JP2019501030A - ロボットグリッパ - Google Patents

ロボットグリッパ Download PDF

Info

Publication number
JP2019501030A
JP2019501030A JP2018527952A JP2018527952A JP2019501030A JP 2019501030 A JP2019501030 A JP 2019501030A JP 2018527952 A JP2018527952 A JP 2018527952A JP 2018527952 A JP2018527952 A JP 2018527952A JP 2019501030 A JP2019501030 A JP 2019501030A
Authority
JP
Japan
Prior art keywords
joint
appendage
pulley
drive cable
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018527952A
Other languages
English (en)
Other versions
JP7009365B2 (ja
Inventor
ソールズベリー,カート
スティーヴンズ,マイク
シヴァーズ,ザッケリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRI International Inc
Original Assignee
SRI International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRI International Inc filed Critical SRI International Inc
Publication of JP2019501030A publication Critical patent/JP2019501030A/ja
Application granted granted Critical
Publication of JP7009365B2 publication Critical patent/JP7009365B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0206Gripping heads and other end effectors servo-actuated comprising articulated grippers
    • B25J15/0233Gripping heads and other end effectors servo-actuated comprising articulated grippers actuated by chains, cables or ribbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

コンパクトで軽量のロボットエンドエフェクタは、広範囲の可能な印加力を有する。上記エンドエフェクタは、1つ以上の劣駆動付属肢を含み、各劣駆動付属肢は、上記付属肢全体に巻き付けられた駆動ケーブルに接続された単一モータによって駆動される。上記駆動ケーブルは、フラットケーブル又は別の非円形断面を有するケーブルであってよい。上記駆動ケーブルは、上記付属肢内で一連のプーリ及び/又は軸受に巻き付けてこれらの間を通過させることができ、これにより摩擦損失を低減する。プーリの経路の設計により、上記付属肢による所望の機械的応答を可能とし得、上記機械的応答は、把持プロセスのために最適化できる。

Description

関連出願の相互参照
本願は、「ROBOT GRIPPER」と題された、2015年12月3日に出願された米国仮特許出願第62/262,446号の優先権を主張するものであり、この開示の内容全体を参照によって本願明細書に援用する。
連邦政府による資金提供を受けた研究開発の記載
本発明は、米陸軍契約司令部によって授与された契約番号W31P4Q−13−C−0046の下に、政府支援を受けてなされたものである。合衆国政府は、本発明に対して一定の権利を有する。
本明細書に記載されている実施形態は、ロボット部品及びロボット部品の制御方法に関する。
様々なタスクを実行するためにロボットを使用することは、ますます一般的になりつつある。ロボットは、製造、医薬、兵器システムを含む多くの分野や家庭で使用されている。ロボットには、多くのサイズ、形状、及び形態がある。典型的には、ロボットは1つ又は複数のアームを有し、各アームはアームの遠位端にエンドエフェクタを有する。エンドエフェクタは、把持する、すくう、仕分ける、移動させる等の様々なタスクを実行できる機械的又は電気機械的装置と考えられ得る。場合によっては、完全にエンドエフェクタのみによってロボットがその環境と相互作用するため、ロボットの有用性は、エンドエフェクタの設計及び能力によって実現される。
一実施形態では:基部;上記基部から延在する第1の付属肢であって、第1のジョイントでハウジングに結合された第1の付属肢リンクと、上記第1のジョイントに回転可能に結合された第1のジョイントプーリであって、第1の外径を有する接触部を含む第1のジョイントプーリと、第2のジョイントによって第上記1の付属肢リンクに結合された第2の付属肢リンクと、上記第2のジョイントに回転可能に結合された第2のジョイントプーリであって、上記第1のジョイントプーリの接触部の第1の外径とは異なる第2の外径を有する接触部を含む、第2のジョイントプーリとを含む、第1の付属肢;上記基部内に配置されたモータ;上記基部内に配置され、上記モータに回転可能に結合されたハブ;並びに第1の端部で上記ハブに結合され、第2の端部で上記第1の付属肢に結合された駆動ケーブルであって、上記ハブの回転が上記駆動ケーブルの張力を変化させて上記第1の付属肢リンク又は上記第2の付属肢リンクのうちの少なくとも一方の回転を引き起こすように、上記第1のジョイントプーリ及び上記第2のジョイントプーリの接触部と接触する、駆動ケーブルを含む、ロボットエンドエフェクタが提供される。
上記エンドエフェクタは更に、上記第1の付属肢リンク内、かつ上記第1のジョイントプーリと上記第2のジョイントプーリとの間に配置された第1の中間プーリを含んでよく、ここで上記駆動ケーブルは、上記第1のジョイントプーリ、上記第1の中間プーリ、及び上記第2のジョイントプーリの互い違いの側部に沿って順に巻き付けられる。上記エンドエフェクタは更に、第1の端部で上記基部内に、及び第2の端部で上記第1の付属肢内に固定されたリターンケーブルを含んでよく、ここで上記リターンケーブルは、上記第1のジョイントプーリ、上記第1の中間プーリ、及び上記第2のジョイントプーリの、上記駆動ケーブルとは反対側の互い違いの側部の周囲に順に巻き付けられる。上記第1のジョイントプーリは、1対のアンギュラ軸受によって支持してよく、上記第1の中間プーリは、ニードル軸受によって支持してよい。
上記第1の付属肢は更に、第3のジョイントによって上記第2の付属肢リンクに結合された第3の付属肢リンクと、上記第3のジョイントに回転可能に結合された第3のジョイントプーリであって、上記第1のジョイントプーリの接触部の上記第1の外径及び上記第2のジョイントプーリの接触部の上記第2の外径とは異なる第3の外径を有する接触部を含む第3のジョイントプーリとを含んでよく、ここで上記駆動ケーブルは、上記第3のジョイントプーリの接触領域と接触する。
上記エンドエフェクタは更に:上記基部から延在する第2の付属肢であって、第1のジョイントで上記ハウジングに結合された第1の付属肢リンクと、上記第1のジョイントに回転可能に結合された第1のジョイントプーリであって、第1の外径を有する接触部を含む第1のジョイントプーリと、第2のジョイントによって上記第1の付属肢リンクに結合された第2の付属肢リンクと、第2のジョイントに回転可能に結合された第2のジョイントプーリであって、上記第1のジョイントプーリの上記接触部の上記第1の外径とは異なる第2の外径を有する接触部を含む第2のジョイントプーリとを含む、第2の付属肢;上記基部内に配置されたモータ;上記基部内に配置され、上記モータに回転可能に結合された第2のハブ;並びに第1の端部で上記第2のハブに結合され、第2の端部で上記第1の付属肢に結合された第2の駆動ケーブルであって、上記第2のハブの回転が上記第2の駆動ケーブルの張力を変化させて上記第2の付属肢の上記第1の付属肢リンク又は上記第2の付属肢リンクのうちの少なくとも一方の回転を引き起こすように、上記第1のジョイントプーリ及び上記第2のジョイントプーリの上記接触部と接触する、第2の駆動ケーブルを含んでよい。
上記駆動ケーブルは、非円形断面を有してよい。上記駆動ケーブルは、上記ハブの周りに少なくとも1周巻き付けてよい。上記駆動ケーブルは、少なくとも50重量ポンド(222N)、又は少なくとも150重量ポンド(667N)の引張荷重に耐えることができる。上記駆動ケーブルは、少なくとも50kmの自己支持長(self−support length)を有する材料を含んでよい。
上記エンドエフェクタは更に、上記第1のジョイントに隣接して配置された位置センサを含んでよく、ここで上記第1のジョイントは、位置センサに係合ように構成された第1のピンを含む。上記エンドエフェクタは更に、上記ハブと上記第1のジョイントとの間に延在する上記駆動ケーブルの一部分に対して付勢される張力感知構造を含んでよく、ここで上記駆動ケーブルと接触する上記張力感知構造の一部分の位置は、上記駆動ケーブルの張力に応じて決まる。
一実施形態では:第1のジョイントの周りで回転するように構成された近位付属肢リンク;上記第1のジョイントに結合され、第1の外径を有する第1のジョイントプーリ;第2のジョイントによって近位リンクに結合された遠位付属肢リンク;上記第2のジョイントに結合され、上記第1のジョイントプーリの上記第1の外径とは異なる第2の外径を有する第2のジョイントプーリ;モータ;並びに上記モータに結合された駆動ケーブルであって、ハブの回転が駆動ケーブルの張力を変化させて第1の付属肢リンク又は第2の付属肢リンクの少なくとも一方の回転を引き起こすように上記第1のジョイントプーリ及び上記第2のジョイントプーリの接触部と接触し、また非円形断面を有する駆動ケーブルを含む、ロボットフィンガアセンブリが提供される。
上記アセンブリは更に、上記モータに結合されたハブを含んでよく、ここで上記駆動ケーブルの第1の端部は、上記ハブ内で摩擦保持され、上記駆動ケーブルは、上記ハブの外周の周囲に少なくとも1周巻き付けられる。上記アセンブリは更に、加重センサと、上記加重センサに結合され、上記駆動ケーブルと接触するセンサプーリとを含んでよく、ここで上記駆動ケーブルの張力変化が上記センサプーリの偏向を引き起こす。上記アセンブリは更に、上記第1のジョイント及び上記第2のジョイントそれぞれに隣接して配置された絶対位置センサを含んでよい。上記アセンブリは更に、リターンスプリングから少なくとも上記第1の付属肢リンク及び上記第2の付属肢リンクを通って延在するリターンケーブルを含んでよく、上記リターンケーブルは、上記第1のジョイントプーリ及び上記第2のジョイントプーリの、上記駆動ケーブルとは反対側の側部に沿って延在する。
一実施形態では:基部;複数の劣駆動付属肢であって、近位端に位置するジョイントに対して回転するように構成された複数の付属肢セグメントをそれぞれ含む、複数の劣駆動付属肢;上記基部内に配置された複数のモータ;及び複数の駆動ケーブルであって、それぞれが1つの上記モータに接続され、1つの上記劣駆動付属肢の上記複数の付属肢セグメントを経由し、上記駆動ケーブルの張力変化に応答して上記複数の付属肢セグメントそれぞれの回転を引き起こすように構成された、複数の駆動ケーブルを含む、ロボットハンドエンドエフェクタが提供される。
上記劣駆動付属肢内の各上記ジョイントは、ジョイントプーリに結合してよく、上記劣駆動付属肢内のジョイントプーリの直径は、上記基部からの距離が増加するにつれて減少する。上記劣駆動付属肢は:第1の直径を有する第1のジョイントプーリに結合された第1のジョイントによって基部に接続された、近位付属肢セグメント;上記第1のジョイントプーリの上記第1の直径より小さい第2の直径を有する第2のジョイントプーリに結合された第2のジョイントによって近位付属肢セグメントに接続された、中間付属肢セグメント;及び上記第2のジョイントプーリの上記第2の直径より小さい第3の直径を有する第3のジョイントプーリに結合された第3のジョイントによって上記中間付属肢セグメントに接続された、遠位付属肢セグメントを含んでよい。上記エンドエフェクタは更に:上記近位付属肢セグメント内に配置された第1のニードル軸受;及び上記中間付属肢セグメント内に配置された第2のニードル軸受を含んでよい。上記駆動ケーブルは、上記第1のジョイントプーリ、上記第1のニードル軸受、上記第2のジョイントプーリ、上記第2のニードル軸受、及び上記第3のジョイントプーリへと順番にサーペンタイン式に巻き付けられ、ここで上記駆動ケーブルの遠位端は、上記遠位付属肢セグメント内で固定される。
ハンド・エンドエフェクタの一実施形態の斜視図 3つのフィンガのうちの2つが作動された状態の図1のハンド・エンドエフェクタの斜視図 図1のハンド・エンドエフェクタのフィンガアセンブリのような例示的なフィンガアセンブリの斜視図 図3Aのフィンガアセンブリのジョイント内で使用されるピンの斜視図 図3のフィンガアセンブリと同様のフィンガアセンブリの平面図 駆動ケーブルが設置されていない状態で示された、面B−B’に沿った図4Aのフィンガアセンブリの垂直断面図 駆動ケーブルが設置された状態で示された、面B−B’に沿った図4Aのフィンガアセンブリの垂直断面図 図4Aのフィンガアセンブリのフィンガ基部の斜視断面詳細図 図4Dの断面詳細斜視図とは異なる断面に沿った、図4Aのフィンガアセンブリのフィンガ基部の別の斜視断面詳細図 駆動ケーブルが設置されていない状態で示された、面A−A’に沿った図4Aのフィンガアセンブリの垂直断面図 リターンケーブルが設置された状態で示された、面A−A’に沿った図4Aのフィンガアセンブリの垂直断面図 電気ケーブルが設置されていない状態で示された、面C−C’に沿った図4Aのフィンガアセンブリの垂直断面図 電気ケーブルが設置された状態で示された、面C−C’に沿った図4Aのフィンガアセンブリの垂直断面図 制御システムを含む、ハンド・エンドエフェクタの電気アーキテクチャの一実施形態を概略的に示したブロック図
非常に特殊なタスク又は特殊なタスクセット用に設計されるロボットは、エンドエフェクタの特殊な設計につながる。ロボットの能力を拡大させると、サイズ又は重量又はコストの増大といった設計の妥協点につながる場合がある。多くのロボットでは、エンドエフェクタは、典型的な環境における汎用性を高めるために、人間の手のように成形され得る。汎用性を高めるために、ハンド・エンドエフェクタは、広範囲の把持力を有するように設計してよく、従って、ハンド・エンドエフェクタ自体が損傷することなく重い物体と相互作用できることに加えて、繊細な物体を壊さずに繊細な物体と相互作用できる。ハンド・エンドエフェクタは、広範な可能な把持力を有することに加えて、コンパクトで軽量なものとすることもできる。ハンド・エンドエフェクタは更に、ハンド・エンドエフェクタが別の物体と衝突した際の損傷を防ぐ、又は最小限に抑えるように、耐久性のあるものとすることもできる。
広範囲の載荷能力を有するコンパクトで軽量のハンド・エンドエフェクタは、有意な有益性を提供できる。このようなコンパクトで軽量のエンドエフェクタの使用は、エンドエフェクタが取り付けられるロボットアームの設計要件を緩和し得、ひいては、ロボット全体の設計要件を緩和し得る。一例として、重いエンドエフェクタは、エンドエフェクタの重量に適応するように、適切な重さ及び強度が必要である。逆に、軽いエンドエフェクタは、結果として、より小型でコンパクトなアームになり得、そのアーム自体はロボットの設計全体をより小型でコンパクトにし得る。
いくつかの実施形態では、ロボットエンドエフェクタのフィンガ等の付属肢は、単一の駆動ケーブルにおいて所望量の張力を引き起こすように構成された単一モータによって駆動される劣駆動システムとすることができる。駆動ケーブル及び駆動ケーブルが巻き付けられる付属肢部品の設計により、駆動ケーブルの緊張に応答して所定の機械的反応が発生し得る。付属肢は、把持力の範囲の上限が人間の手の把持力の少なくとも10倍である広範囲の可能な把持力を提供するために高トルク生成構造を含んでよい。一連のプーリを用いて、駆動機構から付属肢のリンクにトルクを伝達でき、これにより劣駆動システム内の不必要な摩擦力が減少する。
図1は、ハンド・エンドエフェクタの一実施形態の斜視図である。ハンド・エンドエフェクタ10は、広範囲の把持力を有するコンパクトで軽量のハンド・エンドエフェクタを提供できる。図示されている実施形態では、ハンド・エンドエフェクタ10は、基部アセンブリ20によって支持された、3つのフィンガ30A、30B、及び30Cを含む。他の実施形態では、それより多い又は少ないフィンガを所定の基部アセンブリに結合してよい。
ハンド・エンドエフェクタ10が加えることができる広範囲の可能な把持力により、いくつかある特徴の中でも特に、ハンド・エンドエフェクタ10を用いて、繊細な物体及び重い物体の両方と相互作用できる。以下でより詳細に説明するように、ハンド・エンドエフェクタ10の各フィンガ30A、30B、及び30Cは、フィンガによって加えられた力を変調するためのトランスミッション、位置制御システム、及び位置センサや荷重センサといったセンサを含み得る高トルク駆動機構の一部又は全てを含んでよい。いくつかの実施形態では、以下でより詳細に説明するように、フィンガは、運動面内の複数の関節点を形成してよい。図示されている実施形態では、各フィンガ30A、30B、及び30Cの運動面は、互いに略平行であるが、他の実施形態では、フィンガのうちの少なくともいくつかは、別のフィンガの運動面に対して所定の角度を成して配向された運動面を有する場合がある。他の実施形態では、フィンガのいくつか又は全ては、運動面の向きを変更するように可動であってよく、これにより外転運動及び内転運動を実施できる。
いくつかの実施形態では、フィンガはモジュール部品であってよく、各フィンガ30A、30B、及び30Cは、同様の又は同一の設計及び構造を有してよい。フィンガの設計及び構造間の差異は、基部アセンブリ上又は基部アセンブリ内のフィンガの配置の結果として生じ得る。例えば、フィンガ30A、30B、及び30Cの動作を制御する特定の部品が基部アセンブリ20内に配置される。コンパクトな基部アセンブリを提供するために、これらのフィンガに関連付けられた特定の部品を、基部アセンブリ20内に配置してよく、またフィンガ30A、30B、及び30Cの運動面から横方向に少なくとも部分的にオフセットしてよい。いくつかの実施形態では、任意の好適な配置を提供してよいが、外縁のフィンガ30B及び30Cに関連付けられた基部アセンブリ20内の横方向にオフセットされた部品は、フィンガ30B及び30Cの運動面の内側に配置してよく、そして基部アセンブリ20の設計は所定の配置に適応するように所望に応じて調整してよい。
各フィンガ30A、30B、及び30Cに関連付けられた部品と共に、基部アセンブリは更に、総合制御システム、電子装置、電源、及び通信ポートを含むがこれらに限定されない追加部品を有してよい。更なる詳細は、本明細書の他の箇所で述べる。
図2は、3つのフィンガのうちの2つが作動された状態の図1のハンド・エンドエフェクタの斜視図である。図2において、フィンガ30A及び30Bは、基部アセンブリ20に向かって内側に折り畳まれた状態で示されており、フィンガ30Cは、フィンガのリンクが基部アセンブリ20から離れるように伸長した直線非作動位置で示されている。基部アセンブリ20の両側に配置されたフィンガ30A及び30Bの対向する配向により、フィンガ30A及び30Bは作動時に反対方向に内側に折り畳まれる。このような構成を、フィンガ30A及び30Bを使用して物体をつかむために使用してよいが、フィンガ30Cは、つかむ動作で使用される必要はない。フィンガ30A、30B、及び30Cは、独立して制御可能であり得るため、フィンガ30A、30B、及び30Cの任意の組み合わせを作動でき、作動量もフィンガ間で異なり得る。
各フィンガ30A、30B、及び30Cは、独立した運動制御に加えて、独立した力制御システムを有してよい。各フィンガによって加えられる力の大きさを独立して制御することによって、多種多様な動作がハンド・エンドエフェクタ10によって実施され得る。例えば、ハンド・エンドエフェクタ10を用いてハンドル等の物体をハンドルの周縁を握ることにより回転させる場合、フィンガの全て又は一部は、最初は、同様の量の力でハンドルを握ることができる。しかしながら、ハンドルが回転するにつれて、各フィンガは、徐々にグリップを緩めてハンドルの回転に適応できる。各フィンガの独立制御及び各フィンガの力の独立した測定により、この種の器用さを備えたハンド・エンドエフェクタ10が実現される。
図3Aは、図1のハンド・エンドエフェクタのフィンガアセンブリ等の例示的なフィンガアセンブリの斜視図である。フィンガアセンブリ30は、フィンガ基部110と複数のリンクとを含む。図示されている実施形態では、フィンガアセンブリ30は、3つのリンクを含み、近位リンク170、中間リンク175、及び遠位リンク180が図示されている。これらの各リンク170、175、及び180の近位端は、軸受と共にジョイントを形成するピンに結合してよい。図3Aにおいて、ピン及び軸受によって形成されたジョイントの位置は、矢印160、162、及び164でそれぞれ示されている。
図3Bは、図3Aのフィンガアセンブリのジョイント内で使用されるピンの斜視図である。図示されている実施形態のピン171の全体の形状が図3Bに示されている。いくつかの実施形態では、ピン171は、図示されているように、2つの肩部166、172と、幅広の中央部168とを有し得る。軸受は、肩部166及び172とフィンガアセンブリのハウジングとの間に配置してよく、その後、ピンをハウジングに対して回転させることができる。以下でより詳細に説明するように、肩部166及び172とフィンガのハウジング又は他の部品との間の軸受は、アンギュラ軸受であってよい。
肩部166及び172の少なくとも一方は、非円形断面を有する部分を含んでよい。図示されている実施形態では、非円形断面を有する部分は、肩部172の外側端部から延在する非円筒状突起174の形態を取るが、非円形断面を有する部分の他の形状及び配置も使用してよい。本明細書の他の箇所でより詳細に説明するように、非円筒状突起174は、位置センサと相互作用して関連ジョイントの位置に関する情報を提供してよい。
また、図3Aに示されているように、フィンガアセンブリ30の基部は、フィンガアセンブリ30を作動させるための駆動機構を内包してよい。いくつかの実施形態では、駆動機構は、トルク生成部品に結合されたモータ140を備えてよい。特定の一実施形態では、モータ140は、ブラシレスDCモータを備えてよく、トルク生成部品130は、ハーモニックドライブ(登録商標)又は同様の構造のような高ギア比・高トルク生成部品を備えてよい。他の実施形態では、他の機構を使用してもよい。
ブラシレスDCモータ及び「ハーモニックドライブ」の使用の組み合わせによりコンパクトパッケージが形成され、これは、フィンガアセンブリの重量として測定されるか、ハンド・エンドエフェクタ全体の重量として測定されるかに関係なく、把持力の重量に対する比を高くすることができる。一実施形態では、図1のハンド・エンドエフェクタ等のハンド・エンドエフェクタの重量は、2kgであり得、各フィンガは、約100重量ポンド(444N)の把持力を有し得る。ハンド・エンドエフェクタが3つのフィンガを含む一実施形態では、3つ全てのフィンガが作動されたときの全把持力は、300重量ポンド(1334N)まで上昇し得る。一方で、典型的な人間の指は、約12重量ポンド(53N)の把持力を有し得、典型的な市販のシステムは、2kgの重量を有し、約45重量ポンド(200N)の把持力を示し得る。ブラシレスDCモータ及び「ハーモニックドライブ」の使用により、人間の手又は典型的な市販のシステムの10倍の最大把持力を提供できる。
更に図3Aに示されているように、フィンガ基部はまた、1つ以上のホール効果センサ150及び荷重センサ120等の他の部品を含んでよい。ホール効果センサ150は、モータ140の速度及び方向を制御するモータコントローラと共に使用できる。荷重センサ120は、本明細書の他の箇所で更に詳細に述べるように、フィンガアセンブリ30の制御において使用できる。
図4Aは、図3のフィンガアセンブリと同様のフィンガアセンブリの平面図である。図4Bは、駆動ケーブルが設置されていない状態で示された、面B−B’に沿った図4Aのフィンガアセンブリの垂直断面図である。図4Cは、駆動ケーブルが設置された状態で示された、面B−B’に沿った図4Aのフィンガアセンブリの垂直断面図である。
図4Bは、フィンガ30の関節に使用できるフィンガ基部110並びにリンク170、175、及び180全体に配置された様々な機構を示している。図4Cは、駆動ケーブル275の緊張によってフィンガの関節運動を可能にするための、これらの機構間駆動ケーブル275が通る経路を示している。
ケーブル275は、高い張力に耐えることができる高強度のケーブルであってよい。いくつかの実施形態では、ケーブル275はフラットケーブルであってよいが、他の実施形態では、円形断面又は他の断面を有するケーブルが使用してもよい。フラットケーブル又は非円形断面を有するケーブルは、フィンガアセンブリの厚みを低減するために使用できる。というのは、より厚いケーブルをフィンガアセンブリにルーティングするには追加の間隙が必要になり、フィンガアセンブリのサイズを増大させるためである。
駆動ケーブル275は、高引張荷重を受け得るため、大幅に変形することなく高引張荷重に耐えることができる材料を含んでよい。いくつかの実施形態では、駆動ケーブル275は、液晶ポリマー製の、クラレアメリカ(Kuraray America)社から市販されているマルチフィラメント糸、VECTRAN(商標)等の非金属材料を含んでよい。いくつかの実施形態では、駆動ケーブルは、VECTRAN又は同様の材料を含む平編ケーブルを含んでよい。いくつかの実施形態では、駆動ケーブルは、およそ9〜10mmの幅、およそ1mmの厚さを有してよく、6つ又は7つのVECTRAN繊維織物を含んでよい。しかしながら、これらの寸法は単なる例に過ぎず、他の実施形態では、広範囲の他の寸法及び組成を使用してもよい。
他の実施形態では、他の好適な材料を使用してよく、これらの材料は、材料の引張強度、重量、及び耐クリープ・摩耗性といった特徴に基づいて選択してよい。十分に高い引張強度を提供する任意の材料を使用してよく、特定の実施形態では、高い強度‐重量比を有する材料を使用してよい。一部のVECTRAN材料は、79kmを超える自己支持長又は破壊長を有し、一部の特定のVECTRAN材料は、200kmを超える自己支持長を有する。一方、チタンの自己支持長は29kmである。いくつかの実施形態では、30km、50km、75km、又は200kmより長い自己支持長を有する材料を使用してよい。いくつかの実施形態では、駆動ケーブルの材料は、強度のみに基づいて選択してよく、重量はあまり重要でない場合がある。いくつかの実施形態では、VECTRAN材料の引張強度は、1GPa超であり得、一部の特定のVECTRAN材料の引張強度は、3GPa超であり得る。いくつかの実施形態では、ケーブル材料の引張強度は、1GPa超、2GPa超、又は3GPa超であり得る。いくつかの実施形態では、駆動ケーブルは、少なくとも50重量ポンド(222N)の引張荷重に耐えるように設計してよいが、他の実施形態では、駆動ケーブルは、少なくとも100重量ポンド(444N)、150重量ポンド(667N)、200重量ポンド(889N)、300重量ポンド(1334N)、400重量ポンド(1779N)、500重量ポンド(2224N)又はそれ以上の引張荷重に耐えるように設計してよい。
図4Bに示されているように、フィンガ基部は、対向面を備えるハブ210とハブキャップ205とを含む。図4Cに示されているように、ケーブル275の近位端又は近位端近くのケーブル275の一部は、ハブ210の対向面とハブキャップ205の対向面との間で固定される。ねじ又は他の締結具を用いて、ハブキャップ205をハブ210に締め付けてよく、がこれによりケーブル275の保持される部分がその間に固定される。
図4Dは、図4Aのフィンガアセンブリのフィンガ基部の斜視断面詳細図である。図4Eは、図4Dの断面詳細斜視図とは異なる断面に沿った、図4Aのフィンガアセンブリのフィンガ基部の別の断面詳細斜視図である。図4Eに示されているように、ハブキャップ205及びハブ210の一部を通って延在するねじ207を用いて、ハブキャップ205をハブ210に対して定位置で固定できる。駆動ケーブル275は、少なくとも一部はハブキャップ205の対向面とハブ210の対向面との間の摩擦嵌合によって、又は任意の他の好適な固定方法によって定位置で保持され得る。
いくつかの実施形態では、ハブ210は、ブラシレスDCモータの軸に結合してよいが、ハブキャップ215は、図4Eに示されているように、ハブ210に締め付けられ得る別個の部品であってよい。従って、駆動ケーブル275をキャップとハブとの間に位置決めして、ねじを用いてキャップをハブに締め付けることによって、駆動ケーブル275を終端させてよい。
駆動ケーブル275をキャップ205とハブ210との間で締め付けることに加えて、ケーブルを、キャップ205とハブ210の総外径の周囲に1回又は複数回巻き付けてよい。複数回巻き付けることで、キャプスタン効果によりケーブル内の保持力が高まる。駆動ケーブル275を1回又は複数回巻き付けることによって増大したケーブル内の保持力により、非常に高い荷重を受けた状態でも駆動ケーブル275の端部を定位置で保持できる。更に、駆動ケーブル275がフラットケーブルである実施形態では、ケーブルを複数回巻き付けることでより安定とすることができ、ケーブルに幅があることで互いに接触するケーブル巻き付け部分の表面積が大きくなることにより、駆動ケーブル275の端部を保持する保持力が更に高まる。
ハブ210とキャップ205の総外径、及びハブ210及びキャップ205の周囲にケーブルを巻き付ける回数は、モータの速度によるフィンガの適切な範囲の動作を達成するように選択してよい。
図4B及び図4Cに示されているように、ハブ210は、レース軸受215内に配置してよい。ハブ210をレース軸受215内に配置することによって、フラットケーブルによって加えられた径方向荷重によるハブの運動を最小化、又は除去してよい。ケーブル215は、ハブ210から、荷重センサ120に結合され得るプーリ220の側を通る。図4D及び図4Eは、プーリ220及び荷重センサ120の斜視図である。ケーブル275はプーリ220と接触してよく、これによりプーリ220の位置を関係する公称位置から偏向させることができ、ここでプーリ220の偏向はケーブル275の張力に依存する。
一実施形態では、プーリ220の公称位置は、荷重センサ120上の力がゼロである又はゼロに近い位置として定義してよい。このような位置は、図4Cに示されている。ケーブルは更に、この公称位置でもプーリ220と接触し得るが、プーリにゼロ又は最小の力を印加する。ケーブルの張力が増大すると、ケーブルはプーリ220に矢印222の方向に力を印加する。従って、プーリ220に結合され得る荷重センサは、この力を受けて、フラットケーブルの張力を測定する。
図4Bに示されているように、近位リンク170は、近位リンク170とフィンガ基部110との間のジョイントに位置決めされたプーリ225と、遠位のプーリ225を収容する近位リンク170内に配置されたプーリ230とを含む。いくつかの実施形態では、プーリ225は、ピン171の幅広の中央部178に結合してよく、ピン171の肩部166及び172は、フィンガアセンブリ30のハウジングに結合されたアンギュラ軸受に結合してよい。プーリ230は、フィンガアセンブリ30のハウジングに結合されるニードル軸受であってよいか、又はフィンガアセンブリ30のハウジングに結合されたニードル軸受に結合してよい。
特に、図3A、図4A、及び図4Dに示されているように、プーリ225及び他のプーリは、駆動ケーブル275がプーリと接触できる中央接触領域を含んでよく、上記プーリは中央接触領域の両側のわずかな縁又は隆起によって囲まれる。プーリ225の中央接触領域が駆動ケーブル275の幅と同様の幅を有する場合、中央接触領域の両側で径方向に延在する縁によって囲まれた中央接触領域の凹部は、駆動ケーブル275がプーリ225に定位置で置かれた状態で保持するのを補助できる。中央接触領域は、第1の断面直径を有する略円筒形状とすることができ、中央接触領域の両側のプーリ225の断面直径は中央接触領域の断面直径より大きくすることもできる。中央接触領域として記載されているが、プーリ225の両側の縁は同じ幅である必要はなく、接触領域を、プーリ225の幅の中間点にセンタリングする必要はない。
同様に、中間リンク175は、中間リンク175と近位リンク170との間のジョイントに位置決めされたプーリ235と、遠位のプーリ235を収容する中間リンク170内に配置されたプーリ240とを含む。プーリ225と同様に、プーリ235は、ピン171の幅広の中央部178に結合してよく、ピン171の肩部166及び172は、フィンガアセンブリ30のハウジングに結合されたアンギュラ軸受に結合してよい。プーリ220と同様に、プーリ230は、フィンガアセンブリ30のハウジングに結合されるニードル軸受であってよいか、又はフィンガアセンブリ30のハウジングに結合されたニードル軸受に結合してよい。プーリ230、235、及び240のいくつか又は全ての外表面は、接触領域の両側の縁より小さい断面直径を有する接触領域を有してよい。
アンギュラ軸受は、回転軸から径方向外側に作用する径方向荷重及び回転軸に沿って作用する軸方向荷重の両方に耐える。ニードル軸受は、高い径方向荷重のみに耐え、軸方向荷重に対して大きな抵抗性を提供できない。アンギュラ軸受とニードル軸受とを組み合わせることにより、フィンガ及び各リンクが径方向荷重及び軸方向荷重の両方に耐えることができる。図示されている例と同様の特定の実施形態では、フィンガアセンブリは、アンギュラ軸受とニードル軸受との組み合わせにより、50ポンド(22kg)の横方向の力と100ポンド(45kg)の径方向の力に耐えることができる。アンギュラ軸受によって得られる横方向荷重に対する抵抗性は、ハンド・エンドエフェクタ又は他のエンドエフェクタが、把持された物体が横方向荷重を生成するように配向されたときに有用であり得る。更に、横方向荷重に対する抵抗性は、ハンド・エンドエフェクタが地面又は別の物体に衝突した場合に、フィンガアセンブリ30に与えられる損傷を防ぐことができ、これによりハンド・エンドエフェクタの耐久性を高めることができる。
遠位リンク180は、少なくとも1対の湾曲特徴部分250及び260と、ケーブル終端特徴部分255とを含む。近位湾曲特徴部分250は、遠位湾曲特徴部分260と中間リンク175内のプーリ240との間に位置する。近位湾曲特徴部分の一部の曲率半径は、遠位湾曲特徴部分260の曲率半径より大きいが、図示されている実施形態では、プーリ235の曲率半径より小さい。
図4Cに示されているように、ケーブル275は、ハブ210から、プーリ220に接触し、プーリ225の一部の周囲へとルーティングされる。ケーブル275は、その後、近位リンク170内でプーリ230の一部の周囲へとルーティングされる。ケーブル275は、一般に、ケーブル275がルーティングされたプーリ225と反対側のプーリ230の片側へとルーティングされる。ケーブル275は、その後、プーリ235の一部の周囲にルーティングされ、中間リンク175内でプーリ240の一部の周囲へとルーティングされる。ケーブル275は、その後、近位湾曲特徴部分250の一部に沿ってルーティングされ、そして終端特徴部分255に達して終端させる前に遠位湾曲特徴部分260の一部に沿ってルーティングされる。
遠位湾曲特徴部分260及び終端特徴部分255は共に、遠位リンク180の構造の一部であってよい。ケーブルの経路と共に、遠位リンク内のこれらの特徴部分の湾曲は、ケーブルが遠位リンク内で弛む状況を最小限に抑える、又は解消する。遠位リンク180の終端特徴部分255の終端は、いくつかの実施形態では、特徴部分255の周囲にケーブル275を複数回巻き付けることによって達成してよい。複数回巻き付けることで、キャプスタン効果により締付力が高まる。いくつかの実施形態では、ハブ210に対して特徴部分255のサイズが小さいことにより、ハブ210の周囲よりも特徴部分255の周囲で使用される巻き付け回数の方が多くなり得る。ケーブル275を終端させる他の方法、又はケーブル275の一部を終端特徴部分255若しくは遠位リンク180のハウジング内にある、若しくはハウジングに結合される別の特徴部分に固定する他の方法を利用してもよい。
各フィンガアセンブリ30はまた、駆動ケーブル275と共に、リターンケーブルを含んでよい。図4Fは、リターンケーブルが設置されていない状態で示された、面A−A’に沿った図4Aのフィンガアセンブリの垂直断面図である。図4Gは、リターンケーブルが設置された状態で示された、面A−A’に沿った図4Aのフィンガアセンブリの垂直断面図である。リターンケーブル285の機能及びルーティングについて、図4F及び図4Gを参照しながら説明する。図4Fは、リターンケーブル285に関連付けられたプーリ及びスプリングを示しており、図4Gは、リターンケーブル自体を示している。
図4Gに示されているように、リターンケーブル285は、受動的リターンスプリング310の位置で終端する。リターンケーブルは、その後、従動プーリ320の一部の周囲、プーリ225の下、プーリ230の上、プーリ235の下、プーリ240の上を通過し、最後に、あり溝状部分を利用した、より小さなキャプスタン効果によって遠位リンク180で終端する。しかしながら、遠位リンク180でリターンケーブル285の遠位端を終端させる、又は他の形で固定する任意の他の好適な手段。いくつかの実施形態では、最大負荷又は高い負荷下にある駆動ケーブル275に比べてリターンケーブル285の張力が小さいために、構造的特徴部分の周囲に巻き付けられたケーブルのキャプスタン効果によって得られる追加の保持力が必要になる場合がある。
図4Cと図4Gを比較すると、プーリ225、230、235、及び240の周囲のフィンガアセンブリのリンク内で駆動ケーブル275及びリターンケーブル285は相補的な方向に進むことがわかる。従って、2つのケーブルは、名目上は反対方向にリンク170、175、及び180に力を及ぼす。リターンケーブル285は、必ずしも駆動ケーブル275と同じように高い張力に耐える必要がない場合がある。従って、いくつかの実施形態では、リターンケーブルは円形断面を有してよい。というのは、いくつかの実施形態では、駆動ケーブル275と同様の厚さを有するVECTRAN又は同様の材料の丸形ケーブルは、リターンケーブル285の必要な荷重を支持するのに十分であり得るためである。
しかしながら、リターンケーブル285用に任意の他の好適な断面形状又は材料を使用することは排除されない。リターンケーブル285は、駆動ケーブル275がリンク170、175、及び180に力を印加しない場合に、フィンガアセンブリ30を公称位置に戻す均一な戻し力を提供する。フィンガアセンブリの公称位置は、フィンガアセンブリの部品の重量によるフィンガアセンブリの配向に基づいて変化し得る。
フィンガアセンブリ30がその把持動作を完了するときに、戻し力の大きさは、戻し力の公称初期大きさより大きくなる。この例では、初期又は公称戻し力は2重量ポンド(8.9N)であるが、任意の他の好適な大きさの初期戻し力を用いてよく、受動的リターンスプリング310の特性を用いて、初期戻し力を定義してよい。初期戻し力は、フィンガが図4F及び図4Gに示されているフィンガ位置に対して上下逆に配置された場合、フィンガアセンブリ30が重力の影響下で移動するのを防ぐ。一例では、戻し力は、フィンガアセンブリ30の最大変位において8重量ポンド(35N)の最大値に達し得るが、最大戻し力の他の大きさが使用される場合もある。
駆動ケーブル並びにリターンケーブル、軸受、及びプーリの構成により、フィンガアセンブリ30のリンクの位置は、モータ140を制御することによって制御してよい。モータの回転は、キャップ205及びハブ210の回転に変換できる。図4Bに示されているように、ハブ210の右回りの回転をもたらすモータ140の回転は、駆動ケーブル275の張力を増加させることができる。駆動ケーブル275の張力が増加は、リンクの回転及び把持プロセスの開始をもたらし得る。
リンクが駆動ケーブル275の張力増加に応答して回転する特異的な方法は、は駆動ケーブル275が通過する部品の設計によって部分的に制御できる。フィンガアセンブリ30等のフィンガを含むハンドが物体を把持するプロセスを開始したときに、最初に近位リンク170を回転させ、続いて中間リンク175、そして最後に遠位リンク180を回転させることができることが有利であり得る。この順序は、1以上の近位リンクが把持される物体と接触するまで最初に近位リンク又は(他のフィンガの)近位リンクを回転させることで、物体を把持する前に遠位リンク又は中間リンクを折り畳まずに最大把持表面積が得られるので、有利であり得る。
リンクの運動の順序は、軸受の直径及びリンクの長さを適切に選択することにより達成できる。図4B及び図4Cに示されているように、プーリ225の直径はプーリ235の直径より大きく、プーリ235の直径は湾曲特徴部分250の直径より大きい。特に、プーリ225の接触領域の直径は、プーリ235の接触領域の直径より大きい。駆動ケーブル275が緊張状態であるとき、ケーブルの長さ全体が実質的に均一な張力を受ける。従って、直径の差により、プーリは異なる大きさの回転モーメントを受ける。これらのモーメントは、その後、それぞれのリンクに伝達されて、リンクを回転軸の周りで回転させる。
従って、近位リンク170のプーリ225がリンクのうちのいずれの最大プーリ又は湾曲面である図示されている実施形態等の一実施形態では、駆動ケーブル275の張力増加は、リンク175及び180がそれぞれのプーリの周りで回転するよりも多く、リンク170を近位プーリ225の周りで回転させることができる。中間リンク175のプーリ235は次に大きいプーリであり得るため、近位リンク170がその移動端部に到達するか、又は近位リンク170が物体(例えば、ハンドが把持しようとしている物体)と接触すると、中間リンク175は遠位リンク180よりも多く回転する。その後、中間リンク175が移動端部に到達するか、又は把持される物体と接触すると、駆動ケーブル275の張力増加により、遠位リンク180は物体と接触する移動端部に到達するまで移動する。このようにして、最大把持領域を提供できる。
一実施形態では、図4Bを参照すると、湾曲特徴部分250及びニードル軸受240及び230の接触領域の直径は10mmである。プーリ235及び225の接触領域の直径はそれぞれ、16.5mm及び22mmである。また、この実施形態では、遠位リンク、中間リンク、及び近位リンクの長さはそれぞれ、30mm、38mm、及び50mmである。上で指定した値は、劣駆動パッケージ内で大きな把持力を生成できる一実施形態の一例を提供するが、広範囲の他の寸法を使用してもよい。
従って、単一のモータ140の回転を制御することによって、複数のリンクを有するフィンガの動作は、ケーブルのシステムを使用する劣駆動システムを介して制御できることがわかる。更に、適切なケーブルの張力を測定することによって、フィンガアセンブリ30と接触する外部物体に加えられる力を制御してよい。ここで、電子サブシステムについて説明する。
図4Hは、電気ケーブルが設置されていない状態で示された、面C−C’に沿った図4Aのフィンガアセンブリの垂直断面図である。図4Iは、電気ケーブルが設置された状態で示された、面C−C’に沿った図4Aのフィンガアセンブリの垂直断面図である。
図4H及び4Iに示されているように、フィンガアセンブリ30は、リンクに結合された電気サブシステムを含む。この電気サブシステムは、複数のプリント基板(PCB)を含む。図示されている実施形態では、PCBは、フィンガアセンブリ30内の各ジョイントに隣接して配置される。第1のPCB345は、近位リンクとフィンガ基部との間のジョイントに隣接してフィンガ基部内に位置決めされる。第2のPCB340は、近位リンク170と中間リンク175との間のジョイントに隣接して近位リンク170内に位置決めされる。第3のPCB330は、遠位リンク180と中間リンク175との間のジョイントに隣接して中間リンク175内に位置決めされる。PCB330、340、及び345はそれぞれ、各絶対角度位置センサ又はポテンショメータ350、360、及び370に結合される。ポテンショメータ350、360、及び370は、ピン171の肩部172の一部を受承するか、又はそれ以外の形でこれと係合するように構成された、ポテンショメータ350の特徴部分352等の特徴部分を有する。図示されている実施形態では、特徴部分352は、ピン171の肩部172の外側端部から延在する非円筒状突起174と相補的な断面形状を有する。他の実施形態では、形状又は他の係合機構の任意の他の好適な組み合わせを使用して、ポテンショメータ特徴部分をピン171と共に回転させてよい。
ピン171は回転するため、ピンの角度位置はポテンショメータ特徴部分352がピン171と共に回転したときに測定できる。これにより、角度位置センサ370は近位リンク170の角度位置の測定を行うことができる。角度位置センサ370は更に、位置の中心がフィンガ基部に近いため、他の角度位置センサ360及び350の角度位置の基準座標系として使用してよい。角度位置センサ360は、近位リンクに対する中間リンクの角度位置を測定するために使用してよく、角度位置センサ350は、中間リンクに対する遠位リンクの位置を測定するために使用してよい。各ジョイントにおける角度位置センサのこの組み合わせにより、フィンガの各リンクの絶対角度位置を測定できる。
角度位置センサに加えて、各PCB330、340、及び345は、限定するものではないが、マイクロコントローラ、LED、コンデンサ、及びセンサインターフェースを含む、本明細書には詳細に示されていない他の部品を含んでよい。PCB用の電力、及び信号、及びPCB間の制御経路は、電気ケーブル380及び385によって供給される。いくつかの実施形態では、各電気ケーブルは、電力用、接地用及び信号用にそれぞれ1本の3本の電線を有してよいが、他の配線配置を使用してもよい。図示されている実施形態では、ケーブルは、電力及び信号を各リンクに伝達するために、ジョイント回転点を越えてルーティングされる。これらのケーブル380及び385は、図4Iに示されているようなサービスループで配置して、リンクが回転したときのケーブル上の応力を防いでよい。サービスループは、電気ケーブルをフィンガアセンブリのハウジング上の特徴部分の周りに巻き付けることによって形成してよい。
PCB330、340、及び345を接続する電気ケーブル380及び385のこのシステムはデータバスを形成し、このデータバスを通して、各センサからの角度位置データ等のデータをバスに結合された他の部材に通信できる。しかしながら、広範囲の代替の配置を用いて、フィンガアセンブリ全体にわたってデータ及び電力をルーティングしてもよい。いくつかの実施形態では、フィンガアセンブリ全体にわたってデータ及び電力をルーティングするために、貫通孔及び/又はフレックスケーブルを使用してよいが、ジョイントに貫通孔を形成することにより、フィンガアセンブリが高荷重に耐えることがより難しくなる場合がある。別の実施形態では、リターンケーブル285は、電力及び信号情報を搬送してよく、フレームの金属部分は地帰路としての機能を果たし得る。
各フィンガの電気サブシステムはまた、電力、接地、制御データ及びセンサデータをマザーボードにルーティングするためのインターフェースを含み得るドーターボードを含んでよい。ドーターボードは明確に図示されていないが、図4H及び4Iにドーターボードの単一の可能な位置が矢印390で示されている。
いくつかの実施形態では、各フィンガはモジュール式であり、複数のフィンガの構造は同様又は同一であってよい。各フィンガのドーターボードは全て、ハンドの基部アセンブリ20の底部に配置してよいマザーボードに差し込むことができるか、又はそれ以外の形でマザーボードと通信できる(図2参照)。ドーターボードはまた、インターフェースコネクタを介して、モータ140及びホール効果センサ150等の他のセンサの電力及び制御をマザーボードにルーティングできる。マザーボード(図示せず)は、限定するものではないが、マイクロコントローラ、電源、及び通信インターフェースを含む様々な部品を含んでよい。ドーターボードと様々なフィンガアセンブリの他の部品との間の接続により、必要に応じて、3つのフィンガの動作を調整できる。
図5は、制御システムを含む、ハンド・エンドエフェクタシステムの電気アーキテクチャのある実施形態を概略的に示したブロック図である。いくつかの実施形態では、破線ボックス400内の部品は、各フィンガアセンブリ内に物理的に配置される。このような実施形態では、フィンガアセンブリは、上述したように、モジュール式であってよい。破線ボックスの外側の部品は、ハンド基部アセンブリ内又は他の場所に配置される。
上述したように、各フィンガアセンブリは、好適なブラシレスDCモータコントローラによって制御できるブラシレスDCモータを含んでよいが、他の好適なモータを使用さしてもよい。更に、各フィンガアセンブリは、DCモータを整流するためのホール効果センサ、力センサ、及び各リンクに結合された角度ジョイントセンサといった様々なセンサを含んでよい。図示されている実施形態では、図面内のリンク1、リンク2、リンク3は、近位リンク、中間リンク、及び遠位リンクを指すが、他の実施形態では、これより多い又は少ない数のリンクを設けてよい。
ボックス400の外側では、ARMマイクロコントローラ等のマイクロコントローラが複数のフィンガの動作を調整できる。更に図示されているように、マイクロコントローラは、有線又は無線接続を含む好適な通信インターフェースによって外部のコンピュータを介して通信できる。図5に示されている例示的なシステムアーキテクチャを用いて、1つ又は複数のロボットハンドの1つ又は複数のフィンガを制御して調整できる。
本開示で説明されている概念は、広範囲の把持力を加えるロボットハンドに関して説明されているが、ロボット工学の分野の範囲内の様々な他の好適な状況で一般的に適用可能であり得る。一例として、この概念は、ロボット移動に適用してよく、より一般には、大きな力を発生させ、コンパクトな伝達システムを用いてロボットの単一の部分から別の部分へと伝達するために適用してよい。
本明細書内で使用されている用語「結合する、結合される(couple)、coupling、coupled」」又は単語「結合する(couple)」の他の語形変化は、間接的な接続又は直接接続のいずれかを指す場合があることに留意されたい。例えば、第1の部品が第2の部品に「結合される」場合、第1の部品は第2の部品に間接的に接続してもよいし、直接接続してもよい。本明細書内で使用される場合、用語「複数」は、2つ以上を指す。例えば、複数の部品は、2つ以上の部品を意味する。
以上の説明では、実施例を十分に理解できるように具体的詳細が示されている。しかしながら、当業者は、実施例がこれらの具体的詳細なしに実践できることは、理解するであろう。本明細書内で別個に説明されている特定の実施形態は、単一の実施形態において組み合わせることができ、また、所定の実施形態に関して説明した特徴は、複数の実施形態の中で別個に、又は任意の好適な部分的組み合わせで実装できる。例えば、電気部品/装置は、不必要な詳細で実施例を不明瞭にしないように、ブロック図で示す場合がある。他の例では、実施例を更に詳細に説明するために、このような部品、他の構造及び技術を詳細に示す場合がある。
開示されている実施形態の上記説明は、当業者が本発明を製造する、又は使用できるように提示されている。これらの実施形態の様々な修正は、当業者には容易に明らかになるであろう。また本明細書内で定義されている一般原理は、本開示の精神又は範囲から逸脱することなく他の実施形態に適用してよい。従って、本発明は、本明細書に示した実施形態に限定されることを意図したものでなく、本明細書内で開示した原理及び新規の特徴と一致する最も広い範囲が付与されるものとする。
10 ハンド・エンドエフェクタ
20 基部アセンブリ
30 フィンガアセンブリ
30A フィンガ
30B フィンガ
30C フィンガ
110 フィンガ基部
120 荷重センサ
130 トルク生成部品
140 モータ
150 ホール効果センサ
160 矢印(ジョイントの位置)
162 矢印(ジョイントの位置)
164 矢印(ジョイントの位置)
166 ピン171の肩部
170 近位リンク
171 ピン
172 ピン171の肩部
174 非円筒状突起
175 中間リンク
180 遠位リンク
205 ハブキャップ、キャップ
207 ねじ
210 ハブ
215 レース軸受
220 プーリ
222 矢印(ケーブルがプーリ220に印加する力)
225 プーリ
230 プーリ
235 遠位のプーリ、プーリ
240 プーリ
250 近位湾曲特徴部分、湾曲特徴部分
255 ケーブル終端特徴部分
260 遠位湾曲特徴部分、湾曲特徴部分
270 プーリ
275 駆動ケーブル
285 リターンケーブル
310 受動的リターンスプリング
320 従動プーリ
330 第3のPCB
340 第2のPCB
345 第1のPCB
350 絶対角度位置センサ又はポテンショメータ
352 特徴部分
360 絶対角度位置センサ又はポテンショメータ
370 絶対角度位置センサ又はポテンショメータ
380 電気ケーブル
385 電気ケーブル
390 矢印(ドーターボードの可能な位置)

Claims (23)

  1. 基部;
    前記基部から延在する第1の付属肢であって、
    第1のジョイントでハウジングに結合された第1の付属肢リンクと
    前記第1のジョイントに回転可能に結合された第1のジョイントプーリであって、第1の外径を有する接触部を含む、第1のジョイントプーリと
    第2のジョイントによって第前記1の付属肢リンクに結合された第2の付属肢リンクと
    前記第2のジョイントに回転可能に結合された第2のジョイントプーリであって、前記第1のジョイントプーリの接触部の第1の外径とは異なる第2の外径を有する接触部を含む、第2のジョイントプーリと
    を備える、第1の付属肢;
    前記基部内に配置されたモータ;
    前記基部内に配置され、前記モータに回転可能に結合されたハブ;並びに
    第1の端部で前記ハブに結合され、第2の端部で前記第1の付属肢に結合された駆動ケーブルであって、前記ハブの回転が前記駆動ケーブルの張力を変化させて前記第1の付属肢リンク又は前記第2の付属肢リンクのうちの少なくとも一方の回転を引き起こすように、前記第1のジョイントプーリ及び前記第2のジョイントプーリの接触部と接触する駆動ケーブル
    を備える、ロボットエンドエフェクタ。
  2. 前記第1の付属肢リンク内、かつ前記第1のジョイントプーリと前記第2のジョイントプーリとの間に配置された、第1の中間プーリを更に備え、
    前記駆動ケーブルは、前記第1のジョイントプーリ、前記第1の中間プーリ、及び前記第2のジョイントプーリの互い違いの側部に沿って順に巻き付けられる、請求項1に記載のエンドエフェクタ。
  3. 第1の端部で前記基部内に、及び第2の端部で前記第1の付属肢内に固定された、リターンケーブルを更に備え、
    前記リターンケーブルは、前記第1のジョイントプーリ、前記第1の中間プーリ、及び前記第2のジョイントプーリの、前記駆動ケーブルとは反対側の互い違いの側部の周囲に順に巻き付けられる、請求項2に記載のエンドエフェクタ。
  4. 前記第1のジョイントプーリは、1対のアンギュラ軸受によって支持され、
    前記第1の中間プーリは、ニードル軸受によって支持される、請求項2に記載のエンドエフェクタ。
  5. 前記第1の付属肢は、
    第3のジョイントによって前記第2の付属肢リンクに結合された第3の付属肢リンクと、
    前記第3のジョイントに回転可能に結合された第3のジョイントプーリであって、前記第1のジョイントプーリの前記接触部の前記第1の外径及び前記第2のジョイントプーリの前記接触部の前記第2の外径とは異なる第3の外径を有する接触部を含む、第3のジョイントプーリと
    を更に備え、
    前記駆動ケーブルは、前記第3のジョイントプーリの接触領域と接触する、請求項1に記載のエンドエフェクタ。
  6. 前記エンドエフェクタは:
    前記基部から延在する第2の付属肢であって、
    第1のジョイントで前記ハウジングに結合された第1の付属肢リンクと、
    前記第1のジョイントに回転可能に結合された第1のジョイントプーリであって、第1の外径を有する接触部を含む第1のジョイントプーリと、
    第2のジョイントによって前記第1の付属肢リンクに結合された第2の付属肢リンクと、
    第2のジョイントに回転可能に結合された第2のジョイントプーリであって、前記第1のジョイントプーリの前記接触部の前記第1の外径とは異なる第2の外径を有する接触部を含む、第2のジョイントプーリと
    を備える、第2の付属肢;
    前記基部内に配置されたモータ;
    前記基部内に配置され、前記モータに回転可能に結合された第2のハブ;並びに
    第1の端部で前記第2のハブに結合され、第2の端部で前記第1の付属肢に結合された第2の駆動ケーブルであって、前記第2のハブの回転が前記第2の駆動ケーブルの張力を変化させて前記第2の付属肢の前記第1の付属肢リンク又は前記第2の付属肢リンクのうちの少なくとも一方の回転を引き起こすように、前記第1のジョイントプーリ及び前記第2のジョイントプーリの前記接触部と接触する、第2の駆動ケーブル
    を更に備える、請求項1に記載のエンドエフェクタ。
  7. 前記駆動ケーブルは、非円形断面を有する、請求項1に記載のエンドエフェクタ。
  8. 前記駆動ケーブルは、前記ハブの周りに少なくとも1周巻き付けられる、請求項6に記載のエンドエフェクタ。
  9. 前記第1のジョイントに隣接して配置された位置センサを更に備え、
    前記第1のジョイントは、位置センサに係合するように構成された第1のピンを備える、請求項1に記載のエンドエフェクタ。
  10. 前記ハブと前記第1のジョイントとの間に延在する前記駆動ケーブルの一部分に対して付勢される張力感知構造を更に備え、
    前記駆動ケーブルと接触する前記張力感知構造の前記一部分の位置は、前記駆動ケーブルの張力に応じて決まる、請求項1に記載のエンドエフェクタ。
  11. 前記駆動ケーブルは、少なくとも50重量ポンド(222N)の引張荷重に耐えることができる、請求項1に記載のエンドエフェクタ。
  12. 前記駆動ケーブルは、少なくとも150重量ポンド(667N)の引張荷重に耐えることができる、請求項11に記載のエンドエフェクタ。
  13. 前記駆動ケーブルは、少なくとも50kmの自己支持長(self−support length)を有する材料を含む、請求項1に記載のエンドエフェクタ。
  14. 第1のジョイントの周りで回転するように構成された近位付属肢リンク;
    前記第1のジョイントに結合され、第1の外径を有する第1のジョイントプーリ;
    第2のジョイントによって前記近位リンクに結合された遠位付属肢リンク;
    前記第2のジョイントに結合され、前記第1のジョイントプーリの前記第1の外径とは異なる第2の外径を有する、第2のジョイントプーリ;
    モータ;並びに
    前記モータに結合された駆動ケーブルであって、ハブの回転が駆動ケーブルの張力を変化させて第1の付属肢リンク又は第2の付属肢リンクの少なくとも一方の回転を引き起こすように、前記第1のジョイントプーリ及び前記第2のジョイントプーリの接触部と接触し、また非円形断面を有する、駆動ケーブル
    を備える、ロボットフィンガアセンブリ。
  15. 前記モータに結合されたハブを更に備え、
    前記駆動ケーブルの第1の端部は、前記ハブ内で摩擦保持され、
    前記駆動ケーブルは、前記ハブの外周の周囲に少なくとも1周巻き付けられる、請求項14に記載のアセンブリ。
  16. 加重センサ;及び
    前記加重センサに結合され、前記駆動ケーブルと接触するセンサプーリ
    を更に備え、
    前記駆動ケーブルの張力変化が前記センサプーリの偏向を引き起こす、請求項14に記載のアセンブリ。
  17. 前記第1のジョイント及び前記第2のジョイントそれぞれに隣接して配置された絶対位置センサを更に備える、請求項14に記載のアセンブリ。
  18. リターンスプリングから少なくとも前記第1の付属肢リンク及び前記第2の付属肢リンクを通って延在するリターンケーブルを更に備え、
    前記リターンケーブルは、前記第1のジョイントプーリ及び前記第2のジョイントプーリの、前記駆動ケーブルとは反対側の側部に沿って延在する、請求項14に記載のアセンブリ。
  19. 基部;
    複数の劣駆動付属肢であって、近位端に位置するジョイントに対して回転するように構成された複数の付属肢セグメントをそれぞれ含む、複数の劣駆動付属肢;
    前記基部内に配置された複数のモータ:及び
    複数の駆動ケーブルであって、それぞれが1つの前記モータに接続され、1つの前記劣駆動付属肢の前記複数の付属肢セグメントを経由し、前記駆動ケーブルの張力変化に応答して前記複数の付属肢セグメントそれぞれの回転を引き起こすように構成された、複数の駆動ケーブル
    を備える、ロボットハンドエンドエフェクタ。
  20. 前記劣駆動付属肢内の各前記ジョイントは、ジョイントプーリに結合され、前記劣駆動付属肢内の前記ジョイントプーリの直径は、前記基部からの距離が増加するにつれて減少する、請求項19に記載のエンドエフェクタ。
  21. 前記劣駆動付属肢は:
    第1の直径を有する第1のジョイントプーリに結合された第1のジョイントによって基部に接続された、近位付属肢セグメント;
    前記第1のジョイントプーリの前記第1の直径より小さい第2の直径を有する第2のジョイントプーリに結合された第2のジョイントによって近位付属肢セグメントに接続された、中間付属肢セグメント;
    前記第2のジョイントプーリの前記第2の直径より小さい第3の直径を有する第3のジョイントプーリに結合された第3のジョイントによって前記中間付属肢セグメントに接続された、遠位付属肢セグメント;
    を備える、請求項20に記載のエンドエフェクタ。
  22. 前記近位付属肢セグメント内に配置された第1のニードル軸受:及び
    前記中間付属肢セグメント内に配置された第2のニードル軸受
    を更に備える、請求項21に記載のエンドエフェクタ。
  23. 前記駆動ケーブルは、前記第1のジョイントプーリ、前記第1のニードル軸受、前記第2のジョイントプーリ、前記第2のニードル軸受、及び前記第3のジョイントプーリへと順番にサーペンタイン式に巻き付けられ、
    前記駆動ケーブルの遠位端は、前記遠位付属肢セグメント内で固定される、請求項22に記載のエンドエフェクタ。
JP2018527952A 2015-12-03 2016-12-02 ロボットグリッパ Active JP7009365B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562262446P 2015-12-03 2015-12-03
US62/262,446 2015-12-03
PCT/US2016/064835 WO2017116614A2 (en) 2015-12-03 2016-12-02 Robot gripper

Publications (2)

Publication Number Publication Date
JP2019501030A true JP2019501030A (ja) 2019-01-17
JP7009365B2 JP7009365B2 (ja) 2022-01-25

Family

ID=59227396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018527952A Active JP7009365B2 (ja) 2015-12-03 2016-12-02 ロボットグリッパ

Country Status (4)

Country Link
US (1) US10537998B2 (ja)
EP (1) EP3383599A4 (ja)
JP (1) JP7009365B2 (ja)
WO (1) WO2017116614A2 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3383599A4 (en) 2015-12-03 2019-10-30 SRI International Inc. PREHENSEUR DE ROBOT
USD852859S1 (en) 2017-07-18 2019-07-02 Mitsubishi Electric Corporation Manipulator for robot
JP1605294S (ja) * 2017-07-18 2019-11-25
JP1605292S (ja) * 2017-07-18 2019-11-25
USD847243S1 (en) * 2017-07-18 2019-04-30 Mitsubishi Electric Corporation Manipulator for robot
JP1605291S (ja) * 2017-07-18 2019-11-25
USD846615S1 (en) * 2017-07-18 2019-04-23 Mitsubishi Electric Corporation Manipulator for robot
KR102009311B1 (ko) * 2017-10-13 2019-10-21 네이버랩스 주식회사 로봇 핸드
JP1613032S (ja) * 2018-03-29 2020-03-02
JP1613980S (ja) * 2018-03-29 2020-03-09
MX2020012850A (es) 2018-06-08 2021-02-17 Phd Inc Herramienta de pinza encapsuladora autonoma.
CN109909988B (zh) * 2019-01-29 2021-01-19 西安交通大学 一种多稳态变刚度机器人结构
CN110053064A (zh) * 2019-04-09 2019-07-26 合肥工业大学 一种具有弹性关节的柔索牵引欠驱动四指机械手
CN113771067B (zh) * 2019-05-29 2023-11-28 浙江大学 无抖动的仿生机械手
GB2586960A (en) * 2019-08-09 2021-03-17 The Shadow Robot Company Ltd A tendon tension sensing apparatus and a clutch mechanism for a mechanical effector device
USD1030906S1 (en) * 2019-10-22 2024-06-11 Smartivity Labs Pvt. Ltd. Hand toy
US11285617B2 (en) 2019-12-31 2022-03-29 Phd, Inc. Modular articulating gripper
CN111070232B (zh) * 2020-01-16 2021-02-26 河北工业大学 一种气动驱动的二指机械手
DE102020207035A1 (de) * 2020-06-04 2021-12-09 Kuka Deutschland Gmbh Greiferfinger und Greifer mit solchen Greiferfingern
DE102020207036A1 (de) 2020-06-04 2021-12-09 Kuka Deutschland Gmbh Greifer mit einem Greifergrundkörper
CN112809727B (zh) * 2021-01-26 2022-07-29 佛山科学技术学院 一种绳牵引刚柔耦合变刚度夹持器
CN112809719A (zh) * 2021-02-02 2021-05-18 珞石(北京)科技有限公司 基于线传动与模块化手指的柔性欠驱动灵巧机械手
CN113977563A (zh) * 2021-11-01 2022-01-28 北京精密机电控制设备研究所 一种欠驱动平面蛇形机械臂
FR3128655A1 (fr) * 2021-11-04 2023-05-05 Coval Doigt et dispositif de préhension pour bras de robot, bras de robot équipé d’un tel dispositif
CN115946104B (zh) * 2023-02-20 2023-05-30 安徽大学绿色产业创新研究院 可变刚度的绳驱动三指自适应机械手及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068178A (ja) * 1991-11-25 1994-01-18 Toshiba Corp ワイヤ駆動多関節装置
JP2004223687A (ja) * 2003-01-27 2004-08-12 Seiko Epson Corp 多関節型マニピュレータ装置
JP2006192523A (ja) * 2005-01-12 2006-07-27 Sharp Corp 多関節指機構
JP2006281380A (ja) * 2005-03-31 2006-10-19 Japan Science & Technology Agency ロボットハンド
JP2008018489A (ja) * 2006-07-12 2008-01-31 Tokyo Institute Of Technology 把持装置
JP2013119151A (ja) * 2011-12-08 2013-06-17 Tokusen Kogyo Co Ltd 指関節構造
US20140007730A1 (en) * 2011-03-21 2014-01-09 Re2, Inc. Robotic hand with conformal finger
US20140035306A1 (en) * 2011-03-21 2014-02-06 Sri International Mobile robotic manipulator system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921293A (en) * 1982-04-02 1990-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-fingered robotic hand
JP3272513B2 (ja) * 1993-09-29 2002-04-08 三菱重工業株式会社 ワイヤー駆動多関節マニピュレータ
JP3486639B2 (ja) * 1999-10-26 2004-01-13 株式会社テムザック マニピュレータ
TWI383869B (zh) * 2009-12-10 2013-02-01 Ind Tech Res Inst 手指機構
US9089977B2 (en) 2012-11-09 2015-07-28 Irobot Corporation Compliant underactuated grasper
EP3383599A4 (en) 2015-12-03 2019-10-30 SRI International Inc. PREHENSEUR DE ROBOT

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068178A (ja) * 1991-11-25 1994-01-18 Toshiba Corp ワイヤ駆動多関節装置
JP2004223687A (ja) * 2003-01-27 2004-08-12 Seiko Epson Corp 多関節型マニピュレータ装置
JP2006192523A (ja) * 2005-01-12 2006-07-27 Sharp Corp 多関節指機構
JP2006281380A (ja) * 2005-03-31 2006-10-19 Japan Science & Technology Agency ロボットハンド
JP2008018489A (ja) * 2006-07-12 2008-01-31 Tokyo Institute Of Technology 把持装置
US20140007730A1 (en) * 2011-03-21 2014-01-09 Re2, Inc. Robotic hand with conformal finger
US20140035306A1 (en) * 2011-03-21 2014-02-06 Sri International Mobile robotic manipulator system
JP2014508659A (ja) * 2011-03-21 2014-04-10 エスアールアイ インターナショナル 可動式ロボットマニピュレーターシステム
JP2013119151A (ja) * 2011-12-08 2013-06-17 Tokusen Kogyo Co Ltd 指関節構造

Also Published As

Publication number Publication date
US10537998B2 (en) 2020-01-21
JP7009365B2 (ja) 2022-01-25
US20180272541A1 (en) 2018-09-27
WO2017116614A3 (en) 2017-09-28
EP3383599A4 (en) 2019-10-30
EP3383599A2 (en) 2018-10-10
WO2017116614A2 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
US10537998B2 (en) Robot gripper
US10578197B2 (en) Robotic arm and wrist mechanisms
US9272425B2 (en) Twisted string actuator systems
US9539728B2 (en) Robot hand and robot device
JP5265635B2 (ja) 腱駆動型指作動システム
CN113787538B (zh) 驱动机构、机器人装置、方法、可读介质及支承构件
US8443694B2 (en) Rotary series elastic actuator
JP5388966B2 (ja) 手首関節アセンブリ、及び人間型ロボット
WO2013008310A1 (ja) ロボットハンドおよびロボット
US9314934B2 (en) Gravity-counterbalanced robot arm
Kim Design of low inertia manipulator with high stiffness and strength using tension amplifying mechanisms
KR20100008687A (ko) 인간형 로봇
JP2018001385A5 (ja)
KR20180114673A (ko) 그리퍼
Yoon et al. Elongatable gripper fingers with integrated stretchable tactile sensors for underactuated grasping and dexterous manipulation
JP6127315B2 (ja) ハンド装置及び指
JP6843541B2 (ja) 駆動機構、ロボット装置、物品の製造方法、及び制御方法
JP2011255493A (ja) 多様な関節の形に適用可能なアクチュエータモジュール
JP2012152889A (ja) ロボット駆動テンドンに張力を付与するためのシステムおよび方法
WO2018033716A1 (en) An Improved Gripper
US20130042715A1 (en) Low-stroke actuation for a serial robot
JP2019089143A (ja) ロボット
KR101207853B1 (ko) 다양한 관절 형태에 적응가능한 액츄에이터 모듈 및 이를 이용한 관절 구조체
KR101984543B1 (ko) 파지 대상 물체에 따른 다양한 작업이 가능한 로봇 그리퍼
US20220305669A1 (en) Robot hand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150