボキサミド)のアルコキシル化と同じ反応容器内で行うことができる。かかる場合には、単一の反応容器を用いて、アルコール及び酸触媒を、反応中の幾つかの時点において、容器から第1の反応混合物を除去しないで、反応器内の第1の反応混合物に単純に加える。或いは、上記で議論したように、第1の反応混合物を第1の反応区域20から排出し、次に介在するプロセス工程を行わないで第2の反応区域30内の他の反応器(図示せず)に加えることができる。
[0048]幾つかの態様においては、アルコールは、ライン118内の流れの中の第2の反応区域30に加えられるアルコールと、ライン116内の流れの中の第2の反応区域30中に導入される1−ヒドロキシエチルホルムアミド(又は、N−メチル,1−ヒドロキシエチルホルムアミドのような他の1−ヒドロキシエチルカルボキサミド)の量との比が、少なくとも約0.5:1、少なくとも約0.6:1、少なくとも約0.75:1、少なくとも約0.80:1、少なくとも約0.90:1、又は少なくとも約1:1、及び/又は約3:1以下、約2:1以下、約1.5:1以下、約1.25:1以下、又は約1.15:1以下になるように、或いはこれが約0.5:1〜約3:1、約0.5:1〜約2:1、約0.5:1〜約1.5:1、約0.5:1〜約1.25:1、約0.5:1〜約1.15:1、約0.6:1〜約3:1、約0.6:1〜約2:1、約0.6:1〜約1.5:1、約0.6:1〜約1.25:1、約0.6:1〜約1.15:1、約0.75:1〜約3:1、約0.75:1〜約2:1、約0.75:1〜約1.5:1、約0.75:1〜約1.25:1、約0.75:1〜約1.15:1、約0.8:1〜約3:1、約0.8:1〜約2:1、約0.8:1〜約1.5:1、約0.8:1〜約1.25:1、約0.8:1〜約1.15:1、約0.9:1〜約3:1、約0.9:1〜約2:1、約0.9:1〜約1.5:1、約0.9:1〜約1.25:1、約0.9:1〜約1.15:1、約1:1〜約3:1、約1:1〜約2:1、約1:1〜約1.5:1、約1:1〜約1.25:1、又は約1:1〜約1.15:1の範囲になるように反応混合物に加えることができる。
[0049]第2の反応区域30に加えるアルコールは、第2の反応区域30に加える出発材料の全重量の少なくとも約10重量%、少なくとも約15重量%、少なくとも約20重量%、少なくとも約25重量%、少なくとも約30重量%、又は少なくとも約35重量%、及び/又は約55重量%以下、約50重量%以下、約45重量%以下、約40重量%以下を構成することができる。幾つかの態様においては、これは、アルコキシル化反応のために必要な量より多いアルコールの化学量論的過剰状態を表すことができる。幾つかの態様においては、出発材料の全重量には、ライン116内の第1の反応区域20から排出される第1の反応混合物、ライン118を通して第2の反応区域30に加えられるアルコール、及びライン120を通して第2の反応区域30に加えられる触媒を含む。
[0050]アルコールは、第2の反応区域30に加える出発材料の全重量を基準として、約10〜約55重量%、約10〜約50重量%、約10〜約45重量%、約10〜約40重量%、約15〜約55重量%、約15〜約50重量%、約15〜約45重量%、約15〜約40重量%、約20〜約55重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、約25〜約55重量%、約25〜約50重量%、約25〜約45重量%、約25〜約40重量%、約30〜約55重量%、約30〜約50重量%、約30〜約45重量%、約30〜約40重量%、約35〜約55重量%、約35〜約50重量%、約35〜約45重量%、又は約35〜約40重量%の範囲の量で第2の反応区域30内に存在させることができる。
[0051]ライン118を通して第2の反応区域30に加えるアルコールとしては、第2の反応区域30内で1−ヒドロキシエチルホルムアミド(又はN−メチル,1−ヒドロキシエチルホルムアミドのような他の1−ヒドロキシエチルカルボキサミド)のアルコキシル化に関与するのに十分なヒドロキシル官能性を有する任意の化合物を挙げることができる。幾つかの態様においては、第2の反応区域30に加えるアルコールとしては、第1級又は第2級アルコールを挙げることができるが、多価アルコールを用いることができる。更に、アルコールには、単一のタイプのアルコール、又は2種類以上のアルコールの混合物を含ませることができる。第1の反応区域20に溶媒を加える場合には、ライン118内のアルコールは溶媒と同じか又は異なっていてよい。幾つかの態様においては、ライン118を通して第2の反応区域30に加えるアルコールとしては、少なくとも1種類のC〜C12アルコール、少なくとも1種類のC〜C10アルコール、又は少なくとも1種類のC〜Cアルコールを挙げることができる。好適なアルコールの例としては、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、n−ブタノール、イソブチルアルコール、2−ブチルアルコール、n−ペンタノール、n−ヘキサノール、n−ヘプタノール、n−オクタノール、ベンジルアルコール、2−メトキシエタノール、2−エトキシエタノール、2−プロポキシエタノール、2−ブトキシエタノール、ジエチレングリコールモノメチルエーテル、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、ジエチレングリコール、及びこれらの組合せを挙げることができるが、これらに限定されない。幾つかの態様においては、第2の反応区域30中に導入するアルコールは、メタノール、エタノール、n−プロパノール、n−ブタノール、イソブチルアルコール、2−エチルヘキサノール、及びこれらの組合せからなる群から選択することができる。
[0052]更に、図1に示されるように、及び下記において詳細に議論するように、第2の反応区域30中に導入するアルコールの少なくとも一部は、施設10の他の部分から再循環することができる。例えば、幾つかの態様においては、第2の反応区域30に加えるアルコールの全量の少なくとも10重量%、少なくとも20重量%、少なくとも約30重量%、少なくとも約40重量%、少なくとも約50重量%、少なくとも約60重量%、少なくとも約70重量%、少なくとも約80重量%、又は少なくとも約90重量%は、施設10の他の部分から再循環することができる。他の態様においては、第2の反応区域中に導入するアルコールの全量の約40重量%以下、約30重量%以下、約25重量%以下、約20重量%以下、約10重量%以下、又は約5重量%以下は、施設10の他の部分から再循環することができる。再循環したアルコールを用いる場合には、ライン118を通して第2の反応区域30中に導入するアルコールの少なくとも一部は、ライン119内で、未だ議論していないアルコール精製及び再循環工程72からもたらすことができ、一方でライン118を通して第2の反応区域30中に導入するアルコールの少なくとも一部は、初めて施設10中に導入される「新しい」アルコールであってよい。幾つかの態様において、アルコールの全部又は実質的に全部がライン117からの新しいアルコールであってよく、一方で他の態様においては、アルコールの全部又は実質的に全部が、ライン119を通して第2の反応区域に再循環されるものであってよい。そうでなければ、第2の反応区域30中に導入されるアルコールの少なくとも一部は新しいアルコールであってよく、第2の反応区域30中に導入されるアルコールの他の部分は施設10の他の領域から再循環することができる。
[0053]上記で議論したように、少なくとも1種類の酸触媒を、ライン120を通して第2の反応区域30に加えることもできる。幾つかの態様においては、ライン120を通して第2の反応区域30に加える酸触媒の量は、第2の反応区域30に加える成分の全重量を基準として、少なくとも約0.10重量%、少なくとも約0.20重量%、少なくとも約0.25重量%、少なくとも約0.30重量%、又は少なくとも約0.35重量%、及び/又は約10重量%以下、約7.5重量%以下、約5重量%以下、約3重量%以下、約2重量%以下、約1.5重量%以下、約1.25重量%以下、約1重量%以下であってよい。ライン120を通して第2の反応区域30に加える触媒の量は、第2の反応区域30に加える成分の全重量を基準として、約0.10〜約10重量%、約0.10〜約7.5重量%、約0.10〜約5重量%、約0.10〜約3重量%、約0.10〜約2重量%、約0.10〜約1.5重量%、約0.10〜約1.25重量%、約0.10〜約1重量%、約0.20〜約10重量%、約0.20〜約7.5重量%、約0.20〜約5重量%、約0.20〜約3重量%、約0.20〜約2重量%、約0.20〜約1.5重量%、約0.20〜約1.25重量%、約0.20〜約1重量%、約0.25〜約10重量%、約0.25〜約7.5重量%、約0.25〜約5重量%、約0.25〜約3重量%、約0.25〜約2重量%、約0.25〜約1.5重量%、約0.25〜約1.25重量%、約0.25〜約1重量%、約0.30〜約10重量%、約0.30〜約7.5重量%、約0.30〜約5重量%、約0.30〜約3重量%、約0.30〜約2重量%、約0.30〜約1.5重量%、約0.30〜約1.25重量%、約0.30〜約1重量%、約0.35〜約10重量%、約0.35〜約7.5重量%、約0.35〜約5重量%、約0.35〜約3重量%、約0.35〜約2重量%、約0.35〜約1.5重量%、約0.35〜約1.25重量%、又は約0.35〜約1重量%の範囲であってよい。
[0054]ライン118を通して加えるアルコールと、ライン116を通して第2の反応区域30中に導入する1−ヒドロキシエチルホルムアミド(又はN−メチル,1−ヒドロキシエチルホルムアミドのような他の1−ヒドロキシエチルカルボキサミド)との間のアルコキシル化反応を促進するための任意の好適なタイプの触媒を用いることができる。触媒は、例えば強酸触媒又は弱酸触媒のような酸触媒であってよい。触媒は、有機又は無機であってよい。これは、反応混合物中に少なくとも部分的に可能である均一系触媒、又はそれを通して反応媒体が通過する不均一系触媒であってよい。好適な酸触媒の例としては、鉱酸、有機酸、弱酸性又は強酸性を有する酸性イオン交換樹脂、及び例えばイオン交換樹脂のような固体酸触媒を挙げることができるが、これらに限定されない。幾つかの態様においては、ライン120を通して第2の反応区域30に加える酸触媒は、硫酸、塩酸、硝酸、臭化水素酸、スルホン酸、メタンスルホン酸、エタンスルホン酸、パラトルエンスルホン酸、架橋ポリスチレンスルホン酸、及びこれらの組合せからなる群から選択することができる。
[0055]第2の反応区域30中に導入したら、1−ヒドロキシエチルホルムアミド(又はN−メチル,1−ヒドロキシエチルホルムアミドのような他の1−ヒドロキシエチルカルボキサミド)の少なくとも一部をアルコールの存在下でアルコキシル化して、それによって1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)を含む第2の反応混合物を形成することができる。幾つかの態様においては、アルコールがエタノールである場合には、第2の反応区域30内で形成される反応生成物は、1−エトキシエチルホルムアミド又はN−メチル,1−エトキシエチルホルムアミドを含んでいてよい。第1の反応区域20内の反応媒体の平均温度は、少なくとも約10℃、少なくとも約15℃、少なくとも約20℃、少なくとも約25℃、又は少なくとも約30℃、及び/又は約60℃以下、約55℃以下、約50℃以下、約45℃以下、約40℃以下であってよく、或いはこれは約10〜約60℃、約10〜約55℃、約10〜約50℃、約10〜約45℃、約10〜約40℃、約15〜約60℃、約15〜約55℃、約15〜約50℃、約15〜約45℃、約15〜約40℃、約20〜約60℃、約20〜約55℃、約20〜約50℃、約20〜約45℃、約20〜約40℃、約25〜約60℃、約25〜約55℃、約25〜約50℃、約25〜約45℃、約25〜約40℃、約30〜約60℃、約30〜約55℃、約30〜約50℃、約30〜約45℃、又は約30〜約40℃の範囲であってよい。
[0056]第2の反応区域30内の圧力は、反応混合物を液相中に維持するのに十分な任意の圧力であってよく、大気圧又は大気圧付近であってよい。幾つかの態様においては、第2の反応区域30内の圧力は、例えば少なくとも約1barゲージ圧、少なくとも約2barゲージ圧、又は少なくとも約3barゲージ圧、及び/又は約15barゲージ圧以下、約12barゲージ圧以下、約10barゲージ圧以下であってよい。第2の反応区域30内の圧力は、約1〜約15barゲージ圧、約1〜約12barゲージ圧、約1〜約10barゲージ圧、又は約1〜約5barゲージ圧、約2〜約15barゲージ圧、約2〜約12barゲージ圧、約2〜約10barゲージ圧、又は約2〜約5barゲージ圧、約3〜約15barゲージ圧、約3〜約12barゲージ圧、約3〜約10barゲージ圧、又は約3〜約5barゲージ圧の範囲であってよい。反応混合物の実際の組成、及び実施する具体的な合成反応によって、他の圧力が好適である可能性がある。
[0057]幾つかの態様においては、第2の反応区域30内で行う反応はバッチ反応であってよく、一方で他の態様においては、これは半バッチ又は連続的に行うことができる。反応は単一の反応容器内で行うことができ、或いは直列又は並列に配列されている2以上の反応容器内で行うことができる。連続撹拌タンク反応器、パイプ反応器又はチューブ状反応器のような栓流反応器、及びこれらの組合せなど(しかしながらこれらに限定されない)の任意の好適なタイプの反応容器を用いることができる。2以上の容器内で実施する場合には、容器は同様のタイプの反応容器(例えば直列又は並列の2つのCSTR反応器)であってよく、或いは反応容器の1以上は異なっていてよい。幾つかの態様においては、第2の反応区域30内での平均滞留時間は、少なくとも約30分、少なくとも約45分、少なくとも約1時間、少なくとも約2時間、又は少なくとも約2.5時間、及び/又は約10時間以下、約8時間以下、約6時間以下、又は約4時間以下であってよい。
[0058]第2の反応区域30内での平均滞留時間は、約30分〜約10時間、約30分〜約8時間、約30分〜約6時間、約30分〜約4時間、約45分〜約10時間、約45分〜約8時間、約45分〜約6時間、約45分〜約4時間、約1時間〜約10時間、約1時間〜約8時間、約1時間〜約6時間、約1時間〜約4時間、約2時間〜約10時間、約2時間〜約8時間、約2時間〜約6時間、約2時間〜約4時間、約2.5時間〜10時間、約2.5時間〜約8時間、約2.5時間〜約6時間、又は約2.5時間〜約4時間の範囲であってよい。
[0059]第2の反応区域30内で行う反応によって達成される1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)の全収率は、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約92%、又は少なくとも約95%にすることができる。ここで用いる「収率」という用語は、パーセントとして表される理論収量に対する実際の収量の比を指す。ここで用いる「理論収量」という用語は、限定試薬の求められる生成物への完全な反応に基づいて期待される生成物の量を指し、「実際の収量」という用語は、実際に製造された生成物の量を指す。更に、第1の反応区域20内で行う反応は、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は少なくとも約98%の1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)への選択率を示すことができる。
[0060]図1に示されるように、反応が完了したら、1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)を含む反応混合物を、ライン122を通して第2の反応区域30から排出することができる。幾つかの態様においては、ライン122内の流れは、少なくとも約30重量%、少なくとも約35重量%、少なくとも約40重量%、少なくとも約45重量%、又は少なくとも約50重量%の1−アルコキシエチルホルムアミド、及び/又は約90重量%以下、約80重量%以下、約70重量%以下、又は約60重量%以下の1−アルコキシエチルホルムアミドを含んでいてよく、或いは1−アルコキシエチルホルムアミドは、約30〜約90重量%、約30〜約80重量%、約30〜約70重量%、約30〜約60重量%、約35〜約90重量%、約35〜約80重量%、約35〜約70重量%、約35〜約60重量%、約40〜約90重量%、約40〜約80重量%、約40〜約70重量%、約40〜約60重量%、約45〜約90重量%、約45〜約80重量%、約45〜約70重量%、約45〜約60重量%、約50〜約90重量%、約50〜約80重量%、約50〜約70重量%、又は約50〜約60重量%の範囲の量で存在していてよい。
[0061]1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)に加えて、ライン122内の流れはまた、過剰のアルコールを、触媒、副生成物、及び幾つかの態様においては過剰のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)と共に含む可能性がある。幾つかの態様においては、ライン122を通して第2の反応区域30から排出される反応混合物は、ライン122内の流れの全重量を基準として、少なくとも約5重量%、少なくとも約10重量%、少なくとも約15重量%、又は少なくとも約20重量%、及び/又は約50重量%以下、約40重量%以下、約30重量%以下のアルコールを含んでいてよい。通常は、ライン122内のアルコールは、ライン118を通して第2の反応区域30中に導入されるものと同じタイプのアルコールである。ライン122内の反応混合物中のアルコールの量は、ライン122内の流れの全重量を基準として、約5〜約50重量%、約5〜約40重量%、約5〜約30重量%、約10〜約50重量%、約10〜約40重量%、約10〜約30重量%、約15〜約50重量%、約15〜約40重量%、又は約15〜約30重量%、約20〜約50重量%、約20〜約40重量%、又は約20〜約30重量%の範囲であってよい。
[0062]幾つかの態様においては、ライン122内の流れの中のアルコールと1−アルコキシエチルホルムアミド(又は他の1−アルコキシエチルカルボキサミド)とのモル比は、少なくとも約0.75:1、少なくとも約0.85:1、少なくとも約0.95:1、少なくとも約1:1、少なくとも約1.1:1、少なくとも約1.2:1、又は少なくとも約1.3:1、及び/又は約5:1以下、約3:1以下、約2.5:1以下、約2.25:1以下、約2:1以下、又は約1.5:1以下であってよい。ライン122内の流れの中のアルコールと1−アルコキシエチルホルムアミドとのモル比は、約0.75:1〜約5:1、約0.75:1〜約3:1、約0.75:1〜約2:1、約0.75:1〜約2.25:1、約0.75:1〜約2:1、約0.75:1〜約1.5:1、約0.85:1〜約5:1、約0.85:1〜約3:1、約0.85:1〜約2:1、約0.85:1〜約2.25:1、約0.85:1〜約2:1、約0.85:1〜約1.5:1、約0.95:1〜約5:1、約0.95:1〜約3:1、約0.95:1〜約2:1、約0.95:1〜約2.25:1、約0.95:1〜約2:1、約0.95:1〜約1.5:1、約1:1〜約5:1、約1:1〜約3:1、約1:1〜約2:1、約1:1〜約2.25:1、約1:1〜約2:1、約1:1〜約1.5:1、約1.1:1〜約5:1、約1.1:1〜約3:1、約1.1:1〜約2:1、約1.1:1〜約2.25:1、約1.1:1〜約2:1、約1.1:1〜約1.5:1、約1.2:1〜約5:1、約1.2:1〜約3:1、約1.2:1〜約2:1、約1.2:1〜約2.25:1、約1.2:1〜約2:1、約1.2:1〜約1.5:1、約1.3:1〜約5:1、約1.3:1〜約3:1、約1.3:1〜約2:1、約1.3:1〜約2.25:1、約1.3:1〜約2:1、又は約1.3:1〜約1.5:1の範囲であってよい。
[0063]幾つかの態様においては、ライン122内の第2の反応区域30から排出される反応混合物はまた、過剰のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)も含む可能性がある。例えば、ライン122内の流れは、ライン122内の反応混合物の全重量を基準として、少なくとも約1重量%、少なくとも約2重量%、少なくとも約5重量%、少なくとも約10重量%、少なくとも約15重量%、少なくとも約20重量%、及び/又は約70重量%以下、約60重量%以下、約50重量%以下、約45重量%以下、約40重量%以下、約35重量%以下、約30重量%以下、又は約25重量%以下のホルムアミドを含んでいてよい。これは、第2の反応区域30からの流出液中に微量のホルムアミドしか含まない多くの従来の方法とは対照的である。
[0064]ライン122内の第2の反応区域30から排出される反応混合物中のホルムアミドの全量は、ライン122内の流れの全重量を基準として、約1〜約70重量%、約1〜約60重量%、約1〜約50重量%、約1〜約45重量%、約1〜約40重量%、約1〜約35重量%、約1〜約30重量%、約1〜約25重量%、約2〜約70重量%、約2〜約60重量%、約2〜約50重量%、約2〜約45重量%、約2〜約40重量%、約2〜約35重量%、約2〜約30重量%、約2〜約25重量%、約5〜約70重量%、約5〜約60重量%、約5〜約50重量%、約5〜約45重量%、約5〜約40重量%、約5〜約35重量%、約5〜約30重量%、約5〜約25重量%、約10〜約70重量%、約10〜約60重量%、約10〜約50重量%、約10〜約45重量%、約10〜約40重量%、約10〜約35重量%、約10〜約30重量%、約10〜約25重量%、約15〜約70重量%、約15〜約60重量%、約15〜約50重量%、約15〜約45重量%、約15〜約40重量%、約15〜約35重量%、約15〜約30重量%、約15〜約25重量%、約20〜約70重量%、約20〜約60重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、約20〜約35重量%、約20〜約30重量%、又は約20〜約25重量%の範囲であってよい。
[0065]幾つかの態様においては、ライン122内の第2の反応区域30から排出される流れの中のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)と1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)とのモル比は、少なくとも約1.05:1、少なくとも約1.1:1、少なくとも約1.15:1、少なくとも約1.2:1、少なくとも約1.3、又は少なくとも約1.5、及び/又は約3:1以下、約2.5:1以下、約2:1以下、約1.75:1以下であってよく、或いはそれは約1.05:1〜約3:1、約1.05:1〜約2.5:1、約1.05:1〜約2:1、約1.05:1〜約1.75:1、約1.1:1〜約3:1、約1.1:1〜約2.5:1、約1.1:1〜約2:1、約1.1:1〜約1.75:1、約1.15:1〜約3:1、約1.15:1〜約2.5:1、約1.15:1〜約2:1、約1.15:1〜約1.75:1、約1.2:1〜約3:1、約1.2:1〜約2.5:1、約1.2:1〜約2:1、約1.2:1〜約1.75:1、約1.3:1〜約3:1、約1.3:1〜約2.5:1、約1.3:1〜約2:1、約1.3:1〜約1.75:1、約1.5:1〜約3:1、約1.5:1〜約2.5:1、約1.5:1〜約2:1、又は約1.5:1〜約1.75:1の範囲であってよい。
[0066]更に、ライン122を通して第2の反応区域30から排出される反応混合物は、例えば未反応の出発材料、残留溶媒、副反応生成物、及び触媒のような少量の他の成分を含む可能性がある。これはまた、アルコキシル化反応の副生成物である水も含む可能性がある。幾つかの態様においては、ライン122内の流れの中に存在する1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)、及びホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)以外の成分の全量は、ライン122内の流れの全重量を基準として、約20重量%以下、約15重量%以下、約10重量%以下、又は約8重量%以下であってよく、水は、少なくとも約2重量%、少なくとも約4重量%、少なくとも約6重量%、及び/又は約12重量%以下、約10重量%以下、又は約8重量%以下の量で存在していてよい。幾つかの態様においては、ライン112内の流れは、ライン122内の流れの全重量を基準として、約2〜約12重量%、約2〜約10重量%、約2〜約8重量%、約4〜約12重量%、約4〜約10重量%、約4〜約8重量%、約6〜約12重量%、約6〜約10重量%、又は約6〜約8重量%の範囲の量の水を含んでいてよい。残留溶媒、触媒、及び/又は副生成物のような他の成分は、ライン112内の流れの全重量を基準として約5重量%以下、約3重量%以下、約2重量%以下、又は約1重量%以下の量で存在していてよい。
[0067]図1に示されるように、第2の反応区域30から排出される反応混合物は、中間体分離区域40中に導入することができる。図1に示す態様においては、中間体分離区域40は、アルコール/水蒸留カラム42、アルコール精製カラム44、及び1−アルコキシエチルホルムアミド蒸留カラム46を含む。アルコール/水蒸留カラム42、アルコール精製カラム44、1−アルコキシエチルホルムアミド蒸留カラム46のそれぞれには、そのカラム中に導入される供給流を、特定の成分が負荷された2以上の生成物流に分離するための任意の好適なタイプの蒸留カラムを含ませることができる。1以上のカラムには、トレイ、ランダム充填材、又は構造化充填材のような好適な内部部品を含ませることができ、所望の分離を達成するために必要な多さの分離段を用いることができる。1以上のカラムは、フラッシュ蒸発又はワイプ膜式/流下膜式蒸発カラムであってよい。更に、図1においては単一のカラムとして示されているが、直列又は並列に配列されている2以上のカラムを用いて同様の分離を行うことができることを理解すべきである。バルブ、ポンプ、制御弁、還流凝縮器、及びリボイラーのような他の装置は示していないが、必要に応じて且つ当業者によって理解されるように含ませることができる。
[0068]図1に示されるように、ライン122内の第2の反応区域30から排出される反応混合物はアルコール/水蒸留カラム42中に導入することができ、そこでライン124内の塔頂蒸気流、及びライン130内の塔底液体流に分離する。ライン124内の蒸気流は水及びエタノールを富化させることができ、一方で塔底流は1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)及びホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)を富化させることができる。本明細書において用いる「富化」という用語は、それから分離される流れの中に元々存在する所定の成分の全量の少なくとも50%を含む分離された流れを指す。例えば、蒸留カラムから排出される成分Xが富化された流れは、その蒸留カラム中に導入された成分Xの全重量の少なくとも50%を含む。
[0069]幾つかの態様においては、ライン124内のアルコール/水蒸留カラム42から排出される塔頂流は、アルコール/水蒸留カラム42中に導入される水及び/又はエタノールの全量の少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%、又は少なくとも約90%を含む。同様に、幾つかの態様においては、ライン130内の塔底液体流は、アルコール/水蒸留カラム42中に導入されるホルムアミド及び/又は1−アルコキシエチルホルムアミドの全量の少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%、又は少なくとも約90%を含んでいてよい。
[0070]ライン124内のアルコール/水蒸留カラム42から排出される塔頂流は、ライン124内の流れの全重量を基準として、少なくとも約50重量%、少なくとも約60重量%、少なくとも約65重量%、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、少なくとも約95重量%のアルコール及び水を含んでいてよい。アルコール及び水は、個々に、ライン124内の流れの全重量を基準として、少なくとも約20重量%、少なくとも約25重量%、少なくとも約30重量%、少なくとも約35重量%、少なくとも約40重量%、及び/又は約70重量%以下、約65重量%以下、約60重量%以下、約55重量%以下、約50重量%以下、約45重量%以下、又は約40重量%以下の量、或いは約20〜約70重量%、約20〜約65重量%、約20〜約60重量%、約20〜約55重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、約25〜約70重量%、約25〜約65重量%、約25〜約60重量%、約25〜約55重量%、約25〜約50重量%、約25〜約45重量%、約25〜約40重量%、約30〜約70重量%、約30〜約65重量%、約30〜約60重量%、約30〜約55重量%、約30〜約50重量%、約30〜約45重量%、約30〜約40重量%、約35〜約70重量%、約35〜約65重量%、約35〜約60重量%、約35〜約55重量%、約35〜約50重量%、約35〜約45重量%、約35〜約40重量%、約40〜約70重量%、約40〜約65重量%、約40〜約60重量%、約40〜約55重量%、約40〜約50重量%、約40〜約45重量%の範囲の量で存在していてよい。
[0071]ライン130内のアルコール/水蒸留カラム42から排出される塔底流は、ライン130内の流れの全重量を基準として、少なくとも約50重量%、少なくとも約60重量%、少なくとも約65重量%、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、少なくとも約95重量%の1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)及びホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)を含んでいてよい。1−アルコキシエチルホルムアミド及びホルムアミドは、個々に、ライン130内の流れの全重量を基準として、少なくとも約20重量%、少なくとも約25重量%、少なくとも約30重量%、少なくとも約35重量%、少なくとも約40重量%、及び/又は約70重量%以下、約65重量%以下、約60重量%以下、約55重量%以下、約50重量%以下、約45重量%以下、又は約40重量%以下の量、或いは約20〜約70重量%、約20〜約65重量%、約20〜約60重量%、約20〜約55重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、約25〜約70重量%、約25〜約65重量%、約25〜約60重量%、約25〜約55重量%、約25〜約50重量%、約25〜約45重量%、約25〜約40重量%、約30〜約70重量%、約30〜約65重量%、約30〜約60重量%、約30〜約55重量%、約30〜約50重量%、約30〜約45重量%、約30〜約40重量%、約35〜約70重量%、約35〜約65重量%、約35〜約60重量%、約35〜約55重量%、約35〜約50重量%、約35〜約45重量%、約35〜約40重量%、約40〜約70重量%、約40〜約65重量%、約40〜約60重量%、約40〜約55重量%、約40〜約50重量%、約40〜約45重量%の範囲の量で存在していてよい。
[0072]ライン130内のアルコール/水蒸留カラム42から排出される塔底流の最高温度は、約150℃以下、約145℃以下、約140℃以下、又は約130℃以下にすることができる。幾つかの態様においては、温度を上記の範囲内に維持することによって、例えば1−アルコキシエチルホルムアミドなどの生成物の分解を最小にすることができる。
[0073]上記の成分に加えて、ライン124内のアルコール/水蒸留カラム42から排出される塔頂流、及びライン130内のアルコール/水蒸留カラム42から排出される塔底流は、例えば、未反応の出発材料、副反応生成物、及び触媒などの1種類以上の他の成分を含む可能性がある。これらの他の成分がライン124内の塔頂流を通してアルコール/水蒸留カラム42から排出されるか、又はライン130内の塔底流を通してアルコール/水蒸留カラム42から排出されるかは、システムの他の成分と比較したこれらの成分の揮発性によって定まり、これは第1及び第2の分離区域20及び30内で用いられる具体的な反応物質、触媒、及び溶媒によって変化する可能性がある。幾つかの態様においては、ライン124内の塔頂流及び/又はライン130内の塔底流は、約10重量%以下、約8重量%以下、約6重量%以下、約4重量%以下、約2重量%以下、又は約1重量%以下の、流れの中に存在する水、アルコール、ホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)、及び/又は1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)以外の成分を含んでいてよい。
[0074]図1に示されるように、アルコール/水蒸留カラム42から排出された後、ライン124内の塔頂流はアルコール精製カラム44中に導入することができ、そこでそれをライン126内のアルコールが富化された塔頂流、及びライン128内の塔底流に分離する。幾つかの態様においては、ライン126内の塔頂流は、ライン124内のアルコール精製カラム44中に導入されるアルコールの全量の少なくとも約50重量%、少なくとも約55重量%、少なくとも約60重量%、少なくとも約65重量%、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、又は少なくとも約95重量%を含んでいてよく、一方でライン128内の塔底流は、ライン124内のアルコール精製カラム44中に導入される水の少なくとも約50重量%、少なくとも約55重量%、少なくとも約60重量%、少なくとも約65重量%、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、又は少なくとも約85重量%を含んでいてよい。ライン124内の流れの中に存在するアルコールのタイプ及び量によって、アルコール/水蒸留カラム42は、ライン126内の塔頂流中のアルコール−水共沸混合物をライン128内の塔底流中の水及び他の揮発性のより低い成分から分離するための共沸蒸留カラムであってよい。
[0075]ライン126内の塔頂流は、流れの全重量を基準として少なくとも約50重量%、少なくとも約55重量%、少なくとも約60重量%、少なくとも約65重量%、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、又は少なくとも約95重量%のアルコールを含んでいてよく、同等量の水及び他のより軽質の成分を更に含んでいてよい。幾つかの態様においては、ライン126内の塔頂蒸気流は、流れの全重量を基準として、約15重量%以下、約10重量%以下、約8重量%以下、約5重量%以下、約3重量%以下、又は約1重量%以下のアルコール及び水以外の成分を含んでいてよい。同様に、ライン128内の塔底流は、流れの全重量を基準として、少なくとも約50重量%、少なくとも約55重量%、少なくとも約60重量%、少なくとも約65重量%、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、又は少なくとも約95重量%の水を含んでいてよく、他の成分は流れの約10重量%以下、約8重量%以下、約5重量%以下、約3重量%以下、又は約1重量%以下を構成する。ライン128内の流れは、その具体的な組成によって、更なる処理、貯蔵、再使用、又は廃棄に送ることができる。
[0076]図1に示されるように、ライン126内のアルコール精製カラム44から排出される塔頂流はアルコール再循環及び回収区域72に送ることができ、ここで流れの少なくとも一部を更なる処理工程にかけて、アルコールをその後の再使用のために精製する。任意の好適な方法を用いて、任意の残留水、触媒、又は他の成分を分離して、ライン119内のアルコール再循環・回収区域72から排出される流れが、ライン119内の流れの全重量を基準として少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、少なくとも約95重量%、少なくとも約97重量%、少なくとも約99重量%のアルコールを含むようにすることができる。図1に示されるように、ライン119内の流れは、その後第2の反応区域30に戻すことができ、ここでアルコールの全部又は一部を、上記に記載した1−ヒドロキシエチルホルムアミドのアルコキシル化のために用いることができる。幾つかの態様においては、第2の反応区域30中に導入されるアルコールの全重量の少なくとも約30重量%、少なくとも約40重量%、少なくとも約50重量%、少なくとも約60重量%、少なくとも約70重量%、少なくとも約80重量%、少なくとも約90重量%、又は少なくとも約95重量%は、アルコール再循環及び回収区域72から再循環することができる。
[0077]再び図1に示されるアルコール/水分離カラム42を参照すると、ライン130内の塔底液体流は、場合によってライン132内の触媒失活成分と混合することができる。ライン132内の触媒失活成分流には、ライン130内の流れの中に残留する残留触媒を中和又は失活するのに好適な任意の化合物を含ませることができる。例えば、幾つかの態様においては、例えば第2の反応区域30からの硫酸のような酸触媒がライン130内の流れの中に存在する可能性があり、例えば炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、又はアンモニアのような塩基性成分を加えて、触媒を中和及び失活させることができる。これとは逆に、ライン130内に残留する触媒が塩基性触媒である場合には、ライン132内の触媒失活成分は酸であってよい。ライン132内で加える触媒失活成分の量は、存在する触媒のタイプ及び量によって定まるが、通常はその後に下流の分離区域において除去するために触媒を失活するのに十分なものである。幾つかの態様においては、ライン134内の混合流のpHは、少なくとも約4、少なくとも約4.5、少なくとも約5、及び/又は約9以下、約8.5以下、約8以下、或いは約4〜約9、約4〜約8.5、約4〜約8、約4.5〜約9、約4.5〜約8.5、約4.5〜約8、約5〜約9、約5〜約8.5、又は約5〜約8の範囲であってよい。
[0078]図1に示されるように、ライン134内の混合流は、次に1−アルコキシエチルホルムアミド蒸留カラム46中に導入することができ、ここでそれを、ライン138内の1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)が富化され、ホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)を含む塔頂生成物、及びライン136内の失活された触媒及び他の副生成物が富化された塔底流に分離することができる。
[0079]1−アルコキシエチルホルムアミド蒸留カラム46は、所望の分離を達成することができる任意の好適な条件下で運転することができる。幾つかの態様においては、1−アルコキシエチルホルムアミド蒸留カラム46は、少なくとも約60℃、少なくとも約75℃、少なくとも約90℃、少なくとも約95℃、少なくとも約100℃、少なくとも約105℃、及び/又は約150℃以下、約130℃以下、約125℃以下、約120℃以下、約115℃以下、又は約110℃以下の塔頂温度を有していてよく、或いはそれは、約60℃〜約150℃、約60℃〜約130℃、約60℃〜約125℃、約60℃〜約120℃、約60℃〜約115℃、約60℃〜約110℃、約75℃〜約150℃、約75℃〜約130℃、約75℃〜約125℃、約75℃〜約120℃、約75℃〜約115℃、約75℃〜約110℃、約90℃〜約150℃、約90℃〜約130℃、約90℃〜約125℃、約90℃〜約120℃、約90℃〜約115℃、約90℃〜約110℃、約95℃〜約150℃、約95℃〜約130℃、約95℃〜約125℃、約95℃〜約120℃、約95℃〜約115℃、約95℃〜約110℃、約100℃〜約150℃、約100℃〜約130℃、約100℃〜約125℃、約100℃〜約120℃、約100℃〜約115℃、約100℃〜約110℃、約105℃〜約150℃、約105℃〜約130℃、約105℃〜約125℃、約105℃〜約120℃、約105℃〜約115℃、又は約105℃〜約110℃の範囲であってよい。
[0080]1−アルコキシエチルホルムアミド蒸留カラム46の塔頂圧力は、少なくとも約1mbar絶対圧(mbara)、少なくとも約2mbara、少なくとも約5mbara、又は少なくとも約8mbara、及び/又は約25mbara以下、約20mbara以下、又は約15mbara以下であってよく、或いはそれは約1mbar〜約25mbara、約1mbar〜約20mbara、約1mbar〜約15mbara、約2mbara〜約25mbara、約2mbara〜約20mbara、約2mbara〜約15mbara、約5mbara〜約25mbara、約5mbara〜約20mbara、約5mbara〜約15mbara、約8mbara〜約25mbara、約8mbara〜約20mbara、又は約8mbara〜約15mbaraの範囲であってよい。
[0081]ライン136内の1−アルコキシエチルホルムアミド蒸留カラム46から排出される塔底流は、副生成物、及び例えば失活した触媒のような残留成分などの種々の成分を含む可能性がある。これは、更なる処理及び/又は廃棄のために下流のユニット(図示せず)に送ることができる。1−アルコキシエチルホルムアミド蒸留カラム46中に導入される1−アルコキシエチルホルムアミド及び/又はホルムアミドの全量の少なくとも約70重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、少なくとも約95重量%、少なくとも約97重量%、又は少なくとも約99重量%を含んでいてよいライン138内の塔頂生成物流は、図1に示されるように熱分解区域50内の熱分解ユニット(図示せず)に送ることができる。幾つかの態様においては、1−アルコキシエチルホルムアミドとホルムアミドの間で共沸混合物が形成される可能性があり、その結果、1−アルコキシエチルホルムアミド蒸留カラム46中に導入されるホルムアミドの相当部分、ほぼ全部、又は全部を、ライン138内の塔頂流中で排出することができる。ライン138内の塔頂流は、流れの全重量を基準として、少なくとも約35重量%、少なくとも約40重量%、少なくとも約45重量%、少なくとも約50重量%、少なくとも約55重量%、及び/又は約90重量%以下、約85重量%以下、約80重量%以下、約75重量%以下、又は約70重量%以下の1−アルコキシエチルホルムアミドを含んでいてよい。
[0082]ライン138内の1−アルコキシエチルホルムアミド蒸留カラム46から排出される塔頂流は、ライン138内の流れの全重量を基準として、約35〜約90重量%、少なくとも約35〜約85重量%、少なくとも約35〜少なくとも約80重量%、少なくとも約35〜少なくとも約75重量%、少なくとも約35〜少なくとも約70重量%、少なくとも約40〜少なくとも約85重量%、少なくとも約40〜少なくとも約80重量%、少なくとも約40〜少なくとも約75重量%、少なくとも約40〜少なくとも約70重量%、少なくとも約45〜少なくとも約85重量%、少なくとも約45〜少なくとも約80重量%、少なくとも約45〜少なくとも約75重量%、少なくとも約45〜少なくとも約70重量%、少なくとも約50〜少なくとも約85重量%、少なくとも約50〜少なくとも約80重量%、少なくとも約50〜少なくとも約75重量%、少なくとも約50〜少なくとも約70重量%、少なくとも約55〜少なくとも約85重量%、少なくとも約55〜少なくとも約80重量%、少なくとも約55〜少なくとも約75重量%、又は少なくとも約55〜少なくとも約70重量%の範囲の量の1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)を含んでいてよい。
[0083]幾つかの態様においては、ライン138内の1−アルコキシエチルホルムアミド蒸留カラム46から排出される塔頂流はまた、過剰のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)も含む可能性がある。例えば、ライン138内の流れは、ライン138内の反応混合物の全重量を基準として、少なくとも約5重量%、少なくとも約10重量%、少なくとも約15重量%、少なくとも約20重量%、少なくとも約25重量%、少なくとも約30重量%、及び/又は約70重量%以下、約60重量%以下、約50重量%以下、約45重量%以下、約40重量%以下、約35重量%以下、約30重量%以下、又は約25重量%以下のホルムアミドを含んでいてよい。これは、ライン138内の1−アルコキシエチルホルムアミド蒸留カラム46から排出される塔頂流中に、存在する場合であっても微量のホルムアミドしか含まない多くの従来の方法とは対照的である。
[0084]ライン138内の1−アルコキシエチルホルムアミド蒸留カラム46から排出される塔頂流中のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)の全量は、ライン138内の流れの全重量を基準として、約1〜約70重量%、約1〜約60重量%、約1〜約50重量%、約1〜約45重量%、約1〜約40重量%、約1〜約35重量%、約1〜約30重量%、約1〜約25重量%、約2〜約70重量%、約2〜約60重量%、約2〜約50重量%、約2〜約45重量%、約2〜約40重量%、約2〜約35重量%、約2〜約30重量%、約2〜約25重量%、約5〜約70重量%、約5〜約60重量%、約5〜約50重量%、約5〜約45重量%、約5〜約40重量%、約5〜約35重量%、約5〜約30重量%、約5〜約25重量%、約10〜約70重量%、約10〜約60重量%、約10〜約50重量%、約10〜約45重量%、約10〜約40重量%、約10〜約35重量%、約10〜約30重量%、約10〜約25重量%、約15〜約70重量%、約15〜約60重量%、約15〜約50重量%、約15〜約45重量%、約15〜約40重量%、約15〜約35重量%、約15〜約30重量%、約15〜約25重量%、約20〜約70重量%、約20〜約60重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、約20〜約35重量%、約20〜約30重量%、約20〜約25重量%、約25〜約70重量%、約25〜約60重量%、約25〜約50重量%、約25〜約45重量%、約25〜約40重量%、約25〜約35重量%、約25〜約30重量%、約30〜約70重量%、約30〜約60重量%、約30〜約50重量%、約30〜約45重量%、約30〜約40重量%、又は約30〜約35重量%の範囲であってよい。
[0085]幾つかの態様においては、ライン138内の流れの中のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)と1−アルコキシエチルホルムアミド(又はN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)とのモル比は、少なくとも約0.3:1、少なくとも約0.5:1、少なくとも約0.75:1、少なくとも約1:1、少なくとも約1.05:1、少なくとも約1.1:1、少なくとも約1.15:1、少なくとも約1.2:1、少なくとも約1.3、又は少なくとも約1.5、及び/又は約3:1以下、約2.5:1以下、約2:1以下、約1.75:1以下であってよく、或いはこれは約0.3:1〜約3:1、約0.3:1〜約2.5:1、約0.3:1〜約2:1、約0.3:1〜約1.75:1、約0.5:1〜約3:1、約0.5:1〜約2.5:1、約0.5:1〜約2:1、約0.5:1〜約1.75:1、約0.75:1〜約3:1、約0.75:1〜約2.5:1、約0.75:1〜約2:1、約0.75:1〜約1.75:1、約1:1〜約3:1、約1:1〜約2.5:1、約1:1〜約2:1、約1:1〜約1.75:1、約1.05:1〜約3:1、約1.05:1〜約2.5:1、約1.05:1〜約2:1、約1.05:1〜約1.75:1、約1.1:1〜約3:1、約1.1:1〜約2.5:1、約1.1:1〜約2:1、約1.1:1〜約1.75:1、約1.15:1〜約3:1、約1.15:1〜約2.5:1、約1.15:1〜約2:1、約1.15:1〜約1.75:1、約1.2:1〜約3:1、約1.2:1〜約2.5:1、約1.2:1〜約2:1、約1.2:1〜約1.75:1、約1.3:1〜約3:1、約1.3:1〜約2.5:1、約1.3:1〜約2:1、約1.3:1〜約1.75:1、約1.5:1〜約3:1、約1.5:1〜約2.5:1、約1.5:1〜約2:1、又は約1.5:1〜約1.75:1の範囲であってよい。
[0086]更に、ライン138内の塔頂生成物流は、例えば未反応の出発材料、残留溶媒、副反応生成物、及び触媒のような少量の他の成分を含む可能性がある。幾つかの態様においては、ライン138内の流れの中の1−アルコキシエチルカルボキサミド(又はN−メチル,1−アルコキシエチルカルボキサミドのような他の1−アルコキシエチルカルボキサミド)及びホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)以外の成分の全量は、ライン138内の流れの全重量を基準として、約20重量%以下、約15重量%以下、約10重量%以下、又は約8重量%以下、約5重量%以下、約3重量%以下、約2重量%以下、約1重量%以下、約0.5重量%以下、又は約0.1重量%以下であってよい。
[0087]図1に示されるように、ライン138内の1−アルコキシエチルホルムアミド蒸留カラム46から排出される塔頂生成物流は、熱分解区域50に送ることができる。熱分解区域50には、1−アルコキシエチルホルムアミド(またはN−メチル,1−アルコキシエチルホルムアミドのような他の1−アルコキシエチルカルボキサミド)の少なくとも一部を化学的及び/又は熱的に分解して、それによってN−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)及びアルコール副生成物を形成するための任意の好適な方法を含ませることができる。通常は、熱分解反応は気相中で行うことができ、したがって施設10にはまた、ライン138内の供給流の少なくとも一部を気化させるために、熱分解区域50の上流の1以上の熱交換器(図示せず)も含ませることができる。或いは、又は更には、加熱は熱分解反応容器(図示せず)内で行うことができる。
[0088]熱分解反応は、少なくとも約200℃、少なくとも約250℃、少なくとも約300℃、少なくとも約325℃、及び/又は約500℃以下、約450℃以下、約400℃以下、又は約375℃以下の温度、或いは約200℃〜約500℃、約200℃〜約450℃、約200℃〜約400℃、約200℃〜約375℃、約250℃〜約500℃、約250℃〜約450℃、約250℃〜約400℃、約250℃〜約375℃、約300℃〜約500℃、約300℃〜約450℃、約300℃〜約400℃、約300℃〜約375℃、約350℃〜約500℃、約350℃〜約450℃、約350℃〜約400℃、又は約350℃〜約375℃の範囲の温度で行うことができる。
[0089]熱分解区域内の圧力は、少なくとも約20mbar、少なくとも約40mbar、又は少なくとも約50mbar、及び/又は約1000mbar以下、約750mbar以下、又は約500mbar以下であってよく、或いはこれは約20mbar〜約1000mbar、約20mbar〜約750mbar、約20mbar〜約500mbar、約40mbar〜約1000mbar、約40mbar〜約750mbar、約40mbar〜約500mbar、約50mbar〜約1000mbar、約50mbar〜約750mbar、又は約50mbar〜約500mbarの範囲であってよい。熱分解反応は、少なくとも約0.1秒、少なくとも約1秒、少なくとも約2秒、少なくとも約5秒、少なくとも約10秒、少なくとも約20秒、少なくとも約30秒、及び/又は約90秒以下、約60秒以下、約45秒以下、或いは約0.1〜約90秒、約0.1〜約60秒、約0.1〜約45秒、約1〜約90秒、約1〜約60秒、約1〜約45秒、約2〜約90秒、約2〜約60秒、約2〜約45秒、約5〜約90秒、約5〜約60秒、約5〜約45秒、約5〜約90秒、約5〜約60秒、約5〜約45秒、約10〜約90秒、約10〜約60秒、約10〜約45秒、約20〜約90秒、約20〜約60秒、約20〜約45秒、約30〜約90秒、約30〜約60秒、約30〜約45秒の範囲の全反応時間の間行うことができる。
[0090]任意の好適なタイプの反応容器を用いて、熱分解区域50における熱分解反応を行うことができる。幾つかの態様においては、2以上の反応容器を直列又は並列に用いることができ、或いは単一の容器を用いることができる。熱分解反応は、連続式、バッチ式、又は半バッチ式の反応容器内で行うことができ、気相中で行うことができる。幾つかの態様において、熱分解区域50において行う熱分解反応が化学的熱分解である場合には、熱分解区域50に、反応を促進するための少なくとも1種類の不均一系触媒を更に含ませることができる。触媒は、固定床反応器又は流動床反応器内に配置することができ、所望の転化を達成するのに必要な任意の好適な量で存在させることができる。好適な触媒の例としては、金属酸化物(例えば、酸化マグネシウム、酸化亜鉛、酸化銅、酸化チタン)、金属水酸化物(例えば、水酸化カルシウム、水酸化バリウム)、ゼオライト、金属炭酸塩、及びシリカ−アルミナを挙げることができるが、これらに限定されない。幾つかの態様において、熱分解区域50において行う熱分解反応が熱による熱分解反応のみである場合には、熱分解区域には触媒を含めなくてよい。
[0091]熱分解区域50において行う反応によって達成される全収率は、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は少なくとも約97%にすることができる。ここで用いる「収率」という用語は、パーセントとして表される理論収量に対する実際の収量の比を指す。ここで用いる「理論収量」という用語は、限定試薬の求められる反応生成物への完全な反応に基づいて期待される生成物の量を指し、「実際の収量」という用語は、実際に製造された生成物の量を指す。更に、熱分解区域50内で行う反応は、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、又は少なくとも約97%の所望の反応生成物への選択率を示すことができる。N−ビニルホルムアミドを製造するために施設10を用いる場合には、熱分解区域50からのN−ビニルホルムアミドの収率及び選択率は、1以上の上記の範囲内にすることができる。熱分解区域50の選択率は、ライン140内の熱分解区域50から排出される粗生成物流中に存在する熱分解区域50中に導入される1−アルコキシエチルホルムアミドから形成される反応生成物の全モル数に対するN−ビニルホルムアミドのモル比として定義される。
[0092]ライン140内の熱分解区域50から排出される粗生成物流は、例えば、N−ビニルホルムアミド、ホルムアミド、及びエタノールを、副生成物及び他の残留物質などの微量の1種類以上の他の成分と共に含む可能性がある。場合によっては、最終分離区域60中に導入する前に、ライン140内の流れを凝縮器(図示せず)に通すことができる。存在する場合には、凝縮器は、熱分解区域50から排出される気相生成物流を冷却及び少なくとも部分的に凝縮して、N−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)及びホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)のような揮発性のより低い成分の少なくとも一部を液化することができ、一方でアルコールのような揮発性のより高い成分の少なくとも一部が蒸気相中にとどまるようにすることができる。幾つかの態様においては、ライン138内の新しい熱分解供給流の蒸発を促進するために、アルコール蒸気相の部分を熱分解セクションに再循環することができる(図1には示していない)。
[0093]幾つかの態様においては、ライン140を通して熱分解区域50から排出される流れは、流れの全重量を基準として少なくとも約40重量%、少なくとも約50重量%、少なくとも約60重量%、又は少なくとも約70重量%のN−ビニルホルムアミドを含むようにすることができる。更には、又は或いは、ライン140内の流れは、流れの全重量を基準として約99重量%以下、約95重量%以下、約90重量%以下、約85重量%以下、約80重量%以下、又は約75重量%以下のN−ビニルホルムアミド(またはN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)を含むようにすることができる。ライン140内の流れは、ライン140内の流れの全重量を基準として、約40〜約99重量%、約40〜約95重量%、約40〜約90重量%、約40〜約85重量%、約40〜約80重量%、約40〜約75重量%、約50〜約99重量%、約50〜約95重量%、約50〜約90重量%、約50〜約85重量%、約50〜約80重量%、約50〜約75重量%、約60〜約99重量%、約60〜約95重量%、約60〜約90重量%、約60〜約85重量%、約60〜約80重量%、約60〜約75重量%、約70〜約99重量%、約70〜約95重量%、約70〜約90重量%、約70〜約85重量%、約70〜約80重量%、又は約70〜約75重量%の範囲の量のN−ビニルホルムアミドを含んでいてよい。
[0094]ライン140内の粗生成物流はまた、過剰のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)も含む可能性がある。理論に縛られることは望まないが、粗生成物流中にホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)が存在することにより、N−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)の安定化を助けることができると考えられる。例えば、ライン140内の流れは、ライン140内の粗生成物流の全重量を基準として、少なくとも約1重量%、少なくとも約2重量%、少なくとも約5重量%、少なくとも約10重量%、少なくとも約15重量%、少なくとも約20重量%、少なくとも約25重量%、少なくとも約30重量%、及び/又は約70重量%以下、約60重量%以下、約50重量%以下、約45重量%以下、約40重量%以下、約35重量%以下、約30重量%以下、又は約25重量%以下のホルムアミドを含んでいてよい。これは、熱分解区域50からの流出液中に、存在したとしても微量のホルムアミドしか含まない多くの従来の方法とは対照的である。
[0095]ライン140内の熱分解区域50から排出される粗生成物混合物中のホルムアミドの全量は、ライン140内の流れの全重量を基準として、約1〜約70重量%、約1〜約60重量%、約1〜約50重量%、約1〜約45重量%、約1〜約40重量%、約1〜約35重量%、約1〜約30重量%、約1〜約25重量%、約2〜約70重量%、約2〜約60重量%、約2〜約50重量%、約2〜約45重量%、約2〜約40重量%、約2〜約35重量%、約2〜約30重量%、約2〜約25重量%、約5〜約70重量%、約5〜約60重量%、約5〜約50重量%、約5〜約45重量%、約5〜約40重量%、約5〜約35重量%、約5〜約30重量%、約5〜約25重量%、約10〜約70重量%、約10〜約60重量%、約10〜約50重量%、約10〜約45重量%、約10〜約40重量%、約10〜約35重量%、約10〜約30重量%、約10〜約25重量%、約15〜約70重量%、約15〜約60重量%、約15〜約50重量%、約15〜約45重量%、約15〜約40重量%、約15〜約35重量%、約15〜約30重量%、約15〜約25重量%、約20〜約70重量%、約20〜約60重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、約20〜約35重量%、約20〜約30重量%、約20〜約25重量%、約25〜約70重量%、約25〜約60重量%、約25〜約50重量%、約25〜約45重量%、約25〜約40重量%、約25〜約35重量%、約25〜約30重量%、約30〜約70重量%、約30〜約60重量%、約30〜約50重量%、約30〜約45重量%、約30〜約40重量%、又は約30〜約35重量%の範囲であってよい。
[0096]幾つかの態様においては、ライン140内の流れの中のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)とN−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)とのモル比は、少なくとも約0.3:1、少なくとも約0.5:1、少なくとも約0.75:1、少なくとも約1:1、少なくとも約1.05:1、少なくとも約1.1:1、少なくとも約1.15:1、少なくとも約1.2:1、少なくとも約1.3、又は少なくとも約1.5、及び/又は約3:1以下、約2.5:1以下、約2:1以下、約1.75:1以下であってよく、或いはこれは約0.3:1〜約3:1、約0.3:1〜約2.5:1、約0.3:1〜約2:1、約0.3:1〜約1.75:1、約0.5:1〜約3:1、約0.5:1〜約2.5:1、約0.5:1〜約2:1、約0.5:1〜約1.75:1、約0.75:1〜約3:1、約0.75:1〜約2.5:1、約0.75:1〜約2:1、約0.75:1〜約1.75:1、約1:1〜約3:1、約1:1〜約2.5:1、約1:1〜約2:1、約1:1〜約1.75:1、約1.05:1〜約3:1、約1.05:1〜約2.5:1、約1.05:1〜約2:1、約1.05:1〜約1.75:1、約1.1:1〜約3:1、約1.1:1〜約2.5:1、約1.1:1〜約2:1、約1.1:1〜約1.75:1、約1.15:1〜約3:1、約1.15:1〜約2.5:1、約1.15:1〜約2:1、約1.15:1〜約1.75:1、約1.2:1〜約3:1、約1.2:1〜約2.5:1、約1.2:1〜約2:1、約1.2:1〜約1.75:1、約1.3:1〜約3:1、約1.3:1〜約2.5:1、約1.3:1〜約2:1、約1.3:1〜約1.75:1、約1.5:1〜約3:1、約1.5:1〜約2.5:1、約1.5:1〜約2:1、又は約1.5:1〜約1.75:1の範囲であってよい。
[0097]更に、ライン140内の粗生成物流は、少なくとも1種類のアルコールを含む可能性がある。例えば、幾つかの態様においては、ライン140内の流れの全重量を基準として、ライン140内の粗生成物流は少なくとも約5重量%、少なくとも約10重量%、少なくとも約15重量%、又は少なくとも約20重量%、及び/又は約50重量%以下、約45重量%以下、約40重量%以下、又は約35重量%以下のアルコールを含んでいてよく、或いはライン140内の流れの中のアルコールの量は、約5〜約50重量%、約5〜約45重量%、約5〜約40重量%、約5〜約35重量%、約10〜約50重量%、約10〜約45重量%、約10〜約40重量%、約10〜約35重量%、約5〜約50重量%、約15〜約45重量%、約15〜約40重量%、約15〜約35重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、又は約20〜約35重量%の範囲であってよい。
[0098]図1に示されるように、ライン140内の熱分解区域50から排出される粗生成物流は、最終分離区域60に送ることができる。幾つかの態様においては、最終分離区域60には、アルコールフラッシュカラム62及びN−ビニルホルムアミド精製カラム64を含ませることができる。図1においては2つのみのカラムを含むものとして示しているが、任意の好適な数のカラム又は他の分離装置を用いて、ライン140内の粗生成物流からのN−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)の所望の回収率を達成することができる。幾つかの態様においては、最終分離区域60は、ライン140内の最終分離区域60中に導入されるN−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)の全量の少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約92%、少なくとも約95%、又は少なくとも約99%を回収するように構成することができる。幾つかの態様においては、ライン146内の最終分離区域60から排出される最終生成物流中のN−ビニルホルムアミドの濃度は、ライン146内の流れの全重量を基準として、少なくとも約60重量%、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、少なくとも約95重量%、又は少なくとも約99重量%であってよい。
[0099]図1に示されるように、ライン140内の熱分解区域50から排出される粗生成物流はアルコールフラッシュカラム62中に導入することができ、ここでそれをライン142内のアルコールが富化された塔頂流、及びライン144内のN−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)及びホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)が富化された塔底流に分離することができる。幾つかの態様においては、ライン142内の塔頂流は、ライン140内のアルコールフラッシュカラム62中に導入される全アルコールの少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、又は少なくとも約95%を含んでいてよい。
[0100]ライン142内のアルコールフラッシュカラム62からの塔頂流は、ライン142内の流れの全重量を基準として、少なくとも約60重量%、少なくとも約65重量%、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、又は少なくとも約95重量%のアルコールを含んでいてよい。例えばホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)又はN−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)などの少量の他の成分も、種々の不純物、残留触媒、及び/又は溶媒などの微量の他の成分に加えて存在する可能性がある。幾つかの態様においては、ライン142内の流れは、ライン142内の流れの全重量を基準として、約5重量%以下、約3重量%以下、約2重量%以下、約1重量%以下、約0.5重量%以下のアルコール以外の成分を含んでいてよい。
[0101]図1に示されるように、アルコールフラッシュカラム62から排出される塔頂流は、アルコール再循環及び回収区域72に送ることができる。上記で議論したように、ライン142内の流れは、アルコール再循環及び回収区域72の前か又はその中で、ライン126内のアルコール蒸留カラム44から回収されるアルコールと混合することができ、混合された流れは、第2の反応区域30において再使用する前に更に処理することができる。幾つかの態様においては、ライン142及び/又は126内の流れの少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%、又は少なくとも約95%をアルコール再循環及び回収区域72に送って、第2の反応区域30中に導入されるアルコールの全量の少なくとも約20重量%、少なくとも約30重量%、少なくとも約40重量%、少なくとも約50重量%、少なくとも約60重量%、及び/又は約90重量%以下、約80重量%以下、約70重量%以下を再循環することができるようにすることができる。
[0102]幾つかの態様においては、第2の反応区域30内で用いる再循環されたアルコールの量は、第2の分離区域30中に導入されるアルコールの全重量を基準として、約20〜約90重量%、約20〜約80重量%、約20〜約70重量%、約30〜約90重量%、約30〜約80重量%、約30〜約70重量%、約40〜約90重量%、約40〜約80重量%、約40〜約70重量%、約50〜約90重量%、約50〜約80重量%、約50〜約70重量%、約60〜約90重量%、約60〜約80重量%、又は約60〜約70重量%の範囲であってよい。
[0103]ライン144内のアルコールフラッシュカラム62から排出される塔底流は、N−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)を富化させることができる。例えば、幾つかの態様においては、ライン144内の流れは、ライン140内のアルコールフラッシュカラム62中に導入されるN−ビニルホルムアミドの全量の少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、又は少なくとも約95%を含んでいてよい。幾つかの態様においては、ライン144内の流れは、流れの全重量を基準として、少なくとも約20重量%、少なくとも約30重量%、少なくとも約35重量%、少なくとも約40重量%、少なくとも約50重量%、少なくとも約55重量%、及び/又は約90重量%以下、約85重量%以下、約80重量%以下、又は約75重量%以下のN−ビニルホルムアミドを含んでいてよい。ライン144内の流れの中のN−ビニルホルムアミドの全量は、ライン144内の流れの全重量を基準として、約20〜約90重量%、約20〜約85重量%、約20〜約80重量%、約20〜約75重量%、約30〜約90重量%、約30〜約85重量%、約30〜約80重量%、約30〜約75重量%、約35〜約90重量%、約35〜約85重量%、約35〜約80重量%、約35〜約75重量%、約40〜約90重量%、約40〜約85重量%、約40〜約80重量%、約40〜約75重量%、約50〜約90重量%、約50〜約85重量%、約50〜約80重量%、約50〜約75重量%、約55〜約90重量%、約55〜約85重量%、約55〜約80重量%、又は約55〜約75重量%の範囲であってよい。
[0104]ライン144内のアルコールフラッシュカラム62から排出される塔底流はまた、過剰のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)も含む可能性がある。幾つかの態様においては、ライン144内の流れは過剰のホルムアミドも含む可能性がある。例えば、ライン144内の流れは、ライン144内の流れの全重量を基準として、少なくとも約1重量%、少なくとも約2重量%、少なくとも約5重量%、少なくとも約10重量%、少なくとも約15重量%、少なくとも約20重量%、少なくとも約25重量%、少なくとも約30重量%、及び/又は約70重量%以下、約60重量%以下、約50重量%以下、約45重量%以下、約40重量%以下、約35重量%以下、約30重量%以下、又は約25重量%以下のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)を含んでいてよい。これは、ライン144内のアルコールフラッシュカラム62から排出される塔底流中に、存在したとしても微量のホルムアミドしか含まない多くの従来の方法とは対照的である。
[0105]ライン144内のアルコールフラッシュカラム62から排出される塔底流中のホルムアミドの全量は、ライン144内の流れの全重量を基準として、約1〜約70重量%、約1〜約60重量%、約1〜約50重量%、約1〜約45重量%、約1〜約40重量%、約1〜約35重量%、約1〜約30重量%、約1〜約25重量%、約2〜約70重量%、約2〜約60重量%、約2〜約50重量%、約2〜約45重量%、約2〜約40重量%、約2〜約35重量%、約2〜約30重量%、約2〜約25重量%、約5〜約70重量%、約5〜約60重量%、約5〜約50重量%、約5〜約45重量%、約5〜約40重量%、約5〜約35重量%、約5〜約30重量%、約5〜約25重量%、約10〜約70重量%、約10〜約60重量%、約10〜約50重量%、約10〜約45重量%、約10〜約40重量%、約10〜約35重量%、約10〜約30重量%、約10〜約25重量%、約15〜約70重量%、約15〜約60重量%、約15〜約50重量%、約15〜約45重量%、約15〜約40重量%、約15〜約35重量%、約15〜約30重量%、約15〜約25重量%、約20〜約70重量%、約20〜約60重量%、約20〜約50重量%、約20〜約45重量%、約20〜約40重量%、約20〜約35重量%、約20〜約30重量%、約20〜約25重量%、約25〜約70重量%、約25〜約60重量%、約25〜約50重量%、約25〜約45重量%、約25〜約70重量%、約25〜約60重量%、約25〜約50重量%、約25〜約40重量%、約25〜約35重量%、約25〜約30重量%、約30〜約70重量%、約30〜約60重量%、約30〜約50重量%、約30〜約45重量%、約30〜約40重量%、又は約30〜約35重量%の範囲であってよい。
[0106]幾つかの態様においては、ライン144内の流れの中のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)とN−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)とのモル比は、少なくとも約0.3:1、少なくとも約0.5:1、少なくとも約0.75:1、少なくとも約1:1、少なくとも約1.05:1、少なくとも約1.1:1、少なくとも約1.15:1、少なくとも約1.2:1、少なくとも約1.3、又は少なくとも約1.5、及び/又は約3:1以下、約2.5:1以下、約2:1以下、約1.75:1以下であってよく、或いはこれは約0.3:1〜約3:1、約0.3:1〜約2.5:1、約0.3:1〜約2:1、約0.3:1〜約1.75:1、約0.5:1〜約3:1、約0.5:1〜約2.5:1、約0.5:1〜約2:1、約0.5:1〜約1.75:1、約0.75:1〜約3:1、約0.75:1〜約2.5:1、約0.75:1〜約2:1、約0.75:1〜約1.75:1、約1:1〜約3:1、約1:1〜約2.5:1、約1:1〜約2:1、約1:1〜約1.75:1、約1.05:1〜約3:1、約1.05:1〜約2.5:1、約1.05:1〜約2:1、約1.05:1〜約1.75:1、約1.1:1〜約3:1、約1.1:1〜約2.5:1、約1.1:1〜約2:1、約1.1:1〜約1.75:1、約1.15:1〜約3:1、約1.15:1〜約2.5:1、約1.15:1〜約2:1、約1.15:1〜約1.75:1、約1.2:1〜約3:1、約1.2:1〜約2.5:1、約1.2:1〜約2:1、約1.2:1〜約1.75:1、約1.3:1〜約3:1、約1.3:1〜約2.5:1、約1.3:1〜約2:1、約1.3:1〜約1.75:1、約1.5:1〜約3:1、約1.5:1〜約2.5:1、約1.5:1〜約2:1、又は約1.5:1〜約1.75:1の範囲であってよい。
[0107]図1に示されるように、ライン144内の塔底流はN−ビニルホルムアミド精製カラム64中に導入することができ、ここでそれをライン146内のN−ビニルホルムアミドが富化された塔頂生成物流、及びホルムアミドが富化された塔底生成物流に分離することができる。幾つかの態様においては、N−ビニルホルムアミド精製カラム64は、ライン144内のN−ビニルホルムアミド精製カラム64中に導入されるN−ビニルホルムアミドの全重量の少なくとも約50%、少なくとも約55%、少なくとも約60%、少なくとも約65%、少なくとも約70%、少なくとも約75%、少なくとも約80%、少なくとも約85%、少なくとも約90%、又は少なくとも約95%がライン146内の塔頂生成物流中に回収されるように構成することができる。幾つかの態様においては、ライン146内の流れは、流れの全重量を基準として、少なくとも約70重量%、少なくとも約75重量%、少なくとも約80重量%、少なくとも約85重量%、少なくとも約90重量%、少なくとも約95重量%のN−ビニルホルムアミド(又はN−メチル,N−ビニルホルムアミドのような他のN−ビニルカルボン酸アミド)を含んでいてよい。
[0108]ライン148内のN−ビニルホルムアミド精製カラム64から排出される塔底流は、ホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)を、微量の他の成分と共に含むことができる。幾つかの態様においては、ライン144内のN−ビニルホルムアミド精製カラム64中に導入されるホルムアミドの少なくとも一部を、カラム64内、及び特にカラムの下部部分、例えばそのリボイラー回路などの中に残留させることができる。理論に縛られることは望まないが、ホルムアミドの少なくとも一部をカラム内、特にカラムの下部部分内に維持することによって、N−ビニルホルムアミド生成物の分解を最小にすることができると考えられる。幾つかの態様においては、N−ビニルホルムアミド精製カラム64中に導入されるN−ビニルホルムアミドの全量の少なくとも約1%、少なくとも約2%、少なくとも約3%、及び/又は約10%以下、約8%以下、約5%以下をカラム内に残留させることができ、或いは残留させる量は、ライン144内のN−ビニルホルムアミドの全量を基準として、約1〜約10%、約1〜約8%、約1〜約5%、約2〜約10%、約2〜約8%、約2〜約5%、約3〜約10%、約3〜約8%、又は約3〜約5%の範囲であってよい。その結果、幾つかの態様においては、N−ビニルホルムアミド精製カラム64から排出される塔底流は、約10重量%以下、約5重量%以下、約3重量%以下、約2重量%以下、又は約1重量%以下のN−ビニルホルムアミド分解の副生成物を含んでいてよい。
[0109]幾つかの態様においては、ライン148内の流れは、ライン148内の流れの全重量を基準として、少なくとも約30重量%、少なくとも約40重量%、少なくとも約50重量%、又は少なくとも約60重量%、及び/又は約90重量%以下、約80重量%以下、又は約75重量%以下の量のホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)を含んでいてよく、或いはホルムアミド(又はN−メチルホルムアミドのような他のカルボン酸アミド)が、ライン148内の流れの全重量を基準として、約30〜約90重量%、約30〜約80重量%、約30〜約75重量%、約40〜約90重量%、約40〜約80重量%、約40〜約75重量%、約50〜約90重量%、約50〜約80重量%、約50〜約75重量%、約60〜約90重量%、約60〜約80重量%、又は約60〜約75重量%の範囲の量で存在していてよい。
[0110]図1に示されるように、ライン148内のN−ビニルホルムアミド精製カラム64から排出される流れの少なくとも一部をホルムアミド再循環及び回収区域74に送ることができ、ここで流れを、その後に第1の反応区域20に再循環するために更に処理することができる。幾つかの態様においては、ライン148内の流れの少なくとも約50%、少なくとも60%、少なくとも約70%、少なくとも約80%、少なくとも約90%、又は少なくとも約95%をホルムアミド再循環及び回収区域74に送って、第1の反応区域20中に導入されるホルムアミドの全量の少なくとも約20重量%、少なくとも約30重量%、少なくとも約40重量%、少なくとも約50重量%、少なくとも約60重量%、及び/又は約90重量%以下、約80重量%以下、約70重量%以下を再循環することができるようにすることができる。
[0111]幾つかの態様においては、第1の反応区域20内で用いる再循環されたホルムアミドの量は、第1の反応区域20中に導入されるホルムアミドの全重量を基準として、約20〜約90重量%、約20〜約80重量%、約20〜約70重量%、約30〜約90重量%、約30〜約80重量%、約30〜約70重量%、約40〜約90重量%、約40〜約80重量%、約40〜約70重量%、約50〜約90重量%、約50〜約80重量%、約50〜約70重量%、約60〜約90重量%、約60〜約80重量%、又は約60〜約70重量%の範囲であってよい。
[0112]以下の実施例は本発明を例示するため、及び当業者が本発明を実施及び使用することを可能にするために与えるものであるが、本発明はこれらの実施例において記載されている具体的な条件又は細部に限定されないことを理解すべきである。本発明の特許しうる範囲は、特許請求の範囲によって規定され、当業者が想到する他の例を含めることができる。
実施例1:
[0113]実験室スケールのバッチ反応器内において、ホルムアミドとアセトアルデヒドを溶媒及び塩基性触媒の存在下で反応させることによって、1−ヒドロキシエチルホルムアミドを製造するための幾つかの反応を行った。全ての反応は、25℃の温度で2時間行った。メタノール(MeOH)、イソプロパノール(IPA)、及び2−エチルヘキサノール(2EH)を含む幾つかの異なる溶媒を、トリメチルアミン(TEA)、N,N−ジメチルイソプロピルアミン(DMIPA)、N,N−ジイソプロピルエタノールアミン(DIPEA)、重炭酸カリウム(KHCO)、及び8−ジアザビシクロ[5.4.0]ウンデス−7−エン(DBU)を含む幾つかの異なる触媒と共に用いて、1−ヒドロキシエチルホルムアミドの収率に対する溶媒及び/又は触媒のタイプの効果を求めた。更に、触媒の量、溶媒の量、及びホルムアミドとアセトアルデヒドとの比(モル/モル)も変化させた。これらの反応のそれぞれの結果を下表1にまとめる。
Figure 2019528324
[0114]上記の表1に示すように、用いる触媒のタイプは、1−ヒドロキシエチルホルムアミドの最終収率に影響を与える可能性がある。例えば、上記の反応R−1〜R−3の結果を比較することによって示されるように、溶媒としてメタノールを用いる場合には、TEA及びDBUは両方ともそれぞれ47%及び49%の収率を与え、一方でKHCOは1−ヒドロキシエチルホルムアミドの4%の収率しか与えない。同様に、反応R−10及びR−11の結果を比較することによって示されるように、溶媒としてイソプロパノールを用いる場合には、触媒としてTEAを用いると32%の収率を与え、一方でDBU触媒は79%の1−ヒドロキシエチルホルムアミドの収率を与える。更に、両方とも0.85重量%のTEAを用いるが異なる溶媒を用いる反応R−1とR−10、及び両方とも0.85重量%のDBUを用いるが異なる溶媒を用いる反応R−2とR−11の結果を比較することによって示されるように、溶媒のタイプも与えられた触媒によって達成される収率に影響を与える可能性があることも分かる。
[0115]反応R−4及びR−5の結果を比較することによって示されるように、溶媒としてメタノールを用いる場合には、触媒の量は収率に対して最小の影響を与える。しかしながら、反応R−13〜R−15の結果を比較することによって示されるように、溶媒としてイソプロパノールを用いる場合には、触媒の量は最終生成物の収率により大きな影響を与える。例えば、より少ないDBU触媒(例えばR−13において0.4重量%)を用いるとおそらくは反応がよりゆっくりと進行し、一方でより多いDBU(例えばR−15において1.2重量%)を用いると、アセトアルデヒドの重合を引き起こし、これも収率を低めると思われる。したがって、上表1において示すように、試験される量の中で、R−14における0.80重量%が、上記で実施した反応の中でイソプロパノール溶媒中でホルムアミドとアセトアルデヒドを反応させる際に用いるDBU触媒の最適の量である。
[0116]反応R−6〜R−8の結果を比較すること、及び反応R−11及びR−12の結果を比較することによって示されるように、与えられた溶媒に関しては、反応中に用いる溶媒の量も1−ヒドロキシエチルホルムアミドの最終収率に影響を与える可能性がある。一般に、より多い溶媒はより低い収率をもたらす傾向がある。更に、反応R−7及びR−8の結果を反応R−11及びR−12の結果と比較することによって示されるように、この影響は、メタノールを溶媒として用いる場合に、イソプロパノールと比べてより顕著であるように見える。同様に、反応R−7及びR−9の結果を比較すると、溶媒としてメタノールを用いる場合には、より大過剰のアセトアルデヒド(即ちより低いホルムアミド/アセトアルデヒドの比)を用いることも、より高い収率をもたらす可能性があることが分かる。
[0117]更に、反応R−19〜R−21の結果を比較することによって示されるように、より高いホルムアミド/アセトアルデヒドの比、特に1.5:1より高い比は、約100%に近接したより高い収率をもたらす。更に、より多い量のホルムアミドを存在させる場合には、溶媒のタイプ及び触媒のタイプの全収率に対する影響はより小さくなる。
実施例2:
[0118]溶媒及び8−ジアザビシクロ[5.4.0]ウンデス−7−エン(DBU)触媒の存在下でホルムアミドとアセトアルデヒドを反応させることによって、1−ヒドロキシエチルホルムアミドを形成するための幾つかの反応を行った。反応は、加えるそれぞれの試薬の量を制御するための別の試薬バイアルを含めた連続栓流反応システム内で行った。1つのバイアルには、ホルムアミド、用いる溶媒の全量の半分、及び触媒の溶液を含ませ、一方で他のバイアルには、アセトアルデヒド及び残りの量の溶媒の溶液を含ませた。それぞれのバイアルからの溶液を、別の反応ポンプを用いて、直径1/8インチの配管の別のラインを通してシステム中にポンプで移送した後に、単一の反応ライン内で混合し、反応温度を制御するために用いた加熱部材中に導入した。背圧弁を用いて反応圧力を10barゲージ圧以下に維持して、反応物質が液相中に維持されるようにした。反応生成物を別の反応バイアル内に回収した。下記に議論するように、幾つかのパラメーターを変化させることによって、このシステムを用いて幾つかの反応を行った。
[0119]最初の反応は、上記に記載した反応装置を用い、20℃の温度及び15分の滞留時間で行った。ホルムアミド/アセトアルデヒドのモル比は0.83:1であり、溶媒として最初の反応混合物の全重量を基準として45重量%の量のイソプロパノールを用いた。触媒として最初の反応混合物の全重量を基準として1重量%の量のDBUを用いて反応を行った。1290DADを備えたAgilent LC1260HPLCを用いて、得られた反応生成物をHPLCによって分析した。反応生成物を、35℃のカラム温度において、150mm×4.6mm×3.5μmの寸法を有するZorbax(登録商標)SB-C18カラムに通した。注入器の容積は2μLであり、移動相は0.5mL/分の流速の水及びアセトニトリルを含んでいた。得られた生成物は、33.4重量%の1−ヒドロキシエチルホルムアミド及び10.23重量%のホルムアミドを含んでおり、1−ヒドロキシエチルホルムアミドの収率は68%であった。
[0120]最初の反応混合物の全重量を基準として56重量%のイソプロパノールを溶媒として用いて、第2の同様の反応を行った。得られた反応生成物を、上記に記載した方法にしたがってHPLCによって分析したところ、26.14重量%の1−ヒドロキシエチルホルムアミド及び5.96重量%のホルムアミドを含んでいた。しかしながら、1−ヒドロキシエチルホルムアミドの収率は67.4%であり、これは上記で議論した反応によって達成された68%の収率よりも僅かに低かった。イソプロパノール中における1−ヒドロキシエチルホルムアミドの低い溶解度(上記に記載したように測定して20.1重量%)のために、より多い量のイソプロパノールが、溶液中における試薬、及び結果として生成物のより低い濃度をもたらしたと結論づけられた。
実施例3:
[0121]15℃〜45℃の間の種々の反応温度において、上記の実施例2において記載したものと同じようにして幾つかの反応を行った。更に、用いたイソプロパノールの濃度は、最初の反応媒体の全重量を基準として35重量%であった。これらの反応の結果を図3にグラフで示す。図3は、上記の範囲にわたる反応温度の関数としての1−ヒドロキシエチルホルムアミドの収率を示す。図3において示されるように、反応温度と1−ヒドロキシエチルホルムアミドの収率は、示されている温度範囲にわたって反比例しており、より低い温度はより高い1−ヒドロキシエチルホルムアミドの収率をもたらし、より高い温度はより低い1−ヒドロキシエチルホルムアミドの収率をもたらす。
実施例4:
[0122]ホルムアミド/アセトアルデヒドの種々の比を用いて、他の組の反応を行った。これらの反応は上記の実施例2と同じようにして行ったが、溶媒としてヘキサノールを用いた。これらの反応の結果を下表2に与える。
Figure 2019528324
[0123]更に、結果を、ホルムアミド/アセトアルデヒドの比の関数としての1−ヒドロキシエチルホルムアミドの収率を示す図3にグラフで示す。図3において示されるように、1より大きいか又は1未満のホルムアミド/アセトアルデヒドの比(即ち非等モル量)は、1−ヒドロキシエチルホルムアミドのより高い収率を与える。過剰のアセトアルデヒド(即ち1:1未満のホルムアミド/アセトアルデヒドの比)を用いると、その後にアルコキシル化中に硫酸を加えることによって溶媒と過剰のアセトアルデヒドの間の副反応が起こってアセタール副生成物が形成されるので、望ましくない。而して、過剰のホルムアミド(即ち1:1より高いホルムアミド/アセトアルデヒドの比)を用いて、より高い収率が望ましく達成される。
[0124]ホルムアミド/アセトアルデヒドの比を変化させて、しかしながら溶媒としてメタノール及び2−エチルヘキサノールを用いて、上記に記載したようにして2つの更なる組の反応を行った。これらの反応の結果を図5に示す。図5は、これは溶媒としてヘキサノール、メタノール、及び2−エチルヘキサノールを用いる場合のホルムアミド/アセトアルデヒドの比の関数としての1−ヒドロキシエチルホルムアミドの収率を示す。図5において示されるように、溶媒のタイプも1−ヒドロキシエチルホルムアミドの収率に影響を与え、これは溶媒としてメタノールを用いる場合の50%未満から、溶媒が2−エチルヘキサノールである場合の70%より高い値までの範囲である。
実施例5:
[0125]ホルムアミド/アセトアルデヒドの種々の比を用いて、他の組の反応を行った。これらの反応は、上記の実施例2と同じようにして、しかしながら溶媒としてエタノール、触媒としてトリエチルアミンを用いて行った。これらの反応の結果を下表3に与える。
Figure 2019528324
[0126]ホルムアミド/アセトアルデヒドの種々の比を用いて他の組の反応を行った。これらの反応は、上記の実施例2と同じようにして、しかしながら溶媒として水、触媒としてトリエチルアミンを用いて行った。これらの反応の結果を下表4に与える。
Figure 2019528324
実施例7:
[0127]上記の実施例2に記載したものと同じようにして、しかしながら溶媒を存在させないで他の反応を行った。その代わりに、過剰のホルムアミドを用いた。ホルムアミド中の1−ヒドロキシエチルホルムアミドの溶解度は約60重量%であるので、1−ヒドロキシエチルホルムアミドの形成中に過剰のホルムアミドが溶媒としても作用することができる。ホルムアミド/アセトアルデヒドのモル比は2.5:1であった。反応は、実施例2に記載した装置上で、20℃の温度及び15分の滞留時間において行った。触媒として1重量%の量のDBUを用い、更なる溶媒は用いなかった。得られた反応生成物をHPLCによって分析したところ、46.9重量%のホルムアミド及び52.4重量%の1−ヒドロキシエチルホルムアミドを含んでおり、これは99.9%の収率に相当した。
[0128]同じようにして、しかしながら滞留時間を変化させ、且つ異なるタイプの触媒を用いて幾つかの更なる反応を行った。これらの実験の結果を下表5にまとめる。
Figure 2019528324
[0129]表5において示されるように、試験した3種類のタイプの触媒−DBU、TEA、及び1,1,3,3−テトラメチルグアニジン(TMG)のそれぞれの性能はほぼ同等であり、ほぼ100%の収率を与えた。更に、表5において示されるように、過剰のホルムアミドの存在下で更なる溶媒を用いないで行った反応は、短い滞留時間を示し、7分程度の短い滞留時間でほぼ100%の転化率を達成した。
実施例8:
[0130]触媒として1重量%のトリエチルアミンの存在下で2.5モル当量のホルムアミドを1モル当量のアセトアルデヒドと反応させることによって、他の1−ヒドロキシエチルホルムアミド合成反応を行った。更なる溶媒は用いなかった。反応は、上記の実施例2において記載した連続栓流反応システム内で行った。生成物は、41.6重量%のホルムアミド及び58.4重量%の1−ヒドロキシエチルホルムアミドを含んでおり、これは98%の1−ヒドロキシエチルホルムアミドの収率に等しかった。
[0131]次に、この反応混合物に、(1−ヒドロキシエチルホルムアミドの量を基準として)2.1モル当量のエタノールを、全反応混合物を基準として0.7重量%の硫酸と共に加え、バッチ反応を35℃において30分間行った。得られた反応混合物は、20.6重量%のエタノール、22.7重量%のホルムアミド、47.9重量%の1−エトキシエチルホルムアミド、及び7.4重量%の水を含んでおり、1−エトキシエチルホルムアミドの収率は94%であった。
[0132]次に、この流れを、105℃の温度及び57mbaraの真空圧の連続ワイプ膜蒸発器中に導入した。得られた塔底流(蒸発器中に導入した全量の65%を含んでいた)、及び留出物流(蒸発器中に導入した全量の35%を含んでいた)を、蒸発器から排出した。塔底流は、1.7重量%のエタノール、36.9重量%のホルムアミド、及び57.3重量%の1−エトキシエチルホルムアミドを、他の少量の不純物と共に含んでいた。留出物流は、87重量%のエタノール、3重量%のホルムアミド、0.91重量%のトリエチルアミン、及び9重量%の水を含んでいた。次に、塔底流を、108℃の温度及び10mbaraの真空圧の他のワイプ膜蒸発器に送って、塔底流(全投入量の19%を含んでいた)、及び留出物流(全投入量の81%を含んでいた)を得た。塔底流は、63重量%の1−エトキシエチルホルムアミド、及び32.3重量%のホルムアミドを含んでいた。留出物流は、2重量%のエタノール、58重量%の1−エトキシエチルホルムアミド、及び40重量%のホルムアミドを含んでいた。
[0133]この蒸留工程から排出された留出物流を185℃の温度に予備加熱し、400℃の温度の熱分解区域内において、45gの酸化マグネシウム触媒の存在下で熱分解した。反応装置への留出物流の供給速度を45g/時に設定し、175nL/時の窒素も熱分解区域中に導入した。システム全体の圧力を350mbaraに設定した。得られた流れをまず60℃に冷却し、これによってエタノールの一部を気化させた。得られた粗生成物流は、19.7重量%のエタノール、33重量%のホルムアミド、46.9重量%のN−ビニルホルムアミド、及び0.2重量%の1−エトキシエチルホルムアミドを含んでいた。N−ビニルホルムアミドの全収率は92%であった。
[0134]次に、粗N−ビニルホルムアミド生成物流を、33の理論段を有するSulzer DX充填材料を含むカラム内で、7mbaraの真空圧及び73℃の塔頂温度でバッチ蒸留にかけた。留出物流は、96.4重量%のN−ビニルホルムアミド及び2.5重量%のホルムアミドの組成を有しており、0.1重量%の重合したN−ビニルホルムアミド及び1.1重量%の他の不純物を共に含んでいた。
定義:
[0135]本明細書において用いる「含む」、「含み」、及び「含んでいる」という用語は、その用語の前に示されている主語から、その用語の後に示されている1以上の要素へ移行するのに用いられる非限定的な移行語であり、この移行語の後にリストされている1つ又は複数の構成要素は、必ずしも主語を構成する唯一の構成要素ではない。
[0136]本明細書において用いる「包含する」、「包含し」、及び「包含している」という用語は、上記に規定した「含む」、「含み」、及び「含んでいる」と同じ非限定的な意味を有する。
[0137]本明細書において用いる「有する」、「有し」、及び「有している」という用語は、上記に定義した「含む」、「含み」、及び「含んでいる」と同じ非限定的な意味を有する。
[0138]本明細書において用いる「含有する」、「含有し」、及び「含有している」という用語は、上記に定義した「含む」、「含み」、及び「含んでいる」と同じ非限定的な意味を有する。
[0139]本明細書において用いる「a」、「an」、及び「the」の用語は1以上を意味する。
[0140]本明細書において用いる「及び/又は」の用語は、2以上の事項のリストにおいて用いる場合には、リストされている事項の任意の1つを単独で用いることができ、或いはリストされている事項の2以上の任意の組合せを用いることができることを意味する。例えば、組成物が成分A、B、及び/又はCを含むと記載されている場合には、この組成物は、A単独;B単独;C単独;A及びBの組合せ;A及びCの組合せ;B及びCの組合せ;或いはA、B、及びCの組合せ;を含む可能性がある。
[0141]上記に記載した本発明の好ましい形態は例示のみとして用いられるべきであり、限定的な意味で本発明の範囲を解釈するために用いてはならない。上記に示した代表的な態様に対する明白な修正は、本発明の精神から逸脱することなく当業者によって容易に行うことができるであろう。
[0142]ここに本発明者らは、以下の特許請求の範囲において示す発明の文理範囲から実質的に逸脱しないが、その外側である任意の装置に関する本発明の合理的に正しい範囲を決定及び利用するために均等論に依拠する本発明者らの意図を主張する。

Claims (20)

  1. 1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを製造する方法であって、
    (a)ホルムアミド又はN−メチルホルムアミド及びアセトアルデヒドを第1の反応区域中に導入すること(ここで前記第1の反応区域に加えるホルムアミド又はN−メチルホルムアミドとアセトアルデヒドとのモル比は少なくとも1.5:1である);及び
    (b)前記ホルムアミド又は前記N−メチルホルムアミドの少なくとも一部を、前記第1の反応区域内において塩基性触媒の存在下で前記アセトアルデヒドの少なくとも一部と反応させて、それによって1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを含む反応混合物を形成すること;
    を含む上記方法。
  2. 前記反応中に形成される前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドの少なくとも90重量%が前記反応混合物中に溶解状態で維持され、前記反応混合物の全固形分含量が10重量%以下である、請求項1に記載の方法。
  3. 前記反応の後に、前記反応混合物を少なくとも1種類のアルコール及び酸触媒と混合すること;前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドの少なくとも一部を前記アルコールによってアルコキシル化して、それによって1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドを含む他の反応混合物を形成すること;を更に含み、前記反応、前記混合、及び前記アルコキシル化を、介在する固体処理工程を用いないで連続的に行う、請求項1に記載の方法。
  4. 前記導入が少なくとも1種類の溶媒を前記第1の反応区域中に導入することを更に含み、前記反応を前記溶媒の存在下で行い、前記溶媒中における前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドの溶解度が少なくとも40重量%であり、前記溶媒は前記反応混合物の全重量を基準として少なくとも40重量%の量で第1の反応区域内に存在し、前記反応混合物は前記反応混合物の全重量を基準として10重量%以下の溶媒を含む、請求項1に記載の方法。
  5. 前記反応を、45℃以下の平均反応温度において45分以下の全反応時間の間行い、前記反応を連続栓流反応器内で行う、請求項1に記載の方法。
  6. 1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを製造する方法であって、
    (a)ホルムアミド又はN−メチルホルムアミド及びアセトアルデヒドを第1の反応区域中に導入すること;及び
    (b)前記ホルムアミド又は前記N−メチルホルムアミドの少なくとも一部を、前記第1の反応区域内において塩基性触媒の存在下で前記アセトアルデヒドの少なくとも一部と反応させて、1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを含む第1の反応混合物を形成すること(ここで、前記第1の反応混合物は少なくとも1種類の溶媒を更に含み、前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドは前記溶媒中において少なくとも20重量%の溶解度を有し、前記反応中に形成される前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドの少なくとも90重量%は前記反応混合物中に溶解状態で維持される);
    を含む上記方法。
  7. 前記第1の反応区域中に導入されるホルムアミドとアセトアルデヒドとの比、又はN−メチルホルムアミドとアセトアルデヒドとのモル比が少なくとも1.1:1である、請求項6に記載の方法。
  8. 前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドが前記溶媒中において少なくとも40重量%の溶解度を有し、前記溶媒が少なくとも1種類のC〜Cアルコール又は水を含む、請求項6に記載の方法。
  9. 前記第1の反応混合物中の前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドの少なくとも一部を、第2の反応区域内において酸触媒の存在下でアルコールによってアルコキシル化して、それによって1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドを含む第2の反応混合物を形成することを更に含み、前記反応及びアルコキシル化を、介在する固体処理工程を用いないで連続的に行う、請求項6に記載の方法。
  10. 前記反応を25℃以下の温度において1時間以下の時間行い、前記第1の反応区域からの前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドの収率は少なくとも90%であり、前記アルコキシル化は少なくとも20℃で45℃以下の温度で行い、前記第2の反応区域からの前記1−アルコキシエチルホルムアミド又は前記N−メチル,1−アルコキシエチルホルムアミドの収率は少なくとも85%である、請求項9に記載の方法。
  11. N−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドを製造する方法であって、
    (a)1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミド、及び供給流の全重量を基準として少なくとも1重量%のホルムアミド又はN−メチルホルムアミドを含む供給流を熱分解区域中に導入すること;
    (b)前記1−アルコキシエチルホルムアミド又は前記N−メチル,1−アルコキシエチルホルムアミドの少なくとも一部を前記熱分解区域において熱分解して、それによってN−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミド、及びアルコールを形成すること;及び
    (c)前記熱分解区域から粗生成物流を排出すること(ここで前記粗生成物流は、前記N−ビニルホルムアミド又は前記N−メチル,N−ビニルホルムアミド、及び前記粗生成物流の全重量を基準として少なくとも1重量%のホルムアミド又はN−メチルホルムアミドを含む);並びに
    (d)前記粗生成物流から前記N−ビニルホルムアミド又は前記N−メチル,N−ビニルホルムアミドを回収すること;
    を含む上記方法。
  12. 前記供給流が、前記供給流の全重量を基準として少なくとも5重量%のホルムアミド又はN−メチルホルムアミドを含む、請求項11に記載の方法。
  13. 前記粗生成物流が、前記粗生成物流の全重量を基準として少なくとも5重量%のホルムアミド又はN−メチルホルムアミドを含む、請求項12に記載の方法。
  14. 前記回収が、第1の蒸留カラムにおいて、前記粗生成物流を、アルコールに富む塔頂流、及びN−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドを含む第1の塔底流に分離すること、及び第2の蒸留カラムにおいて、前記第1の塔底流を、N−ビニルホルムアミド又はN−メチル,N−ビニルホルムアミドを含む第2の塔頂生成物流、及びホルムアミド又はN−メチルホルムアミドを含む第2の塔底流に更に分離することを含む、請求項11に記載の方法。
  15. 前記導入の前に、ホルムアミド又はN−メチルホルムアミドとアセトアルデヒドを、前記第1の反応区域内において塩基性触媒の存在下で反応させて、1−ヒドロキシエチルホルムアミド又はN−メチル,1−ヒドロキシエチルホルムアミドを含む第1の反応混合物を形成すること、及び前記第1の反応混合物中の前記1−ヒドロキシエチルホルムアミド又は前記N−メチル,1−ヒドロキシエチルホルムアミドの少なくとも一部を、第2の反応区域内において酸触媒の存在下でアルコールによってアルコキシル化して、1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドを含む第2の反応混合物を形成することを更に含み、前記供給流は前記第2の反応混合物の少なくとも一部を含み、前記アルコールに富む塔頂流の少なくとも一部を、アルコキシル化において用いるために前記第2の反応区域に戻し、及び/又は前記第2の塔底流の少なくとも一部を、前記反応において用いるために前記第1の反応区域に戻す、請求項14に記載の方法。
  16. 少なくとも1重量%のホルムアミド又はN−メチルホルムアミド;及び
    少なくとも35重量%の1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミド;
    を含む組成物。
  17. 前記組成物が少なくとも5重量%のホルムアミド又はN−メチルホルムアミドを含み、前記組成物中におけるホルムアミドと1−アルコキシエチルホルムアミドとのモル比、又はN−メチルホルムアミドとN−メチル,1−アルコキシエチルホルムアミドとのモル比が少なくとも1.05:1である、請求項16に記載の組成物。
  18. 前記組成物が、少なくとも15重量%のホルムアミド又はN−メチルホルムアミド、及び少なくとも40重量の1−アルコキシエチルホルムアミド又はN−メチル,1−アルコキシエチルホルムアミドを含む、請求項16に記載の組成物。
  19. 前記組成物が10重量%未満の溶媒を含む、請求項16に記載の組成物。
  20. 前記組成物が、2重量%未満の、前記ホルムアミド又は前記N−メチルホルムアミド及び前記1−アルコキシエチルホルムアミド又は前記N−メチル,1−アルコキシエチルホルムアミド以外の成分を含む、請求項16に記載の組成物。
JP2019532173A 2016-08-29 2017-08-14 1-ヒドロキシエチルホルムアミド及びn-ビニルホルムアミドの合成 Active JP7055138B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662380774P 2016-08-29 2016-08-29
US62/380,774 2016-08-29
US15/669,989 2017-08-07
US15/669,989 US10696622B2 (en) 2016-08-29 2017-08-07 Synthesis of N-vinyl carboxylic acid amides
PCT/EP2017/070584 WO2018041615A1 (en) 2016-08-29 2017-08-14 Synthesis of 1-hydroxyethyl formamides and n-vinyl formamides

Publications (2)

Publication Number Publication Date
JP2019528324A true JP2019528324A (ja) 2019-10-10
JP7055138B2 JP7055138B2 (ja) 2022-04-15

Family

ID=61241556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532173A Active JP7055138B2 (ja) 2016-08-29 2017-08-14 1-ヒドロキシエチルホルムアミド及びn-ビニルホルムアミドの合成

Country Status (4)

Country Link
US (1) US10696622B2 (ja)
EP (1) EP3504184A1 (ja)
JP (1) JP7055138B2 (ja)
WO (1) WO2018041615A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110614A1 (ja) * 2018-11-29 2020-06-04 昭和電工株式会社 N-ビニルカルボン酸アミドの製造方法
CN109912438A (zh) * 2019-03-29 2019-06-21 青岛科技大学 一种n-乙烯基甲酰胺的合成方法
CN112047854B (zh) * 2020-10-20 2021-07-02 中国科学院长春应用化学研究所 一种n-乙烯基烷基酰胺的制备方法
FR3125041A1 (fr) 2021-07-09 2023-01-13 Snf Sa Procédé d’obtention de N-vinylformamide biosourcé

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149551A (ja) * 1984-01-14 1985-08-07 Mitsubishi Chem Ind Ltd Ν−(α−ヒドロキシエチル)ホルムアミドの製造方法
JPS6197309A (ja) * 1984-10-18 1986-05-15 Mitsubishi Chem Ind Ltd N−ビニルホルムアミド重合物の製造方法
JPS6314761A (ja) * 1986-07-01 1988-01-21 バスフ アクチェン ゲゼルシャフト N−置換ホルムアミドの製法
WO2010079774A1 (ja) * 2009-01-06 2010-07-15 昭和電工株式会社 N-(1-ヒドロキシエチル)カルボン酸アミド化合物及びその製造方法
JP2012056856A (ja) * 2010-09-06 2012-03-22 Daiyanitorikkusu Kk N−ビニルホルムアミドの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526620A (en) * 1966-08-26 1970-09-01 Hoechst Ag Process for the preparation of n-vinyl-carboxylic acid amides
DE2113338C3 (de) 1971-03-19 1978-08-24 Hoechst Ag, 6000 Frankfurt Verfahren zur Alkoxylierung von am Stickstoff alkylierten Carbonsäureamiden
US4578515A (en) 1981-11-05 1986-03-25 Air Products And Chemicals, Inc. Preparing N-vinylformamide
US4567300A (en) * 1984-01-14 1986-01-28 Mitsubishi Chemical Industries Limited Process for producing N-substituted formamides
DE3443463A1 (de) 1984-11-29 1986-05-28 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von n-vinylformamid
US5527963A (en) 1994-10-16 1996-06-18 Mitsubishi Chemical Corporation Production of N-vinylformamide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149551A (ja) * 1984-01-14 1985-08-07 Mitsubishi Chem Ind Ltd Ν−(α−ヒドロキシエチル)ホルムアミドの製造方法
JPS6197309A (ja) * 1984-10-18 1986-05-15 Mitsubishi Chem Ind Ltd N−ビニルホルムアミド重合物の製造方法
JPS6314761A (ja) * 1986-07-01 1988-01-21 バスフ アクチェン ゲゼルシャフト N−置換ホルムアミドの製法
WO2010079774A1 (ja) * 2009-01-06 2010-07-15 昭和電工株式会社 N-(1-ヒドロキシエチル)カルボン酸アミド化合物及びその製造方法
JP2012056856A (ja) * 2010-09-06 2012-03-22 Daiyanitorikkusu Kk N−ビニルホルムアミドの製造方法

Also Published As

Publication number Publication date
US20180057445A1 (en) 2018-03-01
WO2018041615A1 (en) 2018-03-08
JP7055138B2 (ja) 2022-04-15
US10696622B2 (en) 2020-06-30
EP3504184A1 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP7055138B2 (ja) 1-ヒドロキシエチルホルムアミド及びn-ビニルホルムアミドの合成
US7312362B2 (en) Process for the production of di- and polyamines of the diphenylmethane series
US20060155152A1 (en) Equilibrium reaction and gas/liquid reaction in a loop reactor
KR20080106079A (ko) 알칼리 금속 알콕사이드의 제조 방법
CN111263746B (zh) 制备亚乙基胺的方法
EP3665154B1 (en) Reactive separation process to convert cyclic alkylene ureas into their corresponding alkylene amines
US9688619B2 (en) Process for obtaining organic isocyanates from distillation residues from isocyanate preparation
EA022826B1 (ru) Способ получения n,n-диалкилэтаноламина с высокой стабильностью цвета
US20080103336A1 (en) Method for producing N, N-Dimethylacetamide (Dmac)
US8338644B2 (en) Method for the production of N,N-dimethylacetamide (DMAC)
KR101122687B1 (ko) N-알킬-피롤리돈의 제조 방법
JPH0672982A (ja) アルキルモノ−及びジイソシアネートの製法
US6627756B1 (en) Preparation of pure triethylenediamine
KR20020060591A (ko) 순수한 트리에틸렌디아민 (teda)의 제조 방법
CN101379021B (zh) 纯苯二甲胺(xda)的制备方法
US7060820B1 (en) Process for making caprolactam
US10906868B2 (en) Method for purifying N-(alpha-alkoxyethyl)formamide, method for producing high-purity N-(alpha-alkoxyethyl)formamide, and device for purifying N-(alpha-alkoxyethyl)formamide
US8193390B2 (en) Method for the production of N,N-dimethylacetamide (DMAC)
US20060149093A1 (en) Process for saparating a hydroxybenzonitrile-type compound
CN118103347A (zh) 加工和运输己烷-1,6-二胺或戊烷-1,5-二胺的方法
CA2209754A1 (en) Process for the distillative purification of diurethanes
CN118103348A (zh) 从脂族二胺中除去水和运输脂族二胺的方法
WO2023041768A1 (en) Method for the processing and transport of hexane-1,6-diamine or pentane-1,5-diamine
CA2232607C (en) Process for the production of azomethines and alpha-haloacetanilides
CN118103346A (zh) 从组合物获得脂族胺

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220405

R150 Certificate of patent or registration of utility model

Ref document number: 7055138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150