JP2019220282A - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP2019220282A
JP2019220282A JP2018114946A JP2018114946A JP2019220282A JP 2019220282 A JP2019220282 A JP 2019220282A JP 2018114946 A JP2018114946 A JP 2018114946A JP 2018114946 A JP2018114946 A JP 2018114946A JP 2019220282 A JP2019220282 A JP 2019220282A
Authority
JP
Japan
Prior art keywords
value
voltage
substrate
amplification
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018114946A
Other languages
English (en)
Other versions
JP7052584B2 (ja
Inventor
康史 宇津木
Yasufumi Utsugi
康史 宇津木
利洋 東条
Toshihiro Tojo
利洋 東条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2018114946A priority Critical patent/JP7052584B2/ja
Priority to CN201910505078.1A priority patent/CN110610843B/zh
Priority to KR1020190069685A priority patent/KR102205228B1/ko
Publication of JP2019220282A publication Critical patent/JP2019220282A/ja
Application granted granted Critical
Publication of JP7052584B2 publication Critical patent/JP7052584B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Abstract

【課題】プラズマ処理を行うときに、基板の載置台からの部分的な剥離を、基板の大きさによらず精度よく検知する技術を提供する。【解決手段】静電吸着電極に直流電圧を印加して、ガラス基板を載置台に静電吸着させ、直流電圧の変化により、ガラス基板の載置台からの剥離を検出するプラズマ処理装置において、静電吸着電極に印加される直流電圧を測定して電圧測定値を取得している。さらに電圧測定値と加工された電圧設定値との差分値を取得し、差分値を増幅し差分増幅値を取得している。そして差分増幅値としきい値とを比較し、差分増幅値がしきい値を超えている場合に、プラズマを発生させる高周波電力の印加を停止している。そのためガラス基板が大型化して、直流電圧の変化が小さくなったときにも、ガラス基板の載置台からの剥離を検出することができる。【選択図】図2

Description

本開示は、プラズマ処理装置及びプラズマ処理方法に関する
フラットパネルディスプレイ(Flat Panel Display:FPD)の製造工程においては、基板に対してプラズマを用いてエッチング処理や成膜処理を行うプロセスがある。このプロセスは、真空容器内の載置台に基板を載置し、この載置台の上方の空間に供給された処理ガスに高周波エネルギーを与えて、例えば容量結合プラズマや誘導結合プラズマを発生させることにより行われる。このようなプラズマ処理装置に用いられる載置台には、例えば静電チャックと呼ばれる基板の固定機構が設けられる場合がある。静電チャックは、誘電体層内に静電吸着電極が配置された構成となっており、静電吸着電極に直流電圧を印加することにより、静電吸着電極と基板との間に静電吸着力が働き、基板が載置台上に保持される。
特許文献1には、基板を載置台に静電吸着するにあたって、静電吸着電極に供給される直流電圧を監視することで、基板の載置台からの剥離を検知する技術が記載されている。本技術では、監視している直流電圧が、予め設定されたしきい値を越えたときに、載置台から基板が剥離したと判断し、プラズマ生成用高周波電源への高周波電力を停止する。
特開2016−174081号公報
本開示はこのような事情の下になされたものであり、プラズマ処理を行うときに、大型の基板の載置台からの部分的な剥離を精度よく検知する技術を提供することにある。
本開示のプラズマ処理装置は、基板に対してプラズマ処理を行うための真空容器内に設けられ、処理対象の基板が載置される載置台と、
前記載置台に設けられた誘電体層内に配置され、前記載置台に載置された基板を静電吸着する静電吸着電極と、
前記静電吸着電極に、予め設定された電圧設定値に対応する直流電圧を印加する直流電源と、
前記真空容器内に処理ガスのプラズマを発生させ前記基板に対して供給するための高周波電力を供給する高周波電力供給部と、
前記静電吸着電極に印加される直流電圧を測定する電圧測定部と、
前記電圧測定部にて測定された直流電圧の測定値と、前記電圧設定値と、の差分値を取得する差分値取得部と、
前記差分値取得部にて取得された差分値を増幅して増幅値を取得する増幅部と、
前記増幅値と、当該増幅値に対して予め設定されたしきい値と、を比較し、前記増幅値が前記しきい値を超えた場合に、前記高周波電力供給部からの高周波電力の供給を停止するための制御信号を出力する制御部と、を備えたことを特徴とする。
本開示によれば、プラズマ処理を行うときに、大型の基板の載置台からの部分的な剥離を精度よく検知することができる。
一の実施の形態に係るプラズマ処理装置の縦断側面図である。 ガラス基板の載置台からの部分的な剥離を説明する説明図である。 ガラス基板の部分的な剥離が発生したときに直流電圧の変化が発生する原理を示す説明図である。 前記プラズマ処理装置に設けられた電圧モニター部を示す構成図である ガラス基板の剥離が発生しない場合の電圧及び差分増幅値の経時変化を示すグラフである。 ガラス基板の剥離が発生した場合の電圧及び差分増幅値の経時変化を示すグラフである。 本開示のプラズマ処理装置の作用を示すフローチャートである。 電圧測定値と差分増幅値との関係示す説明図である。
一の実施の形態に係るプラズマ処理装置について説明する。図1に示すようにプラズマ処理装置は、接地電位に接続された、例えばアルミニウムまたはステンレス製の処理容器(真空容器)10を備えている。処理容器10の側面には、プラズマ処理される基板である例えば矩形のガラス基板Gを受け渡すための搬入出口11が設けられており、搬入出口11には、搬入出口を開閉するゲートバルブ12が設けられている。また処理容器10の下方の側面には排気口13が開口しており、各排気口13には、排気管14を介して真空排気部15が設けられている。
処理容器10の内部には、ガラス基板Gが載置される、平面形状が矩形である角柱状の載置台3が設けられている。載置台3の詳しい構成については、後述する。
また処理容器10の上方には、載置台3と対向するように、誘電体、若しくは、金属からなる図示しない窓部材を介してプラズマ形成部である渦巻き状の誘導結合アンテナ70が設けられている。誘導結合アンテナ70には、プラズマ生成用のソース電源(ソース電力供給部)72が整合器71を介して接続されている。そしてソース電源72から誘導結合アンテナ70にソース電力(プラズマを発生させるための高周波電力)を供給することで、処理容器10内にプラズマ発生用の電界を発生させることができる。
また誘導結合アンテナ70及び不図示の窓部材の下方には、処理容器10内に処理ガスを供給するためのシャワーヘッド2が設けられている。シャワーヘッド2は、絶縁部16を介して処理容器10の天板部に固定され、シャワーヘッド2の下面には、載置台3の載置面と対向するように多数のガス供給孔21が形成されている。シャワーヘッド2は、内部にガス供給孔21が接続されたガス分散室20を備え、シャワーヘッド2の上面には、ガス分散室20へ向けて処理ガスを供給するための処理ガス供給管22が接続されている。処理ガス供給管22には、例えばCFやClなどのエッチングガスを含む処理ガスを供給するための処理ガス供給源23、流量調整部M22、及びバルブV22が、上流側からこの順で設けられている。
続いて載置台3について説明する。載置台3は、スペーサ35及びサセプタ33を下層側からこの順で積層し、これらの部材35、33の側面を例えばセラミック製のカバー38により覆った構成となっている。載置台3は絶縁層39を介して処理容器10の底面における中央部に設置されている。サセプタ33には、配線73を介してバイアス電源(バイアス電力供給部)75が接続されている。図1中の74は、バイアス電力の整合を取るための整合器である。このバイアス電源75によりサセプタ33に高周波電力であるバイアス電力を印加すると、プラズマにより処理容器10内に生じた処理ガスの活性種を載置台3に載置したガラス基板Gに引き込むことができる。この例ではソース電源72とバイアス電源75と、が高周波電力供給部に相当する。
載置台3の内部には、伝熱ガス供給路34が設けられ、その下流側の端部は、複数に分岐して、載置台3の上面に分散して開口することにより、複数の伝熱ガス供給口34aを構成している。伝熱ガス供給路34の上流側は、処理容器10の外部に設けられた伝熱ガス供給管62に接続され、さらに伝熱ガス供給管62の上流側は、流量調整部63を介して伝熱ガス供給源64に接続されている。
スペーサ35の内部には、たとえば周方向に延びる環状の冷媒流路36が設けられている。この冷媒流路36には、チラーユニット(図示せず)により所定温度に調整された熱伝導媒体が循環供給され、熱伝導媒体の温度によってガラス基板Gの処理温度を制御できるように構成されている。
また、載置台3には、外部の搬送アームとの間でガラス基板Gを受け渡すための図示しない昇降ピンが、載置台3及び処理容器10の底板部を垂直方向に貫通し、載置台3の表面から突没するように設けられている。
図1に示すようにサセプタ33の上面には、誘電体層31が設けられ、誘電体層31には、水平方向に拡がる金属からなる静電吸着電極32が埋設されている。静電吸着電極32は、電圧調整用の抵抗42が設けられた配線41を介して電源ユニット400に接続されている。電源ユニット400は、直流電源40と、静電吸着電極32に印加される直流電圧をモニターするための電圧モニター部5と、を備えている。直流電源40は、電圧調整用の抵抗40aを介して配線41に接続されている。直流電源40は、例えば後述する制御部9から入力される電圧設定値に基づき、静電吸着電極32に、例えば0〜6000Vの範囲内の予め設定された直流電圧を印加できるように構成されている。
上述のプラズマ処理装置においては、静電吸着電極32に直流電圧を印加すると、誘電体層31を介して静電吸着電極32とガラス基板Gとの間に静電引力が発生することにより、ガラス基板Gを吸着保持することができる。ところが、ガラス基板Gが載置台3の表面から剥離してしまうと、ガラス基板Gと載置台3との間にプラズマが進入してしまい、異常放電を起こしたり、載置台3の表面にダメージを及ぼすおそれがある。
そこで、本例のプラズマ処理装置では、載置台3からのガラス基板Gの剥離を検出するために既述の電圧モニター部5を利用する。一方で、FPDの製造の際に処理される基板はますます大型化が進んでおり、一辺が3メートル前後となるものもある。発明者らは、ガラス基板Gの大型化の進展に伴って、静電吸着電極32に印加される直流電圧をモニターすることによるガラス基板Gの剥離の検知が困難になることを見出した。
以下、電圧モニター部5を利用したガラス基板Gの剥離の検知手法と、ガラス基板Gの大型化に伴って剥離の検出が困難になる理由について説明する。
始めに、静電吸着電極32による静電吸着の原理を考えてみると、静電吸着電極32と、ガラス基板Gとは、誘電体層31を介して平行に配列されたコンデンサを構成している。そして直流電源40の正極から静電吸着電極32に直流電圧を印加すると、静電吸着電極32側には正電荷が帯電し、ガラス基板G側には負電荷が帯電する。これらの電荷により静電吸着電極32と、ガラス基板Gとが互いに静電引力により引き付けあうため、ガラス基板Gが載置台3上に吸着保持される。
例えば図1に示すようにガラス基板Gが載置台3に水平な姿勢で保持されている場合には、ガラス基板Gの面積をS、ガラス基板Gと静電吸着電極32との距離をd、ガラス基板Gと静電吸着電極32との間の電荷をQとすると、載置台3との間に印加される電圧Vは下記の式(1)で示される。なおεは、ガラス基板Gと静電吸着電極32との間の誘電体層31の誘電率である。
V=Q×d/(ε×S) …(1)
ここで、載置台3からのガラス基板Gの剥離が発生し、ガラス基板Gの全面が載置台3からの離間距離の平均の増加分をΔdとする。この場合は、載置台3との間の電圧V’は下記の式(1)’で表すことができる。
V’=Q×(d+Δd)/(ε×S) …(1)’
そこで、電圧モニター部5にて電圧VからV’への電圧上昇を監視することにより、ガラス基板Gの剥離の発生を検知することができる。
一方で、ガラス基板Gの全面で一様に剥離が発生する可能性よりも、図2に模式的に示すようにガラス基板Gの一部のみにて剥離が発生する可能性の方が高いことが分かった。ガラス基板Gの一部の剥離であっても、図2に示すようにガラス基板Gの周縁部側で剥離が発生すると、プラズマの進入に伴う異常放電や載置台3表面のダメージが発生するおそれがある。
そこでガラス基板Gの一部が載置台3から剥がれたときの電圧変化について考察する。例えば面積Sのガラス基板Gの一部において、載置台3からの剥離が発生したとき、当該剥離領域の面積をpとし、載置台3からの平均の離間距離の増加分をΔdとする。このとき、図3に示すように、剥離が発生していない領域のガラス基板Gは、離間距離dにて、載置台3上に水平な姿勢で保持されているガラス基板Gと同じである。従って当該領域のガラス基板Gは、面積が(S−p)、離間距離がdのコンデンサとみることができる。
これに対して、載置台3から剥離した領域のガラス基板Gは、面積がp、離間距離が(d+Δd)のコンデンサとみることができる。なおΔdの値は微小なため、剥離領域におけるガラス基板Gと、静電吸着電極32との間の空間の誘電率は無視し、誘電体層31の誘電率εを用いている。
以上に説明した状態をまとめると、図3に示すように、ガラス基板Gは、載置台3から剥離した領域のコンデンサの部分と、剥離していない領域のコンデンサの部分と、が互いに並列に接続された回路の一部を構成していると見做すことができる。
上記並列回路全体の静電容量をC’は下記の式(2)で表すことができる。
C’={ε×p/(d+Δd)}+{ε(S−p)/d} …(2)
そして、ガラス基板Gの一部の剥離が発生したとき、載置台3との間に印加される電圧V+ΔVは、下記の(3)式で表される。但し、ΔVは、式(1)の電圧からの変化量である。
V+ΔV=Q/C’ …(3)
ガラス基板Gの剥離発生の前後で、ガラス基板Gと静電吸着電極32との間の電荷Qは変化しないので、式(1)、(3)よりQを消去して整理すると、ガラス基板Gの剥離が生じた前後の電圧変化ΔVは、下記の式(4)で示される。このように、ガラス基板Gが載置台3から剥離した面積に応じて、ガラス基板Gと静電吸着電極32の間の電圧が変化することが分かる。
ΔV=p×Δd×V/{S×(d+Δd)−pΔd} …(4)
ここで発明者らは、ガラス基板Gの面積が大きくなった場合であっても、剥離が発生する面積は、大きく変わらない傾向があることを把握した。一方、ガラス基板Gの面積が大きくなった場合であっても式(1)に示す、直流電源40から印加する電圧をほとんど変化させずにガラス基板Gを吸着保持することができる。これらの前提に基づき式(4)を見ると、ガラス基板Gの面積Sが大きくなっても剥離部分pの面積が変化しない場合には、ガラス基板Gの一部剥離が生じたときの電圧の変化量が小さくなる傾向を示すことが分かる。そのため電圧モニター部5にて検出される電圧測定値の変化量が小さくなり、電圧の変化によりガラス基板Gの剥離を検出することが難しくなってしまう。
そこで本開示のプラズマ処理装置においては、電圧モニター部5において、電圧測定値と電圧設定値との差分に対応する差分値を取得し、当該差分値を増幅することで、ガラス基板Gの剥離の検出精度を高めている。
以下、本例の電圧モニター部5の構成について図1を参照して説明する。図1に示すように電圧モニター部5は、例えば直流電源40と静電吸着電極32とを接続する配線41における抵抗42と、抵抗40aとの間の測定部位Dに接続される。図4に示すように電圧モニター部5は、測定部位Dにおける電圧測定値Vmを取得する電圧測定部51と、電圧測定値Vmと、直流電源40に入力される電圧設定値Vsとの差分である差分値Vdを取得する差分値取得部53と、当該差分値を増幅して差分増幅値Vaを取得する増幅部54とを備えている。
また図4中の52は、電圧設定値Vsに対応して直流電源40に入力されるアナログ信号の電圧範囲(例えば0〜5V)に基づく電圧レベルを、電圧測定部51より出力されるアナログ信号の電圧範囲(例えば0〜6V)に基づく電圧測定値Vmの電圧レベルと揃った値に加工するための電圧レベル加工部である。
電圧レベル加工部52としては、図4に示すように、例えばオペアンプ52aを用いた非反転増幅回路を適用することができ、電圧設定値Vsに対応する信号がプラス側に入力され、オペアンプ52aの出力は抵抗R1を介してマイナス側に帰還するように構成されている。またオペアンプ52aのマイナス側は、抵抗R2を介して接地されている。そして抵抗R1の抵抗値と、抵抗R2の抵抗値との比率を調整し、電圧設定値Vsを増幅(既述の各電圧範囲の場合は、1.2倍に増幅)し、加工された電圧設定値Vs’を差分値取得部53に入力する。
差分値取得部53は、例えばオペアンプ53aを用いた差動増幅回路を適用することができる。マイナス側から、加工された電圧設定値Vs’が抵抗R3を介して入力され、プラス側から電圧測定部51にて測定された電圧測定値Vmが抵抗R5を介して入力される。またオペアンプ53aのプラス側は、抵抗R6を介して接地される。さらにオペアンプ53aの出力は抵抗R4を介してマイナス側に帰還するように構成されている。これにより、オペアンプ53aにより、電圧測定値Vmと、加工された電圧設定値Vs’と、の差分値Vdを取得して、後段の増幅部54に出力する。
また増幅部54も同様にオペアンプ54aを備えた非反転増幅回路を適用することができ、プラス側から差分値Vdが入力され、その出力は抵抗R7を介してマイナス側に帰還するように構成されている。またオペアンプ54aのマイナス側は、抵抗R8を介して接地されている。そして抵抗R7と抵抗R8の値を調整することにより増幅率が10倍となるように設定している。取得された差分増幅値Vaは、後述の制御部9に出力される。
発明者らは、例えば第6世代と呼ばれる長辺1.85m、短辺1.5m、面積2.78mのガラス基板Gであれば、直流電源40から印加される直流電圧を測定した結果を直接利用する技術(例えば特許文献1:特開2016−174081号公報)にて、載置台3からのガラス基板Gの剥離を検出可能であることを把握している。これに対して、さらに後続の世代でガラス基板が大型化していくと、既述のように部分的な剥離発生時の電圧変化ΔVの検出が困難となってくる。
さらに既述のように、ガラス基板Gの面積が大きくなった場合でも、一部剥離の面積は、大きく変わらないことを踏まえ、増幅部54において用いられる増幅率(差分増幅値/差分値=増幅率)は、以下の考え方に基づいて設定することができる。
差分値は、基板剥がれが生じたときの電圧変化値であることから、式(4)で示されるΔVに相当する。ここで式(4)においてV、dは電極サイズによって大きく変わることはなく、また、pやΔdも変わらないと仮定すると、ΔVは、ガラス基板Gの面積に依存し、およそガラス基板Gの面積に反比例する値となる。そこで例えば面積が2.78mのガラス基板Gを基準サイズとすると、基準サイズの基板Gの処理中に基板剥がれが発生した際に取得される差分値Vdに対して、面積S(m)の基板Gの処理中に基板剥がれが発生した際に取得される差分値Vdは、およそVd=Vd×2.78/Sとなる。この関係からも、基準サイズよりも大きな基板(S>2.78m)を処理する場合には、差分値Vdが小さくなってしまうことを確認できる。
このことから差分値Vdに増幅率を乗算してVdと同等の感度を得るためには、基準サイズのガラス基板Gの面積(2.78m)に対するプラズマ処理を行うガラス基板Gの面積S(m)の面積比(面積比=S/2.78)を増幅率とすればよい。
さらにガラス基板Gの面積Sが大きく、基板剥がれが起こったときに取得される電圧測定値Vmの変化量が小さい場合には、差分値Vdに対して上述の増幅率(基準サイズに対するガラス基板Gの面積比)を乗算しても十分な大きさの差分値が得られないことがある。このような場合に前記面積比に対し、補正値(1〜10倍)を乗算して増幅率として用いてもよい。例えば既述の面積比(=S/2.78)が3.6のとき、増幅率を10倍に設定するということは、補正値としては約2.8倍が設定されていることになる。
この場合、しきい値としては、基準サイズのガラス基板Gにおいて基板剥がれを検出する際に用いるしきい値を設定することができる。
さらに電圧モニター部5は、電圧測定部51にて取得した電圧測定値Vmをそのまま制御部9へと出力することが可能であり、静電吸着電極32に印加される直流電圧を直接、監視することができるようにもなっている。
プラズマ処理装置は、制御部9を備えている。この制御部9は、プログラム、メモリ、CPUを備えている。プログラムには、プラズマ処理装置を駆動し、ガラス基板Gのプラズマ処理を実行するように命令(ステップ群)が組み込まれている。さらにプログラムは、後述のフローチャートに従って、電圧のモニターを行い、基板Gの載置台3からの剥離の検出を実行するように命令が組み込まれている。制御部9のメモリには、既述のしきい値が記憶されており、増幅部54から出力された差分増幅値Vaとの比較に利用される。
また後述するように、プラズマ処理装置の運転開始時にはソース電源72が安定せず、電圧モニター部5による直流電圧の測定結果もその影響を受けてしまうおそれがある。そこで基板Gの載置台3からの剥離の検出を実行するにあたって、制御部9には、運転開始時に発生するこれらソース電力、バイアス電力の電力値の変動の判定基準値(変動範囲)が記憶されており、ソース電源72から供給される電力値が、所定の変動範囲内の値であるか否かを判断できるように構成されている。また同様にバイアス電源75から出力されるバイアス電力の変動範囲も記憶されており、バイアス電源75から供給される電力値が、当該バイアス電力の変動範囲内の値であるか否かを判断できるように構成してもよい。
また制御部9は、直流電源40に電圧設定値Vsを出力して、直流電源40から電圧設定値Vsに対応する直流電圧を出力させると共に、電圧設定値Vsを電圧レベル加工部52に出力する。
続いてプラズマ処理装置の作用について、ガラス基板Gに対するエッチング処理を例に説明する。初めに、外部から進入した搬送アームと不図示の昇降ピンとの協働作用により、被処理基板であるガラス基板Gが載置台3に載置される。次いでゲートバルブ12を閉じた後、載置台3とガラス基板Gとの間に伝熱ガスを供給する。また処理レシピなどに記載されている情報に基づき、制御部9から、3000Vの電圧値を出力するための電圧設定値Vs、例えば2.5Vの電圧の信号が直流電源40に入力される。これにより直流電源40から静電吸着電極32に3000Vの直流電圧が印加される。この結果静電吸着電極32と、ガラス基板Gと、が互いに引き付けあい、ガラス基板Gが載置台3に吸着保持される。次いで処理容器10内に例えばCFやClなどのエッチングガスを含む処理ガスをシャワーヘッド2から供給すると共に、排気口13から真空排気を行い処理容器10内の圧力を所定の圧力に調整する。
その後ソース電源72から整合器71を介して誘導結合アンテナ70にプラズマ生成用のソース電力を印加し、載置台3と、シャワーヘッド2との間に高周波の電界を発生させる。処理容器10内に供給されている処理ガスは、載置台3と、シャワーヘッド2との間に発生する高周波の電界により励起され、処理ガスのプラズマが生成される。さらに続いてバイアス電源75からサセプタ33にバイアス電力を印加することで、処理容器10内に生じたプラズマに含まれるイオンが載置台3に引き寄せられ、ガラス基板Gの被処理膜に対してエッチング処理が行われる。
図5は、載置台3からのガラス基板Gの剥離が発生していない場合、図6は、剥離が発生した場合におけるソース電力の電力値、バイアス電力の電力値、測定部位Dの直流電圧及び差分増幅値の経時変化を示すグラフである。この例では、時刻t1にてソース電源72をオンにしてソース電力を印加している。さらに時刻t2にてバイアス電力を印加している。図5、図6に示すようにソース電力の電力値(ソース電力)と、バイアス電力の電力値(バイアス電力)とは、各々設定値に安定するまでの過渡期間の間、上昇、低下を繰り返した後、一定の値に安定している(図示の便宜上、図中には、ソース電力の上昇、低下を1サイクル分だけ記載してある)。またソース電源72をオンにした直後の直流電源の電圧(直流電圧)は、これらソース電力やバイアス電力の変動の影響を受けて僅かに変動し、これに伴って差分増幅値も変動している。
次に、安定した後の各電力の挙動を確認すると、ガラス基板Gの剥離が発生せず、エッチング処理が、問題なく実行される場合には、各電力は一定値で安定した状態が継続する。しかしながら例えば図6の時刻t4にてガラス基板Gの剥離が発生した例では、静電吸着電極32側の直流電圧にて変動が発生している。この状態が継続してしまうと異常放電が発生(時刻t5)してしまい、載置台3にダメージが及ぶおそれがある。そのためプラズマ処理を行っている間、電圧モニター部5から取得した差分増幅値Vaに基づくガラス基板Gの剥がれの監視を行う。
次いで、ガラス基板Gの剥離の監視を行う動作について説明する。図7は、ガラス基板Gの剥離の監視を実行するためのステップ群を示すフローチャートである。
既述のようにプラズマ処理を行うにあたって、まず時刻t1にてソース電源72がオンにされ、ソース電力の印加が開始される。さらに時刻t2にてバイアス電源75がオンにされ、バイアス電力の印加が開始される。その後図7に示すように制御部9により、ソース電力、バイアス電力の各測定値と、変動範囲との比較が行われ、ソース電力及びバイアス電力の出力が安定したか否かが判断される(ステップS1)。これらの電力が安定したと判断がされたときには(ステップS1:Yes)、ソース電力やバイアス電力の変動の影響を受けて直流電圧が変動しない状態となったことが確認される。そこでその後の例えば図6中に示す時刻t3において、電圧測定部51による直流電圧の測定が開始され、電圧測定値Vmが取得される(ステップS2)。
しかる後、時刻t4において、載置台3上のガラス基板Gの一部の剥離が発生したとする。この結果、図8(a)に示すようにガラス基板Gと静電吸着電極32との間の電圧が、例えば3020Vになったとする。このとき、電圧測定部51からは、アナログ信号の電圧範囲(本例では0〜6V)に基づく電圧測定値Vmを、差分値取得部53に出力する。ここでは測定される電圧値が3020Vであることから、図8(b)に示すように電圧測定値Vmとして、例えば3.02Vの電圧の信号が出力される。
一方、既述のように電圧設定値Vsとして入力されるアナログ信号の電圧範囲は、0〜5Vの信号である。そこで、電圧レベル加工部52にて電圧測定値Vmの電圧レベルと電圧設定値Vsの電圧レベルが揃えられる。3000Vに対応する電圧設定値Vsが2.5Vの電圧であることから、電圧レベル加工部52にてこの値が1.2倍されて、3Vの信号に換算されて、差分値取得部53に入力される。
差分値取得部53においては、電圧測定値Vmと、加工された電圧設定値Vs’と、の差分値Vdが取得される(ステップS3)。ここでは、電圧測定値Vmが3.02V、加工された電圧設定値Vs’が3Vであることから、差分値Vdは、0.02Vになる(図8(c))。
次いで差分値取得部53にて取得された差分値Vdは、増幅部54に入力されて増幅される(ステップS4)。本実施の形態では、増幅部54の増幅率は、10倍であることから、図8(d)に示すように差分増幅値Vaは、0.2Vとなる。
次いで差分増幅値Vaは、制御部9に出力され、差分増幅値Vaと、しきい値との比較がなされ(ステップS5)、差分増幅値Vaがしきい値の範囲である時には、差分増幅値Vaを更新するために電圧測定値Vmの取得に戻る(ステップS5:No)。また差分増幅値Vaが、しきい値を越えている場合には(ステップS5:Yes)、ソース電源72及びバイアス電源75に向けて電力の供給を停止する信号が出力される(ステップS6)。この結果、ソース電力及びバイアス電力の印加が停止されて(ステップS7)、処理容器10内におけるプラズマ処理を停止する。なおステップS6にてソース電源72、バイアス電源75の一方のみを停止してもよい。特に、バイアス電源75の一方のみを停止することで、真空容器10内に処理ガスのプラズマを発生させたまま、ガラス基板Gと載置台3との間にプラズマが進入することを抑制することができる。
上述の動作により、載置台3からの剥離が発生した領域がガラス基板Gの一部であっても、ガラス基板Gと静電吸着電極32との間に印加される直流電圧の僅かな上昇を差分増幅値Vaとして検出し、処理容器10内で実施しているプラズマ処理を停止する。この結果、ガラス基板Gの剥離に伴う異常放電の発生を抑制することができる。
上述の実施の形態によれば、載置台3からのガラス基板Gの剥離を検出するプラズマ処理装置において、静電吸着電極32に印加される直流電圧の電圧測定値Vmと電圧設定値Vs’との差分値Vdを増幅し差分増幅値Vaを取得している。そしてこの差分増幅値Vaとしきい値とを比較し、差分増幅値Vaがしきい値を超えている場合に、基板Gに対してプラズマ処理を行うため真空容器10内に高周波電力を供給するソース電力及びバイアス電力の印加を停止する。そのためガラス基板Gが大型化して、直流電圧の変化が小さくなったときにも、ガラス基板Gの載置台3からの剥離を確実に検出して処理容器10内における基板Gへのプラズマ処理を停止することができる。
しかしながら検出感度が高くなるとソース電力及びバイアス電力の印加を開始したときの変動の影響を受け、静電吸着電極32に印加される直流電圧が変化し、ソース電源72を誤停止させてしまうおそれがある。そこでソース電力やバイアス電力の印加開始後、これらの電力が安定した後、差分増幅値Vaに基づく基板Gの載置台3からの剥離の検出を開始する。これにより、上述の誤停止の発生を防ぐことができる。
さらにソース電力及びバイアス電力の印加を開始した後の変動の影響は、制御部9に出力される信号にもノイズとして影響を及ぼすことがある。
そこで上述の実施の形態では、直流電源40、電圧測定部51、差分値取得部53及び増幅部54を電源ユニット400内に設け、差分増幅値Vaを、制御部9に出力している。このように電源ユニット400にて、差分値Vdを、例えば10倍に増幅した後の差分増幅値Vaを制御部9に出力することで、制御部9に出力される信号(差分増幅値)へのノイズ影響を小さく抑えることができる。
なおここで、差分値Vdを増幅する増幅率が大きすぎると、ガラス基板Gの剥離とは関係のないノイズなどが検出されてソース電力及びバイアス電力の停止の判断に利用されてしまうおそれがある。一方で、増幅率が小さすぎるとガラス基板Gの剥離の検出精度が低下するおそれがある。そこで、既述のように、増幅率(差分増幅値/差分値=増幅率)は、面積が2.78mの基準サイズのガラス基板Gの面積と、プラズマ処理を行うガラス基板Gの面積Sとの面積比(S/2.78)、を用いることが好ましい。さらに補正値として1〜10倍を乗算することが好ましい。これらより増幅率は5〜25倍程度であることが好ましい。
以上に検討したように、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
3 載置台
9 制御部
10 処理容器
31 誘電体層
32 静電吸着電極
40 直流電源
51 電圧測定部
53 差分値取得部
54 増幅部
70 誘導結合アンテナ
72 ソース電源
75 バイアス電源

Claims (9)

  1. 基板に対してプラズマ処理を行うための真空容器内に設けられ、処理対象の基板が載置される載置台と、
    前記載置台に設けられた誘電体層内に配置され、前記載置台に載置された基板を静電吸着する静電吸着電極と、
    前記静電吸着電極に、予め設定された電圧設定値に対応する直流電圧を印加する直流電源と、
    前記真空容器内に処理ガスのプラズマを発生させ前記基板に対して供給するための高周波電力を供給する高周波電力供給部と、
    前記静電吸着電極に印加される直流電圧を測定する電圧測定部と、
    前記電圧測定部にて測定された直流電圧の測定値と、前記電圧設定値と、の差分に対応する差分値を取得する差分値取得部と、
    前記差分値取得部にて取得された差分値を増幅して増幅値を取得する増幅部と、
    前記増幅値と、当該増幅値に対して予め設定されたしきい値と、を比較し、前記増幅値が前記しきい値を超えた場合に、前記高周波電力供給部からの高周波電力の供給を停止するための制御信号を出力する制御部と、を備えたことを特徴とするプラズマ処理装置。
  2. 前記高周波電力供給部は、前記真空容器内に処理ガスのプラズマを発生させるためのプラズマ形成部に対して高周波電力を供給するソース電力供給部と、前記載置台に対し、前記プラズマにより生成した処理ガスの活性種を、当該載置台に載置された基板に向けて引き込むためのバイアス電力を印加するバイアス電力供給部と、を備え、
    前記制御部は、前記ソース電力供給部から高周波電力を印加して真空容器内にプラズマを発生させるステップと、次いで前記バイアス電力供給部から、前記載置台にバイアス電力を印加するステップと、その後、高周波電力及びバイアス電力の電力値が予め設定した変動範囲内の値に安定した後、前記増幅値を利用した高周波電力の供給停止判断を開始するステップと、を実行する制御信号を出力することを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記直流電源と、前記電圧測定部と、前記差分値取得部と、前記増幅部とは、共通の電源ユニットに設けられ、
    前記電源ユニットから前記制御部に前記増幅値が出力されることを特徴とする請求項1または2に記載のプラズマ処理装置。
  4. 前記電源ユニットからは、前記増幅値に加えて、前記電圧測定部にて測定された直流電圧が前記制御部に出力されることを特徴とする請求項3に記載のプラズマ処理装置。
  5. 前記電圧設定値として入力されるアナログ信号の電圧範囲に基づく電圧レベルと、前記電圧測定値として出力されるアナログ信号の電圧範囲に基づく電圧レベルと、を揃えるための電圧レベル加工部を備えることを特徴とする請求項1ないし4のいずれか一項に記載のプラズマ処理装置。
  6. 前記増幅部は、前記差分値に予め設定された増幅率を乗算することにより前記増幅値を取得し、
    前記増幅率は、面積が2.78mの基板を基準サイズの基板としたときに、プラズマ処理が行われる基板の面積S(m)の基準サイズの基板の面積に対する面積比(面積比=S/2.78)を1〜10倍した値に設定されることを特徴とする請求項1ないし5のいずれか一項に記載のプラズマ処理装置。
  7. 基板に対してプラズマ処理を行うための真空容器内に設けられた載置台に処理対象の基板を載置する工程と、
    前記載置台に設けられた誘電体層内に配置された静電吸着電極に対し、予め設定された電圧設定値に対応する直流電圧を出力して、前記載置台に載置された基板を静電吸着する工程と、
    前記真空容器内に処理ガスのプラズマを発生させ、基板に対して供給するための高周波電力を供給する工程と、
    前記静電吸着電極に印加される直流電圧を測定する工程と、
    前記直流電圧の測定値と、前記電圧設定値と、の差分に対応する差分値を取得する工程と、
    前記差分値を増幅して増幅値を取得する工程と、
    前記増幅値と、当該増幅値に対して予め設定されたしきい値と、を比較し、前記増幅値が前記しきい値を超えた場合に、前記高周波電力の供給を停止する工程と、を含むことを特徴とするプラズマ処理方法。
  8. 前記プラズマを発生させるために高周波電力を供給する工程は、前記真空容器内に処理ガスのプラズマを発生させるためのプラズマ形成部に対して高周波電力を供給する工程と、その後、前記載置台に対し、前記プラズマにより生成した処理ガスの活性種を、当該載置台に載置された基板に向けて引き込むためのバイアス電力を印加する工程と、を含み、
    前記増幅値を利用した高周波電力の供給停止判断は、前記バイアス電力を印加する工程の後、実施することを特徴とする請求項7に記載のプラズマ処理方法。
  9. 前記増幅値を取得する工程において、前記差分値に増幅率を乗算することにより増幅値を算出し、前記増幅値は、面積が2.78mの基板を基準基板としたときに、プラズマ処理が行われる基板の面積S(m)の基準基板の面積に対する比率(比率=S/2.78)を1〜10倍した値に設定されたものであることを特徴とする請求項7または8に記載のプラズマ処理方法。
JP2018114946A 2018-06-15 2018-06-15 プラズマ処理装置及びプラズマ処理方法 Active JP7052584B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018114946A JP7052584B2 (ja) 2018-06-15 2018-06-15 プラズマ処理装置及びプラズマ処理方法
CN201910505078.1A CN110610843B (zh) 2018-06-15 2019-06-12 等离子体处理装置和等离子体处理方法
KR1020190069685A KR102205228B1 (ko) 2018-06-15 2019-06-13 플라즈마 처리 장치 및 플라즈마 처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018114946A JP7052584B2 (ja) 2018-06-15 2018-06-15 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2019220282A true JP2019220282A (ja) 2019-12-26
JP7052584B2 JP7052584B2 (ja) 2022-04-12

Family

ID=68890965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018114946A Active JP7052584B2 (ja) 2018-06-15 2018-06-15 プラズマ処理装置及びプラズマ処理方法

Country Status (3)

Country Link
JP (1) JP7052584B2 (ja)
KR (1) KR102205228B1 (ja)
CN (1) CN110610843B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264922A1 (ja) * 2021-06-15 2022-12-22 京セラ株式会社 プラズマ処理装置用部材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582763A (zh) * 2022-05-06 2022-06-03 拓荆科技(北京)有限公司 一种晶圆吸附状态的检测方法、检测装置及控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101742A (ja) * 2008-10-23 2010-05-06 Nikon Corp 温度計測装置、気体供給装置、及び露光装置
JP2016174081A (ja) * 2015-03-17 2016-09-29 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP2016225439A (ja) * 2015-05-29 2016-12-28 東京エレクトロン株式会社 プラズマ処理装置及び基板剥離検知方法
JP2017008374A (ja) * 2015-06-23 2017-01-12 株式会社アルバック ずれ量の測定方法
JP2018014383A (ja) * 2016-07-20 2018-01-25 株式会社ディスコ 吸着確認方法、離脱確認方法、及び減圧処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100292411B1 (ko) * 1998-09-25 2001-06-01 윤종용 반도체소자의 제조에 사용되는 플라즈마 장비
US6509542B1 (en) * 1999-09-30 2003-01-21 Lam Research Corp. Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor
JP4504061B2 (ja) * 2004-03-29 2010-07-14 東京エレクトロン株式会社 プラズマ処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101742A (ja) * 2008-10-23 2010-05-06 Nikon Corp 温度計測装置、気体供給装置、及び露光装置
JP2016174081A (ja) * 2015-03-17 2016-09-29 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP2016225439A (ja) * 2015-05-29 2016-12-28 東京エレクトロン株式会社 プラズマ処理装置及び基板剥離検知方法
JP2017008374A (ja) * 2015-06-23 2017-01-12 株式会社アルバック ずれ量の測定方法
JP2018014383A (ja) * 2016-07-20 2018-01-25 株式会社ディスコ 吸着確認方法、離脱確認方法、及び減圧処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264922A1 (ja) * 2021-06-15 2022-12-22 京セラ株式会社 プラズマ処理装置用部材

Also Published As

Publication number Publication date
KR20190142233A (ko) 2019-12-26
KR102205228B1 (ko) 2021-01-19
JP7052584B2 (ja) 2022-04-12
CN110610843B (zh) 2022-12-02
CN110610843A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN111029238B (zh) 等离子体处理装置和控制方法
US9466519B2 (en) De-chuck control method and control device for plasma processing apparatus
KR101366470B1 (ko) 플라즈마 처리 챔버 내에서 언컨파인먼트를 감지하는 방법 및 장치
JP4884047B2 (ja) プラズマ処理方法
US10755957B2 (en) Measurement method, method of removing static electricity, and plasma processing apparatus
US9831064B2 (en) Plasma processing apparatus
JP5094002B2 (ja) プラズマ処理装置およびその異常放電抑止方法
CN105990194B (zh) 基板处理方法和基板处理装置
CN107204274B (zh) 等离子体处理方法以及等离子体处理装置
US8366833B2 (en) Plasma processing apparatus and plasma processing method
US10770321B2 (en) Process kit erosion and service life prediction
KR20120046702A (ko) 기판 처리 방법 및 그 방법을 실행하는 프로그램을 기억하는 기억 매체
JP2019220282A (ja) プラズマ処理装置及びプラズマ処理方法
WO2013078047A1 (en) System, method and apparatus for detecting dc bias in a plasma processing chamber
TWI829915B (zh) 除電方法、基板處理方法及基板處理裝置
JP5651041B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP2011060984A (ja) プラズマ処理装置及びプラズマ処理方法
JP7020311B2 (ja) 基板処理装置及び基板処理方法
US10546731B1 (en) Method, apparatus and system for wafer dechucking using dynamic voltage sweeping
KR101367917B1 (ko) 공정 챔버의 결로 발생 방지 장치 및 방법
JP2002305182A (ja) プラズマ処理方法及び装置
JP2002033310A (ja) プラズマ処理装置
CN110323119A (zh) 等离子体处理装置和被处理体的输送方法
KR20130013185A (ko) 기판 디척킹 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7052584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150