JP2019500745A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2019500745A5 JP2019500745A5 JP2018526770A JP2018526770A JP2019500745A5 JP 2019500745 A5 JP2019500745 A5 JP 2019500745A5 JP 2018526770 A JP2018526770 A JP 2018526770A JP 2018526770 A JP2018526770 A JP 2018526770A JP 2019500745 A5 JP2019500745 A5 JP 2019500745A5
- Authority
- JP
- Japan
- Prior art keywords
- graphene
- active material
- carbon
- electrode
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/757,124 US9779882B2 (en) | 2015-11-23 | 2015-11-23 | Method of producing supercapacitor electrodes and cells having high active mass loading |
| US14/757,124 | 2015-11-23 | ||
| PCT/US2016/062881 WO2017091474A1 (en) | 2015-11-23 | 2016-11-18 | Supercapacitor electrodes and cells having high active mass loading |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2019500745A JP2019500745A (ja) | 2019-01-10 |
| JP2019500745A5 true JP2019500745A5 (enExample) | 2019-12-26 |
| JP7019571B2 JP7019571B2 (ja) | 2022-02-15 |
Family
ID=58721038
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2018526770A Expired - Fee Related JP7019571B2 (ja) | 2015-11-23 | 2016-11-18 | 高い活性質量装填量を有するスーパーキャパシタ電極およびセル |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US9779882B2 (enExample) |
| JP (1) | JP7019571B2 (enExample) |
| KR (1) | KR102493530B1 (enExample) |
| CN (1) | CN108292608B (enExample) |
| WO (1) | WO2017091474A1 (enExample) |
Families Citing this family (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11056288B2 (en) * | 2015-12-15 | 2021-07-06 | The Regents Of The University Of California | Nanodendrite with ruthenium oxide capacitor and method |
| WO2017105470A1 (en) * | 2015-12-17 | 2017-06-22 | Intel Corporation | Low-defect graphene-based devices & interconnects |
| US11289700B2 (en) | 2016-06-28 | 2022-03-29 | The Research Foundation For The State University Of New York | KVOPO4 cathode for sodium ion batteries |
| US10014124B1 (en) * | 2017-09-27 | 2018-07-03 | King Saud University | Composite electrode material for supercapacitors |
| CN109599270B (zh) * | 2017-09-30 | 2020-08-11 | 清华大学 | 一种光电自储能器件的制备方法 |
| US10840558B2 (en) * | 2018-02-01 | 2020-11-17 | Licap New Energy Technology (Tianjin) Co., Ltd. | Lithiation of electrodes for cylindrical energy storage devices and method of making same |
| KR102636809B1 (ko) * | 2018-07-03 | 2024-02-14 | 주식회사 엘지에너지솔루션 | 의사 커패시터용 전극재 및 그의 제조방법 |
| CN110858523B (zh) * | 2018-08-22 | 2022-07-08 | 北京纳米能源与系统研究所 | 一种超级电容器的制造方法 |
| CN211479867U (zh) * | 2018-10-05 | 2020-09-11 | 熵零技术逻辑工程院集团股份有限公司 | 一种电容 |
| US12262520B2 (en) | 2018-11-30 | 2025-03-25 | The Research Foundation for The State of University New york | Graphene laminate structures |
| CN111384405B (zh) * | 2018-12-28 | 2021-11-09 | 宁德时代新能源科技股份有限公司 | 电极组件以及锂离子电池 |
| WO2020198251A1 (en) * | 2019-03-25 | 2020-10-01 | Cellmobility, Inc. | Metal foam capacitors and supercapacitors |
| FR3098003B1 (fr) * | 2019-06-26 | 2022-07-15 | Solvionic | Procédé et dispositif de fabrication d'électrodes pour un supercondensateur à base de liquide ionique et procédé de fabrication d'un tel supercondensateur |
| JP7164055B2 (ja) * | 2019-12-25 | 2022-11-01 | 株式会社村田製作所 | 導電性複合構造体およびその製造方法 |
| CN111554524B (zh) * | 2020-03-31 | 2022-07-05 | 中天超容科技有限公司 | 双电层电容器及其制备方法 |
| CN111785534B (zh) * | 2020-06-08 | 2021-12-31 | 华中科技大学 | 一种离子液体共价键合固载MXene的方法及其产物 |
| WO2022065493A1 (ja) * | 2020-09-28 | 2022-03-31 | パナソニックIpマネジメント株式会社 | キャパシタ用電極およびその製造方法ならびにキャパシタ |
| JP2023545832A (ja) * | 2020-10-19 | 2023-10-31 | ファーストキャップ・システムズ・コーポレイション | 高度なリチウムイオンエネルギー貯蔵デバイス |
| CN112542329B (zh) * | 2020-11-17 | 2022-07-19 | 伊诺福科光学技术有限公司 | 一种高能量密度超级电容器 |
| WO2022173779A1 (en) * | 2021-02-10 | 2022-08-18 | The Penn State Research Foundation | Method of making high volumetric energy density capacitor |
| US12451298B2 (en) | 2021-08-03 | 2025-10-21 | Bursa Teknik Üniversitesi | Production of porous carbon nanofiber electrode using PAN-PVA hybrid nanofiber as precursor material for solid-state supercapacitors |
| CN113628890B (zh) * | 2021-08-06 | 2022-08-26 | 西南大学 | 双金属硒化物复合Ti3C2材料的制备方法及其产品和超级电容器 |
| US20250329504A1 (en) * | 2021-11-24 | 2025-10-23 | Administrators Of The Tulane Educational Fund | Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid |
| TR2021018619A2 (tr) * | 2021-11-26 | 2021-12-21 | Univ Yildiz Teknik | Jel ti̇pi̇ aküler i̇çi̇n yeni̇ bi̇r katki maddesi̇ |
| CN114369832B (zh) * | 2021-12-03 | 2024-01-26 | 南方海洋科学与工程广东省实验室(湛江) | 辅助阳极及其制备方法和应用 |
| CN114306753B (zh) * | 2021-12-15 | 2023-02-24 | 海宁市产业技术研究院 | 一种可植入式电刺激的导电支架及其制备方法 |
| CN114429866B (zh) * | 2022-02-10 | 2023-07-28 | 杭州瑁昂科技有限公司 | 一种平面型滤波电化学电容器及其制备方法 |
| CN114694976B (zh) * | 2022-03-02 | 2023-06-06 | 中国科学院山西煤炭化学研究所 | 超级电容器及其制备方法 |
| CN114776416B (zh) * | 2022-04-01 | 2023-12-05 | 浙江吉利控股集团有限公司 | 内燃机排放控制系统、控制方法以及车辆 |
| DE102022112907B3 (de) | 2022-05-23 | 2023-10-26 | Next.E.Go Mobile SE | Verfahren zum Betreiben eines Hybridenergiespeichersystems, Hybridenergiespeichersystem und Kraftfahrzeug |
| CN114975895B (zh) * | 2022-06-08 | 2023-08-18 | 北京航空航天大学 | 铅酸电池的正极铅膏、正极及其制备方法、电池和电动车 |
| CN115240991B (zh) * | 2022-07-13 | 2023-09-15 | 辽宁大学 | 一种基于电活性离子液体的离子型超级电容器的制造方法 |
| CN115612181B (zh) * | 2022-10-28 | 2023-09-22 | 山东大学 | 一种用于电磁干扰屏蔽的复合气凝胶及其制备方法 |
| WO2025022400A1 (en) * | 2023-07-26 | 2025-01-30 | Technion Research And Development Foundation Limited | Capacitive ion-exchanger and uses thereof |
| CN119446800B (zh) * | 2025-01-13 | 2025-04-04 | 西安理工大学 | 硫掺杂镍锰层状双氢氧化物电极材料、制备方法及电容器 |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7071258B1 (en) | 2002-10-21 | 2006-07-04 | Nanotek Instruments, Inc. | Nano-scaled graphene plates |
| US7282295B2 (en) | 2004-02-06 | 2007-10-16 | Polyplus Battery Company | Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture |
| US7623340B1 (en) | 2006-08-07 | 2009-11-24 | Nanotek Instruments, Inc. | Nano-scaled graphene plate nanocomposites for supercapacitor electrodes |
| US7948739B2 (en) * | 2007-08-27 | 2011-05-24 | Nanotek Instruments, Inc. | Graphite-carbon composite electrode for supercapacitors |
| US8497225B2 (en) * | 2007-08-27 | 2013-07-30 | Nanotek Instruments, Inc. | Method of producing graphite-carbon composite electrodes for supercapacitors |
| US7875219B2 (en) * | 2007-10-04 | 2011-01-25 | Nanotek Instruments, Inc. | Process for producing nano-scaled graphene platelet nanocomposite electrodes for supercapacitors |
| US8722226B2 (en) * | 2008-06-12 | 2014-05-13 | 24M Technologies, Inc. | High energy density redox flow device |
| US9190667B2 (en) * | 2008-07-28 | 2015-11-17 | Nanotek Instruments, Inc. | Graphene nanocomposites for electrochemical cell electrodes |
| JP2011035205A (ja) * | 2009-08-03 | 2011-02-17 | Sony Corp | 電気化学キャパシタ |
| US9053870B2 (en) | 2010-08-02 | 2015-06-09 | Nanotek Instruments, Inc. | Supercapacitor with a meso-porous nano graphene electrode |
| CN106252581B (zh) * | 2010-12-23 | 2021-01-22 | 纳米技术仪器公司 | 表面介导的锂离子交换能量存储装置 |
| JP2012186142A (ja) * | 2011-02-18 | 2012-09-27 | Sumitomo Electric Ind Ltd | 電気化学デバイス用電極およびその製造方法 |
| CN103733288A (zh) * | 2011-11-14 | 2014-04-16 | 住友电气工业株式会社 | 蓄电装置用电极、蓄电装置以及蓄电装置用电极的制造方法 |
| US9349542B2 (en) | 2011-12-21 | 2016-05-24 | Nanotek Instruments, Inc. | Stacks of internally connected surface-mediated cells and methods of operating same |
| US20140030590A1 (en) | 2012-07-25 | 2014-01-30 | Mingchao Wang | Solvent-free process based graphene electrode for energy storage devices |
| US8993159B2 (en) * | 2012-12-13 | 2015-03-31 | 24M Technologies, Inc. | Semi-solid electrodes having high rate capability |
| ES2817901T3 (es) * | 2013-03-04 | 2021-04-08 | Enlighten Innovations Inc | Material de intercalación de metal alcalino como electrodo en una celda electrolítica |
| US9437372B1 (en) | 2016-01-11 | 2016-09-06 | Nanotek Instruments, Inc. | Process for producing graphene foam supercapacitor electrode |
-
2015
- 2015-11-23 US US14/757,124 patent/US9779882B2/en not_active Expired - Fee Related
-
2016
- 2016-11-18 KR KR1020187015948A patent/KR102493530B1/ko active Active
- 2016-11-18 CN CN201680068310.4A patent/CN108292608B/zh not_active Expired - Fee Related
- 2016-11-18 JP JP2018526770A patent/JP7019571B2/ja not_active Expired - Fee Related
- 2016-11-18 WO PCT/US2016/062881 patent/WO2017091474A1/en not_active Ceased
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2019500745A5 (enExample) | ||
| Palchoudhury et al. | Flexible supercapacitors: a materials perspective | |
| Nomura et al. | 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls | |
| Wang et al. | Unraveling and regulating self-discharge behavior of Ti3C2T x MXene-based supercapacitors | |
| Chang et al. | Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density | |
| Fan et al. | Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density | |
| Wu et al. | Wide potential and high energy density for an asymmetric aqueous supercapacitor | |
| Hu et al. | Manganese‐oxide‐based electrode materials for energy storage applications: how close are we to the theoretical capacitance? | |
| Shafi et al. | LaMnO3/RGO/PANI ternary nanocomposites for supercapacitor electrode application and their outstanding performance in all-solid-state asymmetrical device design | |
| Palaniselvam et al. | Graphene based 2D-materials for supercapacitors | |
| Wang et al. | Enhanced rate capability of ion‐accessible Ti3C2Tx‐NbN hybrid electrodes | |
| Qu et al. | Electrochemical behavior of V2O5· 0.6 H2O nanoribbons in neutral aqueous electrolyte solution | |
| Zhao et al. | A review for aqueous electrochemical supercapacitors | |
| Long et al. | Nitrogen‐doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose | |
| Xu et al. | What is the choice for supercapacitors: graphene or graphene oxide? | |
| Zhang et al. | Advanced porous carbon electrodes for electrochemical capacitors | |
| Wu et al. | Freestanding graphitic carbon nitride‐based carbon nanotubes hybrid membrane as electrode for lithium/polysulfides batteries | |
| KR101060828B1 (ko) | 하이브리드 슈퍼캐패시터 | |
| US20110235240A1 (en) | Hierarchical nanowire composites for electrochemical energy storage | |
| Cheng et al. | Carbon nanomaterials for flexible energy storage | |
| CN108292608A (zh) | 具有高活性质量负载量的超级电容器电极和电芯 | |
| Gao et al. | Facile route to achieve hierarchical hollow MnO2 nanostructures | |
| Rakhi et al. | Reduced graphene oxide based ternary nanocomposite cathodes for high-performance aqueous asymmetric supercapacitors | |
| Tang et al. | Enhanced energy density of asymmetric supercapacitors via optimizing negative electrode material and mass ratio of negative/positive electrodes | |
| Singh et al. | ‘Bucky gel’of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors |