JP2019502637A - 高熱法二酸化ケイ素造粒体からの均質な石英ガラス - Google Patents

高熱法二酸化ケイ素造粒体からの均質な石英ガラス Download PDF

Info

Publication number
JP2019502637A
JP2019502637A JP2018530607A JP2018530607A JP2019502637A JP 2019502637 A JP2019502637 A JP 2019502637A JP 2018530607 A JP2018530607 A JP 2018530607A JP 2018530607 A JP2018530607 A JP 2018530607A JP 2019502637 A JP2019502637 A JP 2019502637A
Authority
JP
Japan
Prior art keywords
silicon dioxide
range
less
quartz glass
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018530607A
Other languages
English (en)
Inventor
ファビアン ハインツ ハインツ
ファビアン ハインツ ハインツ
アキム ホフマン
アキム ホフマン
ミハエル ヒュネルマン
ミハエル ヒュネルマン
マティアス オッター
マティアス オッター
トーマス カイザー
トーマス カイザー
Original Assignee
ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー
ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー, ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー filed Critical ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー
Publication of JP2019502637A publication Critical patent/JP2019502637A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/108Forming porous, sintered or foamed beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1095Thermal after-treatment of beads, e.g. tempering, crystallisation, annealing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

本発明は、石英ガラス体の調製のための方法であって、i.)高熱法二酸化ケイ素粉末から構成された二酸化ケイ素造粒体を提供する方法ステップと、ii.)二酸化ケイ素造粒体からガラス溶融物を作製する方法ステップと、iii.)ガラス溶融物の少なくとも一部から石英ガラス体を作製する方法ステップと、を含み、石英ガラス体が、10ppm未満のOH含有量、60ppm未満の塩素含有量、および200ppb未満のアルミニウム含有量を有する、方法、に関する。本発明は、この方法により得ることができる石英ガラス体にも関する。さらに、本発明は、それぞれ石英ガラス体のさらなる加工により得ることができる成形体および構造体に関する。
【選択図】図1

Description

本発明は、石英ガラス体の調製のための方法であって、i.)高熱法二酸化ケイ素粉末から二酸化ケイ素造粒体を提供する方法ステップと、ii.)二酸化ケイ素造粒体からガラス溶融物を作製する方法ステップと、iii.)ガラス溶融物の少なくとも一部から石英ガラス体を作製する方法ステップと、を含み、石英ガラス体が、10ppm未満のOH含有量、60ppm未満の塩素含有量、および200ppb未満のアルミニウム含有量を有する、方法、に関する。さらに、本発明は、この方法により得ることができる石英ガラス体に関する。さらに、本発明は、それぞれ石英ガラス体のさらなる加工により得ることができる成形体および構造体に関する。
石英ガラス、石英ガラス製品、および石英ガラスを含む製品が知られている。同様に、石英ガラスおよび石英ガラス体の調製のための様々な方法が、すでに知られている。それにもかかわらず、さらに高い純度を有する、すなわち不純物のない石英ガラスを調製することができる調製方法を突き止めるために相当の努力が依然として行われている。石英ガラスおよびその加工製品の応用の多くの分野では、例えば均質性および純度に関して、高い要求が課せられる。これは、とりわけ、半導体の製作において生産ステップで使用される石英ガラスに当てはまる。ここで、ガラス体のあらゆる不純物は、半導体内の欠陥に、したがって製作における不良品に、潜在的につながり得る。したがって、これらのプロセスで用いられる様々な高純度石英ガラスは、調製するのに手間がかかる。これらは、高価である。
さらに、安価な上記の高純度石英ガラスおよびそれから得られる製品に対する市場の要求が存在する。したがって、これは、高純度石英ガラスを以前より低価格で提供できるようになりたいという熱望である。これに関連して、よりコスト効率のよい調製方法およびより廉価な原材料ソースの両方が、求められている。
石英ガラス体の調製のための公知の方法は、二酸化ケイ素を溶融するステップ、および溶融物から石英ガラス体を作製するステップを含む。ガラス体内の不純物は、例えば気泡の形でのガスの封入を通じて、特に高温において、荷重を受けたガラス体の破損につながり得、またはガラス体を特定目的に使用することを不可能にし得る。石英ガラスの原材料中の不純物は、石英ガラス内のひび、気泡、筋、および退色につながり得る。ガラス体中の不純物も、放出され、処理される半導体コンポーネントに移され得る。これは、例えばエッチングプロセスに当てはまり、半導体ビレットの不良品につながる。したがって、公知の調製方法に伴う共通の問題は、石英ガラス体の品質の不十分性である。
さらなる態様は、原材料の効率に関する。他所で副産物として蓄積する石英ガラスおよび原材料は、これらの副産物を例えば建設におけるフィラーとして用いたり、またはそれらをごみとして有償で処分したりするのではなく、好ましくは石英ガラス製品のための工業プロセスに入力することが、有利と思われる。これらの副産物は、しばしばフィルタで細塵として分離除去される。細塵は、特に衛生、作業安全性、および取り扱いに関して、さらなる問題をもたらす。
本発明の目的は、技術の現状に存在する欠点の1つ以上を少なくとも部分的に克服することである。
本発明のさらなる目的は、コンポーネントに好適な二酸化ケイ素材料を提供することである。コンポーネントという用語は、具体的には、化学的処理ステップおよび/もしくは物理的処理ステップのために、または化学的処理ステップおよび/もしくは物理的処理ステップのための反応器内で、用いることができるコンポーネントを含むと理解されるべきである。
本発明のさらなる目的は、特に高い作動温度で、長い耐用寿命を有するコンポーネントを提供することである。
本発明のさらなる目的は、半導体材料の加工において、具体的には太陽電池製作および半導体製作において、具体的にはウエハの調製において、特定の処理ステップに好適なコンポーネントを提供することである。これらの特定の処理ステップの例は、プラズマエッチング、化学エッチング、およびプラズマドーピングである。
本発明のさらなる目的は、気泡がない、またはできる限り低い気泡含有量を有するガラスコンポーネントを提供することである。
本発明のさらなる目的は、高い輪郭精度を有するコンポーネントを提供することである。具体的には、本発明の目的は、高温で変形しないコンポーネントを提供することである。具体的には、本発明の目的は、大きいサイズに形成されたときでさえ形態安定であるコンポーネントを提供することである。
本発明のさらなる目的は、耐引裂性および耐破損性のコンポーネントを提供することである。
本発明のさらなる目的は、調製するのが効率的なコンポーネントを提供することである。
本発明のさらなる目的は、調製するのがコスト効率のよいコンポーネントを提供することである。
本発明のさらなる目的は、調製のために長いさらなる加工ステップ、例えば焼き戻しが必要とされないコンポーネントを提供することである。
本発明のさらなる目的は、高い透明性を有するコンポーネントを提供することである。本発明のさらなる目的は、低い不透明性を有するコンポーネントを提供することである。
本発明のさらなる目的は、高い耐熱衝撃性を有するコンポーネントを提供することである。具体的には本発明の目的は、大きい熱変動に対して均一な熱膨張を呈するコンポーネントを提供することである。
本発明のさらなる目的は、高温で高い粘度を有するコンポーネントを提供することである。
本発明のさらなる目的は、高い純度を有し、外来原子による低い汚染度を有するコンポーネントを提供することである。外来原子という用語は、意図的に導入されたのではない構成要素を意味するために用いられる。
本発明のさらなる目的は、高い均質性を有するコンポーネントを提供することである。特性または材料の均質性は、試料におけるこの特性または材料の分布の均一性の尺度である。
具体的には本発明の目的は、高い材料均質性を有するコンポーネントを提供することである。材料均質性は、コンポーネント内に含まれる元素および化合物、特にOH、塩素、金属、特にアルミニウム、アルカリ土類金属、高融点金属、およびドーパント材料の分布の均一性の尺度である。
本発明のさらなる目的は、上記の目的の少なくとも一部が解決されるコンポーネントのための二酸化ケイ素材料を調製することができる方法を提供することである。
さらなる目的は、コスト節約型および時間節約型の様式でコンポーネントのための二酸化ケイ素材料を調製することができる方法を提供することである。
本発明のさらなる目的は、コンポーネントのための二酸化ケイ素材料をより簡単に調製することができる方法を提供することである。
本発明のさらなる目的は、コンポーネントのための二酸化ケイ素材料を調製することができる連続的なプロセスを提供することである。
本発明のさらなる目的は、コンポーネントのための二酸化ケイ素材料をより高速に作製することができる方法を提供することである。
本発明のさらなる目的は、コンポーネントのための二酸化ケイ素材料を連続的な溶融および成形方法により調製することができる方法を提供することである。
本発明のさらなる目的は、コンポーネントのための二酸化ケイ素材料を低い不良率で調製することができる方法を提供することである。
本発明のさらなる目的は、コンポーネントのための二酸化ケイ素材料を調製することができる自動化方法を提供することである。
さらなる目的は、コンポーネントの加工性をさらに改善することである。さらなる目的は、コンポーネントの組立可能性をさらに改善することである。
上記の目的の少なくとも1つを少なくとも部分的に実現することに対する寄与が、独立請求項によりなされる。従属請求項は、目的の少なくとも1つを少なくとも部分的に実現することに寄与する好ましい実施形態を提供する。
|1| 高熱法二酸化ケイ素粉末を含む石英ガラス体の調製のための方法であって、以下の方法ステップ、
i.)以下の方法ステップ、
I.好ましくは非晶質の、高熱法二酸化ケイ素粉末を提供するステップであって、
さらに好ましくは二酸化ケイ素粉末が、以下の特徴、
a.200ppm未満の塩素含有量、
b.200ppb未満のアルミニウム含有量、
を有する、提供するステップ、
II.二酸化ケイ素造粒体を得るために二酸化ケイ素粉末を加工するステップであって、
二酸化ケイ素造粒体が、二酸化ケイ素粉末より大きい粒径を有する、加工するステップ、
を含み、
さらに好ましくは二酸化ケイ素造粒体が、反応物質で処理される、二酸化ケイ素造粒体を提供するステップ、
ii.)炉内で二酸化ケイ素造粒体からガラス溶融物を作製するステップ、
iii.)ガラス溶融物の少なくとも一部から石英ガラス体を作製するステップであって、
石英ガラス体が、以下の特性、
A]10ppm未満のOH含有量、
B]60ppm未満の塩素含有量、
C]200ppb未満のアルミニウム含有量、
を有し、
ppbおよびppmが、それぞれ石英ガラス体の総重量に基づく、作製するステップ
を含む、方法。
非晶質とは、二酸化ケイ素粉末が好ましくは非晶質二酸化ケイ素粒子の形態で存在することを意味する。
|2| ガラス溶融物を得るための二酸化ケイ素造粒体の加温が、鋳型溶融法により行われる、実施形態|1|に記載の方法。
|3| 加温中、期間tにわたって、二酸化ケイ素の融解点より低い温度Tが維持される、先行する実施形態のいずれか一つに記載の方法。
|4| 以下の特徴、
a.)温度Tが、1000〜1700℃の範囲である、
b.)期間tが、1〜6時間の範囲である
のうちの少なくとも1つにより特徴付けられる、実施形態|3|に記載の方法。
|5| 期間tが、ガラス溶融物の作製前である、実施形態|3|または|4|のいずれか一つに記載の方法。
|6| ステップiii)で得られた石英ガラス体が、少なくとも1000℃の温度に最大5K/分の速度で冷却される、先行する実施形態のいずれか一つに記載の方法。
|7| 冷却が、1300〜1000℃の温度範囲で1K/分以下の速度で行われる、先行する実施形態のいずれか一つに記載の方法。
|8| 石英ガラス体が、以下の特徴、
D]1055〜1200℃の範囲の仮想温度、
E]5×1015/cm未満のODC含有量、
F]300ppb未満の、アルミニウムとは異なる金属の金属含有量、
G]log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9またはlog10(η(1300℃)/dPas)=11.5〜log10(η(1300℃)/dPas)=12.1またはlog10(η(1350℃)/dPas)=1.2〜log10(η(1350℃)/dPas)=10.8の範囲の粘度(p=1013hPa)、
H]石英ガラス体のOH含有量A]に基づき10%以下のOH含有量の標準偏差、
I]石英ガラス体のCl含有量B]に基づき10%以下のCl含有量の標準偏差、
J]石英ガラス体のAl含有量C]に基づき10%以下のAl含有量の標準偏差、
K]1×10−4未満の屈折率均質性、
L]1150〜1250℃の範囲の変態点Tg、
のうちの少なくとも1つにより特徴付けられ、
ppbおよびppmが、それぞれ石英ガラス体の総重量に基づく、先行する実施形態のいずれか一つに記載の方法。
|9| 二酸化ケイ素粉末が、以下の特徴、
a.20〜60m/gの範囲のBET表面積、および
b.0.01〜0.3g/cmの範囲のかさ密度、
c.50ppm未満の炭素含有量、
d.200ppm未満の塩素含有量、
e.200ppb未満のアルミニウム含有量、
f.5ppm未満の、アルミニウムとは異なる金属の総含有量、
g.粉末粒子の少なくとも70重量%が、10〜100nmの範囲の一次粒子径を有する、
h.0.001〜0.3g/cmの範囲の重装かさ密度、
i.5重量%未満の残留水分量、
j.1〜7μmの範囲の粒子径分布D10
k.6〜15μmの範囲の粒子径分布D50
l.10〜40μmの範囲の粒子径分布D90
のうちの少なくとも1つを有し、
ppmおよびppbが、それぞれ二酸化ケイ素粉末の総重量に基づく、先行する実施形態のいずれか一つに記載の方法。
|10| 二酸化ケイ素粉末が、シロキサン、ケイ素アルコキシド、およびケイ素ハロゲン化物からなる群から選択される化合物から調製することができる、先行する実施形態のいずれか一つに記載の方法。
|11| 二酸化ケイ素粉末の二酸化ケイ素造粒体への加工が、以下のステップ、
II.1.液体を提供するステップ、
II.2.スラリーを得るために高熱法二酸化ケイ素粉末を液体と混合するステップ、
II.3.二酸化ケイ素造粒体を得るためにスラリーを造粒するステップ、
II.4.任意追加的に二酸化ケイ素造粒体を処理するステップ
を含む、先行する実施形態のいずれか一つに記載の方法。
|12| 二酸化ケイ素造粒体の総重量に基づき、ステップi.)で調製した二酸化ケイ素造粒体の少なくとも90重量%が、高熱法二酸化ケイ素粉末から作製される、先行する実施形態のいずれか一つに記載の方法。
|13| 二酸化ケイ素造粒体が、以下の特徴、
A)500ppm未満の塩素含有量、
B)200ppb未満のアルミニウム含有量、
C)20〜50m/gの範囲のBET表面積、
D)0.1〜2.5mL/gの範囲の細孔容積、
E)0.5〜1.2g/cmの範囲のかさ密度、
F)0.7〜1.2g/cmの範囲の重装かさ密度、
G)50〜500μmの範囲の平均粒子径、
H)5ppm未満の炭素含有量、
I)23〜26°の範囲の安息角、
J)50〜150μmの範囲の粒子径分布D10
K)150〜300μmの範囲の粒子径分布D50
L)250〜620μmの範囲の粒子径分布D90
のうちの少なくとも1つにより特徴付けられ、
ppmおよびppbが、それぞれ二酸化ケイ素造粒体IIの総重量に基づく、先行する実施形態のいずれか一つに記載の方法。
|14| 先行する実施形態のいずれか一つに記載の方法により得ることができる石英ガラス体。
|15| 高熱法二酸化ケイ素を含む石英ガラス体であって、石英ガラス体が、以下の特徴、
A]10ppm未満のOH含有量、
B]60ppm未満の塩素含有量、および
C]200ppb未満のアルミニウム含有量、
を有し、
ppbおよびppmが、それぞれ石英ガラス体の総重量に基づく、石英ガラス体。
|16| 石英ガラス体が、以下の特徴、
D]1055〜1200℃の範囲の仮想温度、
E]5×1015/cm未満のODC含有量、
F]300ppb未満の、アルミニウムとは異なる金属の金属含有量、
G]log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9および/またはlog10(η(1300℃)/dPas)=11.5〜log10(η(1300℃)/dPas)=12.1またはlog10(η(1350℃)/dPas)=1.2〜log10(η(1350℃)/dPas)=10.8の範囲の粘度(p=1013hPa)、
H]石英ガラス体のOH含有量A]に基づき10%以下のOH含有量の標準偏差、
I]石英ガラス体のCl含有量B]に基づき10%以下のCl含有量の標準偏差、
J]石英ガラス体のAl含有量C]に基づき10%以下のAl含有量の標準偏差、
K]1×10−4未満の屈折率均質性、
L]1150〜1250℃の範囲の変態点Tg、
のうちの少なくとも1つにより特徴付けられ、
ppbおよびppmが、それぞれ石英ガラス体の総重量に基づく、実施形態|15|に記載の石英ガラス体。
|17| 成形体の調製のための方法であって、以下の方法ステップ、
(1)実施形態|15|〜|16|のうちのいずれか一項に記載の石英ガラス体、または実施形態|1|〜|13|のうちのいずれか一項に記載の方法により得ることができる石英ガラス体を提供するステップ、
(2)石英ガラス体から成形体を作製するステップ
を含む、方法。
|18| 実施形態|17|に記載の方法により得ることができる成形体。
|19| 構造体の調製のための方法であって、以下の方法ステップ、
a/ 実施形態|18|に記載の成形体および部品を提供するステップ、
b/ 構造体を得るために成形体を部品と接合するステップ
を含む、方法。
|20| 実施形態|19|に記載の方法により得ることができる構造体。
|21| 石英ガラス体の純度および均質性を改善するための二酸化ケイ素造粒体の使用。
|22| 太陽電池製作および半導体製作における加工のための、石英ガラスを含むコンポーネントの調製のための、二酸化ケイ素造粒体の使用。
さらに好ましいのは、高熱法二酸化ケイ素を含む石英ガラス体の調製のための方法であって、以下の方法ステップ、
i.)以下の方法ステップ、
I.高熱法二酸化ケイ素粉末を提供するステップであって、
高熱法二酸化ケイ素粉末が、非晶質二酸化ケイ素粒子の形態で存在し、二酸化ケイ素粉末が、以下の特性、
a.200ppm未満の塩素含有量、
b.200ppb未満のアルミニウム含有量、
を有する、提供するステップ、
II.二酸化ケイ素造粒体Iを得るために二酸化ケイ素粉末を加工するステップであって、二酸化ケイ素造粒体Iが、二酸化ケイ素粉末より大きい粒径を有する、加工するステップ、
III.二酸化ケイ素造粒体IIを得るために二酸化ケイ素造粒体Iを反応物質で処理するステップ、
を含む二酸化ケイ素造粒体を提供するステップ、
ii.)炉内で二酸化ケイ素造粒体IIからガラス溶融物を形成するステップ、
iii.)ガラス溶融物の少なくとも一部から石英ガラス体を形成するステップであって、石英ガラス体が、以下の特性、
A]10ppm未満のOH含有量、
B]60ppm未満の塩素含有量、
C]200ppb未満のアルミニウム含有量、
を有する、形成するステップ、
を含み、
ppbおよびppmが、それぞれ石英ガラス体の総重量に基づく、方法、である。
流れ図(石英ガラス体の調製のための方法)。 流れ図(二酸化ケイ素造粒体Iの調製のための方法)。 流れ図(二酸化ケイ素造粒体IIの調製のための方法)。 噴霧塔の概略図。 ガス圧焼結炉(GDS炉)の概略図。 流れ図(成形体の調製のための方法)。
一般事項
本明細書において、開示の範囲は、境界値も含む。したがって、パラメータAに関して「X〜Yの範囲」という形の開示は、Aが値X、Y、およびXとYとの間の値をとることができることを意味する。パラメータAに関して「最大Y」という形の、一方側が境界付けられた範囲は、同様に値YおよびY未満の値を意味する。
本発明の第1の態様は、高熱法二酸化ケイ素を含む石英ガラス体の調製のための方法であって、以下の方法ステップ、
i.)以下の方法ステップ、
I.高熱法二酸化ケイ素粉末を提供するステップ、
II.二酸化ケイ素造粒体を得るために二酸化ケイ素粉末を加工するステップであって、二酸化ケイ素造粒体が、二酸化ケイ素粉末より大きい粒径を有する、加工するステップ、
を含む二酸化ケイ素造粒体を提供するステップ、
ii.)炉内で二酸化ケイ素造粒体からガラス溶融物を作製するステップ、
iii.)ガラス溶融物の少なくとも一部から石英ガラス体を作製するステップであって、石英ガラス体が、以下の特性、
A]10ppm未満のOH含有量、
B]60ppm未満の塩素含有量、
C]200ppb未満のアルミニウム含有量、
を有する、作製するステップ、
を含み、
ppbおよびppmが、それぞれ石英ガラス体の総重量に基づく、方法、である。
ステップi.)
本発明によれば、二酸化ケイ素造粒体の提供は、以下の方法ステップ、
I.高熱法二酸化ケイ素粉末を提供するステップ、および
II.二酸化ケイ素造粒体を得るために二酸化ケイ素粉末を加工するステップであって、二酸化ケイ素造粒体が、二酸化ケイ素粉末より大きい粒径を有する、加工するステップ、
を含む。
粉末は、1〜100nm未満の範囲の一次粒子径を有する乾燥固体材料の粒子を意味する。
二酸化ケイ素造粒体は、二酸化ケイ素粉末を造粒することにより得ることができる。二酸化ケイ素造粒体は、一般に、3m/g以上のBET表面積および1.5g/cm未満の密度を有する。造粒は、粉末粒子を顆粒に変換することを意味する。造粒中、複数の二酸化ケイ素粉末粒子のクラスター、すなわち「二酸化ケイ素顆粒」と呼ばれるより大きい凝集体が形成される。これらは、しばしば「二酸化ケイ素造粒体粒子」または「顆粒粒子」とも呼ばれる。集合として、顆粒は、造粒体を形成し、例えば二酸化ケイ素顆粒は、「二酸化ケイ素造粒体」を形成する。二酸化ケイ素造粒体は、二酸化ケイ素粉末より大きい粒径を有する。
粉末を造粒体に変換するための造粒手順は、より詳細に後述される。
現在の文脈では、二酸化ケイ素粒は、二酸化ケイ素体、特に石英ガラス体のサイズ低減により得ることができる二酸化ケイ素粒子を意味する。二酸化ケイ素粒は、一般に、1.2g/cm超、例えば1.2〜2.2g/cmの範囲、特に好ましくは約2.2g/cmの密度を有する。さらに、二酸化ケイ素粒のBET表面積は、DIN ISO 9277:2014−01に従って決定すると、好ましくは一般に1m/g未満である。
原則として、当業者が好適と考える全ての二酸化ケイ素粒子を、選択することができる。好ましいのは、二酸化ケイ素造粒体および二酸化ケイ素粒である。
粒径または粒子径は、以下の式に従って「面積円相当径xAi」として与えられる粒子の直径を意味し、
式中、Aiは、画像解析により観察した粒子の表面積を表す。好適な測定法は、例えばISO 13322−1:2014またはISO 13322−2:2009である。「より大きい粒径」などの比較による開示は、比較される値が同じメソッドで測定されることを常に意味する。
二酸化ケイ素粉末
本発明の文脈では、合成二酸化ケイ素粉末、すなわち高熱法により生成された二酸化ケイ素粉末、が使用される。
二酸化ケイ素粉末は、少なくとも2つの粒子を有する任意の二酸化ケイ素粉末でよい。調製プロセスとしては、当業者が当技術分野で普及しており、好適であると考える任意のプロセスを使用することができる。
本発明の好ましい実施形態によれば、二酸化ケイ素粉末は、石英ガラスの調製において、特にいわゆる「スート体」の調製において、副産物として生成される。このようなソースからの二酸化ケイ素は、しばしば「スートダスト」とも呼ばれる。
二酸化ケイ素粉末の好ましいソースは、火炎加水分解バーナーの適用によりスート体の合成的調製から得られる二酸化ケイ素粒子である。スート体の調製では、円筒ジャケット面を有する回転担持管が、バーナー列に沿って前後に動かされる。火炎加水分解バーナーには、バーナーガスとしての酸素および水素、ならびに二酸化ケイ素一次粒子を作製するための原材料を供給することができる。二酸化ケイ素一次粒子は、好ましくは、最大100nmの一次粒子径を有する。火炎加水分解により生成される二酸化ケイ素一次粒子は、集合または凝集して約9μmの粒子径(DIN ISO 13320:2009−1)を有する二酸化ケイ素粒子を形成する。二酸化ケイ素粒子内では、二酸化ケイ素一次粒子は、走査電子顕微鏡によりそれらの形態により識別可能であり、一次粒子径を測定することができる。二酸化ケイ素粒子の一部分は、長手方向軸を中心として回転している担持管の円筒ジャケット面上に堆積される。このようにして、スート体が、一層ずつビルドアップされる。二酸化ケイ素粒子の別の部分は、担持管の円筒ジャケット面上には堆積されず、むしろ例えばフィルタシステム内にダストとして蓄積する。この二酸化ケイ素粒子の他の部分が、しばしば「スートダスト」とも呼ばれる二酸化ケイ素粉末を構成する。一般に、担持管上に堆積される二酸化ケイ素粒子の部分は、二酸化ケイ素粒子の総重量に基づき、スート体調製の文脈ではスートダストとして蓄積する二酸化ケイ素粒子の部分より大きい。
最近、スートダストは、一般に廃物として面倒かつ高価な様式で処分され、または例えば道路工事において付加価値のないフィラー材料として、染料工業で添加剤として、タイル業界のための原材料として、および建築用基礎の修復に用いられるヘキサフルオロケイ酸の調製のために、使用される。本発明の場合、スートダストは、好適な原材料であり、高品質製品を得るように加工することができる。
火炎加水分解により調製される二酸化ケイ素は、通常、高熱法二酸化ケイ素と呼ばれる。高熱法二酸化ケイ素は、通常、非晶質二酸化ケイ素一次粒子または二酸化ケイ素粒子の形で入手可能である。
好ましい実施形態によれば、二酸化ケイ素粉末は、混合ガスから火炎加水分解により調製することができる。この場合、二酸化ケイ素粒子は、火炎加水分解においても作製され、凝集体または集合体が形成される前に取り出される。ここでは、上記でスートダストと呼んだ二酸化ケイ素粉末が、主生成物である。
二酸化ケイ素粉末を作製するための好適な原材料は、好ましくは、シロキサン、ケイ素アルコキシド、および無機ケイ素化合物である。シロキサンは、直鎖状ポリアルキルシロキサンおよび環状ポリアルキルシロキサンを意味する。好ましくは、ポリアルキルシロキサンは、以下の一般式を有し、
Si2p
式中、pは、少なくとも2、好ましくは2〜10、特に好ましくは3〜5の整数であり、Rは、1〜8個のC原子、好ましくは1〜4個のC原子を含むアルキル基、特に好ましくはメチル基である。
特に好ましいのは、ヘキサメチルジシロキサン、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、およびデカメチルシクロペンタシロキサン(D5)、またはこれらの2つ以上の組み合わせからなる群から選択されるシロキサンである。シロキサンがD3、D4、およびD5を含む場合、好ましくはD4が、主成分である。主成分は、各場合に二酸化ケイ素粉末の総量に基づき、好ましくは少なくとも70重量%、好ましくは少なくとも80重量%、例えば少なくとも90重量%または少なくとも94重量%、特に好ましくは少なくとも98重量%の量で存在する。好ましいケイ素アルコキシドは、テトラメトキシシランおよびメチルトリメトキシシランである。二酸化ケイ素粉末の原材料として好ましい無機ケイ素化合物は、ハロゲン化ケイ素、シリケート、炭化ケイ素、および窒化ケイ素である。二酸化ケイ素粉末の原材料として特に好ましい無機ケイ素化合物は、四塩化ケイ素およびトリクロロシランである。
好ましい実施形態によれば、二酸化ケイ素粉末は、シロキサン、ケイ素アルコキシド、およびハロゲン化ケイ素からなる群から選択される化合物から調製することができる。
好ましくは、二酸化ケイ素粉末は、ヘキサメチルジシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、およびデカメチルシクロペンタシロキサン、テトラメトキシシランおよびメチルトリメトキシシラン、四塩化ケイ素、ならびにトリクロロシラン、またはこれらの2つ以上の組み合わせからなる群から選択される化合物から、例えば四塩化ケイ素およびオクタメチルシクロテトラシロキサンから、特に好ましくはオクタメチルシクロテトラシロキサンから、調製することができる。
火炎加水分解により四塩化ケイ素から二酸化ケイ素を作製する場合、様々なパラメータが重要である。好適な混合ガスの好ましい組成は、火炎加水分解において25〜40体積%の範囲の酸素含有量を含む。水素含有量は、45〜60体積%の範囲でよい。四塩化ケイ素含有量は、好ましくは5〜30体積%であり、上記体積%の全ては、ガス流の総体積に基づく。さらに好ましいのは、上記体積割合の酸素、水素、およびSiClの組み合わせである。火炎加水分解における火炎は、好ましくは1500〜2500℃の範囲、例えば1600〜2400℃の範囲、特に好ましくは1700〜2300℃の範囲の温度を有する。好ましくは、火炎加水分解で作製される二酸化ケイ素一次粒子は、凝集体または集合体が形成される前に二酸化ケイ素粉末として取り出される。
本発明の第1の態様の好ましい実施形態によれば、二酸化ケイ素粉末は、以下の特徴、
a.20〜60m/gの範囲、例えば25〜55m/g、または30〜50m/g、特に好ましくは20〜40m/gのBET表面積、
b.かさ密度0.01〜0.3g/cm、例えば0.02〜0.2g/cmの範囲、好ましくは0.03〜0.15g/cmの範囲、さらに好ましくは0.1〜0.2g/cmの範囲または0.05〜0.1g/cmの範囲、または0.05〜0.3g/cmの範囲、
c.50ppm未満、例えば40ppm未満または30ppm未満、特に好ましくは1ppb〜20ppmの範囲の炭素含有量、
d.200ppm未満、例えば150ppm未満または100ppm未満、特に好ましくは1ppb〜80ppmの範囲の塩素含有量、
e.200ppb未満、例えば1〜100ppbの範囲、特に好ましくは1〜80ppbの範囲のアルミニウム含有量、
f.5ppm未満、例えば2ppm未満、特に好ましくは1ppb〜1ppmの範囲の、アルミニウムとは異なる金属の総含有量、
g.粉末粒子の少なくとも70重量%が、10〜100nm未満の範囲、例えば15〜100nm未満の範囲、特に好ましくは20〜100nm未満の範囲の一次粒子径を有する、
h.0.001〜0.3g/cmの範囲、例えば0.002〜0.2g/cmまたは0.005〜0.1g/cmの範囲、好ましくは0.01〜0.06g/cmの範囲、また好ましくは0.1〜0.2g/cmの範囲または0.5〜0.2g/cmの範囲の重装かさ密度、
i.5重量%未満、例えば0.25〜3重量%の範囲、特に好ましくは0.5〜2重量%の範囲の残留水分量、
j.1〜7μmの範囲、例えば2〜6μmの範囲または3〜5μmの範囲、特に好ましくは3.5〜4.5μmの範囲の粒子径分布D10
k.6〜15μmの範囲、例えば7〜13μmの範囲または8〜11μmの範囲、特に好ましくは8.5〜10.5μmの範囲の粒子径分布D50
l.10〜40μmの範囲、例えば15〜35μmの範囲、特に好ましくは20〜30μmの範囲の粒子径分布D90
のうちの少なくとも1つ、例えば少なくとも2つまたは少なくとも3つまたは少なくとも4つ、特に好ましくは少なくとも5つを有し、
重量%、ppm、およびppbは、それぞれ二酸化ケイ素粉末の総重量に基づく。
二酸化ケイ素粉末は、二酸化ケイ素を含有する。好ましくは、二酸化ケイ素粉末は、各場合に二酸化ケイ素粉末の総重量に基づき、95重量%超、例えば98重量%超または99重量%超または99.9重量%超の割合の二酸化ケイ素を含有する。特に好ましくは、二酸化ケイ素粉末は、二酸化ケイ素粉末の総重量に基づき99.99重量%超の割合の二酸化ケイ素を含有する。
好ましくは、二酸化ケイ素粉末は、各場合に二酸化ケイ素粉末の総重量に基づき、5ppm未満、例えば2ppm未満、特に好ましくは1ppm未満の、アルミニウムとは異なる金属の金属含有量を有する。しかしながら、しばしば二酸化ケイ素粉末は、少なくとも1ppbの、アルミニウムとは異なる金属の含有量を有する。このような金属は、例えばナトリウム、リチウム、カリウム、マグネシウム、カルシウム、ストロンチウム、ゲルマニウム、銅、モリブデン、タングステン、チタン、鉄、およびクロムである。これらは、例えば元素形態で、イオンとして、または分子もしくはイオンもしくは錯体の一部として存在してもよい。
好ましくは、二酸化ケイ素粉末は、30ppm未満、例えば20ppm未満、特に好ましくは15ppm未満の総含有量のさらなる構成要素を有し、ppmは、各場合に二酸化ケイ素粉末の総重量に基づく。しかしながら、しばしば二酸化ケイ素粉末は、少なくとも1ppbの含有量のさらなる構成要素を有する。さらなる構成要素は、以下の群、すなわち二酸化ケイ素、塩素、アルミニウム、OH基、に属さない二酸化ケイ素粉末の全ての構成要素を意味する。
現在の文脈では、構成要素が化学元素であるとき、構成要素への言及は、構成要素が元素として、イオンとして、または化合物もしくは塩内に存在してもよいことを意味する。例えば、「アルミニウム」という用語は、金属のアルミニウムに加えて、アルミニウム塩、酸化アルミニウム、およびアルミニウム金属錯体も含む。例えば、「塩素」という用語は、元素状塩素に加えて、塩化ナトリウムおよび塩化水素などの塩化物を含む。しばしば、さらなる構成要素は、それらを含有する材料と同じ集合状態で存在する。
現在の文脈では、構成要素が化学化合物または官能基である場合、構成要素への言及は、構成要素が、開示の形態で、帯電した化学化合物として、または化学化合物の誘導体として存在してもよいことを意味する。例えば、化学材料エタノールへの言及は、エタノールに加えて、エタノレート、例えばナトリウムエタノレートも含む。「OH基」への言及は、シラノール、水、および金属水酸化物も含む。例えば、酢酸の文脈では、誘導体への言及は、酢酸エステルおよび無水酢酸も含む。
好ましくは、粉末粒子の数に基づき、二酸化ケイ素粉末の粉末粒子の少なくとも70%は、100nm未満、例えば10〜100nmまたは15〜100nmの範囲、特に好ましくは20〜100nmの範囲の一次粒子径を有する。一次粒子径は、ISO 13320:2009−10に従って動的光散乱法により測定される。
好ましくは、粉末粒子の数に基づき、二酸化ケイ素粉末の粉末粒子の少なくとも75%は、100nm未満、例えば10〜100nmまたは15〜100nmの範囲、特に好ましくは20〜100nmの範囲の一次粒子径を有する。
好ましくは、粉末粒子の数に基づき、二酸化ケイ素粉末の粉末粒子の少なくとも80%は、100nm未満、例えば10〜100nmまたは15〜100nmの範囲、特に好ましくは20〜100nmの範囲の一次粒子径を有する。
好ましくは、粉末粒子の数に基づき、二酸化ケイ素粉末の粉末粒子の少なくとも85%は、100nm未満、例えば10〜100nmまたは15〜100nmの範囲、特に好ましくは20〜100nmの範囲の一次粒子径を有する。
好ましくは、粉末粒子の数に基づき、二酸化ケイ素粉末の粉末粒子の少なくとも90%は、100nm未満、例えば10〜100nmまたは15〜100nmの範囲、特に好ましくは20〜100nmの範囲の一次粒子径を有する。
好ましくは、粉末粒子の数に基づき、二酸化ケイ素粉末の粉末粒子の少なくとも95%は、100nm未満、例えば10〜100nmまたは15〜100nmの範囲、特に好ましくは20〜100nmの範囲の一次粒子径を有する。
好ましくは、二酸化ケイ素粉末は、1〜7μmの範囲、例えば2〜6μmの範囲または3〜5μmの範囲、特に好ましくは3.5〜4.5μmの範囲の粒子径D10を有する。好ましくは、二酸化ケイ素粉末は、6〜15μmの範囲、例えば7〜13μmの範囲または8〜11μmの範囲、特に好ましくは8.5〜10.5μmの範囲の粒子径D50を有する。好ましくは、二酸化ケイ素粉末は、10〜40μmの範囲、例えば15〜35μmの範囲、特に好ましくは20〜30μmの範囲の粒子径D90を有する。
好ましくは、二酸化ケイ素粉末は、20〜60m/gの範囲、例えば25〜55m/g、または30〜50m/g、特に好ましくは20〜40m/gの比表面積(BET表面積)を有する。BET表面積は、測定する表面におけるガス吸着に基づくDIN 66132により、ブルナウアー(Brunauer)、エメット(Emmet)、およびテラー(Teller)(BET)のメソッドに従って決定される。
好ましくは、二酸化ケイ素粉末は、7未満、例えば3〜6.5または3.5〜6または4〜5.5の範囲、特に好ましくは4.5〜5の範囲のpH値を有する。pH値は、単一ロッド測定電極(水中に4%の二酸化ケイ素粉末)により決定することができる。
二酸化ケイ素粉末は、好ましくは特徴組み合わせa./b./c.またはa./b./f.またはa./b./g.、さらに好ましくは特徴組み合わせa./b./c./f.またはa./b./c./g.またはa./b./f./g.、特に好ましくは特徴組み合わせa./b./c./f./g.を有する。
二酸化ケイ素粉末は、好ましくは特徴組み合わせa./b./c.を有し、BET表面積は、20〜40m/gの範囲であり、かさ密度は、0.05〜0.3g/mLの範囲であり、炭素含有量は、40ppm未満である。
二酸化ケイ素粉末は、好ましくは特徴組み合わせa./b./f.を有し、BET表面積は、20〜40m/gの範囲であり、かさ密度は、0.05〜0.3g/mLの範囲であり、アルミニウムとは異なる金属の総含有量は、1ppb〜1ppmの範囲である。
二酸化ケイ素粉末は、好ましくは特徴組み合わせa./b./g.を有し、BET表面積は、20〜40m/gの範囲であり、かさ密度は、0.05〜0.3g/mLの範囲であり、粉末粒子の少なくとも70重量%は、20〜100nm未満の範囲の一次粒子径を有する。
二酸化ケイ素粉末は、好ましくは特徴組み合わせa./b./c./f.を有し、BET表面積は、20〜40m/gの範囲であり、かさ密度は、0.05〜0.3g/mLの範囲であり、炭素含有量は、40ppm未満であり、アルミニウムとは異なる金属の総含有量は、1ppb〜1ppmの範囲である。
二酸化ケイ素粉末は、好ましくは特徴組み合わせa./b./c./g.を有し、BET表面積は、20〜40m/gの範囲であり、かさ密度は、0.05〜0.3g/mLの範囲であり、炭素含有量は、40ppm未満であり、粉末粒子の少なくとも70重量%は、20〜100nm未満の範囲の一次粒子径を有する。
二酸化ケイ素粉末は、好ましくは特徴組み合わせa./b./f./g.を有し、BET表面積は、20〜40m/gの範囲であり、かさ密度は、0.05〜0.3g/mLの範囲であり、アルミニウムとは異なる金属の総含有量は、1ppb〜1ppmの範囲であり、粉末粒子の少なくとも70重量%は、20〜100nm未満の範囲の一次粒子径を有する。
二酸化ケイ素粉末は、好ましくは特徴組み合わせa./b./c./f./g.を有し、BET表面積は、20〜40m/gの範囲であり、かさ密度は、0.05〜0.3g/mLの範囲であり、炭素含有量は、40ppm未満であり、アルミニウムとは異なる金属の総含有量は、1ppb〜1ppmの範囲であり、粉末粒子の少なくとも70重量%は、20〜100nm未満の範囲の一次粒子径を有する。
ステップII.
本発明によれば、二酸化ケイ素粉末は、ステップIIで二酸化ケイ素造粒体を得るように加工され、二酸化ケイ素造粒体は、二酸化ケイ素粉末より大きい粒径を有する。この目的のため、粒径の増大につながる当業者に公知のいずれのプロセスも好適である。
二酸化ケイ素造粒体は、二酸化ケイ素粉末の粒径より大きい粒径を有する。好ましくは、二酸化ケイ素造粒体の粒径は、二酸化ケイ素粉末の粒径の500〜50,000倍、例えば1,000〜10,000倍の大きさ、特に好ましくは2,000〜8,000倍の大きさの範囲である。
好ましくは、各場合に二酸化ケイ素造粒体の総重量に基づき、ステップi.)で提供される二酸化ケイ素造粒体の少なくとも90%、例えば少なくとも95重量%または少なくとも98重量%、特に好ましくは少なくとも99重量%以上は、高熱法により生成された二酸化ケイ素粉末から構成される。
本発明の第1の態様の好ましい実施形態によれば、用いられる二酸化ケイ素造粒体は、以下の特徴、
A)500ppm未満、好ましくは400ppm未満、例えば300ppm未満もしくは200ppm未満、特に好ましくは100ppm未満、または1ppb〜500ppmもしくは1ppb〜300ppmの範囲、特に好ましくは1ppb〜100ppmの塩素含有量、
B)200ppb未満、例えば150ppb未満または100ppb未満または1〜150ppbまたは1〜100ppb、特に好ましくは1〜80ppbの範囲のアルミニウム含有量、
C)20m/g〜50m/gの範囲のBET表面積、および
D)0.1〜2.5mL/gの範囲、例えば0.15〜1.5mL/gの範囲、特に好ましくは0.2〜0.8mL/gの範囲の細孔容積、
E)0.5〜1.2g/cmの範囲、例えば0.6〜1.1g/cmの範囲、特に好ましくは0.7〜1.0g/cmの範囲のかさ密度、
F)0.7〜1.2g/cmの範囲の重装かさ密度、
G)50〜500μmの範囲の平均粒子径、
H)50ppm未満の炭素含有量、
I)23〜26°の範囲の安息角、
J)50〜150μmの範囲の粒子径分布D10
K)150〜300μmの範囲の粒子径分布D50
L)250〜620μmの範囲の粒子径分布D90
を有し、
ppmおよびppbは、それぞれ二酸化ケイ素造粒体の総重量に基づく。
好ましくは、二酸化ケイ素造粒体の顆粒は、球状のモルホロジーを有する。球状のモルホロジーは、粒子の円形または長円形の形状を意味する。二酸化ケイ素造粒体の顆粒は、好ましくは0.7〜1.3SPHT3の範囲の平均真球度、例えば0.8〜1.2SPHT3の範囲の平均真球度、特に好ましくは0.85〜1.1SPHT3の範囲の平均真球度を有する。特徴SPHT3は、試験法の中で説明される。
さらに、二酸化ケイ素造粒体の顆粒は、好ましくは0.7〜1.3Symm3の範囲の平均対称性、例えば0.8〜1.2Symm3の範囲の平均対称性、特に好ましくは0.85〜1.1Symm3の範囲の平均対称性を有する。平均対称性Symm3の特徴は、試験法の中で説明される。
好ましくは、二酸化ケイ素造粒体は、各場合に二酸化ケイ素造粒体の総重量に基づき、1000ppb未満、例えば500ppb未満、特に好ましくは100ppb未満の、アルミニウムとは異なる金属の金属含有量を有する。しかしながら、しばしば二酸化ケイ素造粒体は、少なくとも1ppbの、アルミニウムとは異なる金属の含有量を有する。しばしば、二酸化ケイ素造粒体は、各場合に二酸化ケイ素造粒体の総重量に基づき、1ppm未満、好ましくは40〜900ppbの範囲、例えば50〜700ppbの範囲、特に好ましくは60〜500ppbの範囲の、アルミニウムとは異なる金属の金属含有量を有する。このような金属は、例えばナトリウム、リチウム、カリウム、マグネシウム、カルシウム、ストロンチウム、ゲルマニウム、銅、モリブデン、チタン、鉄、およびクロムである。これらは、例えば元素として、イオンとして、または分子もしくはイオンもしくは錯体の一部として存在してもよい。
二酸化ケイ素造粒体は、例えば分子、イオン、または元素の形でさらなる構成要素を含んでもよい。好ましくは、二酸化ケイ素造粒体は、各場合に二酸化ケイ素造粒体の総重量に基づき、500ppm未満、例えば300ppm未満、特に好ましくは100ppm未満のさらなる構成要素を含む。しばしば、少なくとも1ppbのさらなる構成要素が含まれる。さらなる構成要素は、具体的には、炭素、フッ化物、ヨウ化物、臭化物、リン、またはこれらの少なくとも2つの混合物からなる群から選択することができる。
好ましくは、二酸化ケイ素造粒体は、各場合に二酸化ケイ素造粒体の総重量に基づき、10ppm未満、例えば8ppm未満または5ppm未満、特に好ましくは4ppm未満の炭素を含む。しばしば、少なくとも1ppbの炭素が二酸化ケイ素造粒体中に含まれる。
好ましくは、二酸化ケイ素造粒体は、各場合に二酸化ケイ素造粒体の総重量に基づき、100ppm未満、例えば80ppm未満、特に好ましくは70ppm未満のさらなる構成要素を含む。しかしながら、しばしば少なくとも1ppbのさらなる構成要素が含まれる。
好ましくは、ステップII.は、以下のステップ、
II.1.液体を提供するステップ、
II.2.スラリーを得るために二酸化ケイ素粉末を液体と混合するステップ、
II.3.スラリーを造粒する、好ましくは噴霧乾燥するステップ
を含む。
本発明の文脈では、液体は、1013hPaの圧力および20℃の温度において液状である材料または材料の混合物を意味する。
「スラリー」は、本発明の文脈では、少なくとも2つの材料の混合物を意味し、混合物は、一般的な条件下で考察する場合、少なくとも1つの液体および少なくとも1つの固体を含む。
好適な液体は全て、当業者に公知であり、本用途のために好適と思われる材料および材料の混合物である。好ましくは、液体は、有機液体と水とからなる群から選択される。好ましくは、液体中の二酸化ケイ素粉末の溶解度は、0.5g/L未満、好ましくは0.25g/L未満、特に好ましくは0.1g/L未満であり、g/Lは、それぞれ液体1リットル当たりのg二酸化ケイ素粉末として与えられている。
好ましい好適な液体は、極性溶媒である。これらは、有機液体または水でよい。好ましくは、液体は、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、およびこれらの2つ以上の混合物からなる群から選択される。特に好ましくは、液体は、水である。特に好ましくは、液体は、蒸留水または脱イオン水を含む。
好ましくは、二酸化ケイ素粉末は、スラリーを得るように加工される。二酸化ケイ素粉末は、室温では事実上液体に不溶性であるが、高い重量割合で液体内に導入してスラリーを得ることができる。
二酸化ケイ素粉末および液体は、任意の様式で混合されてよい。例えば、二酸化ケイ素粉末を液体に添加してもよく、液体を二酸化ケイ素粉末に添加してもよい。混合物は、添加中または添加後に撹拌されてもよい。特に好ましくは、混合物は、添加中および添加後に撹拌される。撹拌の例は、振り混ぜおよびかき混ぜ、または両者の組み合わせである。好ましくは、二酸化ケイ素粉末は、かき混ぜ下で液体に添加することができる。さらに、好ましくは、二酸化ケイ素粉末の一部分は、液体に添加することができ、このようにして得られた混合物は、撹拌され、その後混合物は、二酸化ケイ素粉末の残りの部分と混合される。同様に、液体の一部分を二酸化ケイ素粉末に添加することができ、このようにして得られた混合物は、撹拌され、その後混合物は、液体の残りの部分と混合される。
二酸化ケイ素粉末と液体を混合することにより、スラリーが得られる。好ましくは、スラリーは、二酸化ケイ素粉末が液体中に均一に分布した懸濁液である。「均一」とは、各位置におけるスラリーの密度および組成が、各場合にスラリーの総量に基づき、平均密度および平均組成から10%を超えて外れないことを意味する。液体中の二酸化ケイ素粉末の均一分布は、上述の撹拌により調製されてもよく、もしくは得られてもよく、またはその両方であってもよい。
好ましくは、スラリーは、1000〜2000g/Lの範囲、例えば1200〜1900g/Lまたは1300〜1800g/Lの範囲、特に好ましくは1400〜1700g/Lの範囲の1リットル当たりの重量を有する。1リットル当たりの重量は、容積校正された容器の重さを量ることにより測定される。
好ましい実施形態によれば、以下の特徴、
a.)スラリーは、プラスチック表面と接触した状態で輸送される、
b.)スラリーは、せん断される、
c.)スラリーは、0℃超、好ましくは5〜35℃の範囲の温度を有する、
d.)スラリーは、7のpH値において0〜−100mAの範囲、例えば−20〜−60mA、特に好ましくは−30〜−45mAのゼータ電位を有する、
e.)スラリーは、7以上、例えば7超の範囲のpH値、または7.5〜13もしくは8〜11、特に好ましくは8.5〜10の範囲のpH値を有する、
f.)スラリーは、7未満、例えば1〜5の範囲または2〜4の範囲、特に好ましくは3〜3.5の範囲の等電点を有する、
g.)スラリーは、各場合にスラリーの総重量に基づき、少なくとも40重量%、例えば50〜80重量%の範囲、または55〜75重量%の範囲、特に好ましくは60〜70重量%の範囲の固形物量を有する、
h.)スラリーは、DIN 53019−1(5rpm、30重量%)に従って、500〜2000mPasの範囲、例えば600〜1700mPasの範囲、特に好ましくは1000〜1600mPasの範囲の粘度を有する、
i.)スラリーは、DIN SPEC 91143−2(水中で30重量%、23℃、5rpm/50rpm)に従って、3〜6の範囲、例えば3.5〜5の範囲、特に好ましくは4.0〜4.5の範囲のチキソトロピーを有する、
j.)スラリー中の二酸化ケイ素粒子は、DIN ISO 13320−1に従って、4重量%スラリー中において、100〜500nmの範囲、例えば200〜300nmの範囲の懸濁液中の平均粒子径を有する
のうちの少なくとも1つ、例えば少なくとも2つまたは少なくとも3つまたは少なくとも4つ、特に好ましくは少なくとも5つが、スラリーに当てはまる。
好ましくは、4重量%水性スラリー中の二酸化ケイ素粒子は、50〜250nmの範囲、特に好ましくは100〜150nmの範囲の粒子径D10を有する。好ましくは、4重量%水性スラリー中の二酸化ケイ素粒子は、100〜400nmの範囲、特に好ましくは200〜250nmの範囲の粒子径D50を有する。好ましくは、4重量%水性スラリー中の二酸化ケイ素粒子は、200〜600nmの範囲、特に好ましくは350〜400nmの範囲の粒子径D90を有する。粒子径は、DIN ISO 13320−1に従って測定される。
「等電点」は、ゼータ電位が値0をとるpH値を意味する。ゼータ電位は、ISO 13099−2:2012に従って測定される。
好ましくは、スラリーのpH値は、上記の範囲の値に設定される。好ましくは、pH値は、スラリーにNaOHまたはNHなどの材料を例えば水溶液として添加することにより、設定することができる。このプロセスの間、スラリーは、しばしば撹拌される。
造粒
二酸化ケイ素造粒体は、造粒により二酸化ケイ素粉末から得られる。造粒は、粉末粒子の顆粒への変換を意味する。造粒中、「二酸化ケイ素顆粒」と呼ばれるより大きい凝集体は、複数の二酸化ケイ素粉末粒子の凝集により形成される。これらは、しばしば「二酸化ケイ素粒子」、「二酸化ケイ素造粒体粒子」、または「造粒体粒子」とも呼ばれる。集合として、顆粒は、造粒体を構成し、例えば二酸化ケイ素顆粒は、「二酸化ケイ素造粒体」を構成する。
現在の場合、当業者に公知であり、二酸化ケイ素粉末の造粒のために好適であると当業者に思われる任意の造粒プロセスを、原則として選択することができる。造粒プロセスは、凝集造粒プロセスまたはプレス造粒プロセスとして分類し、湿式造粒プロセスおよび乾式造粒プロセスとしてさらに分類することができる。公知のメソッドは、造粒プレートにおけるロール式造粒、噴霧造粒、遠心粉砕、流動層造粒、造粒ミルを用いる造粒プロセス、圧縮、ロールプレス、ブリケッティング、スキャビング、または押出成形である。
噴霧乾燥
本発明の第1の態様の好ましい実施形態によれば、二酸化ケイ素造粒体は、スラリーの噴霧造粒により得られる。噴霧造粒は、噴霧乾燥としても知られる。
噴霧乾燥は、好ましくは噴霧塔で行われる。噴霧乾燥のために、スラリーは、好ましくは高温の加圧下に置かれる。次いで、加圧されたスラリーは、ノズルを介して減圧され、このようにして噴霧塔内に噴霧される。その後、液滴が形成され、液滴は、瞬間的に乾燥し、まず乾燥微小粒子(「核」)を形成する。微小粒子は、粒子に適用されるガス流と共に、流動層を形成する。このようにして、微小粒子は、浮遊状態に維持され、したがってさらなる液滴を乾燥させるための表面を形成することができる。
それを通じてスラリーが噴霧塔内に噴霧されるノズルは、好ましくは噴霧塔の内部への入口を形成する。
ノズルは、好ましくは噴霧中、スラリーとの接触面を有する。「接触面」は、噴霧中にスラリーと接触するノズルの領域を意味する。しばしば、ノズルの少なくとも一部は、それを通じてスラリーが噴霧中に案内される管として形成され、したがって中空管の内側は、スラリーと接触する。
接触面は、好ましくはガラス、プラスチック、またはこれらの組み合わせを含む。好ましくは、接触面は、ガラス、特に好ましくは石英ガラスを含む。好ましくは、接触面は、プラスチックを含む。原則として、プロセス温度で安定であり、いずれの異種原子もスラリーに渡さない当業者に公知の全てのプラスチックが、好適である。好ましいプラスチックは、ポリオレフィン、例えば少なくとも1つのオレフィンを含むホモポリマーまたはコポリマー、特に好ましくはポリプロピレン、ポリエチレン、ポリブタジエン、またはこれらの2つ以上の組み合わせを含むホモポリマーまたはコポリマーである。好ましくは、接触面は、例えば石英ガラスおよびポリオレフィンからなる群から選択され、特に好ましくは石英ガラスおよびポリプロピレン、ポリエチレン、ポリブタジエン、またはこれらの2つ以上の組み合わせを含むホモポリマーまたはコポリマーからなる群から選択される、ガラス、プラスチック、またはこれらの組み合わせ製である。好ましくは、接触面は、金属、特にタングステン、チタン、タンタル、クロム、コバルト、ニッケル、鉄、バナジウム、ジルコニウム、およびマンガンを含まない。
接触面とノズルのさらなる部分とが同じ材料または異なる材料製であることが、原則として可能である。好ましくは、ノズルのさらなる部分は、接触面と同じ材料を含む。同様に、ノズルのさらなる部分が接触面とは異なる材料を含むことが、可能である。例えば、接触面は、好適な材料、例えばガラスまたはプラスチックで被覆されてもよい。
好ましくは、ノズルは、ノズルの総重量に基づき、70重量%超、例えば75重量%超または80重量%超または85重量%超または90重量%超または95重量%超、特に好ましくは99重量%超、ガラス、プラスチック、またはガラスおよびプラスチックの組み合わせからなる群から選択される品目製である。
好ましくは、ノズルは、ノズルプレートを含む。ノズルプレートは、好ましくはガラス、プラスチック、またはガラスおよびプラスチックの組み合わせ製である。好ましくは、ノズルプレートは、ガラス、特に好ましくは石英ガラス製である。好ましくは、ノズルプレートは、プラスチック製である。好ましいプラスチックは、ポリオレフィン、例えば少なくとも1つのオレフィンを含むホモポリマーまたはコポリマー、特に好ましくはポリプロピレン、ポリエチレン、ポリブタジエン、またはこれらの2つ以上の組み合わせを含むホモポリマーまたはコポリマーである。好ましくは、ノズルプレートは、金属、特にタングステン、チタン、タンタル、クロム、コバルト、ニッケル、鉄、バナジウム、ジルコニウム、およびマンガンを含まない。
好ましくは、ノズルは、スクリューツイスターを含む。スクリューツイスターは、好ましくはガラス、プラスチック、またはガラスおよびプラスチックの組み合わせ製である。好ましくは、スクリューツイスターは、ガラス、特に好ましくは石英ガラス製である。好ましくは、スクリューツイスターは、プラスチック製である。好ましいプラスチックは、ポリオレフィン、例えば少なくとも1つのオレフィンを含むホモポリマーまたはコポリマー、特に好ましくはポリプロピレン、ポリエチレン、ポリブタジエン、またはこれらの2つ以上の組み合わせを含むホモポリマーまたはコポリマーである。好ましくは、スクリューツイスターは、金属、特にタングステン、チタン、タンタル、クロム、コバルト、ニッケル、鉄、バナジウム、ジルコニウム、およびマンガンを含まない。
さらに、ノズルは、さらなる構成要素を含んでもよい。好ましいさらなる構成要素は、ノズル本体、特に好ましいのはスクリューツイスターおよびノズルプレートを取り囲むノズル本体である、横材、ならびにバッフルである。好ましくは、ノズルは、さらなる構成要素の1つ以上、特に好ましくは全てを含む。さらなる構成要素は、互いから独立して、当業者に公知であり、この目的用に好適である原則として任意の材料、例えば金属を含む材料、ガラス、またはプラスチック製でよい。好ましくは、ノズル本体は、ガラス、特に好ましくは石英ガラス製である。好ましくは、さらなる構成要素は、プラスチック製である。好ましいプラスチックは、ポリオレフィン、例えば少なくとも1つのオレフィンを含むホモポリマーまたはコポリマー、特に好ましくはポリプロピレン、ポリエチレン、ポリブタジエン、またはこれらの2つ以上の組み合わせを含むホモポリマーまたはコポリマーである。好ましくは、さらなる構成要素は、金属、特にタングステン、チタン、タンタル、クロム、コバルト、ニッケル、鉄、バナジウム、ジルコニウム、およびマンガンを含まない。
好ましくは、噴霧塔は、ガス入口およびガス出口を含む。ガス入口を通じて、ガスを噴霧塔の内部に導入することができ、ガス出口を通じて、ガスを排出することができる。ガスをノズルを介して噴霧塔内に導入することも可能である。同様に、ガスは、噴霧塔の出口を介して排出することができる。さらに、ガスは、好ましくはノズルと噴霧塔のガス入口とを介して導入し、噴霧塔の出口と噴霧塔のガス出口とを介して排出することができる。
好ましくは、噴霧塔の内部には、空気、不活性ガス、少なくとも2つの不活性ガス、または空気と少なくとも1つの不活性ガスとの組み合わせから選択される雰囲気が、好ましくは空気と少なくとも2つの不活性ガスとの組み合わせが、存在する。不活性ガスは、好ましくは窒素、ヘリウム、ネオン、アルゴン、クリプトン、およびキセノンからなるリストから選択される。例えば、噴霧塔の内部には、空気、窒素、またはアルゴンが、特に好ましくは空気が、存在する。
さらに好ましくは、噴霧塔内に存在する雰囲気は、ガス流の一部である。ガス流は、好ましくはガス入口を介して噴霧塔内に導入され、ガス出口を介して排出される。ガス流の一部をノズルを介して導入し、ガス流の一部を固形物出口を介して排出することも、可能である。ガス流は、噴霧塔内でさらなる構成要素を引き受けてもよい。これらは、噴霧乾燥中にスラリーから来て、ガス流に移動することができる。
好ましくは、乾燥ガス流が、噴霧塔内に供給される。乾燥ガス流は、噴霧塔内で設定された温度で凝縮点未満の相対湿度を有するガスまたは混合ガスを意味する。100%の相対空気湿度は、20℃における17.5g/mの含水量に対応する。ガスは、好ましくは150〜450℃の範囲、例えば200〜420℃または300〜400℃、特に好ましくは350〜400℃の温度に予備加温される。
噴霧塔の内部は、好ましくは温度制御可能である。好ましくは、噴霧塔の内部の温度は、最大550℃、例えば300〜500℃、特に好ましくは350〜450℃の値を有する。
ガス流は、好ましくは、ガス入口において150〜450℃の範囲、例えば200〜420℃または300〜400℃、特に好ましくは350〜400℃の温度を有する。
固形物出口、ガス出口、またはその両方の位置で排出されるガス流は、好ましくは170℃未満、例えば50〜150℃、特に好ましくは100〜130℃の温度を有する。
さらに、導入時のガス流と排斥時のガス流との間の温度差は、好ましくは100〜330℃の範囲、例えば150〜300℃である。
このようにして得られた二酸化ケイ素顆粒は、二酸化ケイ素粉末の個々の粒子の凝集体として存在する。二酸化ケイ素粉末の個々の粒子は、凝集体中で引き続き認識可能である。二酸化ケイ素粉末の粒子の平均粒子径は、好ましくは10〜1000nmの範囲、例えば20〜500nmもしくは30〜250nmもしくは35〜200nmもしくは40〜150nmの範囲、または特に好ましくは50〜100nmの範囲である。これらの粒子の平均粒子径は、DIN ISO 13320−1に従って測定される。
噴霧乾燥は、助剤の存在下で行われてもよい。原則として、当業者に公知であり、本用途のために好適と思われる全ての材料を助剤として用いることができる。補助材料としては、例えば、いわゆる結合剤を考慮に入れることができる。好適な結合材料の例は、酸化カルシウムなどの金属酸化物、炭酸カルシウムなどの金属カーボネート、ならびにセルロース、セルロースエーテル、澱粉、および澱粉誘導体などのポリサッカライドである。
特に好ましくは、噴霧乾燥は、本発明の文脈では助剤なしに行われる。
好ましくは、二酸化ケイ素造粒体を噴霧塔から取り除く前、その後、またはその前および後に、その一部分が分離除去される。分離除去については、当業者に公知であり、好適と思われる全てのプロセスを考慮に入れることができる。好ましくは、分離除去は、スクリーニングまたは篩い分けにより行われる。
好ましくは、噴霧乾燥により形成された二酸化ケイ素造粒体を噴霧塔から取り除く前に、50μm未満の粒子径、例えば70μm未満の粒子径、特に好ましくは90μm未満の粒子径を有する粒子が、スクリーニングにより分離除去される。スクリーニングは、好ましくはサイクロン配置を使用して行われ、サイクロン配置は、好ましくは噴霧塔の下部領域に、特に好ましくは噴霧塔の出口の上方に配置される。
好ましくは、二酸化ケイ素造粒体を噴霧塔から取り除いた後に、1000μm超の粒子径、例えば700μm超の粒子径、特に好ましくは500μm超の粒子径を有する粒子が、篩い分けにより分離除去される。粒子の篩い分けは、原則として、当業者に公知であり、この目的用に好適である全てのプロセスにより行うことができる。好ましくは、篩い分けは、振動シュートを使用して行われる。
好ましい実施形態によれば、噴霧塔に入るノズルを通じたスラリーの噴霧乾燥は、以下の特徴、
a]噴霧塔内における噴霧造粒、
b]40bar以下、例えば1.3〜20bar、1.5〜18barもしくは2〜15barもしくは4〜13barの範囲、または特に好ましくは5〜12barの範囲の、ノズルにおけるスラリーの圧力の存在。ここで、圧力は絶対値で示されている(p=0hPaと比較して)、
c]10〜50℃の範囲、好ましくは15〜30℃の範囲、特に好ましくは18〜25℃の範囲の、噴霧塔内に進入時の液滴の温度。
d]100〜450℃の範囲、例えば250〜440℃の範囲、特に好ましくは350〜430℃の、噴霧塔に向かって方向付けられたノズルの側部の温度、
e]0.05〜1m/hの範囲、例えば0.1〜0.7m/hまたは0.2〜0.5m/hの範囲、特に好ましくは0.25〜0.4m/hの範囲の、ノズルを通過するスラリーのスループット、
f]各場合にスラリーの総重量に基づき、少なくとも40重量%、例えば50〜80重量%の範囲、または55〜75重量%の範囲、特に好ましくは60〜70重量%の範囲の、スラリーの固形物量、
g]10〜100kg/分の範囲、例えば20〜80kg/分または30〜70kg/分の範囲、特に好ましくは40〜60kg/分の範囲の、噴霧塔に入るガス流入、
h]100〜450℃の範囲、例えば250〜440℃の範囲、特に好ましくは350〜430℃の、噴霧塔内に進入時のガス流の温度、
i]170℃未満の、噴霧塔から退出するときのガス流の温度、
j]ガスは、空気、窒素、およびヘリウム、またはこれらの2つ以上の組み合わせからなる群から選択され、好ましくは空気である、
k]各場合に噴霧乾燥で作製された二酸化ケイ素造粒体の総重量に基づき、5重量%未満、例えば3重量%未満もしくは1重量%未満または0.01〜0.5重量%の範囲、特に好ましくは0.1〜0.3重量%の範囲の、噴霧塔から取り除く時の造粒体の残留水分量、
l]噴霧乾燥で作製された二酸化ケイ素造粒体の総重量に基づき、噴霧造粒体の少なくとも50重量%が、1〜100sの範囲の、例えば10〜80sの期間の、特に好ましくは25〜70sの期間にわたる、飛行時間を完了する、
m]噴霧乾燥で作製された二酸化ケイ素造粒体の総重量に基づき、噴霧造粒体の少なくとも50重量%が、20m超、例えば30超もしくは50超もしくは70超もしくは100超もしくは150超もしくは200超または20〜200mもしくは10〜150もしくは20〜100の範囲、特に好ましくは30〜80mの範囲の飛行経路をカバーする。
n]噴霧塔は、円筒状の幾何形状を有する、
o]10m超、例えば15m超もしくは20m超もしくは25m超もしくは30m超または10〜25mの範囲、特に好ましくは15〜20mの範囲の噴霧塔の高さ、
p]造粒体を噴霧塔から取り除く前に、90μm未満のサイズを有する粒子をスクリーニングにより排除する、
q]好ましくは振動シュートで造粒体を噴霧塔から取り除いた後に、500μm超のサイズを有する粒子を篩い分けにより排除する、
r]スラリーの液滴のノズルからの退出は、垂直線から30〜60度の角度で、特に好ましくは垂直線から45度の角度で発生する
のうちの少なくとも1つ、例えば2つまたは3つ、特に好ましくは全てにより特徴付けられる。
垂直線は、重力ベクトルの方向を意味する。
飛行経路は、顆粒を形成するように噴霧塔のガスチャンバ内のノズルを退出してから、飛行および落下の活動の完了までに、スラリーの液滴がカバーする経路を意味する。飛行および落下の活動は、頻繁に、顆粒が噴霧塔衝突の床と衝突するか、または顆粒が噴霧塔の床上にすでに存在する他の顆粒と衝突するかの、いずれか最初に発生する方により終了する。
飛行時間は、顆粒が噴霧塔内の飛行経路をカバーするために必要とされる期間である。好ましくは、ダイ顆粒は、噴霧塔内でらせん状の飛行経路を有する。
好ましくは、噴霧乾燥で作製された二酸化ケイ素造粒体の総重量に基づき、噴霧造粒体の少なくとも60重量%が、20m超、例えば30超もしくは50超もしくは70超もしくは100超もしくは150超もしくは200超または20〜200mもしくは10〜150もしくは20〜100の範囲、特に好ましくは30〜80mの範囲の平均飛行経路をカバーする。
好ましくは、噴霧乾燥で作製された二酸化ケイ素造粒体の総重量に基づき、噴霧造粒体の少なくとも70重量%が、20m超、例えば30超もしくは50超もしくは70超もしくは100超もしくは150超もしくは200超または20〜200mもしくは10〜150もしくは20〜100の範囲、特に好ましくは30〜80mの範囲の平均飛行経路をカバーする。
好ましくは、噴霧乾燥で作製された二酸化ケイ素造粒体の総重量に基づき、噴霧造粒体の少なくとも80重量%が、20m超、例えば30超もしくは50超もしくは70超もしくは100超もしくは150超もしくは200超または20〜200mもしくは10〜150もしくは20〜100の範囲、特に好ましくは30〜80mの範囲の平均飛行経路をカバーする。
好ましくは、噴霧乾燥で作製された二酸化ケイ素造粒体の総重量に基づき、噴霧造粒体の少なくとも90重量%が、20m超、例えば30超もしくは50超もしくは70超もしくは100超もしくは150超もしくは200超または20〜200mもしくは10〜150もしくは20〜100の範囲、特に好ましくは30〜80mの範囲の平均飛行経路をカバーする。
ロール式造粒
本発明の第1の態様の好ましい実施形態によれば、二酸化ケイ素造粒体は、スラリーのロール式造粒により得られる。
ロール式造粒は、高温のガスの存在下でスラリーをかき混ぜることにより行われる。好ましくは、ロール式造粒は、かき混ぜ用具を備えたかき混ぜ容器内で行われる。好ましくは、かき混ぜ容器は、かき混ぜ用具とは反対方向に回転する。好ましくは、かき混ぜ容器は、それを通じて二酸化ケイ素粉末をかき混ぜ容器内に導入することができる入口、それを通じて二酸化ケイ素造粒体を取り除くことができる出口、ガス入口、およびガス出口を追加的に含む。
スラリーをかき混ぜるために、好ましくはピン型かき混ぜ用具が使用される。ピン型かき混ぜ用具は、かき混ぜ用具の回転軸と同軸の長手方向軸を有する複数の細長ピンを備えたかき混ぜ用具を意味する。ピンの軌道は、好ましくは回転軸を中心とする同軸の円を描く。
好ましくは、スラリーは、7未満のpH値、例えば2〜6.5の範囲のpH値、特に好ましくは4〜6の範囲のpH値に設定される。pH値を設定するために、好ましくは無機酸、例えば塩酸、硫酸、硝酸、およびリン酸からなる群から選択される酸、特に好ましくは塩酸が、使用される。
好ましくは、かき混ぜ容器内には、空気、不活性ガス、少なくとも2つの不活性ガス、または空気と少なくとも1つの不活性ガスとの組み合わせから選択される雰囲気が、好ましくは2つの不活性ガスが、存在する。不活性ガスは、好ましくは窒素、ヘリウム、ネオン、アルゴン、クリプトン、およびキセノンからなるリストから選択される。例えば、空気、窒素、またはアルゴン、特に好ましくは空気が、かき混ぜ容器内に存在する。
さらに、好ましくは、かき混ぜ容器内に存在する雰囲気は、ガス流の一部である。ガス流は、好ましくはガス入口を介してかき混ぜ容器内に導入され、ガス出口を介して排出される。ガス流は、かき混ぜ容器内でさらなる構成要素を引き受けてもよい。これらは、ロール式造粒においてスラリーから生じ、ガス流内に移動することができる。
好ましくは、乾燥ガス流が、かき混ぜ容器内に供給される。乾燥ガス流は、かき混ぜ容器内で設定された温度で凝縮点未満の相対湿度を有するガスまたは混合ガスを意味する。ガスは、好ましくは50〜300℃の範囲、例えば80〜250℃、特に好ましくは100〜200℃の温度に予備加温される。
好ましくは、用いるスラリー1kgにつき、1時間当たり10〜150mのガス、例えば1時間当たり20〜100mのガス、特に好ましくは1時間当たり30〜70mのガスが、かき混ぜ容器内に導入される。
混合中、スラリーは、ガス流により乾燥されて二酸化ケイ素顆粒を形成する。形成された造粒体は、かき混ぜ容器から取り除かれる。
好ましくは、取り除かれた造粒体は、さらに乾燥される。好ましくは、乾燥は、例えば回転炉内で、連続的に行われる。乾燥のための好ましい温度は、80〜250℃の範囲、例えば100〜200℃の範囲、特に好ましくは120〜180℃の範囲である。
本発明の文脈では、方法に関して連続的とは、方法を連続的に作動させることができることを意味する。これは、方法に伴う材料の導入および取り除きを、方法が実行されている間継続的に行うことができることを意味する。このために方法を中断する必要はない。
例えば「連続炉」に関して、物体の属性としての連続的とは、物体の中で行われる方法または物体の中で行われる方法ステップが連続的に行われ得るように、この物体が構成されていることを意味する。
ロール式造粒から得られた造粒体は、篩い分けされてもよい。篩い分けは、乾燥の前または後に行うことができる。好ましくは、造粒体は、乾燥前に篩い分けされる。好ましくは、50μm未満の粒子径、例えば80μm未満の粒子径、特に好ましくは100μm未満の粒子径を有する顆粒が、篩い分けにより排除される。さらに、好ましくは、900μm超の粒子径、例えば700μm超の粒子径、特に好ましくは500μm超の粒子径を有する顆粒が、篩い分けにより排除される。より大きい粒子の篩い分けによる排除は、原則として、当業者に公知であり、この目的用に好適である任意のプロセスにより行うことができる。好ましくは、より大きい粒子の篩い分けによる排除は、振動シュートにより行われる。
好ましい実施形態によれば、ロール式造粒は、以下の特徴、
[a]造粒は、回転するかき混ぜ容器内で行われる、
[b]造粒は、1時間当たりかつスラリー1kg当たり10〜150kgのガスのガス流内で行われる、
[c]導入時のガス温度は、40〜200℃である、
[d]100μm未満および500μm超の粒子径を有する顆粒は、篩い分けにより排除される、
[e]形成される顆粒は、15〜30重量%の残留水分量を有する、
[f]形成される顆粒は、80〜250℃で、好ましくは連続乾燥管内で、特に好ましくは1重量%未満の残留水分量まで、乾燥される
のうちの少なくとも1つ、例えば2つまたは3つ、特に好ましくは全てにより特徴付けられる。
好ましくは、造粒、好ましくは噴霧造粒またはロール式造粒により得られた二酸化ケイ素造粒体、二酸化ケイ素造粒体Iとも呼ばれる、は、石英ガラス体を得るように加工される前に、処理される。この予備処理は、石英ガラス体を得るための加工を容易にするか、または得られる石英ガラス体の特性に影響を与えるかのいずれかである様々な目的を実現することができる。例えば、二酸化ケイ素造粒体Iは、圧縮、精製、表面改質、または乾燥されてもよい。
好ましくは、二酸化ケイ素造粒体Iは、二酸化ケイ素造粒体IIが得られる熱的処理、機械的処理、もしくは化学的処理、または2つ以上の処理の組み合わせに供されてもよい。
化学的
本発明の第1の態様の好ましい実施形態によれば、二酸化ケイ素造粒体Iは、炭素含有量wC(1)を有する。炭素含有量wC(1)は、それぞれ二酸化ケイ素造粒体Iの総重量に基づき、好ましくは50ppm未満、例えば40ppm未満または30ppm未満、特に好ましくは1ppb〜20ppmの範囲である。
本発明の第1の態様の好ましい実施形態によれば、二酸化ケイ素造粒体Iは、少なくとも2つの粒子を含む。好ましくは、少なくとも2つの粒子は、互いに対して相対的な運動を行うことができる。相対運動を引き起こすための手段として、当業者に公知であり、好適であると当業者に思われる原則として全ての手段を考慮に入れることができる。特に好ましいのは、混合である。混合は、原則として、任意の様式で行うことができる。好ましくは、供給炉が、このために選択される。それゆえに、少なくとも2つの粒子は、好ましくは、供給炉内、例えば回転炉内で撹拌されることにより、互いに対して相対的な運動を遂行することができる。
供給炉は、炉のロードおよびアンロード、いわゆる装入が連続的に行われる炉を意味する。供給炉の例は、回転炉、ロールオーバー式炉、ベルトコンベア炉、コンベア炉、連続プッシャー式炉である。好ましくは、二酸化ケイ素造粒体Iの処理のために、回転炉が使用される。
本発明の第1の態様の好ましい実施形態によれば、二酸化ケイ素造粒体Iは、二酸化ケイ素造粒体IIを得るように反応物質で処理される。この処理は、二酸化ケイ素造粒体中の特定の材料の濃度を変えるために行われる。二酸化ケイ素造粒体Iは、例えばOH基、炭素含有化合物、遷移金属、アルカリ金属、およびアルカリ土類金属などの、含有量が低減されるべき不純物または特定の官能性を有してもよい。不純物および官能性は、出発材料に由来してもよく、またはプロセスの過程で導入されてもよい。二酸化ケイ素造粒体Iの処理は、様々な目的を果たすことができる。例えば、処理された二酸化ケイ素造粒体I、すなわち二酸化ケイ素造粒体IIを用いることは、石英ガラス体を得るための二酸化ケイ素造粒体の加工を簡単化することができる。さらに、この選択を用いて、得られる石英ガラス体の特性を調節することができる。例えば、二酸化ケイ素造粒体Iは、精製または表面改質されてもよい。二酸化ケイ素造粒体Iの処理は、得られる石英ガラス体の特性を改善するために用いることができる。
好ましくは、ガスまたは複数のガスの組み合わせが、反応物質として好適である。これは、混合ガスとも呼ばれる。原則として、指定の処理に関して公知であり、好適であると思われる当業者に公知の全てのガスを用いることができる。好ましくは、HCl、Cl、F、O、O、H、C、C、HClO、空気、不活性ガス、例えばN、He、Ne、Ar、Kr、またはこれらの2つ以上の組み合わせからなる群から選択されるガスが、用いられる。好ましくは、この処理は、ガスまたは2つ以上のガスの組み合わせの存在下で行われる。好ましくは、この処理は、ガス向流またはガス並流で行われる。
好ましくは、反応物質は、HCl、Cl、F、O、O、またはこれらの2つ以上の組み合わせからなる群から選択される。好ましくは、上記のガスの2つ以上の混合物が、二酸化ケイ素造粒体Iの処理のために使用される。F、Cl、またはその両方の存在を通じて、例えば遷移金属、アルカリ金属、およびアルカリ土類金属などの、不純物として二酸化ケイ素造粒体I中に含まれる金属を取り除くことができる。これに関連して、上記の金属は、混合ガスの構成要素と共に、プロセス条件下で化合物ガスを得るように変換されてもよく、化合物ガスは、その後抜き出され、したがってもはや造粒体中に存在しない。さらに、好ましくは、二酸化ケイ素造粒体I中のOH含有量は、二酸化ケイ素造粒体Iをこれらのガスで処理することにより、減少させることができる。
好ましくは、HClとClとの混合ガスが、反応物質として用いられる。好ましくは、混合ガスは、1〜30体積%の範囲、例えば2〜15体積%の範囲、特に好ましくは3〜10体積%の範囲のHCl含有量を有する。同様に、混合ガスは、好ましくは20〜70体積%の範囲、例えば25〜65体積%の範囲、特に好ましくは30〜60体積%の範囲のCl含有量を有する。100体積%までの残部は、1つ以上の不活性ガス、例えばN、He、Ne、Ar、Kr、または空気から構成されてよい。好ましくは、反応物質中の不活性ガスの割合は、各場合に反応物質の総体積に基づき、0〜50体積%未満の範囲、例えば1〜40体積%または5〜30体積%の範囲、特に好ましくは10〜20体積%の範囲である。
、C、またはこれらとClとの混合物が、好ましくは、シロキサンから、または複数のシロキサンの混合物から調製された二酸化ケイ素造粒体Iを精製するために使用される。
ガスまたは混合ガスの形の反応物質は、好ましくは50〜2000L/hの範囲、例えば100〜1000L/hの範囲、特に好ましくは200〜500L/hの範囲のスループットを有するガス流またはガス流の一部として、二酸化ケイ素造粒体と接触する。接触の好ましい実施形態は、供給炉内、例えば回転炉内におけるガス流と二酸化ケイ素造粒体との接触である。接触の別の好ましい実施形態は、流動層プロセスである。
反応物質による二酸化ケイ素造粒体Iの処理を通じて、炭素含有量wC(2)を有する二酸化ケイ素造粒体IIが得られる。それぞれの二酸化ケイ素造粒体の総重量に基づき、二酸化ケイ素造粒体IIの炭素含有量wC(2)は、二酸化ケイ素造粒体Iの炭素含有量wC(1)より少ない。好ましくは、wC(2)は、wC(1)より0.5〜99%、例えば20〜80%または50〜95%、特に好ましくは60〜99%少ない。
熱的
好ましくは、二酸化ケイ素造粒体Iは、熱的処理もしくは機械的処理、またはこれらの処理の組み合わせに追加的に供される。これらの追加的な処理の1つ以上は、反応物質による処理前または処理中に行うことができる。代替的に、または追加的に、追加的な処理は、二酸化ケイ素造粒体IIに対しても行うことができる。以下では、「二酸化ケイ素造粒体」という用語は、「二酸化ケイ素造粒体I」および「二酸化ケイ素造粒体II」という選択肢を含む。以下に記載の処理を「二酸化ケイ素造粒体I」に対して、または処理された二酸化ケイ素造粒体I、「二酸化ケイ素造粒体II」に対して行うことも同様に可能である。
二酸化ケイ素造粒体の処理は、様々な目的を果たすことができる。例えば、この処理は、石英ガラス体を得るための二酸化ケイ素造粒体の加工を容易にする。この処理は、得られるガラス体の特性にも影響を与えてもよい。例えば、二酸化ケイ素造粒体は、圧縮、精製、表面改質、または乾燥されてもよい。これに関連して、比表面積(BET)は、減少し得る。同様に、かさ密度および平均粒子径は、二酸化ケイ素粒子の凝集のため、増大し得る。熱的処理は、動的または静的に行うことができる。
動的熱的処理の場合、撹拌しながら二酸化ケイ素造粒体を熱的に処理することができる全ての炉が、原則として好適である。動的熱的処理の場合、好ましくは供給炉が使用される。
動的熱的処理における二酸化ケイ素造粒体の好ましい平均保持時間は、量に依存する。好ましくは、動的熱的処理における二酸化ケイ素造粒体の平均保持時間は、10〜180分の範囲、例えば20〜120分または30〜90分の範囲である。特に好ましくは、動的熱的処理における二酸化ケイ素造粒体の平均保持時間は、30〜90分の範囲である。
連続的なプロセスの場合、二酸化ケイ素造粒体の流れの所定部分、例えばグラム、キログラム、またはトンが、保持時間の測定のための試料ロードとして使用される。保持時間の始まりおよび終わりは、連続的な炉作動への導入およびそれからの退出により決定される。
好ましくは、動的熱的処理のための連続的なプロセスにおける二酸化ケイ素造粒体のスループットは、1〜50kg/hの範囲、例えば5〜40kg/hまたは8〜30kg/hの範囲である。特に好ましくは、スループットは、10〜20kg/hの範囲である。
動的熱的処理のための非連続的なプロセスの場合、処理時間は、炉のロードとその後のアンロードとの間の期間として与えられる。
動的熱的処理のための非連続的なプロセスの場合、スループットは、1〜50kg/hの範囲、例えば5〜40kg/hまたは8〜30kg/hの範囲である。特に好ましくは、スループットは、10〜20kg/hの範囲である。スループットは、1時間に処理される決められた量の試料ロードを使用して、達成することができる。別の実施形態によれば、スループットは、1時間当たりのロード数を通じて達成することができ、単一ロードの重量は、1時間当たりのスループットをロード数で割った値に対応する。この場合、処理時間は、60分を1時間当たりのロード数で割った値により与えられる、時間の何分の1かに対応する。
好ましくは、二酸化ケイ素造粒体の動的熱的処理は、少なくとも500℃、例えば510〜1700℃または550〜1500℃または580〜1300℃の範囲、特に好ましくは600〜1200℃の範囲の炉温で行われる。
通常、炉は、炉チャンバ内の指示温度を有する。好ましくは、この温度は、処理期間全体および炉の全長に基づき、かつ処理中のあらゆる時点および炉内のあらゆる位置において、指示温度から10%未満だけ上向きまたは下向きに外れる。
代替的に、特に二酸化ケイ素造粒体の動的熱的処理の連続的なプロセスは、異なる炉温で行われてもよい。例えば、炉は、処理期間にわたって一定の温度を有してもよく、温度は、炉の長さにわたってセクションごとに異なる。このようなセクションは、同じ長さでも、異なる長さでもよい。好ましくは、この場合、温度は、炉の進入口から炉の退出口まで上昇する。好ましくは、進入口における温度は、退出口におけるより少なくとも100℃低く、例えば150℃低く、または200℃低く、または300℃低く、または400℃低い。さらに、好ましくは、進入口における温度は、好ましくは少なくとも500℃、例えば510〜1700℃、または550〜1500℃、または580〜1300℃の範囲、特に好ましくは600〜1200℃の範囲である。さらに、好ましくは、進入口における温度は、好ましくは少なくとも300℃、例えば400〜1000℃または450〜900℃または500〜800℃または550〜750℃、特に好ましくは600〜700℃である。さらに、炉進入口において与えられる温度範囲のそれぞれは、炉退出口において与えられる温度範囲のそれぞれと組み合わせることができる。炉進入口温度範囲と炉退出口温度範囲との好ましい組み合わせは、以下のとおりである。
二酸化ケイ素造粒体の静的熱的処理のために、炉内に配置された坩堝が、好ましくは使用される。好適な坩堝は、焼結坩堝または金属シート坩堝である。好ましいのは、互いにリベット留めされた複数のシートから作製された圧延金属シート坩堝である。坩堝材料の例は、高融点金属、特にタングステン、モリブデン、およびタンタルである。坩堝は、さらに、黒鉛製でもよく、高融点金属の坩堝の場合、黒鉛箔で内張りされてもよい。さらに、好ましくは、坩堝は、二酸化ケイ素製でもよい。特に好ましくは、二酸化ケイ素坩堝が用いられる。
静的熱的処理における二酸化ケイ素造粒体の平均保持時間は、量に依存する。好ましくは、20kg量の二酸化ケイ素造粒体Iの静的熱的処理における二酸化ケイ素造粒体の平均保持時間は、10〜180分の範囲、例えば20〜120分の範囲、特に好ましくは30〜90分の範囲である。
好ましくは、二酸化ケイ素造粒体の静的熱的処理は、少なくとも800℃、例えば900〜1700℃または950〜1600℃または1000〜1500℃または1050〜1400℃の範囲、特に好ましくは1100〜1300℃の範囲の炉温で行われる。
好ましくは、二酸化ケイ素造粒体Iの静的熱的処理は、一定の炉温で行われる。静的熱的処理は、変化する炉温で行われてもよい。好ましくは、この場合、温度は、処理中に上昇し、処理開始時における温度は、終了時より少なくとも50℃低く、例えば70℃低く、または80℃低く、または100℃低く、または110℃低く、終了時における温度は、好ましくは少なくとも800℃、例えば900〜1700℃または950〜1600℃または1000〜1500℃または1050〜1400℃の範囲、特に好ましくは1100〜1300℃の範囲である。
機械的
さらなる好ましい実施形態によれば、二酸化ケイ素造粒体Iは、機械的に処理することができる。機械的処理は、かさ密度を増大させるために行われてもよい。機械的処理は、上記の熱的処理と組み合わせてもよい。機械的処理は、二酸化ケイ素造粒体中の凝集体を、したがって二酸化ケイ素造粒体中の個々の処理された二酸化ケイ素顆粒の平均粒子径が大きくなり過ぎることを、防止することができる。凝集体の増大は、さらなる加工を妨害し、もしくは本発明の方法により調製される石英ガラス体の特性に対して不利な影響を有し、または両効果の組み合わせを有し得る。二酸化ケイ素造粒体の機械的処理は、個々の二酸化ケイ素顆粒の表面とガス(複数可)との均一な接触も促進する。これは、特に、1つ以上のガスによる同時発生的な機械的および化学的処理により達成される。このようにして、化学的処理の効果を改善することができる。
二酸化ケイ素造粒体の機械的処理は、2つ以上の二酸化ケイ素顆粒を互いに対して相対的に動かすことにより、例えば回転炉の管を回転させることにより、行うことができる。
好ましくは、二酸化ケイ素造粒体Iは、化学的、熱的、および機械的に処理される。好ましくは、二酸化ケイ素造粒体Iの同時の化学的、熱的、および機械的な処理が、行われる。
化学的処理では、二酸化ケイ素造粒体I中の不純物の含有量が、低減される。このために、二酸化ケイ素造粒体Iは、高温の回転炉内で、塩素および酸素含有雰囲気下で処理されてもよい。二酸化ケイ素造粒体I中に存在する水が蒸発し、有機材料が反応してCOおよびCOを形成する。金属不純物は、揮発性の塩素含有化合物に変換することができる。
好ましくは、二酸化ケイ素造粒体Iは、少なくとも500℃の温度、好ましくは550〜1300℃または600〜1260℃または650〜1200℃または700〜1000℃の温度範囲、特に好ましくは700〜900℃の温度範囲の回転炉内の塩素および酸素含有雰囲気中で処理される。塩素含有雰囲気は、例えばHClもしくはCl、または両者の組み合わせを含有する。この処理は、炭素含有量の低減を引き起こす。
さらに、好ましくはアルカリおよび鉄の不純物が、低減される。好ましくは、OH基の数の低減が、達成される。700℃未満の温度では、処理期間が長くなる場合があり、1100℃超の温度では、造粒体の細孔が閉じて塩素または塩素化合物ガスをトラップするリスクが存在する。
好ましくは、それぞれ熱的処理および機械的処理と同時発生的である、複数の化学的処理ステップを順次に行うことも可能である。例えば、二酸化ケイ素造粒体Iは、最初に塩素含有雰囲気中で、その後酸素含有雰囲気中で処理されてもよい。そこから結果として生じる炭素、水酸基、および塩素の低い濃度は、二酸化ケイ素造粒体IIの溶融を促進する。
さらなる好ましい実施形態によれば、ステップII.2)は、以下の特徴、
N1)反応物質は、HCl、Cl、またはそれらからの組み合わせを含む、
N2)処理は、回転炉内で行われる、
N3)処理は、600〜900℃の範囲の温度で行われる、
N4)反応物質は、向流を形成する、
N5)反応物質は、50〜2000L/hの範囲、好ましくは100〜1000L/h、特に好ましくは200〜500L/hのガス流を有する、
N6)反応物質は、0〜50体積%未満の範囲の不活性ガスの体積割合を有する
のうちの少なくとも1つ、例えば少なくとも2つまたは少なくとも3つ、特に好ましくは全ての組み合わせにより特徴付けられる。
好ましくは、二酸化ケイ素造粒体Iは、二酸化ケイ素粉末の粒径より大きい粒径を有する。好ましくは、二酸化ケイ素造粒体Iの粒径は、二酸化ケイ素粉末の粒径の最大300倍の大きさ、例えば最大250倍の大きさまたは最大200倍の大きさまたは最大150倍の大きさまたは最大100倍の大きさまたは最大50倍の大きさまたは最大20倍の大きさまたは最大10倍の大きさ、特に好ましくは2〜5倍の大きさである。
このようにして得られる二酸化ケイ素造粒体は、二酸化ケイ素造粒体IIとも呼ばれる。特に好ましくは、二酸化ケイ素造粒体IIは、熱的処理、機械的処理、および化学的処理の組み合わせにより、回転炉内で二酸化ケイ素造粒体Iから得られる。
ステップi.)で提供される二酸化ケイ素造粒体は、好ましくは、二酸化ケイ素造粒体I、二酸化ケイ素造粒体II、およびこれらからの組み合わせからなる群から選択される。
「二酸化ケイ素造粒体I」は、燃料ガス火炎内におけるケイ素化合物の熱分解を通じて得られた二酸化ケイ素粉末の造粒により生成される、二酸化ケイ素の造粒体を意味する。好ましい燃料ガスは、酸水素ガス、天然ガス、またはメタンガスであり、特に好ましいのは、酸水素ガスである。
「二酸化ケイ素造粒体II」は、二酸化ケイ素造粒体Iの後処理により生成される二酸化ケイ素の造粒体を意味する。可能な後処理は、化学的処理、熱的処理、および/または機械的処理である。これは、二酸化ケイ素造粒体の提供(本発明の第1の態様の方法ステップII.)の説明の文脈で詳しく説明される。
特に好ましくは、ステップi.)で提供される二酸化ケイ素造粒体は、二酸化ケイ素造粒体Iである。二酸化ケイ素造粒体Iは、以下の特徴、
[A]20〜50m/gの範囲、例えば20〜40m/gの範囲、特に好ましくは25〜35m/gの範囲のBET表面積。ミクロ細孔部分は、好ましくは4〜5m/gの範囲、例えば4.1〜4.9m/gの範囲、特に好ましくは4.2〜4.8m/gの範囲のBET表面積を占める、および
[B]180〜300μmの範囲の平均粒子径
を有する。
好ましくは、二酸化ケイ素造粒体Iは、以下の特徴、
[C]0.5〜1.2g/cmの範囲、例えば0.6〜1.1g/cmの範囲、特に好ましくは0.7〜1.0g/cmの範囲のかさ密度、
[D]50ppm未満、例えば40ppm未満または30ppm未満または20ppm未満または10ppm未満、特に好ましくは1ppb〜5ppmの範囲の炭素含有量、
[E]200ppb未満、好ましくは100ppb未満、例えば50ppb未満または1〜200ppbまたは15〜100ppb、特に好ましくは1〜50ppbの範囲のアルミニウム含有量。
[F]0.5〜1.2g/cmの範囲、例えば0.6〜1.1g/cmの範囲、特に好ましくは0.75〜1.0g/cmの範囲の重装かさ密度、
[G]0.1〜1.5mL/gの範囲、例えば0.15〜1.1mL/gの範囲、特に好ましくは0.2〜0.8mL/gの範囲の細孔容積、
[H]200ppm未満、好ましくは150ppm未満、例えば100ppm未満、もしくは50ppm未満、もしくは1ppm未満、もしくは500ppb未満、もしくは200ppb未満、または1ppb〜200ppm未満、もしくは1ppb〜100ppm、もしくは1ppb〜1ppm、もしくは10ppb〜500ppb、もしくは10ppb〜200ppbの範囲、特に好ましくは1ppb〜80ppbの塩素含有量、
[I]1000ppb未満、好ましくは1〜900ppbの範囲、例えば1〜700ppbの範囲、特に好ましくは1〜500ppbの範囲の、アルミニウムとは異なる金属の金属含有量、
[J]10重量%未満、好ましくは0.01重量%〜5重量%の範囲、例えば0.02〜1重量%、特に好ましくは0.03〜0.5重量%の残留水分量、
のうちの少なくとも1つ、例えば少なくとも2つまたは少なくとも3つまたは少なくとも4つ、特に好ましくは少なくとも5つにより特徴付けられ、
重量%、ppm、およびppbは、それぞれ二酸化ケイ素造粒体Iの総重量に基づく。
OH含有量、すなわち水酸基含有量は、材料内、例えば二酸化ケイ素粉末内、二酸化ケイ素造粒体内、または石英ガラス体内のOH基の含有量を意味する。OH基の含有量は、第1のOHバンドと第3のOHバンドを比較することにより、赤外分光法により測定される。
塩素含有量は、二酸化ケイ素造粒体内、二酸化ケイ素粉末内、または石英ガラス体内の元素状塩素または塩素イオンの含有量を意味する。
アルミニウム含有量は、二酸化ケイ素造粒体内、二酸化ケイ素粉末内、または石英ガラス体内の元素状アルミニウムまたはアルミニウムイオンの含有量を意味する。
好ましくは、二酸化ケイ素造粒体Iは、4〜5m/gの範囲、例えば4.1〜4.9m/gの範囲、特に好ましくは4.2〜4.8m/gの範囲のミクロ細孔の割合を有する。
二酸化ケイ素造粒体Iは、好ましくは2.1〜2.3g/cmの範囲、特に好ましくは2.18〜2.22g/cmの範囲の密度を有する。
二酸化ケイ素造粒体Iは、好ましくは180〜300μmの範囲、例えば220〜280μmの範囲、特に好ましくは230〜270μmの範囲の平均粒子径を有する。
二酸化ケイ素造粒体Iは、好ましくは150〜300μmの範囲、例えば180〜280μmの範囲、特に好ましくは220〜270μmの範囲の粒子径D50を有する。さらに、好ましくは、二酸化ケイ素造粒体Iは、50〜150μmの範囲、例えば80〜150μmの範囲、特に好ましくは100〜150μmの範囲の粒子径D10を有する。さらに、好ましくは、二酸化ケイ素造粒体Iは、250〜620μmの範囲、例えば280〜550μmの範囲、特に好ましくは300〜450μmの範囲の粒子径D90を有する。
二酸化ケイ素造粒体Iは、好ましくは特徴組み合わせ[A]/[B]/[C]または[A]/[B]/[E]または[A]/[B]/[G]、さらに好ましくは特徴組み合わせ[A]/[B]/[C]/[E]または[A]/[B]/[C]/[G]または[A]/[B]/[E]/[G]、特に好ましくは特徴組み合わせ[A]/[B]/[C]/[E]/[G]を有する。
二酸化ケイ素造粒体Iは、好ましくは特徴組み合わせ[A]/[B]/[C]を有し、BET表面積は、20〜40m/gの範囲であり、平均粒子径は、180〜300μmの範囲であり、かさ密度は、0.6〜1.1g/mLの範囲である。
二酸化ケイ素造粒体Iは、好ましくは特徴組み合わせ[A]/[B]/[E]を有し、BET表面積は、20〜40m/gの範囲であり、平均粒子径は、180〜300μmの範囲であり、アルミニウム含有量は、1〜50ppbの範囲である。
二酸化ケイ素造粒体Iは、好ましくは特徴組み合わせ[A]/[B]/[G]を有し、BET表面積は、20〜40m/gの範囲であり、平均粒子径は、180〜300μmの範囲であり、細孔容積は、0.2〜0.8mL/gの範囲である。
二酸化ケイ素造粒体Iは、好ましくは特徴組み合わせ[A]/[B]/[C]/[E]を有し、BET表面積は、20〜40m/gの範囲であり、平均粒子径は、180〜300μmの範囲であり、かさ密度は、0.6〜1.1g/mLの範囲であり、アルミニウム含有量は、1〜50ppbの範囲である。
二酸化ケイ素造粒体Iは、好ましくは特徴組み合わせ[A]/[B]/[C]/[G]を有し、BET表面積は、20〜40m/gの範囲であり、平均粒子径は、180〜300μmの範囲であり、かさ密度は、0.6〜1.1g/mLの範囲であり、細孔容積は、0.2〜0.8mL/gの範囲である。
二酸化ケイ素造粒体Iは、好ましくは特徴組み合わせ[A]/[B]/[E]/[G]を有し、BET表面積は、20〜40m/gの範囲であり、平均粒子径は、180〜300μmの範囲であり、アルミニウム含有量は、1〜50ppbの範囲であり、細孔容積は、0.2〜0.8mL/gの範囲である。
二酸化ケイ素造粒体Iは、好ましくは特徴組み合わせ[A]/[B]/[C]/[E]/[G]を有し、BET表面積は、20〜40m/gの範囲であり、平均粒子径は、180〜300μmの範囲であり、かさ密度は、0.6〜1.1g/mLの範囲であり、アルミニウム含有量は、1〜50ppbの範囲であり、細孔容積は、0.2〜0.8mL/gの範囲である。
粒子径は、二酸化ケイ素粉末内、スラリー内、または二酸化ケイ素造粒体内に存在する集合した一次粒子の粒子のサイズを意味する。平均粒子径は、表示材料の全ての粒子径の相加平均を意味する。D50値は、粒子の総数に基づき、粒子の50%が表示値より小さいことを示す。D10値は、粒子の総数に基づき、粒子の10%が表示値より小さいことを示す。D90値は、粒子の総数に基づき、粒子の90%が表示値より小さいことを示す。粒子径は、ISO 13322−2:2006−11に従って動的光分析プロセスにより測定される。
さらに、特に好ましくは、ステップi.)で提供される二酸化ケイ素造粒体は、二酸化ケイ素造粒体IIである。二酸化ケイ素造粒体IIは、以下の特徴、
(A)10〜35m/gの範囲、例えば10〜30m/gの範囲、特に好ましくは20〜30m/gの範囲のBET表面積、および
(B)100〜300μmの範囲、例えば150〜280μmまたは200〜270μmの範囲、特に好ましくは230〜260μmの範囲の平均粒子径
を有する。
好ましくは、二酸化ケイ素造粒体IIは、以下の特徴、
(C)0.7〜1.2g/cmの範囲、例えば0.75〜1.1g/cmの範囲、特に好ましくは0.8〜1.0g/cmの範囲のかさ密度、
(D)5ppm未満、例えば4.5ppm未満または1ppb〜4ppmの範囲、特に好ましくは4ppm未満の炭素含有量、
(E)200ppb未満、例えば150ppb未満または100ppb未満または1〜150ppbまたは1〜100ppb、特に好ましくは1〜80ppbの範囲のアルミニウム含有量、
(F)0.7〜1.2g/cmの範囲、例えば0.75〜1.1g/cmの範囲、特に好ましくは0.8〜1.0g/cmの範囲の重装かさ密度、
(G)0.1〜2.5mL/gの範囲、例えば0.2〜1.5mL/gの範囲、特に好ましくは0.4〜1mL/gの範囲の細孔容積、
(H)500ppm未満、好ましくは400ppm未満、例えば350ppm未満、または好ましくは330ppm未満もしくは1ppb〜500ppmもしくは10ppb〜450ppmの範囲、特に好ましくは50ppb〜300ppmの塩素含有量、
(I)1000ppb未満、例えば1〜400ppbの範囲、特に好ましくは1〜200ppbの範囲の、アルミニウムとは異なる金属の金属含有量、
(J)3重量%未満、例えば0.001重量%〜2重量%の範囲、特に好ましくは0.01〜1重量%の残留水分量、
のうちの少なくとも1つ、例えば少なくとも2つまたは少なくとも3つまたは少なくとも4つ、特に好ましくは少なくとも5つを有し、
重量%、ppm、およびppbは、それぞれ二酸化ケイ素造粒体IIの総重量に基づく。
好ましくは、二酸化ケイ素造粒体IIは、1〜2m/gの範囲、例えば1.2〜1.9m/gの範囲、特に好ましくは1.3〜1.8m/gの範囲のミクロ細孔の割合を有する。
二酸化ケイ素造粒体IIは、好ましくは0.5〜2.0g/cmの範囲、例えば0.6〜1.5g/cm、特に好ましくは0.8〜1.2g/cmの密度を有する。密度は、試験法に記載のメソッドに従って測定される。
二酸化ケイ素造粒体IIは、好ましくは150〜250μmの範囲、例えば180〜250μmの範囲、特に好ましくは200〜250μmの範囲の粒子径D50を有する。さらに、好ましくは、二酸化ケイ素造粒体IIは、50〜150μmの範囲、例えば80〜150μmの範囲、特に好ましくは100〜150μmの範囲の粒子径D10を有する。さらに、好ましくは、二酸化ケイ素造粒体IIは、250〜450μmの範囲、例えば280〜420μmの範囲、特に好ましくは300〜400μmの範囲の粒子径D90を有する。
二酸化ケイ素造粒体IIは、好ましくは特徴組み合わせ(A)/(B)/(D)または(A)/(B)/(F)または(A)/(B)/(I)、さらに好ましくは特徴組み合わせ(A)/(B)/(D)/(F)または(A)/(B)/(D)/(I)または(A)/(B)/(F)/(I)、特に好ましくは特徴組み合わせ(A)/(B)/(D)/(F)/(I)を有する。
二酸化ケイ素造粒体IIは、好ましくは特徴組み合わせ(A)/(B)/(D)を有し、BET表面積は、10〜30m/gの範囲であり、平均粒子径は、150〜280μmの範囲であり、炭素含有量は、4ppm未満である。
二酸化ケイ素造粒体IIは、好ましくは特徴組み合わせ(A)/(B)/(F)を有し、BET表面積は、10〜30m/gの範囲であり、平均粒子径は、150〜280μmの範囲であり、重装かさ密度は、0.8〜1.0g/mLの範囲である。
二酸化ケイ素造粒体IIは、好ましくは特徴組み合わせ(A)/(B)/(I)を有し、BET表面積は、10〜30m/gの範囲であり、平均粒子径は、150〜280μmの範囲であり、アルミニウムとは異なる金属の金属含有量は、1〜400ppbの範囲である。
二酸化ケイ素造粒体IIは、好ましくは特徴組み合わせ(A)/(B)/(D)/(F)を有し、BET表面積は、10〜30m/gの範囲であり、平均粒子径は、150〜280μmの範囲であり、炭素含有量は、4ppm未満であり、重装かさ密度は、0.8〜1.0g/mLの範囲である。
二酸化ケイ素造粒体IIは、好ましくは特徴組み合わせ(A)/(B)/(D)/(I)を有し、BET表面積は、10〜30m/gの範囲であり、平均粒子径は、150〜280μmの範囲であり、炭素含有量は、4ppm未満であり、アルミニウムとは異なる金属の金属含有量は、1〜400ppbの範囲である。
二酸化ケイ素造粒体IIは、好ましくは特徴組み合わせ(A)/(B)/(F)/(I)を有し、BET表面積は、10〜30m/gの範囲であり、平均粒子径は、150〜280μmの範囲であり、重装かさ密度は、0.8〜1.0g/mLの範囲であり、アルミニウムとは異なる金属の金属含有量は、1〜400ppbの範囲である。
二酸化ケイ素造粒体IIは、好ましくは特徴組み合わせ(A)/(B)/(D)/(F)/(I)を有し、BET表面積は、10〜30m/gの範囲であり、平均粒子径は、150〜280μmの範囲であり、炭素含有量は、4ppm未満であり、重装かさ密度は、0.8〜1.0g/mLの範囲であり、アルミニウムとは異なる金属の金属含有量は、1〜400ppbの範囲である。
ステップii.)
ステップi.)で提供された二酸化ケイ素造粒体から、ガラス溶融物が作製される。好ましくは、二酸化ケイ素造粒体は、ガラス溶融物を得るために加温される。ガラス溶融物を得るように二酸化ケイ素造粒体を加温することは、原則として、この目的のための当業者に公知の任意の方法により行うことができる。
真空焼結
ガラス溶融物を得るように二酸化ケイ素造粒体を加温することは、真空焼結により行うことができる。このプロセスは、二酸化ケイ素造粒体が溶融のためにバッチ式に加温される非連続的なプロセスである。
好ましくは、二酸化ケイ素造粒体は、排気減圧可能な坩堝内で加温される。坩堝は、溶融炉内に配置されている。坩堝は、立設位置または吊り下げ位置、好ましくは吊り下げ位置に配置することができる。坩堝は、焼結坩堝でも、金属シート坩堝でもよい。好ましいのは、互いにリベット留めされた複数のシートから作製された圧延金属シート坩堝である。坩堝材料の例は、高融点金属、特にW、Mo、およびTa、黒鉛、または黒鉛箔で内張りされた坩堝であり、黒鉛坩堝が特に好ましい。
真空焼結中、二酸化ケイ素造粒体は、溶融のために真空中で加温される。真空は、2mbar未満の残圧を意味する。このために、二酸化ケイ素造粒体を含む坩堝を、2mbar未満の残圧に排気減圧する。
好ましくは、坩堝は、溶融炉内で1500〜2500℃の範囲、例えば1700〜2300℃の範囲、特に好ましくは1900〜2100℃の範囲の溶融温度に加温される。
坩堝内の二酸化ケイ素造粒体の溶融温度における好ましい保持時間は、量に依存する。坩堝内の二酸化ケイ素造粒体の溶融温度における保持時間は、好ましくは0.5〜10時間、例えば1〜8時間または1.5〜6時間、特に好ましくは2〜5時間である。
二酸化ケイ素造粒体は、加温中、撹拌されてもよい。二酸化ケイ素造粒体の撹拌は、好ましくはかき混ぜ、振り混ぜ、または旋回により遂行される。
ガス圧焼結
ガラス溶融物を得るように二酸化ケイ素造粒体を加温することは、ガス圧焼結により行うことができる。このプロセスは、二酸化ケイ素造粒体が溶融のためにバッチ式に加温される静的プロセスである。
好ましくは、二酸化ケイ素造粒体は、閉鎖可能な坩堝内に配置され、溶融炉内に導入される。坩堝材料の例は、黒鉛、高融点金属、特にW、Mo、およびTa、または黒鉛箔で内張りされた坩堝であり、黒鉛坩堝が特に好ましい。坩堝は、少なくとも1つのガス入口および少なくとも1つのガス出口を含む。ガス入口を通じて、ガスを、坩堝の内部に導入することができる。ガス出口を通じて、ガスを、坩堝の内部から流出させることができる。好ましくは、坩堝は、ガス流中および真空中で作動させることが可能である。
ガス圧焼結では、二酸化ケイ素造粒体は、少なくとも1つのガスまたは2つ以上のガスの存在下で溶融のために加温される。好適なガスは、例えばH、および不活性ガス(N、He、Ne、Ar、Kr)、ならびにこれらの2つ以上である。好ましくは、ガス圧焼結は、還元雰囲気内で、特に好ましくはHまたはH/Heの存在下で行われる。空気とHまたはH/Heとのガス交換が、行われる。
好ましくは、二酸化ケイ素造粒体は、1bar超、例えば2〜200barまたは5〜200barまたは7〜50barの範囲、特に好ましくは10〜25barのガス圧で溶融のために加温される。
好ましくは、坩堝は、炉内で1500〜2500℃の範囲、例えば1550〜2100℃または1600〜1900℃の範囲、特に好ましくは1650〜1800℃の範囲の溶融温度に加温される。
坩堝内の二酸化ケイ素造粒体の溶融温度におけるガス圧下での好ましい保持時間は、量に依存する。好ましくは、20kgの量の場合、坩堝内の二酸化ケイ素造粒体の溶融温度における保持時間は、0.5〜10時間、例えば1〜9時間または1.5〜8時間、特に好ましくは2〜7時間である。
好ましくは、二酸化ケイ素造粒体は、最初に真空中で、次いでH雰囲気またはHおよびHeを含む雰囲気中で、特に好ましくはこれらのガスの向流において、溶融される。この方法では、第1のステップにおける温度は、好ましくはさらなるステップにおけるよりも低い。真空中の加温とガス(複数可)の存在下での加温との間の温度差は、好ましくは0〜200℃、例えば10〜100℃、特に好ましくは20〜80℃である。
溶融前の部分的結晶相の形成
原則として、二酸化ケイ素造粒体を溶融前に予備処理することも可能である。例えば、二酸化ケイ素造粒体は、部分的結晶質の二酸化ケイ素造粒体を溶融のために加熱する前に少なくとも部分的な結晶相が形成されるように、加温することができる。
部分的結晶相を形成するために、二酸化ケイ素造粒体は、好ましくは減圧で、または1つ以上のガスの不在下で加温されることになる。好適なガスは、例えばHCl、Cl、F、O、H、C、空気、不活性ガス(N、He、Ne、Ar、Kr)、ならびにこれらの2つ以上である。好ましくは、二酸化ケイ素造粒体は、減圧下で加温される。
好ましくは、二酸化ケイ素造粒体は、二酸化ケイ素造粒体が完全に溶融することなしに柔らかくなる処理温度に、例えば1000〜1700℃または1100〜1600℃または1200〜1500℃の範囲の温度に、特に好ましくは1250〜1450℃の範囲の温度に加温される。
好ましくは、二酸化ケイ素造粒体は、炉内に配置された坩堝内で加温される。坩堝は、立設位置または吊り下げ位置、好ましくは吊り下げ位置に配置することができる。坩堝は、焼結坩堝でも、金属シート坩堝でもよい。好ましいのは、互いにリベット留めされた複数のシートから作製された圧延金属シート坩堝である。坩堝材料の例は、高融点金属、特にW、Mo、およびTa、黒鉛、または黒鉛箔で内張りされた坩堝であり、黒鉛坩堝が特に好ましい。好ましくは、坩堝内の二酸化ケイ素造粒体の処理温度における保持時間は、1〜6時間、例えば2〜5時間、特に好ましくは3〜4時間である。
好ましくは、二酸化ケイ素造粒体は、連続的なプロセスで、特に好ましくは回転炉内で加温される。炉内の平均保持時間は、好ましくは10〜180分、例えば20〜120分、特に好ましくは30〜90分である。
好ましくは、予備処理のために使用される炉は、二酸化ケイ素造粒体が溶融のために加温される溶融炉への供給ライン内に一体化することができる。さらに、好ましくは、予備処理は、溶融炉内で行うことができる。
本発明の第1の態様の好ましい実施形態によれば、方法は、加温中、期間tの間、二酸化ケイ素の融解点より低い温度Tが保持されることにより特徴付けられる。
さらに、好ましくは、温度Tは、1000〜1700℃の範囲である。好ましくは、加温は、2段階で加熱することにより行われ、特に好ましくは加温は、最初に1000〜1400℃の温度TT1へと、次いで1600〜1700℃の温度TT2へと行われる。
同様に、好ましくは、期間tは、1〜20時間、好ましくは2〜6時間の範囲にある。2段階加温の場合、温度TT1における期間tT1は、1〜10時間の範囲にあり、温度TT2における期間tT2は、1〜10時間の範囲にある。
さらに好ましい実施形態によれば、温度Tは、期間tにわたって特定の範囲にある。この種類の温度Tおよび期間tの好ましい組み合わせは、以下の表に示されている。
本発明の第1の態様のさらなる好ましい実施形態によれば、期間Tは、ガラス溶融物の作製前にある。
ステップiii.)
ステップii)で調製されたガラス溶融物の少なくとも一部から、石英ガラス体が作製される。
好ましくは、石英ガラス体は、ステップii)で作製されたガラス溶融物の少なくとも一部から作製される。原則として、石英ガラス体は、溶融坩堝内のガラス溶融物の少なくとも一部から、またはガラス溶融物の少なくとも一部を溶融坩堝から取り除いた後に、好ましくはガラス溶融物の少なくとも一部を溶融坩堝から取り除いた後に、作製することができる。
ステップii)で作製されたガラス溶融物の一部の取り除きは、溶融炉または溶融チャンバから連続的に、またはガラス溶融物の生産が完了した後で、行うことができる。好ましくは、ガラス溶融物の一部は、連続的に取り除かれる。ガラス溶融物は、炉の出口または溶融チャンバの出口を通じて、好ましくは各場合にノズルを介して、取り除かれる。
ガラス溶融物は、取り除き前、取り除き中、または取り除き後に、ガラス溶融物の成形を可能にする温度に冷却することができる。ガラス溶融物の粘度の上昇は、ガラス溶融物の冷却に関係する。ガラス溶融物は、好ましくは、成形において生み出された形状がもちこたえ、成形が、できる限り容易であると同時に確実であり、ほとんど努力せずに行うことができる程度まで、冷却される。当業者は、成形用具においてガラス溶融物の温度を変化させることにより、成形用のガラス溶融物の粘度を容易に確立することができる。好ましくは、ガラス溶融物は、500℃未満、例えば200℃未満または100℃未満または50℃未満の温度に、特に好ましくは20〜30℃の範囲の温度に冷却される。
さらに、好ましくは、冷却は、0.1〜50K/分、例えば0.2〜10K/分または0.3〜8K/分または0.5〜5K/分、特に好ましくは1〜3K/分の範囲の速度で行われる。
以下のプロファイル、
1.1180〜1220℃の範囲の温度に冷却する、
2.30〜120分、例えば40〜90分、特に好ましくは50〜70分の期間にわたってこの温度を保持する、
3.500℃未満、例えば200℃未満または100℃未満または50℃未満の温度に、特に好ましくは20〜30℃の範囲の温度に冷却する、
に従って冷却することがさらに好ましく、
冷却は、各場合に、0.1〜50K/分、例えば0.2〜10K/分または0.3〜8K/分または0.5〜5K/分、特に好ましくは1〜3K/分の範囲の速度で行われる。
成形される石英ガラス体は、中実体でも、中空体でもよい。中実体は、主として単一の材料から作製された本体を意味する。それにもかかわらず、中実体は、1つ以上の介在物、例えばガス気泡を有してもよい。中実体内のこのような介在物は、一般に、65mm以下、例えば40mm未満、または20mm未満、または5mm未満、または2mm未満、特に好ましくは0.5mm未満のサイズを有する。
石英ガラス体は、外形を有する。外形は、石英ガラス体の断面の外縁の形状を意味する。石英ガラス体の断面の外形は、好ましくは円形、長円形、または3つ以上の角、例えば4つ、5つ、6つ、7つ、もしくは8つの角を有する多角形であり、特に好ましくは石英ガラス体は、円形である。
好ましくは、石英ガラス体は、100〜10000mmの範囲、例えば1000〜4000mm、特に好ましくは1200〜2000mmの長さを有する。
好ましくは、石英ガラス体は、10〜1500mmの範囲、例えば50〜1000mmまたは100〜500mmの範囲、特に好ましくは150〜300mmの範囲の外径を有する。
石英ガラス体の成形は、ノズルにより遂行される。ガラス溶融物は、ノズルを通じて送られる。ノズルを通じて成形される石英ガラス体の外形は、ノズル開口部の形状により決定される。開口部が円形である場合、石英ガラス体の成形において円筒が作製されることになる。ノズルは、溶融炉内に一体化されてもよく、または別々に配置されてもよい。ノズルが溶融炉内に一体化されない場合、ノズルは、ガラス溶融物が溶融後および成形前に導入される上流容器を備えてもよい。好ましくは、ノズルは、溶融炉内に一体化されている。好ましくは、ノズルは、溶融炉内に出口の一部として一体化されている。石英ガラス体を成形するためのこの方法は、二酸化ケイ素造粒体が連続的なプロセスに好適な垂直配向炉内で溶融のために加熱されるとき、好ましい。
石英ガラス体の成形は、鋳型内、例えば成形坩堝内でガラス溶融物を作製することにより行うことができる。好ましくは、ガラス溶融物は、鋳型内で冷却され、次いで鋳型から取り除かれる。冷却は、好ましくは鋳型を外側から冷却することにより行うことができる。石英ガラス体を成形するためのこの方法は、二酸化ケイ素がガス圧焼結により、または真空焼結により溶融のために加熱される場合、好ましい。
好ましくは、石英ガラス体は、作製された後に冷却される。好ましくは、石英ガラス体は、500℃未満、例えば200℃未満または100℃未満または50℃未満の温度に、特に好ましくは20〜30℃の範囲の温度に冷却される。
好ましくは、ステップiii.)で作製された石英ガラス体は、0.1〜50K/分、例えば0.2〜10K/分または0.3〜8K/分または0.5〜5K/分、特に好ましくは1〜3K/分の範囲の速度で室温(25℃)に冷却される。好ましくは、この冷却は、鋳型内で行われる。
好ましくは、石英ガラス体は、少なくとも1300℃の温度に最大5K/分の速度で冷却される。好ましくは、石英ガラス体の冷却は、1300〜1000℃の温度範囲で1K/分以下の速度で行われる。しばしば、石英ガラス体は、1000℃未満の温度から最大50K/分の速度で冷却される。
好ましくは、冷却は、以下のプロファイルに従って行われる。
1.5K/分以下の冷却速度で1300℃の温度に冷却する。
2.1K/分以下の冷却速度で1000℃の温度に冷却する。
3.50K/分以下の冷却速度で25℃の温度に冷却する。
好ましくは、本発明による方法は、以下の方法ステップ、
iv.)石英ガラス体から、少なくとも1つの開口部を有する中空体を作製するステップ
を含む。
作製される中空体は、内形および外形を有する。内形は、中空体の断面の内縁の形状を意味する。中空体の断面における内形および外形は、同じでも、異なってもよい。中空体の断面における内形および外形は、円形でも、長円形でも、3つ以上の角、例えば4つ、5つ、6つ、7つ、もしくは8つの角を有する多角形でもよい。
好ましくは、断面の外形は、中空体の内形に対応する。特に好ましくは、中空体は、断面において円形の内形および円形の外形を有する。
別の実施形態では、中空体は、内形と外形が異なってもよい。好ましくは、中空体は、断面において円形の外形および多角形の内形を有する。特に好ましくは、中空体は、断面において円形の外形および六角形の内形を有する。
好ましくは、中空体は、100〜10000mmの範囲、例えば1000〜4000mm、特に好ましくは1200〜2000mmの長さを有する。
好ましくは、中空体は、1〜1000mmの範囲、例えば10〜500mmまたは30〜200mmの範囲、特に好ましくは50〜125mmの範囲の壁厚を有する。
好ましくは、中空体は、10〜1500mm、例えば50〜1000mmまたは100〜500mmの範囲、特に好ましくは150〜300mmの範囲の外径を有する。
好ましくは、中空体は、1〜500mm、例えば5〜300mmまたは10〜200mmの範囲、特に好ましくは20〜100mmの範囲の内径を有する。
中空体は、1つ以上の開口部を含む。好ましくは、中空体は、1つの開口部を含む。好ましくは、中空体は、偶数の開口部、例えば2つ、4つ、6つ、8つ、10、12、14、16、18、または20の開口部を有する。好ましくは、中空体は、2つの開口部を含む。好ましくは、中空体は、管である。この形状の中空体は、ライトガイドがただ1つのコアを含む場合、特に好ましい。
中空体は、3つ以上の開口部を含むことができる。開口部は、好ましくは石英ガラス体の端部に2つ一組で互いに対向して位置付けられている。例えば、石英ガラス体の各端部は、2つ、3つ、4つ、5つ、6つ、7つ、または8つ以上の開口部、特に好ましくは5つ、6つ、または7つの開口部を含むことができる。
中空体は、原則として、当業者に公知の任意のメソッドにより成形することができる。好ましくは、中空体は、ノズルにより成形される。好ましくは、ノズルは、その開口部の中央に、成形中にガラス溶融物を偏向させる装置を含む。このようにして、中空体を、ガラス溶融物から成形することができる。
中空体は、ノズルの使用およびその後の後処理により作製することができる。好適な後処理は、原則として、中実体から中空体を作製するための当業者に公知の全てのプロセス、例えば流路圧縮、ドリル加工、ホーニング、または研削である。好ましくは、好適な後処理は、中実体を1つまたは複数のマンドレルの上に送ることであり、これにより中空体が成形される。また、マンドレルを中実体内に導入して中空体を作製することができる。好ましくは、中空体は、成形後に冷却される。
石英ガラス体への成形は、鋳型内、例えば成形坩堝内でガラス溶融物を作製することにより行うことができる。好ましくは、ガラス溶融物は、鋳型内で冷却され、次いで鋳型から取り除かれる。冷却は、好ましくは鋳型を外側から冷却することにより行うことができる。
好ましくは、中空体は、500℃未満、例えば200℃未満または100℃未満または50℃未満の温度に、特に好ましくは20〜30℃の範囲の温度に冷却される。
好ましくは、ステップiii.)で作製された中空体は、0.1〜50K/分、例えば0.2〜10K/分または0.3〜8K/分または0.5〜5K/分、特に好ましくは1〜3K/分の範囲の速度で室温(25℃)に冷却される。
好ましくは、中空体は、少なくとも1300℃の温度に最大5K/分の速度で冷却される。好ましくは、石英ガラス体の冷却は、1300〜1000℃の温度範囲で1K/分以下の速度で行われる。しばしば、中空体は、1000℃未満の温度から最大50K/分の速度で冷却される。
好ましくは、冷却は、以下のプロファイルに従って行われる。
1.5K/分以下の冷却速度で1300℃の温度に冷却する。
2.1K/分以下の冷却速度で1000℃の温度に冷却する。
3.50K/分以下の冷却速度で25℃の温度に冷却する。
本発明の第1の態様に記載の方法により作製された石英ガラス体は、以下の特性、
A]10ppm未満、例えば5ppm未満または2ppm未満、特に好ましくは1ppb〜1ppmの範囲のOH含有量、
B]60ppm未満の塩素含有量、
C]200ppb未満、例えば100ppb未満、特に好ましくは80ppb未満のアルミニウム含有量、
を有し、
ppbおよびppmは、それぞれ石英ガラス体の総重量に基づく。
好ましい実施形態によれば、第1の態様に従って作製された石英ガラス体は、透明であり、気泡が少ない。「透明」とは、可視域の光透過率を意味する。好ましくは、400〜700nmの範囲の入射光の強度対射出光の強度は、少なくとも80%である。
好ましくは、石英ガラス体は、以下の特徴、
D]1055〜1200℃の範囲の仮想温度、
E]5×1015/cm未満、例えば0.1×1015〜3×1015/cmの範囲、特に好ましくは0.5×1015〜2.0×1015/cmの範囲のODC含有量、
F]300ppb未満、例えば200ppb未満、特に好ましくは1〜150ppbの範囲の、アルミニウムとは異なる金属の金属含有量、
G]log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9および/またはlog10(η(1300℃)/dPas)=11.5〜log10(η(1300℃)/dPas)=12.1および/またはlog10(η(1350℃)/dPas)=1.2〜log10(η(1350℃)/dPas)=10.8の範囲の粘度(p=1013hPa)、
H]石英ガラス体のOH含有量A]に基づき10%以下、好ましくは5%以下のOH含有量の標準偏差、
I]石英ガラス体のCl含有量B]に基づき10%以下、好ましくは5%以下のCl含有量の標準偏差、
J]石英ガラス体のAl含有量C]に基づき10%以下、好ましくは5%以下のAl含有量の標準偏差、
K]1×10−4未満、例えば5×10−5未満、特に好ましくは1×10−6未満の屈折率均質性、
L]1150〜1250℃の範囲の変態点Tg、
のうちの少なくとも1つ、例えば少なくとも2つまたは少なくとも3つまたは少なくとも4つ、特に好ましくは少なくとも5つを有し、
ppbおよびppmは、それぞれ石英ガラス体の総重量に基づく。
石英ガラス体は、好ましくは特徴組み合わせA]/B]/C]/D]またはA]/B]/C]/E]またはA]/B]/C]/G]、さらに好ましくは特徴組み合わせA]/B]/C]/D]/E]またはA]/B]/C]/D]/G]またはA]/B]/C]/E]/G]、特に好ましくは特徴組み合わせA]/B]/C]/D]/E]/Gを有する。
石英ガラス体は、好ましくは特徴組み合わせA]/B]/C]/D]を有し、OH含有量は、5ppm未満であり、塩素含有量は、60ppm未満であり、アルミニウム含有量は、100ppb未満であり、仮想温度は、1055〜1200℃の範囲である。
石英ガラス体は、好ましくは特徴組み合わせA]/B]/C]/E]を有し、OH含有量は、5ppm未満であり、塩素含有量は、60ppm未満であり、アルミニウム含有量は、100ppb未満であり、ODC含有量は、0.1×1015〜3×1015/cmの範囲である。
石英ガラス体は、好ましくは特徴組み合わせA]/B]/C]/G]を有し、OH含有量は、5ppm未満であり、塩素含有量は、60ppm未満であり、アルミニウム含有量は、100ppb未満であり、粘度(p=1013hPa)は、log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9の範囲である。
石英ガラス体は、好ましくは特徴組み合わせA]/B]/C]/D]/E]を有し、OH含有量は、5ppm未満であり、塩素含有量は、60ppm未満であり、アルミニウム含有量は、100ppb未満であり、仮想温度は、1055〜1200℃の範囲であり、ODC含有量は、0.1×1015〜3×1015/cmの範囲である。
石英ガラス体は、好ましくは特徴組み合わせA]/B]/C]/D]/G]を有し、OH含有量は、5ppm未満であり、塩素含有量は、60ppm未満であり、アルミニウム含有量は、100ppb未満であり、仮想温度は、1055〜1200℃の範囲であり、粘度(p=1013hPa)は、log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9の範囲である。
石英ガラス体は、好ましくは特徴組み合わせA]/B]/C]/E]/G]を有し、OH含有量は、5ppm未満であり、塩素含有量は、60ppm未満であり、アルミニウム含有量は、100ppb未満であり、ODC含有量は、0.1×1015〜3×1015/cmの範囲であり、粘度(p=1013hPa)は、log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9の範囲である。
石英ガラス体は、好ましくは特徴組み合わせA]/B]/C]/D]/E]/G]を有し、OH含有量は、5ppm未満であり、塩素含有量は、60ppm未満であり、アルミニウム含有量は、100ppb未満であり、仮想温度は、1055〜1200℃の範囲であり、ODC含有量は、0.1×1015〜3×1015/cmの範囲であり、粘度(p=1013hPa)は、log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9の範囲である。
本発明の第2の態様は、本発明の第1の態様に記載の方法により得ることができる石英ガラス体である。
このようにして得られる石英ガラス体および方法の好ましい実施形態については、第1の態様に関して記載の好ましい実施形態を参照する。これらは、本発明のこの態様の好ましい実施形態でもある。
本発明の第3の態様は、高熱法二酸化ケイ素を含む石英ガラス体であって、石英ガラス体が、以下の特徴、
A]10ppm未満のOH含有量、
B]60ppm未満の塩素含有量、および
C]200ppb未満のアルミニウム含有量、
を有し、
ppbおよびppmが、それぞれ石英ガラス体の総重量に基づく、石英ガラス体、である。
好ましくは、石英ガラス体は、以下の特徴、
D]1055〜1200℃の範囲の仮想温度、
E]5×1015/cm未満、例えば0.1×1015〜3×1015/cmの範囲、特に好ましくは0.5×1015〜2.0×1015/cmの範囲のODC含有量、
F]300ppb未満、例えば200ppb未満、特に好ましくは1〜150ppbの範囲の、アルミニウムとは異なる金属の金属含有量、
G]log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9および/またはlog10(η(1300℃)/dPas)=11.5〜log10(η(1300℃)/dPas)=12.1および/またはlog10(η(1350℃)/dPas)=1.2〜log10(η(1350℃)/dPas)=10.8の範囲の粘度(p=1013hPa)、
H]石英ガラス体のOH含有量A]に基づき10%以下、好ましくは5%以下のOH含有量の標準偏差、
I]石英ガラス体のCl含有量B]に基づき10%以下、好ましくは5%以下のCl含有量の標準偏差、
J]石英ガラス体のAl含有量C]に基づき10%以下、好ましくは5%以下のAl含有量の標準偏差、
K]1×10−4未満、例えば5×10−5未満、特に好ましくは1×10−6未満の屈折率均質性、
L]1150〜1250℃の範囲の変態点Tg、
のうちの少なくとも1つ、例えば少なくとも2つまたは少なくとも3つまたは少なくとも4つ、特に好ましくは全てにより特徴付けられ、
ppbおよびppmは、それぞれ石英ガラス体の総重量に基づく。
この態様の好ましい実施形態については、第1の態様および第2の態様に記載の好ましい実施形態を参照する。これらは、本発明のこの態様の好ましい実施形態でもある。
石英ガラス体は、好ましくは、OH、塩素、またはアルミニウムの均質に分布した含有量を有する。石英ガラス体の均質性の指標は、OH、塩素、またはアルミニウムの含有量の標準偏差で表すことができる。標準偏差は、変数の値、ここではOH含有量、塩素含有量、またはアルミニウム含有量の、相加平均からの開きの尺度である。標準偏差を測定するために、当該の成分、例えばOH、塩素、またはアルミニウムの、試料中の含有量を最低限7つの測定位置で測定する。
本発明の第4の態様は、以下の方法ステップ、
(1)本発明の第2の態様または第3の態様に記載の石英ガラス体を提供するステップ、
(2)石英ガラス体から成形体を作製するステップ
を含む、成形体の調製のための方法である。
ステップ(1)で提供される石英ガラス体は、本発明の第2の態様もしくは第3の態様に記載の石英ガラス体、または本発明の第1の態様に記載の方法により得ることができる石英ガラス体である。好ましくは、提供される石英ガラス体は、本発明の第1の態様、第2の態様、または第3の態様の文脈に記載の特徴を有する。
ステップ(2)
石英ガラス体からの成形体の作製は、原則として、当業者に公知であり、本目的のために好適である任意の方法で遂行することができる。作製は、好ましくは成形である。
ステップ(1)で提供される石英ガラス体を成形するには、原則として、当業者に公知であり、石英ガラスを成形するのに好適な任意のプロセスが可能である。好ましくは、石英ガラス体は、成形体を得るように、本発明の第1の態様の文脈に記載のように成形される。さらに、好ましくは、成形体は、ガラス吹き工に公知の技法により成形することができる。
成形体は、原則として、石英ガラスから成形可能な任意の形状をとることができる。好ましい成形体は、例えば以下のとおりである。
− 丸底フラスコおよびスタンディングフラスコなどの少なくとも1つの開口部を有する中空体、
− このような中空体用の取り付け具およびキャップ、
− ボウルおよびボート(ウエハキャリア)などの、覆いのない物品、
− 覆いのないまたは閉鎖可能のいずれかの状態で配置された坩堝、
− シートおよび窓、
− キュベット、
− 管および中空円筒、例えば反応管、セクション管、直方体チャンバ、
− 例えば円形または角形、対称または非対称形式の、ロッド、棒、およびブロック、
− 一端または両端が閉塞した管および中空円筒、
− ドームおよびベル、
− フランジ、
− レンズおよびプリズム、
− 互いに溶着された部品、
− 湾曲した部品、例えば凸状または凹状の面およびシート、湾曲したロッドおよび管。
好ましい実施形態によれば、成形体は、成形後に処理されてもよい。このために、石英ガラス体の後処理に好適な、本発明の第1の態様に関連して記載した原則として全てのプロセスが、可能である。好ましくは、成形体は、例えばドリル加工、ホーニング、円筒研削、サイズ低減、または延伸により、機械的に加工することができる。
本発明の第5の態様は、本発明の第4の態様に記載の方法により得ることができる成形体に関する。方法は、以下のステップ、
(1)本発明の第2の態様または第3の態様に記載の石英ガラス体を提供するステップ、
(2)成形体を得るように石英ガラス体を成形するステップ
を含む。
ステップ(1)および(2)は、好ましくは第4の態様の文脈に記載の特徴により特徴付けられる。
成形体は、好ましくは第4の態様の文脈に記載の特徴により特徴付けられる。
本発明の第6の態様は、以下のステップ、
a/ 本発明の第4の態様または第5の態様に記載の成形体および部品、好ましくはいくつかの部品、を提供するステップであって、1つまたはいくつかの部品が、好ましくは石英ガラスから構成されている、提供するステップ、
b/ 構造体を得るために成形体を部品と接合するステップ
を含む、構造体の生産のための方法に関する。
部品として好適なのは、当業者に公知であり、石英ガラスから構成された成形体に接合するために好適と思われる任意の部品である。具体的には、これらは、パイプ、フランジ、および成形体に関してすでに記載したものなどの形状である。
上記の部品は、石英ガラスもしくは石英ガラスとは異なる材料を含んでもよく、またはこの材料からなってもよい。材料は、好ましくはガラス、金属、セラミック、およびプラスチック、または上記の材料の組み合わせからなる群から選択される。
成形体の部品(複数可)との接合は、原則として、成形体を部品(複数可)に接合するための当業者に公知である任意の公知の方法で行うことができる。好ましい接合の種類は、特に材料結合または確実な機械的係合により、各個々の接合部のためにそれぞれ互いから独立して生産された接合部である。材料結合による好ましい接合は、溶接および接着である。確実な機械的係合による好ましい接合は、ねじ締め、押圧、およびリベット留めである。より好ましくは、単一の接合部における確実な機械的係合と材料結合との組み合わせ、例えばねじ締めおよびそれに加えての接着、または1つの構造体内に存在するいくつかの接合部における確実な機械的係合と材料結合との組み合わせ、を選択することができる。
好ましい実施形態によれば、構造体は、均質な材料特性を有する。これらとしては、好ましくは、均質な材料分布、均質な粘度分布、均質な光学特性、およびこれらの組み合わせが挙げられる。
本発明の第7の態様は、構造体を生産するための本発明に記載の上記の方法(本発明の第6の態様)により得ることができる構造体に関する。この点に関しては、上記の態様および実施形態を参照する。
図1は、本発明による石英ガラス体の調製のための方法100のステップ101〜104を含む流れ図を示す。第1のステップ101では、二酸化ケイ素造粒体が提供される。第2のステップ102では、ガラス溶融物が、二酸化ケイ素造粒体から作製される。
好ましくは、炉内に導入し、炉から取り除くことができる鋳型が、溶融のために使用される。このような鋳型は、しばしば黒鉛製である。これらは、鋳造品のためのネガ形状を提供する。二酸化ケイ素造粒体を、鋳型内に充填し、ステップ103で鋳型内で最初に溶融する。その後、溶融物を冷却することにより、石英ガラス体を同じ鋳型内に成形する。次いで、石英ガラス体を鋳型から外し、例えば任意追加的なステップ104で、さらに加工する。この手順は、非連続的である。溶融物の成形は、好ましくは減圧、特に真空で遂行される。さらに、ステップ103中、炉を水素含有還元雰囲気で間欠的に充填することが可能である。
別の手順では、吊り下げ式坩堝または立設式坩堝が、好ましくは溶融坩堝として用いられる。このために、二酸化ケイ素造粒体は、ここでは溶融坩堝内に導入され、ガラス溶融物が形成されるまで溶融坩堝内で加温される。溶融は、好ましくは、この場合、水素含有還元雰囲気内で行われる。第3のステップ103では、石英ガラス体が成形される。石英ガラス体の成形は、好ましくは、ガラス溶融物の少なくとも一部を坩堝から取り除き、例えば坩堝の下端のノズルを通じて冷却することにより、遂行される。この場合、石英ガラス体の形状は、ノズルの設計により部分的に決定することができる。このようにして、例えば、中実体を得ることができる。中空体は、例えばノズルが追加的にマンドレルを有する場合に、得られる。石英ガラス体の調製のための方法のこの例示的な図、および特にステップ103は、好ましくは連続的に遂行される。任意追加的なステップ104では、中実な石英ガラス体から中空体を成形することができる。
図2は、二酸化ケイ素造粒体Iの調製のための方法200のステップ201、202、および203を含む流れ図を示す。第1のステップ201では、二酸化ケイ素粉末が提供される。二酸化ケイ素粉末は、好ましくはケイ素含有材料、例えばシロキサン、ケイ素アルコキシド、またはハロゲン化ケイ素が高熱法プロセスにおいて二酸化ケイ素に変換される合成プロセスから得られる。第2のステップ202では、二酸化ケイ素粉末を液体、好ましくは水と混合して、スラリーを得る。第3のステップ203では、スラリー中に含まれる二酸化ケイ素が、二酸化ケイ素造粒体に変換される。造粒は、噴霧造粒により遂行される。このために、スラリーをノズルを通じて噴霧塔内に噴霧し、乾燥させて顆粒を得る。ノズルとスラリーとの間の接触面は、ガラスまたはプラスチックを含む。
図3は、二酸化ケイ素造粒体IIの調製のための方法300のステップ301、302、303、および304を含む流れ図を示す。ステップ301、302、および303は、図2に記載のステップ201、202、および203に対応して進む。ステップ304では、ステップ303で得られた二酸化ケイ素造粒体Iを加工して、二酸化ケイ素造粒体IIを得る。これは、好ましくは二酸化ケイ素造粒体Iを塩素含有雰囲気中で加温することにより、遂行される。
図4には、二酸化ケイ素を噴霧造粒するための噴霧塔1100の好ましい実施形態が示されている。噴霧塔1100は、二酸化ケイ素粉末および液体を含有する加圧されたスラリーがそれを通じて噴霧塔内に供給される供給口1101を含む。パイプラインの端部には、それを通じてスラリーが噴霧塔内にきめ細かく広がる分布として導入されるノズル1102がある。好ましくは、ノズルは、スラリーが噴霧塔内でノズル方向に微小液滴として噴霧され、次いで重力の影響下で弧を描いて落下するように、上向きに傾斜する。噴霧塔の上端には、ガス入口1103が存在する。ガス入口1103を通じたガスの導入により、ガス流が、ノズル1102から出るスラリーの退出方向とは反対方向に生み出される。噴霧塔1100は、スクリーニング装置1104および篩い分け装置1105も含む。所定の粒子径より小さい粒子は、スクリーニング装置1104により抽出され、排出物1106を通じて取り除かれる。スクリーニング装置1104の抽出強度は、抽出されるべき粒子の粒子径に対応するように構成することができる。所定の粒子径を超える粒子は、篩い分け装置1105により篩い分けにより排除され、排出物1107を通じて取り除かれる。篩い分け装置1105の篩い透過度は、篩い分けにより排除されるべき粒子径に対応するように選択することができる。残りの粒子、所望の粒子径を有する二酸化ケイ素造粒体、は出口1108を通じて取り除かれる。
図5は、真空焼結方法、ガス圧焼結方法、および特にこれらの組み合わせに好適な、炉1500の好ましい実施形態を示す。炉は、外側から内向きに耐圧ジャケット1501および断熱層1502を有する。炉内部と呼ばれるこれらにより包囲される空間は、ガス供給口1504を介してガスまたは混合ガスで充填することができる。さらに、炉内部は、それを介してガスを取り除くことができるガス出口1505を有する。ガス供給1504と1505におけるガス取り除きとの間のガス輸送の収支に従って、過大圧力、真空、またはガス流も、炉1500の内部に生成することができる。さらに、発熱体1506は、炉内部1500内に存在する。これらは、しばしば、断熱材層1502(ここでは図示せず)上に装着される。溶融材料を汚染から守るために、炉の内部に、炉チャンバ1503を発熱体1506から分離するいわゆる「ライナー」1507が存在する。溶融されるべき材料1509を含む鋳型1508を、炉チャンバ1503内に導入することができる。鋳型1508は、側部が開いていてもよく(ここに図示する)、または溶融材料1509を完全に包囲していてもよい(図示せず)。
図6は、成形体の調製のための方法のステップ1601および1602を含む流れ図を示す。第1のステップ1601では、石英ガラス体、好ましくは図100に従って調製された石英ガラス体が、提供される。このような石英ガラス体は、中実体の石英ガラス体でも、中空体の石英ガラス体でもよい。第2のステップ1602では、成形体が、ステップ1601で提供される中実な石英ガラス体から成形される。
試験法
a.仮想温度
仮想温度は、約606cm−1におけるラマン散乱強度を使用してラマン分光法により測定する。Pfleiderer et.al.の寄稿、「The UV−induced 210nm absorption band in fused Silica with different thermal history and stoichiometry」;Journal of Non−Crystalline Solids,volume 159(1993),145−153ページに記載の手順および分析。
b.OH含有量
ガラスのOH含有量を、赤外分光法により測定する。D.M.Dodd & D.M.Fraser「Optical Determinations of OH in Fused Silica」(J.A.P.37,3991(1966))のメソッドを用いる。同文献で指定の装置の代わりに、FTIR分光計(フーリエ変換赤外分光計、Perkin Elmerの現行のSystem 2000)を用いる。スペクトルの分析は、原則として、約3670cm−1の吸収バンドまたは約7200cm−1の吸収バンドのいずれかで遂行することができる。吸収バンドの選択は、OH吸収による透過損が10〜90%であることに基づき行う。
c.酸素欠乏センター(ODC:Oxygen Deficiency Center)
定量的検出のために、ODC(I)吸収を、165nmで、1〜2mmの厚さを有するプローブにおける透過率測定により、真空UV分光計、McPherson、Inc.(米国)のモデルVUVAS 2000を使用して測定する。
そのとき、
N=α/σ
ただし
N=欠陥濃度[1/cm
α=ODC(I)バンドの光吸収[1/cm、底e]
σ=有効断面積[cm
式中、有効断面積は、σ=7.5×10−17cmに設定される(L.Skuja、「Color Centers and Their Transformations in Glassy SiO」、Lectures of the summer school「Photosensitivity in optical Waveguides and glasses」、1998年7月13〜18日、フィッツナウ、スイスから)。
d.元素分析
d−1)固体試料を粉砕する。次いで、約20gの試料を、それを耐HF性容器内に完全に導入し、HFで覆い、100℃で1時間熱処理することにより清浄化する。冷却後、この酸を廃棄し、試料を高純度水で数回洗浄する。次いで、容器および試料を乾燥棚内で乾燥させる。
次に、約2gの固体試料(上記のように清浄化した粉砕材料。予備処理なしのダストなど)を、計量して耐HF性抽出容器内に入れ、15mlのHF(50重量%)に溶解させた。抽出容器を閉じて、試料が完全に溶解するまで100℃で熱処理した。次いで、抽出容器を開けて、溶液が完全に蒸発するまで100℃でさらに熱処理した。その間、抽出容器に15mlの高純度水を3回充填した。分離した不純物を溶解させるために、1mlのHNOを抽出容器内に導入し、15mlまで高純度水を充填した。そして試料溶液の準備ができた。
d−2)ICP−MS/ICP−OES測定
OESが用いられるか、それともMSが用いられるかは、予想される元素濃度に依存する。典型的に、MSの測定値は、1ppbであり、OESの場合、測定値は、10ppbである(各場合に計量した試料に基づく)。測定装置による元素濃度の測定は、装置メーカー(ICP−MSはAgilent 7500ce、ICP−OESはPerkin Elmer 7300 DV)の条件に従って、かつ校正用の認証済み基準液体を使用して、遂行する。次いで、装置により測定した溶液(15ml)中の元素濃度を、プローブの元の重量(2g)に基づき変換する。
注:当該の元素濃度を測定するために、酸、容器、水、および装置は、十分に清潔でなければならないことが銘記されるべきである。これは、石英ガラスのない空試料を抽出することによりチェックする。
このようにして以下の元素、Li、Na、Mg、K、Ca、Fe、Ni、Cr、Hf、Zr、Ti、(Ta)、V、Nb、W、Mo、Alを測定する。
d−3)液体として存在する試料の測定を上記のように行い、ステップd−1)に記載の試料調製は省略する。15mlの液体試料を抽出フラスコ内に導入する。元の試料重量に基づく変換は、行わない。
e.液体の密度の決定
液体の密度を測定するために、正確に規定された体積の液体を計量し、液体およびその構成要素に対して不活性な測定装置に入れ、容器の空重量および充填重量を測定する。密度は、2つの重量測定値の差を、導入した液体の体積で割った値として与えられる。
f.フッ化物の決定
15gの石英ガラス試料を粉砕し、硝酸中で70℃で処理することにより清浄化する。次いで試料を高純度水で数回洗い、次いで乾燥させる。2gの試料を計量してニッケル坩堝内に入れ、10gのNaCOおよび0.5gのZnOで覆う。坩堝をNi蓋で閉め、1000℃で1時間ローストする。次いでニッケル坩堝に水を充填し、溶融クラストが完全に溶解するまで沸騰させる。溶液を200mlメスフラスコに移し、200mlまで高純度水で充填する。未溶解の構成要素の堆積後、30mlをとって100mlメスフラスコに移し、0.75mlの氷酢酸および60mlのTISABを添加し、高純度水で満たす。試料溶液を150mlガラスビーカーに移す。
試料溶液中のフッ化物含有量の測定は、予想される濃度範囲に好適なイオン感応性(フッ化物)電極およびメーカーにより規定されている表示装置により、ここではWissenschaftlich−Technische Werkstaetten GmbH製のpMX 3000/pH/IONに接続されたフッ化物イオン選択性電極および基準電極F−500およびR503/Dにより、遂行する。溶液中のフッ化物濃度と共に、希釈係数および試料重量、石英ガラス中のフッ化物濃度が計算される。
g.塩素の決定(≧50ppm)
15gの石英ガラス試料を粉砕し、硝酸で約70℃で処理することにより清浄化する。その後、試料を高純度水で数回洗い、次いで乾燥させる。次いで、2gの試料を圧力容器用のPTFEインサートに充填し、15mlのNaOH(c=10mol/l)で溶解させ、PTFE蓋を閉め、圧力容器内に配置する。圧力容器を閉め、約155℃で24時間熱処理する。冷却後、PTFEインサートを外し、溶液を100mlメスフラスコに完全に移す。そこに、10mlのHNO(65重量%)および15mlの酢酸緩衝液を添加し、放冷し、100mlまで高純度水で満たした。試料溶液を150mlガラスビーカーに移す。試料溶液は、5〜7の範囲のpH値を有する。
試料溶液中の塩素含有量の測定は、予想される濃度範囲に好適なイオン感応性(塩化物)電極およびメーカーにより規定されている表示装置により、ここではWissenschaftlich−Technische Werkstaetten GmbH製のpMX 3000/pH/IONに取り付けられたタイプCl−500の電極およびタイプR−503/Dの基準電極により、遂行する。
h.塩素含有量(<50ppm)
石英ガラス中の塩素含有量<50ppmは、0.1ppmまで、中性子放射化分析(NAA:neutron activation analysis)により測定する。このために、それぞれ直径3mmおよび長さ1cmの3つのボアを、調査対象の石英ガラス体からとる。これらを、分析のために研究機関、この場合はヨハネス・グーテンベルク大学(ドイツ、マインツ)の核化学研究所に預ける。試料の塩素による汚染を排除するために、測定直前の現場でのHF槽内での試料の入念な清浄化を手配した。各ボアを数回測定する。次いで、結果およびボアが研究機関から返送される。
i.光学特性
石英ガラス試料の透過率を、Perkin Elmer製の市販の格子分光計またはFTIR分光計(Lambda 900[190〜3000nm]またはSystem 2000[1000〜5000nm])で測定する。この選択は、要求される測定範囲により決定する。
絶対透過率を測定するために、試料体を平行平面上で磨き(表面粗さRMS<0.5nm)、表面から全ての残留物を超音波処理により取り除く。試料厚さは、1cmである。不純物、ドーパントなどのため強い透過損が予想される場合、装置の測定範囲内にとどまるために、より厚い、またはより薄い試料を選択することができる。放射の試料通過のためほんのわずかなアーチファクトが生成され、同時に十分に検出可能な効果が測定される試料厚さ(測定長さ)が、選択される。
不透明性の測定、試料を積分球の前に配置する。不透明性は、以下の式に従って、測定した透過率値Tを使用して計算する。O=1/T=I/I。
j.管またはロッド内の屈折率および屈折率分布
管/ロッドの屈折率分布は、York Technology Ltd.製Preform Profiler P102またはP104により特性把握することができる。このために、ロッドを、横たわった状態で測定チャンバ内に配置する、チャンバをしっかり閉める。次いで、測定チャンバを、633nmにおける最も外側のガラス層の屈折率に非常によく似た屈折率を633nmの試験波長で有する浸漬油で充填する。次いで、レーザービームが、測定チャンバを通過する。測定チャンバの背後(放射の方向)に、(測定チャンバを退出する放射と比較した、測定チャンバに進入する放射の)偏角を測定する検出器を装着する。ロッドの屈折率分布の放射相称の仮定の下、直径沿いの屈折率分布は、逆アーベル変換により再構築することができる。これらの計算を、装置メーカーYorkのソフトウェアにより遂行する。
試料の屈折率を、上記と類似のYork Technology Ltd.製Preform Profiler P104で測定する。等方性試料の場合、屈折率分布の測定は、1つの値、屈折率だけを与える。
k.炭素含有量
二酸化ケイ素造粒体および二酸化ケイ素粉末の表面炭素含有量の定量的測定は、Leco Corporation(米国)製の炭素分析器RC612で、全ての表面炭素汚染(SiCを除く)を酸素で完全に酸化させて二酸化炭素を得ることにより、遂行する。このために、4.0gの試料を計量し、石英ガラスボートに入れて、炭素分析器に導入する。試料を、純酸素に浸し、180秒間900℃に加熱する。形成されるCOを、炭素分析器の赤外検出器により測定する。これらの測定条件下では、検出限界は、≦1ppm(重量ppm)の炭素である。
上記に指定の炭素分析器を使用するこの分析に好適な石英ガラスボートは、実験用品市場で、この場合はDeslis Laborhandel(フルールシュトラセ 21,D−40235 デュッセルドルフ(ドイツ))、Deslis番号LQ−130XLから、LECO番号781−335を有するLECO分析器用消耗品として入手することができる。このようなボートは、約25mm/60mm/15mmの幅/長さ/高さ寸法を有する。石英ガラスボートを、その高さの半分まで試料材料で充填する。二酸化ケイ素粉末の場合、1.0gの試料材料の試料重量に到達することができる。そのとき、検出下限は、<1重量ppmの炭素である。同じボート内で、同じ充填高さについて、4gの二酸化ケイ素造粒体の試料重量に到達することができる(100〜500μmの範囲の平均粒子径)。その場合、検出下限は、約0.1重量ppmの炭素である。検出下限は、試料の面積分が空試料の面積分の3倍以下であるとき、到達される(空試料=上記の方法だが、空の石英ガラスボートによる)。
l.カールパラメータ
カールパラメータ(「ファイバカール」とも呼ばれる)は、DIN EN 60793−1−34:2007−01(規格IEC 60793−1−34:2006のドイツ版)に従って測定する。測定は、Annex AのセクションA.2.1、A.3.2、およびA.4.1に記載のメソッドに従って行う(「極端な技法(extrema technique)」)。
m.減衰
減衰は、DIN EN 60793−1−40:2001(規格IEC 60793−1−40:2001のドイツ版)に従って測定する。測定は、付属書に記載のメソッド(「カットバック法」)に従って、λ=1550nmの波長で行う。
n.スラリーの粘度
スラリーを、脱塩水(Direct−Q 3UV、Millipore、水質:18.2MΩcm)で、30重量%の固形物量の濃度に設定する。次いで、粘度をAnton−Paar製のMCR102で測定する。このために、粘度を5rpmで測定する。測定は、23℃の温度および1013hPaの気圧で行う。
o.チキソトロピー
スラリーの濃度を、脱塩水(Direct−Q 3UV、Millipore、水質:18.2MΩcm)で、30重量%の固形物の濃度に設定する。次いで、チキソトロピーを、円錐平板型配置のAnton−Paar製のMCR102で測定する。粘度は、5rpmおよび50rpmで測定する。第1の値と第2の値の商が、チキソトロピー指数を示す。測定は、23℃の温度で行う。
p.スラリーのゼータ電位
ゼータ電位測定のために、ゼータ電位セル(Flow Cell、Beckman Coulter)を用いる。試料を脱塩水(Direct−Q 3UV、Millipore、水質:18.2MΩcm)中に溶解して、1g/Lの濃度を有する20mL溶液を得る。0.1mol/Lおよび1mol/Lの濃度を有するHNO溶液ならびに0.1mol/Lの濃度を有するNaOH溶液の添加を通じて、pHを7に設定する。測定は、23℃の温度で行う。
q.スラリーの等電点
等電点、ゼータ電位測定セル(Flow Cell、Beckman Coulter)、および自動滴定装置(DelsaNano AT、Beckman Coulter)を用いる。試料を脱塩水(Direct−Q 3UV、Millipore、水質:18.2MΩcm)中に溶解して、1g/Lの濃度を有する20mL溶液を得る。0.1mol/Lおよび1mol/Lの濃度を有するHNO3溶液ならびに0.1mol/Lの濃度を有するNaOH溶液の添加により、pHを変化させる。等電点は、ゼータ電位が0に等しいpH値である。測定は、23℃の温度で行う。
r.スラリーのpH値
スラリーのpH値を、Wissenschaftlich−Technische−Werkstaetten GmbH製のWTW 3210を使用して測定する。WTW製のpH 3210 Set 3を電極として用いる。測定は、23℃の温度で行う。
s.固形物量
試料の計量部分mを、500℃に4時間加熱し、冷却後再計量した(m)。固形物量wは、m/m*100[重量%]として与えられる。
t.かさ密度
かさ密度を、規格DIN ISO 697:1984−01に従って、Powtec製のSMG 697で測定する。バルク材料(二酸化ケイ素粉末または造粒体)は、塊を形成しない。
u.重装かさ密度(造粒体)
重装かさ密度を、規格DIN ISO 787:1995−10に従って測定する。
v.細孔径分布の測定
細孔径分布を、DIN 66133に従って測定する(480mN/mの表面張力および140°の接触角で)。3.7nmより小さい細孔径の測定については、Porotec製のPascal 400を使用する。3.7nm〜100μmの細孔径の測定については、Porotec製のPascal 140を使用する。試料を、測定前に圧力処理に供する。このために、手動の水圧プレス機を使用する(Specac Ltd.(リバーハウス、97 クレイアベニュー、オーピントン、ケント BR5 4HE、英国)製の注文番号15011)。250mgの試料材料を計量して、Specac Ltd.製の13mmの内径を有するペレットダイに入れ、ディスプレイにより1tの荷重を加える。この負荷を、5sにわたって維持し、必要に応じて再調節する。次いで、試料に対する荷重を解除し、試料を再循環空気乾燥棚内で4hにわたって105±2℃で乾燥させる。
試料を計量し、0.001gの精度を有するタイプ10の針入度計に入れる。測定の良好な再現性を提供するために、針入度計は、使用するステム体積、すなわち針入度計を充填するために潜在的に使用されるHg体積の百分率が全Hg体積の20%〜40%の範囲にあるように、選択する。次いで、針入度計をゆっくり50μmHgに排気減圧し、この圧力で5分間放置した。以下のパラメータ、全細孔容積、全細孔表面積(円筒状の細孔を仮定して)、平均細孔半径、モーダルな細孔半径(最も多く見られる細孔半径)、第2ピーク細孔半径(μm)、は測定装置のソフトウェアにより直接提供される。
w.一次粒子径
一次粒子径を、走査電子顕微鏡(SEM:scanning electron microscope)モデルZeiss Ultra 55を使用して測定する。試料を脱塩水(Direct−Q 3UV、Millipore、水質:18.2MΩcm)中に懸濁させて、極端に希薄な懸濁液を得る。懸濁液を、超音波プローブ(UW 2070、Bandelin electronic、70W、20kHz)で1分間処理し、次いで炭素粘着パッドに塗布する。
x.懸濁液中の平均粒子径
懸濁液中の平均粒子径を、Malvern Instruments Ltd.(英国)から入手可能なMastersizer 2000をユーザマニュアルに従って使用し、レーザー偏向法を使用して測定する。試料を脱塩水(Direct−Q 3UV、Millipore、水質:18.2MΩcm)中に懸濁させて、1g/Lの濃度を有する20mLの懸濁液を得る。懸濁液を、超音波プローブ(UW 2070、Bandelin electronic、70W、20kHz)で1分間処理する。
y.固形物の粒子径およびコアサイズ
固形物の粒子径およびコアサイズを、Retsch Technology GmbH(ドイツ)から入手可能なCamsizer XTをユーザマニュアルに従って使用して、測定する。ソフトウェアは、試料のD10、D50、およびD90値を与える。
z.BET測定
比表面積の測定については、DIN ISO 9277:2010に従って静的容量BET法を使用する。BET測定については、SMART法(「適応的分注速度による収着法(Sorption Method with Adaptive dosing Rate」)に従って作動する「NOVA 3000」または「Quadrasorb」(Quantachromeから入手可能)を、使用する。ミクロ細孔分析を、t−プロット法(p/p0=0.1〜0.3)を使用して遂行し、メソ細孔分析を、MBET法(p/p0=0.0〜0.3)を使用して遂行する。基準材料として、Quantachromeから入手可能な標準アルミナSARM−13およびSARM−214を、使用する。測定セル(清浄かつ乾燥)の風袋重量を計量する。導入される試料材料およびフィラーロッドが測定セルをできる限り満たし、デッドスペースが最小限に低減されるように、測定セルのタイプを選択する。試料材料を、測定セル内に導入する。測定値の予想値が10〜20m/gに対応するように、試料材料の量を選択する。測定セルをBET測定装置(フィラーロッドなし)の焼成位置に固定し、<200mbarに排気減圧する。排気減圧の速度は、材料が測定セルから漏出しないように設定する。焼成を、この状態で200℃で1hにわたって遂行する。冷却後、試料で充填された測定セルを計量する(生の値)。次いで、風袋重量を、生の重量値から減じる=正味重量(nett weight)=試料の重量。次いで、充填ロッドを測定セル内に導入し、これもやはりBET測定装置の測定位置に固定する。測定の開始前に、試料の識別および試料の重量をソフトウェアに入力する。測定を開始する。窒素ガス(N2 4.0)の飽和圧力を測定する。測定セルを排気減圧し、窒素浴を使用して77Kに冷却する。デッドスペースを、ヘリウムガス(He 4.6)を使用して測定する。測定セルを再び排気減圧する。少なくとも5つの測定点による多点分析を遂行する。N2 4.0を吸収剤として使用する。比表面積は、m/gで示されている。
za.ガラス体の粘度
TA Instruments製のタイプ401のビームベンディング式粘度計をメーカーのソフトウェアWinTA(現行バージョン9.0)と共にWindows 10で使用して、DIN ISO 7884−4:1998−02規格に従ってガラスの粘度を測定する。支持体間の支持幅は、45mmである。長方形の断面を有する試料ロッドを、均質な材料の領域から切り出す(試料の頂面および底面は、少なくとも1000グレインの仕上げを有する)。加工後の試料表面は、粒度=9μmおよびRA=0.15μmを有する。試料ロッドは、以下の寸法、すなわち長さ=50mm、幅=5mm、および高さ=3mm(規格文書と同様に、長さ、幅、高さと順序付けられている)を有する。3つの試料を測定し、平均を計算する。試料表面に密着した熱電対を使用して、試料温度を測定する。以下のパラメータ、加熱速度=1500℃の最大値まで25K、荷重重量=100g、最大曲げ=3000μm(規格文書からの偏差)、を使用する。
zc.残留水分(含水量)
二酸化ケイ素造粒体の試料の残留水分の測定は、Mettler Toledo製のMoisture Analyzer HX204を使用して遂行する。この装置は、熱重量測定の原理を使用して機能する。HX204は、ハロゲン光源を加熱素子として備えている。乾燥温度は、220℃である。試料の出発重量は、10g±10%である。「標準的」測定法を選択する。乾燥は、重量変化が1mg/140s以下に到達するまで行われる。残留水分は、試料の初期重量と試料の最終重量との間の差を、試料の初期重量で割った値として与えられる。
二酸化ケイ素粉末の残留水分の測定は、DIN EN ISO 787−2:1995に従って遂行する(2h、105℃)。
実施例を、以下において、実施例を通じてさらに例示する。本発明は、実施例により限定されない。
A.1.二酸化ケイ素粉末の調製(OMCTSルート)
シロキサンを空気(A)で霧化することにより形成されるエアゾールを、酸素富化空気(B)と水素との混合物に点火することにより形成される火炎内に、加圧下で導入する。さらに、火炎を取り囲むガス流(C)を導入し、次いでプロセス混合物をプロセスガスで冷却する。生成物をフィルタで分離除去する。プロセスパラメータは、表1に示され、得られる生成物の仕様は、表2に示されている。この実施例の実験データは、A1−xで表されている。
A.2.変更1:炭素含有量の増大
A.1.に記載のように方法を行ったが、シロキサンの燃焼は、ある量の炭素も形成されるような方法で遂行した。この実施例の実験データは、A2−xで表されている。
B.1.二酸化ケイ素粉末の調製(ケイ素ソース:SiCl
四塩化ケイ素(SiCl)の一部分を、温度Tで蒸発させ、酸素富化空気と水素との混合物に点火することにより形成されるバーナーの火炎内に圧力Pで導入する。出口への平均正規化ガス流は、一定に保持する。次いで、プロセス混合物をプロセスガスで冷却する。生成物をフィルタで分離除去した。プロセスパラメータは、表3に示され、得られる生成物の仕様は、表4に示されている。これらは、B1−xで表されている。
B.2.変更:炭素含有量の増大
B.1.に記載のように方法を行ったが、四塩化ケイ素の燃焼は、ある量の炭素も形成されるような方法で遂行した。この実施例の実験データは、B2−xで表されている。
C.蒸気処理
二酸化ケイ素粉末の粒子流を、立設した柱状体の頂部を介して導入する。温度(A)の蒸気および空気を、柱状体の底部を介して供給する。柱状体を、内部に位置付けられた加熱器により、柱状体の頂部では温度(B)に、柱状体の底部では第2の温度(C)に、維持する。柱状体を放置した後(保持時間(D))、二酸化ケイ素粉末は、具体的には表6に示す特性を有する。プロセスパラメータは、表5に示されている。
実施例C−1およびC−2で得られた二酸化ケイ素粉末は、それぞれ低い塩素含有量および懸濁液において中程度のpH値を有する。実施例C−2の炭素含有量は、C−1より高い。
D.中和剤による処理
二酸化ケイ素粉末の粒子流を、立設した柱状体の頂部を介して導入する。中和剤および空気を、柱状体の底部を介して供給する。柱状体を、内部に位置付けられた加熱器により、柱状体の頂部では温度(B)に、柱状体の底部では第2の温度(C)に、維持する。柱状体を放置した後(保持時間(D))、二酸化ケイ素粉末は、具体的には表8に示す特性を有する。プロセスパラメータは、表7に示されている。
E.1.二酸化ケイ素粉末からの二酸化ケイ素造粒体の調製
二酸化ケイ素粉末を完全脱塩水中に分散させる。このために、Gustav Eirich機械工場製のタイプRの強力ミキサーを使用する。得られる懸濁液を、膜ポンプで圧送し、それにより加圧し、ノズルにより液滴に変換する。これらを噴霧塔内で乾燥させ、塔の床上で収集する。プロセスパラメータは、表9に示され、得られる造粒体の特性は、表10に示されている。この実施例の実験データは、E1−xで表されている。E2−21〜E2−23では、酸化アルミニウムを、添加剤として導入する。E2−31およびE2−32では
E.2.変更:炭素含有量の増大
このプロセスは、E.1.に記載のものと類似している。追加的に、炭素粉末を懸濁液中に添加剤として分散させる。これらの実施例の実験データは、E2−xで表されている。
造粒体は、全て開気孔性であり、均一かつ球状の形状を有する(全て顕微鏡調査による)。造粒体は、互いにくっつき、硬化する傾向はない。
F.二酸化ケイ素造粒体の清浄化
二酸化ケイ素造粒体を、最初に任意追加的に、回転炉内で温度T1で酸素で処理する。その後、二酸化ケイ素造粒体を、塩素含有成分の並流により処理し、温度を温度T2に上昇させる。プロセスパラメータは、表11に示され、得られた処理された造粒体の特性は、表12に示されている。
F1−2およびF2−1の場合、清浄化ステップ後の造粒体は、著しく低減した炭素含有量(低炭素造粒体、例えばF1−1のような)および著しく低減したアルカリ土類金属含有量を示す。SiC形成は、観察されなかった。
G.ガラス体の形成
表13の2行目に記載の二酸化ケイ素造粒体を原材料として使用した。環状の中空空間およびdの成形体の外径、dの成形体の内径、ならびに長さlを有する黒鉛鋳型を調製した。1mmの厚さを有する高純度黒鉛箔を、外側成形体の内壁に施し、1mmの厚さを有する同じ高純度黒鉛から構成された黒鉛箔を、内側成形体の外壁に施した。1.2g/cmのかさ密度および0.4mmの密度を有する高純度黒鉛から構成された高純度黒鉛の織物を、鋳型の環状の中空空間の基部上に施した(G−2の場合:円筒状の中空空間)。黒鉛箔を備えた高純度黒鉛鋳型に、二酸化ケイ素造粒体を充填した。充填した黒鉛鋳型を炉内に導入し、炉に真空を適用した。充填した二酸化ケイ素造粒体を、加熱速度R1で温度T1から温度T2に至らせ、この温度で期間t2にわたって保持した。次いで、充填した二酸化ケイ素造粒体を、加熱速度R2でT3に加温し、次いで、いかなるさらなる焼き戻しもなしに、加熱速度R3で温度T4に、さらに加熱速度R4で温度T5に至らせ、この温度で期間t5にわたって保持した。最後の240分の間、1.6*10Paの圧力窒素を炉に加えた。その後、鋳型を徐々に冷却する。1050℃の温度に到達すると、鋳型を、この温度で240分の期間にわたって保持した。その後、鋳型をT6に徐々にさらに冷却した。プロセスパラメータは、表13にまとめられ、作製された石英ガラス体の特性は、表14にまとめられている。「徐々の冷却」とは、鋳型がスイッチを切った炉内にいかなる冷却手段もなしに放置され、すなわち環境への熱の放出のみにより冷却されることを意味する。
全てのガラス体は、OH、炭素、およびアルミニウムの含有量に関して非常に良好な値を示す。
H.反応器の調製
上記の実施例G2−1で生産された石英ガラス体を、ガラス吹きによりベルに成形する。これは、蓋(やはり石英ガラスから構成され、フィードスルーを含む)と共に、反応チャンバであって、半導体製作のためのシリコンウエハが導入され、次いで特定のプロセスに供される、反応チャンバ、を形成する。実施例Gに従って調整された石英ガラスから作製された反応チャンバは、従来のものより著しく長い作動時間を有していた(同等の温度条件下で)。その上、高温でのより良好な寸法安定性が観察された。
J.大型管の調製
実施例G1−1およびG2−xからのガラス体を、温かい場所で2段階で2100℃の温度で成形した。材料均質性のばらつきは、このような処理では、成形されたガラス体の幾何形状のばらつきをもたらす。このような2段式成形ステップの一般的な手順は、公知であり、例えば独国特許出願公開第102013107434A1号、段落[0051]〜[0065]に記載されている。実施例G1−1およびG2−xからのガラス体は、そこでは中空円筒と呼ばれている。実施例J1−1およびJ2−xからの第1のステップで成形されたガラス体の特性は、表17に提示され、第2の成形ステップ後の特性は、表18に提示されている。
壁厚のばらつきが小さいほど、良好である。
壁厚のばらつきの測定:試料体(ガラス管)を、ガラス回転ベンチ上で測定する。このために、試料体は、回転しない。試料体の長手軸に平行に、光学測定ヘッドを試料体に沿って走らせ、壁厚を測定ヘッドの試料体の外面からの距離として連続的に記録し、データとして取り込む。測定ヘッドについては、Precitec社製のCHRocodile M4 High Resolutionを用いた。

Claims (21)

  1. 高熱法二酸化ケイ素を含む石英ガラス体の調製のための方法であって、以下の方法ステップ、
    i.)以下の方法ステップ、
    I.高熱法二酸化ケイ素粉末を提供するステップ、
    II.二酸化ケイ素造粒体を得るために二酸化ケイ素粉末を加工するステップであって、前記二酸化ケイ素造粒体が、前記二酸化ケイ素粉末より大きい粒径を有する、加工するステップ、
    を含む二酸化ケイ素造粒体を提供するステップ、
    ii.)炉内で前記二酸化ケイ素造粒体からガラス溶融物を作製するステップ、
    iii.)前記ガラス溶融物の少なくとも一部から石英ガラス体を作製するステップであって、
    前記石英ガラス体が、以下の特性、
    A]10ppm未満のOH含有量、
    B]60ppm未満の塩素含有量、
    C]200ppb未満のアルミニウム含有量、
    を有し、
    前記ppbおよびppmが、それぞれ前記石英ガラス体の総重量に基づく、作製するステップ
    を含む、方法。
  2. 前記高熱法二酸化ケイ素粉末が、非晶質二酸化ケイ素粒子の形態で存在し、前記二酸化ケイ素粉末が、以下の特性、
    a.200ppm未満の塩素含有量、
    b.200ppb未満のアルミニウム含有量、
    を有し、
    前記二酸化ケイ素造粒体が、反応物質で処理される、請求項1に記載の方法。
  3. 前記二酸化ケイ素造粒体の加温が、鋳型溶融法によりガラス溶融物を得るために行われる、請求項1または2に記載の方法。
  4. 加温中、期間tにわたって、二酸化ケイ素の融解点より低い温度Tが維持される、請求項1〜3のいずれか一項に記載の方法。
  5. 以下の特徴、
    a.)前記温度Tが、1000〜1700℃の範囲である、
    b.)前記期間tが、1〜6時間の範囲である
    のうちの少なくとも1つにより特徴付けられる、請求項4に記載の方法。
  6. 前記期間tが、前記ガラス溶融物の作製前である、請求項4または5に記載の方法。
  7. ステップiii)で得られた前記石英ガラス体が、少なくとも1000℃の温度に最大5K/分の速度で冷却される、請求項1〜6のいずれか一項に記載の方法。
  8. 前記冷却が、1300〜1000℃の温度範囲で1K/分以下の速度で行われる、請求項1〜7のいずれか一項に記載の方法。
  9. 前記石英ガラス体が、以下の特徴、
    D]1055〜1200℃の範囲の仮想温度、
    E]5×1015/cm未満のODC含有量、
    F]300ppb未満の、アルミニウムとは異なる金属の金属含有量、
    G]log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9またはlog10(η(1300℃)/dPas)=11.5〜log10(η(1300℃)/dPas)=12.1またはlog10(η(1350℃)/dPas)=1.2〜log10(η(1350℃)/dPas)=10.8の範囲の粘度(p=1013hPa)、
    H]前記石英ガラス体の前記OH含有量A]に基づき10%以下の前記OH含有量の標準偏差、
    I]前記石英ガラス体の前記Cl含有量B]に基づき10%以下の前記Cl含有量の標準偏差、
    J]前記石英ガラス体の前記Al含有量C]に基づき10%以下の前記Al含有量の標準偏差、
    K]1×10−4未満の屈折率均質性、
    L]1150〜1250℃の範囲の変態点Tg、
    のうちの少なくとも1つにより特徴付けられ、
    前記ppbおよびppmが、それぞれ前記石英ガラス体の総重量に基づく、請求項1〜8のいずれか一項に記載の方法。
  10. 前記二酸化ケイ素粉末が、以下の特徴、
    a.20〜60m/gの範囲のBET表面積、および
    b.0.01〜0.3g/cmの範囲のかさ密度、
    c.50ppm未満の炭素含有量、
    d.200ppm未満の塩素含有量、
    e.200ppb未満のアルミニウム含有量、
    f.5ppm未満の、アルミニウムとは異なる金属の総含有量、
    g.粉末粒子の少なくとも70重量%が、10〜100nmの範囲の一次粒子径を有する、
    h.0.001〜0.3g/cmの範囲の重装かさ密度、
    i.5重量%未満の残留水分量、
    j.1〜7μmの範囲の粒子径分布D10
    k.6〜15μmの範囲の粒子径分布D50
    l.10〜40μmの範囲の粒子径分布D90
    のうちの少なくとも1つを有し、
    前記ppmおよびppbが、それぞれ前記二酸化ケイ素粉末の総重量に基づく、請求項1〜9のいずれか一項に記載の方法。
  11. 前記二酸化ケイ素粉末が、シロキサン、ケイ素アルコキシド、およびケイ素ハロゲン化物からなる群から選択される化合物から調製することができる、請求項1〜10のいずれか一項に記載の方法。
  12. 前記二酸化ケイ素粉末の二酸化ケイ素造粒体への加工が、以下のステップ、
    II.1.液体を提供するステップ、
    II.2.スラリーを得るために前記高熱法二酸化ケイ素粉末を前記液体と混合するステップ、
    II.3.二酸化ケイ素造粒体を得るために前記スラリーを造粒するステップ、
    II.4.任意追加的に前記二酸化ケイ素造粒体を処理するステップ
    を含む、請求項1〜11のいずれか一項に記載の方法。
  13. 前記二酸化ケイ素造粒体の総重量に基づき、ステップi.)で調製した前記二酸化ケイ素造粒体の少なくとも90重量%が、前記高熱法二酸化ケイ素粉末から作製される、請求項1〜12のいずれか一項に記載の方法。
  14. 前記二酸化ケイ素造粒体が、以下の特徴、
    A)500ppm未満の塩素含有量、
    B)200ppb未満のアルミニウム含有量、
    C)20〜50m/gの範囲のBET表面積、
    D)0.1〜2.5mL/gの範囲の細孔容積、
    E)0.5〜1.2g/cmの範囲のかさ密度、
    F)0.7〜1.2g/cmの範囲の重装かさ密度、
    G)50〜500μmの範囲の平均粒子径、
    H)5ppm未満の炭素含有量、
    I)23〜26°の範囲の安息角、
    J)50〜150μmの範囲の粒子径分布D10
    K)150〜300μmの範囲の粒子径分布D50
    L)250〜620μmの範囲の粒子径分布D90
    のうちの少なくとも1つにより特徴付けられ、
    前記ppmおよびppbが、それぞれ前記二酸化ケイ素造粒体IIの総重量に基づく、請求項1〜13のいずれか一項に記載の方法。
  15. 請求項1〜14のいずれか一項に記載の方法により得ることができる石英ガラス体。
  16. 高熱法二酸化ケイ素を含む石英ガラス体であって、前記石英ガラス体が、以下の特徴、
    A]10ppm未満のOH含有量、
    B]60ppm未満の塩素含有量、
    C]200ppb未満のアルミニウム含有量、
    を有し、前記ppbおよびppmが、それぞれ前記石英ガラス体の総重量に基づく、石英ガラス体。
  17. 前記石英ガラス体が、以下の特徴、
    D]1055〜1200℃の範囲の仮想温度、
    E]5×1015/cm未満のODC含有量、
    F]300ppb未満の、アルミニウムとは異なる金属の金属含有量、
    G]log10(η(1200℃)/dPas)=13.4〜log10(η(1200℃)/dPas)=13.9および/またはlog10(η(1300℃)/dPas)=11.5〜log10(η(1300℃)/dPas)=12.1またはlog10(η(1350℃)/dPas)=1.2〜log10(η(1350℃)/dPas)=10.8の範囲の粘度(p=1013hPa)、
    H]前記石英ガラス体の前記OH含有量A]に基づき10%以下の前記OH含有量の標準偏差、
    I]前記石英ガラス体の前記Cl含有量B]に基づき10%以下の前記Cl含有量の標準偏差、
    J]前記石英ガラス体の前記Al含有量C]に基づき10%以下の前記Al含有量の標準偏差、
    K]1×10−4未満の屈折率均質性、
    L]1150〜1250℃の範囲の変態点Tg、
    のうちの少なくとも1つにより特徴付けられ、
    前記ppbおよびppmが、それぞれ前記石英ガラス体の総重量に基づく、請求項16に記載の石英ガラス体。
  18. 成形体の調製のための方法であって、以下の方法ステップ、
    (1)請求項16〜17のうちのいずれか一項に記載の石英ガラス体、または請求項1〜14のうちのいずれか一項に記載の方法により得ることができる石英ガラス体を提供するステップ、
    (2)前記石英ガラス体から成形体を作製するステップ
    を含む、方法。
  19. 請求項18に記載の方法により得ることができる成形体。
  20. 構造体の調製のための方法であって、以下の方法ステップ、
    a/ 請求項19に記載の成形体および部品を提供するステップ、
    b/ 前記構造を得るために前記成形体を前記部品と接合するステップ
    を含む、方法。
  21. 請求項20に記載の方法により得ることができる構造体。
JP2018530607A 2015-12-18 2016-12-16 高熱法二酸化ケイ素造粒体からの均質な石英ガラス Pending JP2019502637A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15201086.4 2015-12-18
EP15201086 2015-12-18
PCT/EP2016/081505 WO2017103155A1 (de) 2015-12-18 2016-12-16 Quarzglas aus pyrogenem siliziumdioxidgranulat mit geringem oh-, cl- und al-gehalt

Publications (1)

Publication Number Publication Date
JP2019502637A true JP2019502637A (ja) 2019-01-31

Family

ID=54850375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018530607A Pending JP2019502637A (ja) 2015-12-18 2016-12-16 高熱法二酸化ケイ素造粒体からの均質な石英ガラス

Country Status (7)

Country Link
US (1) US20190055150A1 (ja)
EP (1) EP3390291A1 (ja)
JP (1) JP2019502637A (ja)
KR (1) KR20180095615A (ja)
CN (1) CN108698881A (ja)
TW (1) TW201733931A (ja)
WO (1) WO2017103155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676826B1 (ja) * 2018-12-14 2020-04-08 東ソー・クォーツ株式会社 不透明石英ガラスの製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
TWI794150B (zh) 2015-12-18 2023-03-01 德商何瑞斯廓格拉斯公司 自二氧化矽顆粒製備石英玻璃體
KR20180095618A (ko) 2015-12-18 2018-08-27 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 다중-챔버 가열로에서 실리카 유리체의 제조
EP3390304B1 (de) 2015-12-18 2023-09-13 Heraeus Quarzglas GmbH & Co. KG Sprühgranulieren von siliziumdioxid bei der herstellung von quarzglas
WO2017103131A1 (de) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Verringern des erdalkalimetallgehalts von siliziumdioxidgranulat durch behandlung von kohlenstoffdotiertem siliziumdioxidgranulat bei hoher temperatur
JP6940236B2 (ja) 2015-12-18 2021-09-22 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー 溶融炉内での露点監視による石英ガラス体の調製
WO2017103124A2 (de) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Erhöhen des siliziumgehalts bei der herstellung von quarzglas
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
EP3390308A1 (de) * 2015-12-18 2018-10-24 Heraeus Quarzglas GmbH & Co. KG Glasfasern und vorformen aus quarzglas mit geringem oh-, cl- und al-gehalt
WO2017103120A1 (de) 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Herstellung einer synthetischen quarzglaskörnung
PL3959174T3 (pl) * 2020-05-25 2023-05-02 Evonik Operations Gmbh Granulki krzemionkowe do obróbki cieplnej

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089125A (ja) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd 多孔質シリカ顆粒、その製造方法及び該多孔質シリカ顆粒を用いた合成石英ガラス粉の製造方法
JP2001089168A (ja) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd 高純度合成石英ガラス粉の製造方法
JP2001220158A (ja) * 2000-02-01 2001-08-14 Tosoh Corp 焼結シリカガラス成形体
JP2001220157A (ja) * 2000-02-01 2001-08-14 Tosoh Corp 非晶質合成シリカ粉体及びこれを用いたガラス成形体
JP2001220126A (ja) * 2000-02-01 2001-08-14 Tosoh Corp 結晶質合成シリカ粉体及びこれを用いたガラス成形体
JP2003522708A (ja) * 2000-02-07 2003-07-29 東京エレクトロン株式会社 半導体製造装置用の石英部材、半導体製造装置用石英部材の製造方法、熱処理装置、石英部材中の金属の分析方法
JP2005162535A (ja) * 2003-12-03 2005-06-23 Shinetsu Quartz Prod Co Ltd 透明合成石英ガラスの製造方法及び合成石英ガラス体
JP2005255423A (ja) * 2004-03-09 2005-09-22 Asahi Glass Co Ltd 合成石英ガラス製フォトマスク基板およびフォトマスク
EP1717202A1 (en) * 2005-04-29 2006-11-02 Degussa AG Sintered silicon dioxide materials
WO2011052610A1 (ja) * 2009-10-30 2011-05-05 旭硝子株式会社 深紫外線用光学部材およびその製造方法
JP2015520095A (ja) * 2012-04-05 2015-07-16 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG 電気溶融された合成石英ガラスから成形体を製造する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3581455D1 (de) * 1984-08-30 1991-02-28 Nippon Oxygen Co Ltd Verfahren zur herstellung von glas.
JP2011157260A (ja) * 2010-01-07 2011-08-18 Mitsubishi Materials Corp 合成非晶質シリカ粉末及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089125A (ja) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd 多孔質シリカ顆粒、その製造方法及び該多孔質シリカ顆粒を用いた合成石英ガラス粉の製造方法
JP2001089168A (ja) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd 高純度合成石英ガラス粉の製造方法
JP2001220158A (ja) * 2000-02-01 2001-08-14 Tosoh Corp 焼結シリカガラス成形体
JP2001220157A (ja) * 2000-02-01 2001-08-14 Tosoh Corp 非晶質合成シリカ粉体及びこれを用いたガラス成形体
JP2001220126A (ja) * 2000-02-01 2001-08-14 Tosoh Corp 結晶質合成シリカ粉体及びこれを用いたガラス成形体
JP2003522708A (ja) * 2000-02-07 2003-07-29 東京エレクトロン株式会社 半導体製造装置用の石英部材、半導体製造装置用石英部材の製造方法、熱処理装置、石英部材中の金属の分析方法
JP2005162535A (ja) * 2003-12-03 2005-06-23 Shinetsu Quartz Prod Co Ltd 透明合成石英ガラスの製造方法及び合成石英ガラス体
JP2005255423A (ja) * 2004-03-09 2005-09-22 Asahi Glass Co Ltd 合成石英ガラス製フォトマスク基板およびフォトマスク
EP1717202A1 (en) * 2005-04-29 2006-11-02 Degussa AG Sintered silicon dioxide materials
WO2011052610A1 (ja) * 2009-10-30 2011-05-05 旭硝子株式会社 深紫外線用光学部材およびその製造方法
JP2015520095A (ja) * 2012-04-05 2015-07-16 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG 電気溶融された合成石英ガラスから成形体を製造する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676826B1 (ja) * 2018-12-14 2020-04-08 東ソー・クォーツ株式会社 不透明石英ガラスの製造方法

Also Published As

Publication number Publication date
US20190055150A1 (en) 2019-02-21
TW201733931A (zh) 2017-10-01
WO2017103155A1 (de) 2017-06-22
CN108698881A (zh) 2018-10-23
WO2017103155A9 (de) 2017-11-16
EP3390291A1 (de) 2018-10-24
KR20180095615A (ko) 2018-08-27

Similar Documents

Publication Publication Date Title
JP2019502637A (ja) 高熱法二酸化ケイ素造粒体からの均質な石英ガラス
JP6984897B2 (ja) 石英ガラス調製時のケイ素含有量の増大
JP6927642B2 (ja) 二酸化ケイ素粉末からの石英ガラス体の調製
JP6981710B2 (ja) 二酸化ケイ素造粒体からの石英ガラス体の調製
JP6927643B2 (ja) 吊り下げ式焼結坩堝内での石英ガラス体の調製
JP6881776B2 (ja) 不透明石英ガラス体の調製
JP7048053B2 (ja) マルチチャンバ炉内での石英ガラス体の調製
JP7044454B2 (ja) 石英ガラス調製時の中間体としての炭素ドープ二酸化ケイ素造粒体の調製
JP6881777B2 (ja) 合成石英ガラス粒の調製
JP2019502632A (ja) 立設式焼結坩堝内での石英ガラス体の調製
JP2019504810A (ja) 石英ガラス体の調製および後処理
JP6940236B2 (ja) 溶融炉内での露点監視による石英ガラス体の調製
JP6940235B2 (ja) 高融点金属の溶融坩堝内での石英ガラス体の調製
JP6912098B2 (ja) 二酸化ケイ素造粒体の炭素含有量の低減および石英ガラス体の調製
JP2019506349A (ja) 吊り下げ式金属シート坩堝内での石英ガラス体の調製
US20180370838A1 (en) Ammonia treatment of silicon dioxide powder in the preparation of quartz glass
JP2019502634A (ja) 石英ガラス調製時の二酸化ケイ素粉末の蒸気処理
JP2022130460A (ja) 均質な石英ガラス製のガラス繊維および母材
JP2020523278A (ja) 石英ガラス体の調製

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210622