JP2019205214A - Motor controller and heat pump type refrigeration cycle device - Google Patents

Motor controller and heat pump type refrigeration cycle device Download PDF

Info

Publication number
JP2019205214A
JP2019205214A JP2016185513A JP2016185513A JP2019205214A JP 2019205214 A JP2019205214 A JP 2019205214A JP 2016185513 A JP2016185513 A JP 2016185513A JP 2016185513 A JP2016185513 A JP 2016185513A JP 2019205214 A JP2019205214 A JP 2019205214A
Authority
JP
Japan
Prior art keywords
phase
pwm signal
motor
current
signal pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016185513A
Other languages
Japanese (ja)
Inventor
達也 前川
Tatsuya Maekawa
達也 前川
雅也 野木
Masaya Nogi
雅也 野木
嘉隆 内山
Yoshitaka Uchiyama
嘉隆 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2016185513A priority Critical patent/JP2019205214A/en
Priority to PCT/JP2017/015315 priority patent/WO2018055820A1/en
Publication of JP2019205214A publication Critical patent/JP2019205214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Abstract

To provide a motor controller capable of reducing switching loss without reducing a current detection rate.SOLUTION: A motor controller of an embodiment drives a motor via an inverter circuit converting DC into three phase AC by performing on-off control of a plurality of switching elements in a three-phase bridge-connection according to a predetermined PWM signal pattern. The motor controller comprises a current detection part for detecting the phase current of the motor, a rotor position determination part for determining a rotor position based on the phase current of the motor, and a PWM signal generating part for generating a two-phase or three-phase PWM signal pattern so as to follow the rotor position. The PWM signal generating part generates a plurality of PWM control periods as one control unit so that the three-phase PWM signal pattern and the two-phase PWM signal pattern coexist within the control unit.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、3相モータをPWM制御するモータ制御装置,及びそのモータ制御装置を備えるヒートポンプ式冷凍サイクル装置に関する。   Embodiments described herein relate generally to a motor control device that performs PWM control of a three-phase motor, and a heat pump refrigeration cycle device including the motor control device.

特許文献1には、インバータ回路の直流部に挿入された1つの抵抗素子によりモータの各相電流を検出してモータを制御する構成において、スイッチング損失の低減と電流検出率の維持とのバランスを取るため、モータが低速で回転する領域では3相変調を行い、高速で回転する領域では2相変調を行うように切替える技術が開示されている。   Patent Document 1 discloses a balance between reducing switching loss and maintaining a current detection rate in a configuration in which each phase current of a motor is detected by a single resistance element inserted in a DC portion of an inverter circuit. Therefore, a technique is disclosed in which switching is performed such that three-phase modulation is performed in a region where the motor rotates at a low speed and two-phase modulation is performed in a region where the motor rotates at a high speed.

特開2014−171321号公報JP 2014-171321 A

しかしながら、特許文献1のように一貫して3相変調を行う期間では、やはりスイッチング損失が増加する。
そこで、電流検出率を低下させることなくスイッチング損失をより低減できるモータ制御装置,及びその装置を備えたヒートポンプ式冷凍サイクル装置を提供する。
However, in the period in which the three-phase modulation is consistently performed as in Patent Document 1, the switching loss also increases.
Therefore, a motor control device that can further reduce switching loss without reducing the current detection rate, and a heat pump refrigeration cycle device including the device are provided.

実施形態のモータ制御装置は3相ブリッジ接続された複数のスイッチング素子を所定のPWM信号パターンに従いオンオフ制御することで、直流を3相交流に変換するインバータ回路を介してモータを駆動するものにおいて、
前記モータの相電流を検出する電流検出部と、
前記モータの相電流に基づいてロータ位置を決定するロータ位置決定部と、
前記ロータ位置に追従するように2相又は3相のPWM信号パターンを生成するPWM信号生成部とを備え、
前記PWM信号生成部は、複数のPWM制御周期を1制御単位として、前記制御単位内に3相のPWM信号パターンと2相のPWM信号パターンとが混在するように生成する。
The motor control device of the embodiment drives a motor via an inverter circuit that converts direct current into three-phase alternating current by performing on / off control of a plurality of switching elements connected in a three-phase bridge according to a predetermined PWM signal pattern.
A current detector for detecting a phase current of the motor;
A rotor position determination unit for determining a rotor position based on the phase current of the motor;
A PWM signal generator that generates a two-phase or three-phase PWM signal pattern so as to follow the rotor position;
The PWM signal generation unit generates a plurality of PWM control cycles as one control unit so that a three-phase PWM signal pattern and a two-phase PWM signal pattern are mixed in the control unit.

また、ヒートポンプ式冷凍サイクル装置は、ファンを駆動するファンモータと、前記モータ制御装置とを備える。   The heat pump refrigeration cycle apparatus includes a fan motor that drives a fan and the motor control device.

第1実施形態であり、モータ制御装置の構成を示す機能ブロック図Functional block diagram showing the configuration of the motor control device according to the first embodiment ヒートポンプ式冷凍サイクル装置の構成を示す図Diagram showing the configuration of the heat pump refrigeration cycle system PWM割込み処理の内容を示すフローチャートFlowchart showing the contents of PWM interrupt processing PWMデューティパルスの波形を示すタイミングチャートTiming chart showing PWM duty pulse waveform 回転数に応じた消費電力低減効果を示す図Diagram showing the power consumption reduction effect according to the number of revolutions 第2実施形態であり、PWMデューティパルスの波形を示すタイミングチャートTiming chart showing the PWM duty pulse waveform according to the second embodiment

(第1実施形態)
以下、第1実施形態について図1から図5を参照しながら説明する。図2において、ヒートポンプ式冷凍サイクル装置1を構成する圧縮機2は、圧縮部3とモータ4を同一の鉄製密閉容器5内に収容して構成され、モータ4のロータシャフトが圧縮部3に連結されている。そして、圧縮機2、四方弁6、室内熱交換器7、減圧装置8、室外熱交換器9は、熱伝達媒体流路たるパイプにより閉ループを構成するように接続されている。尚、圧縮機2は、例えばロータリ型の圧縮機であり、モータ4は、例えば3相IPM(Interior Permanent Magnet)モータ,ブラシレスDCモータである。空気調和機Eは、上記のヒートポンプ式冷凍サイクル装置1を有している。
(First embodiment)
Hereinafter, a first embodiment will be described with reference to FIGS. 1 to 5. In FIG. 2, the compressor 2 constituting the heat pump refrigeration cycle apparatus 1 is configured by accommodating the compression unit 3 and the motor 4 in the same iron hermetic container 5, and the rotor shaft of the motor 4 is connected to the compression unit 3. Has been. The compressor 2, the four-way valve 6, the indoor heat exchanger 7, the pressure reducing device 8, and the outdoor heat exchanger 9 are connected to form a closed loop by a pipe serving as a heat transfer medium flow path. The compressor 2 is, for example, a rotary compressor, and the motor 4 is, for example, a three-phase IPM (Interior Permanent Magnet) motor or a brushless DC motor. The air conditioner E has the heat pump refrigeration cycle apparatus 1 described above.

空気調和機Eの暖房運転時には、四方弁6は実線で示す状態にあり、圧縮機2の圧縮部3で圧縮された高温冷媒は、四方弁6から室内熱交換器7に供給されて凝縮し、その後、減圧装置8で減圧され、低温となって室外熱交換器9に流れ、ここで蒸発して圧縮機2へと戻る。一方、冷房運転時には、四方弁6は破線で示す状態に切り替えられる。このため、圧縮機2の圧縮部3で圧縮された高温冷媒は、四方弁6から室外熱交換器9に供給されて凝縮し、その後、減圧装置8で減圧され、低温となって室内熱交換器7に流れ、ここで蒸発して圧縮機2へと戻る。   During the heating operation of the air conditioner E, the four-way valve 6 is in a state indicated by a solid line, and the high-temperature refrigerant compressed by the compression unit 3 of the compressor 2 is supplied from the four-way valve 6 to the indoor heat exchanger 7 and condensed. Thereafter, the pressure is reduced by the pressure reducing device 8, becomes a low temperature and flows to the outdoor heat exchanger 9, where it evaporates and returns to the compressor 2. On the other hand, during the cooling operation, the four-way valve 6 is switched to a state indicated by a broken line. For this reason, the high-temperature refrigerant | coolant compressed with the compression part 3 of the compressor 2 is supplied to the outdoor heat exchanger 9 from the four-way valve 6, and is condensed, and after that, it decompresses by the decompression device 8, becomes low temperature, and performs indoor heat exchange It flows to the unit 7, where it evaporates and returns to the compressor 2.

室外熱交換器9は、暖房運転時には蒸発器として、冷房運転時には凝縮器として機能し、室内熱交換器7は、逆に、暖房運転時には凝縮器として、冷房運転時には蒸発器として機能するようになっている。そして、室内側、室外側の各熱交換器7,9には、それぞれファン10,11により送風が行われ、その送風によって各熱交換器7,9と室内空気、室外空気の熱交換が効率良く行われるように構成されている。室外熱交換器9に送風を行うファン11はプロペラファンであり、ファンモータ12により駆動される。ファンモータ12は、例えばモータ4と同様のブラシレスDCモータである。   The outdoor heat exchanger 9 functions as an evaporator during the heating operation and functions as a condenser during the cooling operation, and the indoor heat exchanger 7 conversely functions as a condenser during the heating operation and as an evaporator during the cooling operation. It has become. The indoor and outdoor heat exchangers 7 and 9 are blown by the fans 10 and 11, respectively, and the heat exchange between the heat exchangers 7 and 9 and the indoor air and outdoor air is efficient. It is structured to be performed well. A fan 11 that blows air to the outdoor heat exchanger 9 is a propeller fan, and is driven by a fan motor 12. The fan motor 12 is a brushless DC motor similar to the motor 4, for example.

図1は、上記ファンモータ12を駆動するモータ制御装置の構成を示す機能ブロック図である。直流電源部21は、直流電源のシンボルで示しているが、商用交流電源から直流電源を生成している場合には、整流回路や平滑コンデンサ等を含んでいる。直流電源部21には、正側母線22a,負側母線22bを介してインバータ回路23が接続されているが、負側母線22b側には電流検出素子であるシャント抵抗24が挿入されている。インバータ回路23は、スイッチング素子として例えばNチャネル型のパワーMOSFET25(U+,V+,W+,U−,V−,W−)を3相ブリッジ接続して構成されており、各相の出力端子はモータ12の各相巻線にそれぞれ接続されている。   FIG. 1 is a functional block diagram showing a configuration of a motor control device that drives the fan motor 12. The DC power supply unit 21 is indicated by a DC power supply symbol, but includes a rectifier circuit, a smoothing capacitor, and the like when a DC power supply is generated from a commercial AC power supply. An inverter circuit 23 is connected to the DC power source 21 via a positive bus 22a and a negative bus 22b, and a shunt resistor 24, which is a current detection element, is inserted on the negative bus 22b side. The inverter circuit 23 is configured by connecting, for example, N-channel type power MOSFETs 25 (U +, V +, W +, U−, V−, W−) as switching elements in a three-phase bridge, and the output terminals of each phase are motors. Each of the 12 phase windings is connected.

電流検出素子であるシャント抵抗24の両端間の端子電圧は電流値に対応した電圧信号であり、電流検出部27により検出される。電流検出部27は、前記端子電圧をA/D変換して読み込むと、その時に駆動回路33からインバータ回路23に出力される3相のPWM信号パターンに基づいてU,V,W各相の電流Iu,Iv,Iwを検出する。電流検出部27が検出した各相電流は、ベクトル演算部30に入力される。   A terminal voltage between both ends of the shunt resistor 24 that is a current detection element is a voltage signal corresponding to the current value, and is detected by the current detection unit 27. When the current detection unit 27 performs A / D conversion and reads the terminal voltage, the current of each phase of U, V, and W is output based on the three-phase PWM signal pattern output from the drive circuit 33 to the inverter circuit 23 at that time. Iu, Iv, and Iw are detected. Each phase current detected by the current detection unit 27 is input to the vector calculation unit 30.

ベクトル演算部30では、制御条件を設定するマイクロコンピュータ等の機能部分よりモータ12の回転速度指令ωrefが与えられると、推定したモータ12の実際の回転速度との差分に基づいてトルク電流指令Iqrefが生成される。ここで、モータ12の回転速度指令ωrefは、空気調和機Eの図示しない制御装置から供給されるデータであり、冷凍サイクルの状態や空気調和機Eの運転状態から当該制御装置において決定される、空気調和機Eとして所望するファンモータ12の回転数である。   In the vector calculation unit 30, when the rotational speed command ωref of the motor 12 is given from a functional part such as a microcomputer that sets the control conditions, the torque current command Iqref is calculated based on the difference from the estimated actual rotational speed of the motor 12. Generated. Here, the rotational speed command ωref of the motor 12 is data supplied from a control device (not shown) of the air conditioner E, and is determined in the control device from the state of the refrigeration cycle and the operating state of the air conditioner E. The rotation speed of the fan motor 12 desired as the air conditioner E.

モータ12の各相電流Iu,Iv,Iwからはモータ12のロータ位置θが決定され、そのロータ位置θを用いるベクトル制御演算によりトルク電流Iq,励磁電流Idが算出される。トルク電流指令Iqrefとトルク電流Iqとの差分に対して例えばPI制御演算が行われ、電圧指令Vqが生成される。励磁電流Id側についても同様に処理されて電圧指令Vdが生成され、電圧指令Vq,Vdが上記ロータ位置θを用いて三相電圧Vu,Vv,Vwに変換される。三相電圧Vu,Vv,Vwは、DUTY生成部31に入力され、各相のPWM信号を生成するためのデューティU_DUTY,V_DUTY,W_DUTYが決定される。   The rotor position θ of the motor 12 is determined from the phase currents Iu, Iv, and Iw of the motor 12, and the torque current Iq and the excitation current Id are calculated by vector control calculation using the rotor position θ. For example, a PI control calculation is performed on the difference between the torque current command Iqref and the torque current Iq, and a voltage command Vq is generated. The excitation current Id side is similarly processed to generate a voltage command Vd, and the voltage commands Vq and Vd are converted into three-phase voltages Vu, Vv and Vw using the rotor position θ. The three-phase voltages Vu, Vv, and Vw are input to the DUTY generator 31, and the duties U_DUTY, V_DUTY, and W_DUTY for generating the PWM signals of the respective phases are determined.

各相デューティU,V,W_DUTYは、PWM信号生成部32に与えられ、搬送波,キャリアとのレベルが比較されることで2相変調されたPWM信号又は3相変調された信号PWM信号が生成される。以下では、2相変調されたPWM信号を2相PWM信号とも称し、3相変調された信号PWM信号を3相PWM信号とも称する。また、2相又は3相PWM信号を反転させた下アーム側の信号も生成されて、必要に応じてデッドタイムが付加された後、それらが駆動回路33に出力される。検出方式選択部35は、詳細を後述するが、PWM信号生成部32からのPWM割り込み信号を受けて、「切替えフラグ」を信号として電流検出部27,DUTY生成部31及びPWM信号生成部32に出力する。尚、ベクトル演算部30及びDUTY生成部31も、PWM信号生成部に相当する。   Each phase duty U, V, W_DUTY is given to the PWM signal generation unit 32, and the two-phase modulated PWM signal or the three-phase modulated signal PWM signal is generated by comparing the levels of the carrier and the carrier. The Hereinafter, the two-phase modulated PWM signal is also referred to as a two-phase PWM signal, and the three-phase modulated signal PWM signal is also referred to as a three-phase PWM signal. Further, a signal on the lower arm side obtained by inverting the two-phase or three-phase PWM signal is also generated, and after a dead time is added as necessary, they are output to the drive circuit 33. The detection method selection unit 35 receives a PWM interrupt signal from the PWM signal generation unit 32 and sends a “switching flag” as a signal to the current detection unit 27, the DUTY generation unit 31, and the PWM signal generation unit 32, which will be described in detail later. Output. The vector calculation unit 30 and the DUTY generation unit 31 also correspond to the PWM signal generation unit.

駆動回路33は、与えられたPWM信号に従い、インバータ回路23を構成する6つのFET25(U+,V+,W+,U−,V−,W−)の各ゲートに、ゲート信号を出力する。尚、上アーム側については、必要なレベルだけ昇圧した電位で出力する。以上において、駆動回路33を除く構成27〜35の機能は、CPUを含むマイクロコンピュータのハードウェア及びソフトウェアにより実現される機能である。   The drive circuit 33 outputs a gate signal to each gate of the six FETs 25 (U +, V +, W +, U−, V−, W−) constituting the inverter circuit 23 according to the given PWM signal. For the upper arm side, output is performed at a potential boosted by a necessary level. In the above, the functions of the configurations 27 to 35 excluding the drive circuit 33 are functions realized by the hardware and software of the microcomputer including the CPU.

さらに、本実施形態について図3から図5を参照して説明する。本実施形態では図4に示すように、ベクトル演算部30及びDUTY生成部31では、PWMキャリア周期の例えば4周期を1制御単位として扱う。この制御単位を1周期として制御が繰り返し実行されるため、以下ではこれを単に「制御周期」と称する。   Furthermore, this embodiment will be described with reference to FIGS. In the present embodiment, as shown in FIG. 4, the vector calculation unit 30 and the DUTY generation unit 31 handle, for example, four PWM carrier cycles as one control unit. Since the control is repeatedly executed with this control unit as one cycle, this is hereinafter simply referred to as “control cycle”.

尚、圧縮機2を駆動するインバータ回路においては、1回転中に吸込み−圧縮−吐出という負荷変動が生じること,及び運転中に除霜運転等の冷凍サイクルの大きな負荷変動を伴うことからモータの出力トルクの応答性を高める必要があり、さらにキヤリア周波数が低いことから1PWMキャリア周期を1制御周期としてPWM信号を生成する。これに比べて、ファンモータ12を駆動する場合、1回転中に負荷変動がなく、運転中の負荷変動も小さく、且つキャリア周期が短い,すなわち周波数が高いため、複数のPWMキャリア周期を1制御周期として運転することが一般的である。この制御周期内では新たな電流検出やベクトル演算は実行されず、制御周期の開始前に決定されたデューティU_DUTY,V_DUTY,W_DUTYが当該制御周期期間中はそのまま用いられる。すなわち、べクトル演算は制御周期毎に実行され、キャリア周期毎には実行されないようになっている。   In the inverter circuit for driving the compressor 2, a load fluctuation of suction-compression-discharge occurs during one rotation, and a large load fluctuation of a refrigeration cycle such as a defrosting operation occurs during the operation. Since it is necessary to improve the response of the output torque and the carrier frequency is low, the PWM signal is generated with one PWM carrier period as one control period. In comparison, when driving the fan motor 12, there is no load fluctuation during one rotation, the load fluctuation during operation is small, and the carrier cycle is short, that is, the frequency is high. It is common to operate as a cycle. No new current detection or vector calculation is executed within this control cycle, and the duties U_DUTY, V_DUTY, and W_DUTY determined before the start of the control cycle are used as they are during the control cycle. That is, the vector calculation is executed every control cycle, and is not executed every carrier cycle.

図3は、前記キャリア周期毎に発生するPWM割込み処理の内容を示すフローチャートである。先ず、次の制御周期おいて出力する予定の2相変調でのPWM信号により制御周期内での電流検出が完了できるか否かを判断し(S1)、完了できないと判定されれば(NO)3相変調を実行するように各相デューティパルスを設定する(S4)。この時、検出方式選択部35は、図1に示す「切替えフラグ」をセットする。この「切替フラグ」に基づいて、DUTY生成部31及びPWM信号生成部32は、3相変調に対応したPWM信号パターンの出力データをセットして(S3)、インバータ回路23のスイッチングを行う。   FIG. 3 is a flowchart showing the contents of PWM interrupt processing that occurs every carrier cycle. First, it is determined whether or not the current detection within the control period can be completed by the PWM signal in the two-phase modulation scheduled to be output in the next control period (S1), and if it is determined that the current detection cannot be completed (NO). Each phase duty pulse is set to execute three-phase modulation (S4). At this time, the detection method selection unit 35 sets the “switching flag” shown in FIG. Based on this “switching flag”, the DUTY generating unit 31 and the PWM signal generating unit 32 set the output data of the PWM signal pattern corresponding to the three-phase modulation (S3), and perform switching of the inverter circuit 23.

3相変調を実行する際には、図4に示すように、特許文献1と同様に、確実に電流が検出でき、且つ、PWMキャリア周期における供給電圧が本来の指示値と一致するように各相デューティパルスのシフトを行う。さらに、PWMキャリア周期の中間位相であるキャリア波形のボトムを基準とする前後の固定タイミングで、PWM信号生成部32から電流検出部27に対して電流検出タイミング信号が出力される。このタイミングにおいて電流検出部27が2相の電流を検出する。例えば、図4に示す最も左側のキャリア周期である第1キャリア周期では、V,U相の電流が検出される。V,U相の電流が検出できれば、演算によってW相の電流が算出でき、三相分のモータ電流が検出できる。   When performing three-phase modulation, as shown in FIG. 4, as in Patent Document 1, each current is detected so that the current can be reliably detected and the supply voltage in the PWM carrier cycle matches the original instruction value. Shifts the phase duty pulse. Furthermore, a current detection timing signal is output from the PWM signal generation unit 32 to the current detection unit 27 at a fixed timing before and after the bottom of the carrier waveform that is an intermediate phase of the PWM carrier cycle. At this timing, the current detection unit 27 detects a two-phase current. For example, in the first carrier cycle, which is the leftmost carrier cycle shown in FIG. 4, V and U phase currents are detected. If the V and U phase currents can be detected, the W phase current can be calculated by calculation, and the motor current for three phases can be detected.

上記のように第1周期で電流検出が完了すると、次回,つまり第2キャリア周期以降の割り込み処理ではステップS1で「YES」と判断し、2相変調出力を選択して(S2)ステップS3を実行する。2相変調出力を選択する際には「切替えフラグ」をリセットする。2相変調出力は、例えば3相変調出力においてデューティが最小となる相のデューティをゼロとして、その他の2相のデューティより上記最小値を減じることで設定する。以後の制御周期内のキヤリア周期,すなわち第3,第4キャリア周期は、何れもこのような処理の流れになり、第2周期と同じ波形の2相変調された2相PWM信号が出力される。   When the current detection is completed in the first cycle as described above, the next time, that is, in the interrupt processing after the second carrier cycle, “YES” is determined in step S1, the two-phase modulation output is selected (S2), and step S3 is performed. Execute. When the two-phase modulation output is selected, the “switching flag” is reset. The two-phase modulation output is set, for example, by setting the duty of the phase having the minimum duty in the three-phase modulation output to zero and subtracting the minimum value from the other two-phase duties. The carrier period in the subsequent control period, that is, the third and fourth carrier periods all follow such a process, and a two-phase modulated two-phase PWM signal having the same waveform as the second period is output. .

その結果、図4に示すように、制御周期中の第1キャリア周期では3相変調が実行され、第2〜第4キャリア周期では2相変調が実行される。尚、第1キャリア周期において2回目の電流検出を行った時点で、図1に示すように電流検出部27がベクトル演算部30に電流検出完了割込みを発生させて、それをベクトル演算部30がベクトル制御演算を開始させるトリガとしても良い。   As a result, as shown in FIG. 4, three-phase modulation is executed in the first carrier period in the control period, and two-phase modulation is executed in the second to fourth carrier periods. When the second current detection is performed in the first carrier cycle, the current detection unit 27 causes the vector calculation unit 30 to generate a current detection completion interrupt as shown in FIG. It is good also as a trigger which starts vector control calculation.

2相変調の場合、各PWMキャリア周期において何れか1相は上側スイッチング素子がオフに固定されるため、全てのスイッチング素子をオン,オフする3相変調に比較して、インバータ回路23におけるスイッチング素子のオン,オフ回数を減少させることができる。従来は、電流が検出できないような状態では、その制御周期中の全てのPWMキャリア周期で3相変調を行っていた。これに対して本実施形態では、制御周期中の1つのPWMキヤリア周期においてのみ電流検出用の3相変調を行い、他のPWMキヤリア周期では2相変調信号を出力することで、効率の向上を図ることができる。   In the case of two-phase modulation, the upper switching element is fixed off in any one phase in each PWM carrier cycle. Therefore, the switching element in the inverter circuit 23 is compared with three-phase modulation in which all switching elements are turned on and off. The number of times of turning on / off can be reduced. Conventionally, in a state where current cannot be detected, three-phase modulation has been performed in all PWM carrier periods in the control period. On the other hand, in this embodiment, three-phase modulation for current detection is performed only in one PWM carrier period in the control period, and a two-phase modulation signal is output in the other PWM carrier period, thereby improving efficiency. Can be planned.

図5は、本実施形態の変調方式切替え制御を適用した場合の各回転数に対する消費電力の低減量の一例を示す。比較の対象としたのは、従来考えられていた、2相変調のPWM波形では電流読み取りができない場合に、その制御周期中の全てのPWMキヤリア周期で3相変調を行う方式である。図5は、その方式を基準とした改善効果を示している。本実施形態によれば、少なくとも1制御周期中のPWMキャリア周期4周期中の3周期は必ず2相変調となることから、効率の良い2相変調による運転割合が高くなった結果、ほぼ回転数の全域で消費電力の低減効果があることが分かる。同図からは、概ね200rpm以上では、消費電力が0.5W〜1.6W程度低減されていることが分かる。尚、図5は、モータ12として、定格電力が70Wのファン駆動用モータを適用した試験結果である。   FIG. 5 shows an example of the power consumption reduction amount for each rotation speed when the modulation system switching control according to this embodiment is applied. The object of comparison is a conventionally considered method of performing three-phase modulation in all PWM carrier periods in the control period when current reading cannot be performed with a two-phase modulation PWM waveform. FIG. 5 shows the improvement effect based on the method. According to the present embodiment, since at least three of the four PWM carrier periods in one control period are always two-phase modulation, the operation rate by efficient two-phase modulation is increased, and as a result, the number of revolutions is approximately It can be seen that there is an effect of reducing power consumption in the entire area. From the figure, it can be seen that the power consumption is reduced by about 0.5 W to 1.6 W at about 200 rpm or more. FIG. 5 shows a test result in which a fan driving motor having a rated power of 70 W is applied as the motor 12.

以上のように本実施形態によれば、電流検出部27は、インバータ回路23の直流側に接続されるシャント抵抗24が電流値に対応して発生した信号とPWM信号パターンとに基づいてモータ4の相電流Iu,Iv,Iwを検出し、ベクトル演算部30は相電流に基づいてロータ位置θを決定し、PWM信号生成部32と共に、ロータ位置θに追従するように2相又は3相のPWM信号パターンを生成する。このとき、PWM信号生成部32は、3相のPWM信号パターンの何れか1相は、キャリア周期のボトムを基準として遅れ側,進み側の双方向にデューティを増減させ、他の1相は前記ボトムを基準として遅れ側,進み側の一方向に、残りの1相は前記方向とは逆方向にデューティを増減させる。   As described above, according to the present embodiment, the current detection unit 27 is configured so that the motor 4 is based on the signal generated by the shunt resistor 24 connected to the DC side of the inverter circuit 23 corresponding to the current value and the PWM signal pattern. The phase calculation unit 30 determines the rotor position θ based on the phase current, and together with the PWM signal generation unit 32, the two-phase or three-phase currents Iu, Iv, Iw are detected. A PWM signal pattern is generated. At this time, the PWM signal generation unit 32 increases or decreases the duty in both directions of the delay side and the advance side with respect to the bottom of the carrier cycle for any one of the three-phase PWM signal patterns. With respect to the bottom, the duty is increased or decreased in one direction on the delay side and the advance side, and the remaining one phase is increased or decreased in the direction opposite to the above direction.

これにより、電流検出部27が、PWMキャリア周期内で固定された2点のタイミングで2相の電流を検出可能となる3相変調のPWM信号パターンを生成する。そして、検出方式選択部35は、PWMキャリア周期の4周期を1制御周期とし、その制御周期内においてDUTY生成部31及びPWM信号生成部32に、3相のPWM信号パターンと2相のPWM信号パターンとが混在するように生成させるようにした。   As a result, the current detection unit 27 generates a three-phase modulation PWM signal pattern that enables detection of a two-phase current at two fixed timings within the PWM carrier period. Then, the detection method selection unit 35 sets four PWM carrier cycles as one control cycle, and within the control cycle, the DUTY generation unit 31 and the PWM signal generation unit 32 provide a three-phase PWM signal pattern and a two-phase PWM signal. It was made to generate so that a pattern might be mixed.

具体的には、制御周期内の第1キャリア周期で3相変調を行い、第2〜第4キャリア周期で2相変調を行うようにした。これにより、3相変調の実行時に2相の電流を確実に検出し、その他は2相変調を行うことでスイッチング損失をより低減できる。尚、1制御周期内で1回の電流検出ができれば、次回の制御周期におけるデューティが決定できるので、制御周期内の最後のキャリア周期又は途中の1キャリア周期において、電流検出可能な3相変調のPWM信号を出力しても良い。   Specifically, three-phase modulation is performed in the first carrier period within the control period, and two-phase modulation is performed in the second to fourth carrier periods. Thus, the switching loss can be further reduced by reliably detecting the two-phase current when performing the three-phase modulation and performing the other two-phase modulation. If the current can be detected once in one control period, the duty in the next control period can be determined. Therefore, in the last carrier period in the control period or in the middle one carrier period, the current of three-phase modulation can be detected. A PWM signal may be output.

また、本実施形態のモータ制御装置を、圧縮機2と、室外熱交換器9と、減圧装置8と、室内熱交換器7とを備えるヒートポンプ式冷凍サイクル装置1を備える空気調和機Eに適用し、ファンモータ12を制御対象とするので、ヒートポンプ式冷凍サイクル装置1及び空気調和機Eの運転効率を向上させることができる。   Moreover, the motor control apparatus of this embodiment is applied to the air conditioner E provided with the heat pump refrigeration cycle apparatus 1 provided with the compressor 2, the outdoor heat exchanger 9, the decompression device 8, and the indoor heat exchanger 7. And since the fan motor 12 is made into control object, the operating efficiency of the heat pump refrigerating-cycle apparatus 1 and the air conditioner E can be improved.

(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図6に示すように、第2実施形態では、図示しないが、インバータ回路23の下側アームであるFET25U−,25V−,25W−の各ソースにシャント抵抗を挿入する3シャント方式で各相電流を検出する構成に適用する。この場合、特許文献1のように固定した2点の検出タイミングで電流を検出する必要はなく、各相の下側アームのFET25がオンしている期間に各相電流が検出できる。
(Second Embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts are described. As shown in FIG. 6, in the second embodiment, although not shown, each phase current is a three-shunt method in which a shunt resistor is inserted into each source of FETs 25U−, 25V−, and 25W− that are lower arms of the inverter circuit 23. Applies to configurations that detect In this case, it is not necessary to detect current at two fixed detection timings as in Patent Document 1, and each phase current can be detected while the FET 25 of the lower arm of each phase is on.

(その他の実施形態)
PWM信号生成部32が3相PWM信号を生成する方式については、例えば特許文献1に開示されている、同特許文献中の第4実施形態の方式を用いても良く、PWM信号生成部32は、所定のタイミングで2相の電流を検出可能となる3相のPWM信号パターンを生成できれば良い。
制御単位周期は、必ずしもPWMキャリアの4周期に設定する必要はなく、2周期以上であれば電力低減効果が得られる。
また、制御単位周期中において3相変調を実行する回数は2回以上でも良いが、3相変調の実行回数は2相変調の実行回数よりも少なく設定する方が、スイッチング損失を低減する観点からは望ましい。
(Other embodiments)
As a method for generating a three-phase PWM signal by the PWM signal generation unit 32, for example, the method of the fourth embodiment disclosed in Patent Document 1 may be used. It is only necessary to generate a three-phase PWM signal pattern capable of detecting a two-phase current at a predetermined timing.
The control unit period does not necessarily have to be set to 4 periods of the PWM carrier, and if it is 2 periods or more, a power reduction effect can be obtained.
In addition, the number of executions of three-phase modulation in the control unit period may be two or more, but the number of executions of three-phase modulation is set to be smaller than the number of executions of two-phase modulation from the viewpoint of reducing switching loss. Is desirable.

特許文献1のように、低速領域では3相変調のみを実行し、高速領域では2相変調のみを実行するように切替える構成において、低速領域での制御に第1実施形態を適用しても良い。
モータ制御装置の適用対象は、空気調和機やヒートポンプ式冷凍サイクル装置に限らない。また、駆動対象もファンモータに限ることはなく、複数のキャリア周期を1制御周期としてPWM駆動するモータ制御装置であれば適用可能である。
As in Patent Document 1, the first embodiment may be applied to control in the low speed region in a configuration in which only three phase modulation is performed in the low speed region and only two phase modulation is performed in the high speed region. .
The application target of the motor control device is not limited to an air conditioner or a heat pump refrigeration cycle device. Further, the driving target is not limited to the fan motor, and any motor control device that performs PWM driving using a plurality of carrier cycles as one control cycle is applicable.

本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、1はヒートポンプ式冷凍サイクル装置、7は室内熱交換器、8は減圧装置、9は室外熱交換器、23はインバータ回路、24はシャント抵抗、27は電流検出部、30はベクトル演算部、31はDUTY生成部、32はPWM信号生成部、35は検出方式選択部を示す。   In the drawings, 1 is a heat pump refrigeration cycle device, 7 is an indoor heat exchanger, 8 is a decompression device, 9 is an outdoor heat exchanger, 23 is an inverter circuit, 24 is a shunt resistor, 27 is a current detector, and 30 is a vector calculation. , 31 is a DUTY generator, 32 is a PWM signal generator, and 35 is a detection method selector.

Claims (6)

3相ブリッジ接続された複数のスイッチング素子を所定のPWM信号パターンに従いオンオフ制御することで、直流を3相交流に変換するインバータ回路を介してモータを駆動するモータ制御装置において、
前記モータの相電流を検出する電流検出部と、
前記モータの相電流に基づいてロータ位置を決定するロータ位置決定部と、
前記ロータ位置に追従するように2相又は3相のPWM信号パターンを生成するPWM信号生成部とを備え、
前記PWM信号生成部は、複数のPWM制御周期を1制御単位として、前記制御単位内に3相のPWM信号パターンと2相のPWM信号パターンとが混在するように生成するモータ制御装置。
In a motor control device that drives a motor via an inverter circuit that converts direct current into three-phase alternating current by performing on / off control of a plurality of switching elements connected in a three-phase bridge according to a predetermined PWM signal pattern,
A current detector for detecting a phase current of the motor;
A rotor position determination unit that determines a rotor position based on the phase current of the motor;
A PWM signal generator that generates a two-phase or three-phase PWM signal pattern so as to follow the rotor position;
The PWM signal generator generates a plurality of PWM control cycles as one control unit, and generates a three-phase PWM signal pattern and a two-phase PWM signal pattern in the control unit.
前記PWM信号生成部は、3以上のPWM制御周期を1制御単位とする際に、3相のPWM信号パターンの生成割合を、2相のPWM信号パターンの生成割合よりも少なくする請求項1記載のモータ制御装置。   2. The PWM signal generation unit reduces a generation ratio of a three-phase PWM signal pattern to a generation ratio of a two-phase PWM signal pattern when three or more PWM control cycles are set as one control unit. Motor control device. 前記電流検出部は、前記インバータ回路の直流側に接続され、電流値に対応する信号を発生する電流検出素子を備え、前記電流検出素子に発生した信号と前記PWM信号パターンとに基づいて前記モータの相電流を検出し、
前記PWM信号生成部は、前記3相のPWM信号パターンとして、所定のタイミングで2相の電流を検出可能となるPWM信号パターンを生成する請求項1又は2記載のモータ制御装置。
The current detection unit includes a current detection element that is connected to a DC side of the inverter circuit and generates a signal corresponding to a current value. The motor is based on the signal generated in the current detection element and the PWM signal pattern. Phase current of
3. The motor control device according to claim 1, wherein the PWM signal generation unit generates a PWM signal pattern capable of detecting a two-phase current at a predetermined timing as the three-phase PWM signal pattern.
前記PWM信号生成部は、前記3相のPWM信号パターンのうち何れか1相については、前記搬送波周期の任意の位相を基準として遅れ側,進み側の双方向にデューティを増減させ、
他の1相については、前記搬送波周期の任意の位相を基準として遅れ側,進み側の一方向にデューティを増減させ、
残りの1相については、前記搬送波周期の任意の位相を基準として前記方向とは逆方向にデューティを増減させることで、前記電流検出部が、前記PWM信号の搬送波周期内で固定された2点のタイミングで2相の電流を検出可能となるように3相のPWM信号パターンを生成する請求項3記載のモータ制御装置。
The PWM signal generation unit increases or decreases the duty in either of the delay side and the advance side with respect to any phase of the carrier wave period for any one of the three-phase PWM signal patterns,
For the other one phase, the duty is increased or decreased in one direction on the lag side and the advance side on the basis of an arbitrary phase of the carrier wave period,
For the remaining one phase, the current detection unit is fixed in two points within the carrier period of the PWM signal by increasing or decreasing the duty in the direction opposite to the direction with respect to an arbitrary phase of the carrier period. The motor control device according to claim 3, wherein a three-phase PWM signal pattern is generated so that a two-phase current can be detected at the timing.
前記モータが、送風を行うファンを駆動するものに適用される請求項1から4の何れか一項に記載のモータ制御装置。   The motor control device according to any one of claims 1 to 4, wherein the motor is applied to a device that drives a fan that blows air. ファンを駆動するファンモータと、
請求項5記載のモータ制御装置とを備えるヒートポンプ式冷凍サイクル装置。
A fan motor that drives the fan;
A heat pump refrigeration cycle apparatus comprising the motor control device according to claim 5.
JP2016185513A 2016-09-23 2016-09-23 Motor controller and heat pump type refrigeration cycle device Pending JP2019205214A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016185513A JP2019205214A (en) 2016-09-23 2016-09-23 Motor controller and heat pump type refrigeration cycle device
PCT/JP2017/015315 WO2018055820A1 (en) 2016-09-23 2017-04-14 Motor control device and heat pump-type refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016185513A JP2019205214A (en) 2016-09-23 2016-09-23 Motor controller and heat pump type refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2019205214A true JP2019205214A (en) 2019-11-28

Family

ID=61690265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016185513A Pending JP2019205214A (en) 2016-09-23 2016-09-23 Motor controller and heat pump type refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2019205214A (en)
WO (1) WO2018055820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034368B1 (en) * 2021-12-06 2022-03-11 日立ジョンソンコントロールズ空調株式会社 Motor drive control device, drive control method and refrigeration air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208009A (en) * 2012-03-29 2013-10-07 Brother Ind Ltd Motor controller
JP6165470B2 (en) * 2013-03-04 2017-07-19 株式会社東芝 Motor control device, heat pump system and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034368B1 (en) * 2021-12-06 2022-03-11 日立ジョンソンコントロールズ空調株式会社 Motor drive control device, drive control method and refrigeration air conditioner

Also Published As

Publication number Publication date
WO2018055820A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6165470B2 (en) Motor control device, heat pump system and air conditioner
US10637377B2 (en) Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
JP6296930B2 (en) Motor control device and air conditioner
JP4053968B2 (en) Synchronous motor driving device, refrigerator and air conditioner
JP3971979B2 (en) Air conditioner
AU2012383156B2 (en) Heat pump device, air conditioner, and refrigerating machine
US20080072619A1 (en) Control device of motor for refrigerant compressor
JP3644391B2 (en) Inverter device, compressor control device, refrigeration / air conditioning device control device, motor control method, compressor, refrigeration / air conditioning device
JP6533950B2 (en) Motor drive device, compressor drive device using the same, refrigeration apparatus and refrigerator
JP7074613B2 (en) Open winding motor drive and refrigeration cycle equipment
JP6246756B2 (en) Motor control device, heat pump system and air conditioner
JP6718356B2 (en) Motor control device and heat pump type refrigeration cycle device
JP2008289310A (en) Motor drive and refrigerator using the same
JP4804100B2 (en) Motor drive device, control method therefor, and air conditioner
WO2018055820A1 (en) Motor control device and heat pump-type refrigeration cycle device
JP3650012B2 (en) Compressor control device
JP4197974B2 (en) Motor control device and motor control method
JP2003348885A (en) Method and apparatus for controlling permanent magnet synchronous motor
JP2003204691A (en) Motor controller, freezer air conditioner, and motor control method
JP2003037988A (en) Method and device for driving brushless dc motor
JP2019165573A (en) Refrigeration cycle device
JP7237746B2 (en) Open winding motor drive device and refrigeration cycle device
JP2006136167A (en) Power converter, control method of power converter, and air conditioner
US20230045429A1 (en) Motor control device and air conditioner
JP2008167553A (en) Control method and controller of synchronous motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216