JP2019199536A - 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ - Google Patents

冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ Download PDF

Info

Publication number
JP2019199536A
JP2019199536A JP2018094661A JP2018094661A JP2019199536A JP 2019199536 A JP2019199536 A JP 2019199536A JP 2018094661 A JP2018094661 A JP 2018094661A JP 2018094661 A JP2018094661 A JP 2018094661A JP 2019199536 A JP2019199536 A JP 2019199536A
Authority
JP
Japan
Prior art keywords
conjugated diene
group
diene rubber
mass
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018094661A
Other languages
English (en)
Other versions
JP6791205B2 (ja
Inventor
佐藤 正樹
Masaki Sato
正樹 佐藤
理起 餝矢
Ayaki Kazariya
理起 餝矢
秀彬 佐和
Hideaki Sawa
秀彬 佐和
芦浦 誠
Makoto Ashiura
誠 芦浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2018094661A priority Critical patent/JP6791205B2/ja
Priority to EP19804263.2A priority patent/EP3795628A4/en
Priority to PCT/JP2019/019334 priority patent/WO2019221179A1/ja
Priority to CN201980032432.1A priority patent/CN112166149B/zh
Publication of JP2019199536A publication Critical patent/JP2019199536A/ja
Application granted granted Critical
Publication of JP6791205B2 publication Critical patent/JP6791205B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】本発明は、タイヤにしたときのウェット性能およびタイヤにしたときの氷雪路上性能に優れる冬用タイヤトレッド用ゴム組成物、並びに、上記冬用タイヤトレッド用ゴム組成物を用いた冬用空気入りタイヤを提供する。【解決手段】特定共役ジエン系ゴムを30質量%以上含む共役ジエン系ゴムと、特定可塑剤を含む可塑剤と、シリカと、シランカップリング剤とを含有し、特定可塑剤の含有量が共役ジエン系ゴム100質量部に対して5質量部以上であり、シリカの含有量が共役ジエン系ゴム100質量部に対して30質量部以上であり、シランカップリング剤の含有量がシリカの含有量に対して、3〜30質量%であり、特定可塑剤がガラス転移温度が−50℃以下である可塑剤であり、共役ジエン系ゴムと可塑剤との平均ガラス転移温度が−50℃よりも低い、冬用タイヤトレッド用ゴム組成物、並びに、冬用タイヤトレッド用ゴム組成物を用いて製造されたタイヤトレッド部を備える冬用空気入りタイヤ。【選択図】図1

Description

本発明は、冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤに関する。
近年、車両走行時の安全性の面から、タイヤのウェット性能(ウェットグリップ性能)(ウェット路面での制動性能)の向上が求められている。また、車両走行時の低燃費性の面から、タイヤの転がり性能(低転がり抵抗性)の向上が求められている。これに対し、タイヤのトレッド部を構成するゴム成分に、シリカを配合して、ウェット性能および転がり性能を向上させる方法が知られている。
しかし、シリカはゴム成分との親和性が低く、また、シリカ同士の凝集性が高いため、ゴム成分に単にシリカを配合してもシリカが分散せず、ウェット性能および転がり性能を向上させる効果が十分に得られないという問題があった。
また、氷雪路面で使用されることがある冬用タイヤでは、ウェットグリップ性能等に加えて、氷雪路上性能、すなわち氷雪路上での制動性に優れていることも要求されている。
このようななか、例えば、特許文献1の請求項1には、工程AとBとCとをこの順に備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴム等を含有するタイヤ用ゴム組成物が提案されており(請求項1)、このゴム組成物をトレッドに用いた冬用タイヤも記載されている([請求項5][請求項6])。特許文献1には、上記タイヤ用ゴム組成物が、タイヤにしたときに優れたウェット性能および氷雪路上性能を示す旨が記載されている。
特開2016−47886号公報
昨今、求められる安全レベルの向上に伴い、タイヤのウェット性能、氷雪路上性能等について、さらなる向上が望まれている。
このようななか、本発明者らが、特許文献1の実施例を参考にタイヤトレッド用ゴム組成物を調製し、タイヤにしたときのウェット性能およびタイヤにしたときの氷雪路上性能を評価したところ、今後さらに高まるであろう要求を考慮するとさらなる改善が望ましいことが明らかになった。
そこで、本発明は、タイヤにしたときのウェット性能およびタイヤにしたときの氷雪路上性能に優れる冬用タイヤトレッド用ゴム組成物、並びに、上記冬用タイヤトレッド用ゴム組成物を用いた冬用空気入りタイヤを提供することを課題とする。
本発明者らは、上記課題について鋭意検討した結果、特定の共役ジエン系ゴムを用いることで、上記課題が解決できることを見出し、本発明に至った。
すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
[1] 特定共役ジエン系ゴムを30質量%以上含む共役ジエン系ゴムと、
特定可塑剤を含む可塑剤と、
シリカと、
シランカップリング剤とを含有し、
上記特定可塑剤の含有量が、上記共役ジエン系ゴム100質量部に対して、5質量部以上であり、
上記シリカの含有量が、上記共役ジエン系ゴム100質量部に対して、30質量部以上であり、
上記シランカップリング剤の含有量が、上記シリカの含有量に対して、3〜30質量%であり、
上記特定共役ジエン系ゴムが、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、上記活性末端を有する共役ジエン系重合体鎖に、後述する一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、
上記特定可塑剤が、ガラス転移温度が−50℃以下である可塑剤であり、
上記共役ジエン系ゴムと上記可塑剤との平均ガラス転移温度が、−50℃よりも低い、冬用タイヤトレッド用ゴム組成物。
[2] 上記共役ジエン系ゴムが、更に、上記特定共役ジエン系ゴム以外の共役ジエン系ゴム(y)を含み、
上記特定共役ジエン系ゴムのガラス転移温度と、上記共役ジエン系ゴム(y)のガラス転移温度との差の絶対値が、30℃以上である、[1]に記載の冬用タイヤトレッド用ゴム組成物。
[3] 上記特定共役ジエン系ゴムのガラス転移温度が、−60℃以下である、[1]または[2]に記載の冬用タイヤトレッド用ゴム組成物。
[4] 上記特定共役ジエン系ゴムのガラス転移温度が、−60℃を超える、[1]または[2]に記載の冬用タイヤトレッド用ゴム組成物。
[5] 上記共役ジエン系ゴムが、ガラス転移温度が−60℃を超える特定共役ジエン系ゴム(T1)と、ガラス転移温度が−60℃以下である特定共役ジエン系ゴム(T2)とを含む、[1]に記載の冬用タイヤトレッド用ゴム組成物。
[6] 上記シリカの含有量が、上記共役ジエン系ゴム100質量部に対して、100質量部以上である、[1]〜[5]のいずれかに記載の冬用タイヤトレッド用ゴム組成物。
[7] 上記特定共役ジエン系ゴムが、
イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含む重合体ブロック(A)と、
1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含む重合体ブロック(B)とが一続きにして形成された構造を有する、[1]〜[6]のいずれかに記載の冬用タイヤトレッド用ゴム組成物。
[8] 上記特定可塑剤のガラス転移温度が、−60℃以下である、[1]〜[7]のいずれかに記載の冬用タイヤトレッド用ゴム組成物。
[9] 上記特定可塑剤の含有量が、上記可塑剤全量に対して、5〜100質量%である、[1]〜[8]のいずれかに記載の冬用タイヤトレッド用ゴム組成物。
[10] 上記特定可塑剤が、パラフィンオイル、液状ポリブタジエンおよびリン酸エステルからなる群から選ばれる少なくとも1種の可塑剤(p1)を含む、[1]〜[9]のいずれかに記載の冬用タイヤトレッド用ゴム組成物。
[11] 上記液状ポリブタジエンの重量平均分子量が、2,000〜100,000である、[10]に記載の冬用タイヤトレッド用ゴム組成物。
[12] [1]〜[11]のいずれかに記載の冬用タイヤトレッド用ゴム組成物を用いて製造されたタイヤトレッド部を備える、冬用空気入りタイヤ。
以下に示すように、本発明によれば、タイヤにしたときのウェット性能(以下、単に「ウェット性能」とも言う)およびタイヤにしたときの氷雪路上性能(以下、単に「氷雪路上性能」とも言う)に優れる冬用タイヤトレッド用ゴム組成物、並びに、上記冬用タイヤトレッド用ゴム組成物を用いた冬用空気入りタイヤを提供することができる。
本発明の冬用空気入りタイヤの実施態様の一例の部分断面概略図である。
以下に、本発明の冬用タイヤトレッド用ゴム組成物および上記冬用タイヤトレッド用ゴム組成物を用いた冬用空気入りタイヤについて説明する。
なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本発明の冬用タイヤトレッド用ゴム組成物に含有される各成分は、1種を単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上を併用する場合、その成分について含有量とは、特段の断りが無い限り、合計の含有量を指す。
また、本明細書において、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロニトリル」は、「アクリロニトリル」または「メタクリロニトリル」を表す表記である。
また、本明細書において、ガラス転移温度を「Tg」と略記する場合がある。
[I]冬用タイヤトレッド用ゴム組成物
本発明の冬用タイヤトレッド用ゴム組成物(以下、「本発明の組成物」とも言う)は、
特定共役ジエン系ゴムを30質量%以上含む共役ジエン系ゴムと、特定可塑剤を含む可塑剤と、シリカと、シランカップリング剤とを含有する。
上記特定可塑剤の含有量は、上記共役ジエン系ゴム100質量部に対して、5質量部以上である。
上記シリカの含有量は、上記共役ジエン系ゴム100質量部に対して、30質量部以上である。
上記シランカップリング剤の含有量が、上記シリカの含有量に対して、3〜30質量%である。
上記特定共役ジエン系ゴムが、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、上記活性末端を有する共役ジエン系重合体鎖に、下記一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、下記一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムである。
上記特定可塑剤が、ガラス転移温度が−50℃以下である可塑剤である。
上記共役ジエン系ゴムと上記可塑剤との平均ガラス転移温度が、−50℃よりも低い。
なお、本発明において、上記可塑剤が共役ジエン系ゴムである場合、上記可塑剤としての共役ジエン系ゴムは、本発明の組成物に含有される「(特定共役ジエン系ゴムを30質量%以上含む)共役ジエン系ゴム」に該当しない。
本発明の組成物はこのような構成をとるため、上述した効果が得られるものと考えらえる。その理由は明らかではないが、およそ以下のとおりと推測される。
上述のとおり、本発明の組成物はシリカを含有する。シリカを用いることでウェット性能と氷雪路上性能が高いレベルで両立されることが期待されるが、シリカは凝集し易く、実際には上記効果が満足に発現されないという問題がある。さらにはシリカの凝集により加工性が悪化してしまうという問題もある。
一方で、本発明の組成物が含有する特定共役ジエン系ゴムはシリカと類似の構造を有するポリオルガノシロキサン構造を有するため、上記ポリオルガノシロキサン構造がシリカと親和し、シリカの凝集を防ぐものと考えられる。また、特定共役ジエン系ゴムはアミノシラン等の窒素原子含有シランに由来する構造も有するため、これがシランカップリング剤とシリカとのシラニゼーションを促進し、シリカの凝集をさらに抑制するものと考えられる。結果として、シリカによる効果(ウェット性能と氷雪路上性能を高いレベルで両立)が十分に発揮されると考えられる。また、加工性も良好になるものと考えられる。
以下、本発明の組成物に含有される各成分について詳述する。
[1]共役ジエン系ゴム
本発明の組成物に含有される共役ジエン系ゴムは特定共役ジエン系ゴムを30質量%以上含む。
最初に特定共役ジエン系ゴムについて説明する。
[特定共役ジエン系ゴム]
本発明の組成物が含有する特定共役ジエン系ゴムは以下の第1〜3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムである。
(1)第1工程
不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程
(2)第2工程
活性末端を有する共役ジエン系重合体鎖に、後述する一般式(1)で表されるポリオルガノシロキサンを、上記第1工程で使用した重合開始剤1モルに対して、上記ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程
(3)第3工程
上記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる第3工程
最初に、特定共役ジエン系ゴムを上述のとおり製造方法によって特定する理由について説明する。
上述のとおり、第3工程では、第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、後述する一般式(2)で表される化合物を反応させる。ここで、一般式(2)で表される化合物が有するAが、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基と反応して結合する。しかしながら、後述のとおり、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基は様々な構造をとり得るため、反応残基に一般式(2)で表される化合物が反応した後の構造は極めて複雑であり、その構造を解析することは技術的に不可能であるか、又は、その構造を特定する作業を行うことに著しく過大な経済的支出や時間を要する。そのため、特定共役ジエン系ゴムを「第1〜3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴム」と記載することには、いわゆる「不可能・非実際的事情」が存在する。
以下、各工程について説明する。
〔第1工程〕
第1工程は、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る工程である。
まず、第1工程で用いられる各成分等について説明する。
<共役ジエン化合物>
第1工程において、活性末端を有する共役ジエン系重合体鎖を得るために、単量体として用いる共役ジエン化合物としては、特に限定されないが、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、4,5−ジエチル−1,3−オクタジエン、3−ブチル−1,3−オクタジエンなどを挙げることができる。これらのなかでも、本発明の効果がより優れる理由から、1,3−ブタジエンおよびイソプレンが好ましい。これらの共役ジエン化合物は、1種類を単独で使用しても2種類以上を組合せて用いてもよい。
<芳香族ビニル化合物>
また、第1工程において、重合に用いる単量体として、共役ジエン化合物とともに芳香族ビニル化合物を用いてもよい。単量体として用いる芳香族ビニル化合物としては、スチレン、メチルスチレン、エチルスチレン、t−ブチルスチレン、α−メチルスチレン、α−メチル−p−メチルスチレン、クロルスチレン、ブロモスチレン、メトキシスチレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレン、ジエチルアミノメチルスチレン、ジエチルアミノエチルスチレン、シアノエチルスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、本発明の効果がより優れる理由から、スチレンが好ましい。
第1工程で得られる、活性末端を有する共役ジエン系重合体鎖は、本発明の効果がより優れる理由から、共役ジエン単量体単位50〜100質量%を含むものが好ましく、52〜95質量%を含むものがより好ましく、また、芳香族ビニル単量体単位0〜50質量%を含むものが好ましく、5〜48質量%を含むものがより好ましい。
<その他の共重合可能な化合物>
さらに、第1工程においては、共役ジエン化合物とともに、芳香族ビニル化合物以外の、共役ジエン化合物と共重合可能な化合物(その他の共重合可能な化合物)を用いてもよい。このような共役ジエン化合物と共重合可能な化合物としては、エチレン、プロピレン、1−ブテンなどの鎖状オレフィン化合物;シクロペンテン、2−ノルボルネンなどの環状オレフィン化合物;1,5−ヘキサジエン、1,6−へプタジエン、1,7−オクタジエン、ジシクロペンタジエン、5−エチリデン−2−ノルボルネンなどの非共役ジエン化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステル;(メタ)アクリロニトリル、(メタ)アクリルアミドなどのその他の(メタ)アクリル酸誘導体;などが挙げられる。本発明の効果がより優れる理由から、これらの共役ジエン化合物と共重合可能な化合物は、第1工程で得られる、活性末端を有する共役ジエン系重合体鎖中に、単量体単位として、10質量%以下とするのが好ましく、5質量%以下とするのがより好ましい。
<不活性溶媒>
重合に用いる不活性溶媒としては、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、ブタン、ペンタン、ヘキサン、へプタンなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;などが挙げられる。これらの不活性溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不活性溶媒の使用量は、特に限定されないが、単量体濃度が、たとえば1〜50質量%となる量であり、本発明の効果がより優れる理由から、好ましくは10〜40質量%となる量である。
<重合開始剤>
重合に用いる重合開始剤としては、共役ジエン化合物を含む単量体を重合させて、活性末端を有する共役ジエン系重合体鎖を与えることができるものであれば、特に限定されない。その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤を挙げることができる。有機アルカリ金属化合物としては、たとえば、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、へキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4−ジリチオブタン、1,4−ジリチオ−2−エチルシクロヘキサン、1,3,5−トリリチオベンゼン、1,3,5ートリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、例えば、ジ−n−ブチルマグネシウム、ジ−n−へキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ−t−ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ−t−ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、たとえば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、本発明の効果がより優れる理由から、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく用いられ、有機モノリチウム化合物がより好ましく用いられ、n−ブチルリチウムが特に好ましく用いられる。
なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ピペリジン、ヘキサメチレンイミン、およびへプタメチレンイミンなどの2級アミン化合物と反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
有機アルカリ金属アミド化合物としては、たとえば、有機アルカリ金属化合物に、2級アミン化合物を反応させたものなどが挙げられ、なかでも、本発明の効果がより優れる理由から、下記一般式(3)で表される化合物を好適に用いることができる。
一般式(3)中、Mはアルカリ金属原子を表し、R11、R12は、それぞれ独立して、アルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基を表し、R11およびR12は互いに結合して、これらが結合する窒素原子とともに環構造を形成してもよく、該環構造を形成する場合には、これらが結合する窒素原子に加えて、これらが結合する窒素原子以外のヘテロ原子とともに環構造を形成していてもよい。
アルキル基としては、特に限定されないが、本発明の効果がより優れる理由から、炭素数1〜20のアルキル基が好ましく、炭素数1〜10のアルキル基がより好ましい。このようなアルキル基としては、たとえば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−へキシル基、n−ヘプチル基、n−オクチル基、n−デシル基などが挙げられる。
シクロアルキル基としては、特に限定されないが、本発明の効果がより優れる理由から、炭素数3〜20のシクロアルキル基が好ましく、炭素数3〜12のシクロアルキル基がより好ましい。このようなシクロアルキル基としては、たとえば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基などが挙げられる。
アリール基としては、特に限定されないが、本発明の効果がより優れる理由から、炭素数6〜12のアリール基が好ましく、炭素数6〜10のアリール基がより好ましい。このようなアリール基としては、たとえば、フェニル基、1−ナフチル基、2−ナフチル基などが挙げられる。
アラルキル基としては、特に限定されないが、本発明の効果がより優れる理由から、炭素数7〜13のアラルキル基が好ましく、炭素数7〜9のアラルキル基がより好ましい。このようなアラルキル基としては、たとえば、ベンジル基、フェネチル基などが挙げられる。
アミノ基の保護基としては、特に限定されず、アミノ基の保護基として作用する基であればよいが、たとえば、アルキルシリル基などが挙げられる。このようなアルキルシリル基としては、たとえば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、メチルジフェニルシリル基、エチルメチルフェニルシリル基、tert−ブチルジメチルシリル基などが挙げられる。
なお、R11、および/またはR12がアミノ基の保護基である場合には、アミノ基の保護基が外れることにより、得られる共役ジエン系ゴムを形成する重合体鎖の一方の末端において、後述する一般式(5)におけるR13、および/またはR14が水素原子である構造を導入することができる。
加水分解して水酸基を生じうる基としては、特に限定されず、たとえば、酸などの存在下で加水分解することで、水酸基を生成する基であればよいが、たとえば、アルコキシアルキル基、エポキシ基を含有する基などが挙げられる。
アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、エトキシエチル基、プロポキシメチル基、ブトキシメチル基、ブトキシエチル基、プロポキシエチル基などが挙げられる。
また、エポキシ基を含有する基としては、たとえば下記一般式(4)で表される基などが挙げられる。
−Z−Z−E (4)
一般式(4)中、Zは炭素数1〜10のアルキレン基またはアルキルアリーレン基であり、Zはメチレン基、硫黄原子または酸素原子であり、Eはグリシジル基である。
また、R11およびR12は互いに結合して、これらが結合する窒素原子とともに環構造を形成していてもよく、この場合における、R11およびR12と、これと結合する窒素原子とで形成される構造の具体例としては、アゼチジン環(R11およびR12が、プロピレン基)、ピロリジン環(R11およびR12が、ブチレン基)、ピペリジン環(R11およびR12が、ペンチレン基)、ヘキサメチレンイミン環(R11およびR12が、ヘキシレン基)などが挙げられる。
11およびR12が互いに結合して、これらが結合する窒素原子とともに環構造を形成する場合、環構造は、4〜8員環構造であることが好ましい。
また、一般式(3)中、Mはアルカリ金属原子であり、このようなアルカリ金属原子としては、リチウム原子、ナトリウム原子、カリウム原子などが挙げられるが、これらの中でも、重合活性の観点より、リチウム原子が好ましい。
第1工程において、重合開始剤として、一般式(3)で表される化合物を用いた場合、有機アルカリ金属アミド化合物を形成するアミン構造が、重合体鎖の重合開始末端に結合した状態で残存することとなる。そのため、重合開始剤として、一般式(3)で表される化合物を用いると、得られる共役ジエン系ゴムを形成する重合体鎖の一方の末端に、下記一般式(5)で表される構造が導入される。
一般式(5)中、R13およびR14は、それぞれ独立して、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基を表し、R13およびR14は互いに結合して、これらが結合する窒素原子とともに環構造を形成してもよく、該環構造を形成する場合には、これらが結合する窒素原子に加えて、これらが結合する窒素原子以外のへテロ原子とともに環構造を形成していてもよい。
13、R14となりうるアルキル基、シクロアルキル基、アリール基、アラルキル基、アミノ基の保護基、または加水分解して水酸基を生じうる基としては、一般式(3)におけるR11、R12と同じものを挙げることができ、また、R13およびR14は互いに結合して、これらが結合する窒素原子とともに環構造を形成する場合にも、一般式(3)におけるR11、R12と同じものとすることができる。
なお、R13、R14となりうる水素原子は、アミノ基の保護基が外れることにより、導入される。
重合開始剤として、有機アルカリ金属アミド化合物を用いた場合、得られる特定共役ジエン系ゴムを、一方の末端にアミン構造を有し、かつ、他方の末端に変性剤に由来する特定の構造を有するものとすることができる。その結果、このようなアミン構造の効果により、本発明の効果はより優れたものとなる。
重合開始剤としての有機アルカリ金属アミド化合物を重合系に添加する方法としては、特に限定されず、予め、有機アルカリ金属化合物に、2級アミン化合物を反応させて、有機アルカリ金属アミド化合物を得て、これを共役ジエン化合物を含む単量体と混合して、重合反応を進行させる方法を採用することができる。あるいは、有機アルカリ金属化合物と、2級アミン化合物とを別々に重合系に添加し、これらを共役ジエン化合物を含む単量体と混合することで、重合系において、有機アルカリ金属アミド化合物を生成させることで、重合反応を進行させる方法を採用してもよい。反応温度等の反応条件は、特に限定されるものではなく、たとえば、目的とする重合反応条件に従えばよい。
2級アミン化合物の使用量は、目的とする重合開始剤の添加量に応じて決定すればよいが、有機アルカリ金属化合物1ミリモル当り、通常0.01〜1.5ミリモル、好ましくは0.1〜1.2ミリモル、より好ましくは0.5〜1.0ミリモルの範囲である。
重合開始剤の使用量は、目的とする共役ジエン系重合体鎖の分子量に応じて決定すればよいが、単量体1000g当り、通常1〜50ミリモル、好ましくは1.5〜20ミリモル、より好ましくは2〜15ミリモルの範囲である。
<重合温度等>
重合温度は、通常−80〜+150℃、本発明の効果がより優れる理由から、好ましくは0〜100℃、より好ましくは30〜90℃の範囲である。重合様式としては、回分式、連続式などのいずれの様式をも採用できるが、共役ジエン化合物と芳香族ビニル化合物とを共重合させる場合は、共役ジエン単量体単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすい点で、回分式が好ましい。
<極性化合物>
共役ジエン化合物を含む単量体を重合するにあたり、得られる共役ジエン系重合体鎖における共役ジエン単量体単位中のビニル結合含有量を調節するために、不活性有機溶媒に極性化合物を添加することが好ましい。極性化合物としては、たとえば、ジブチルエーテル、テトラヒドロフラン、2,2−ジ(テトラヒドロフリル)プロパンなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらのなかでも、本発明の効果がより優れる理由から、エーテル化合物、および第三級アミンが好ましく、第三級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1モルに対して、好ましくは0.001〜100モル、より好ましくは0.01〜10モルである。極性化合物の使用量がこの範囲にあると、共役ジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。
<ビニル結合含有量>
第1工程で得られる、活性末端を有する共役ジエン系重合体鎖における共役ジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、好ましくは1〜90質量%、より好ましくは3〜80質量%、特に好ましくは5〜70質量%である。
<分子量>
第1工程で得られる、活性末端を有する共役ジエン系重合体鎖の重量平均分子量(Mw)は、特に限定されないが、本発明の効果がより優れる理由から、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、100,000〜2,000,000が好ましく、200,000〜1500,000がより好ましく、300,000〜1,200,000が特に好ましい。
また、第1工程で得られる、活性末端を有する共役ジエン系重合体鎖の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布も、特に限定されないが、好ましくは1.0〜3.0であり、より好ましくは1.0〜2.5である。活性末端を有する共役ジエン系重合体鎖の分子量分布(Mw/Mn)が上記範囲内にあると、共役ジエン系ゴムの製造が容易となる。
<好適な態様>
第1工程は、本発明の効果がより優れる理由から、次のような工程とすることが好ましい。
すなわち、不活性溶媒中で、イソプレン、またはイソプレンおよび芳香族ビニル化合物を含む単量体を、重合開始剤により重合し、イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含む活性末端を有する重合体ブロック(A)を形成させる工程Aと、
上記活性末端を有する重合体ブロック(A)と、1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体と、を混合して重合反応を継続させ、1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含む活性末端を有する重合体ブロック(B)を、重合体ブロック(A)と一続きにして形成させることにより、活性末端を有する共役ジエン系重合体鎖を得る工程Bと、を備えるものとすることが好ましい。
このような工程を採用することにより、第1工程により得られる活性末端を有する共役ジエン系重合体鎖を、イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含む重合体ブロック(A)と、1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含む重合体ブロック(B)とが一続きにして形成された構造(以下、「PIブロック」とも言う)を含むものとすることができる。この場合、得られる特定共役ジエン系ゴムもPIブロックを有するものとなる。
以下、このような態様について説明する。
(工程A)
工程Aで形成される重合体ブロック(A)は、重合体ブロック(A)中、イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含むものであればよいが、本発明の効果がより優れる理由から、イソプレン単量体単位85〜95質量%および芳香族ビニル単量体単位5〜15質量%を含むものであることが好ましく、イソプレン単量体単位89〜95質量%および芳香族ビニル単量体単位5〜11質量%を含むものであることがより好ましい。
重合体ブロック(A)に含まれる芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル化合物としては、上述した芳香族ビニル化合物と同じものを用いることができ、本発明の効果がより優れる理由から、これらの中でもスチレンが好ましい。なお、これらの芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
重合体ブロック(A)は、本発明の効果がより優れる理由から、イソプレン単量体単位のみ、またはイソプレン単量体単位および芳香族ビニル単量体単位からなるものであることが好ましいが、所望により、イソプレン単量体単位、またはイソプレン単量体単位および芳香族ビニル単量体単位に加えて、その他の単量体単位を含んでいてもよい。その他の単量体単位を構成するために用いられるその他の化合物としては、1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロロ−1,3−ブタジエン、1,3−ペンタジエン、および1,3−ヘキサジエンなどのイソプレン以外の共役ジエン化合物;アクリロニトリル、およびメタクリロニトリルなどのα,β−不飽和ニトリル;アクリル酸、メタクリル験、および無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、およびアクリル酸ブチルなどの不飽和カルボン酸エステル;1,5−ヘキサジエン、1,6−へプタジエン、1,7−オクタジエン、ジシクロペンタジエン、および5−エチリデン−2−ノルボルネンなどの非共役ジエン;などが挙げられる。これらの中でも、本発明の効果がより優れる理由から、1,3−ブタジエンが好ましい。これらのその他の単量体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。重合体ブロック(A)中における、その他の単量体単位の含有割合は、本発明の効果がより優れる理由から、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。
本発明において、共役ジエン系重合体鎖中の重合体ブロック(A)は、不活性溶媒中、イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体を、重合開始剤により重合することにより形成される。形成された重合体ブロック(A)は、活性末端を有するものとなる。
重合体ブロック(A)を形成するために、イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体の重合に用いられる不活性溶媒としては、上述した不活性溶媒と同じものを用いることができる。不活性溶媒の使用量は、本発明の効果がより優れる理由から、単量体濃度が、好ましくは1〜80質量%となる量であり、より好ましくは10〜50質量%となる量である。
重合体ブロック(A)を形成するために用いられる重合開始剤としては、イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体を重合させて、活性末端を有する重合体鎖を与えることができるものであれば、特に限定されない。その具体例としては、上述した重合開始剤と同じものを用いることができる。
重合開始剤の使用量は、目的とする分子量に応じて決定すればよいが、本発明の効果がより優れる理由から、イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体100g当り、好ましくは4〜250ミリモル、より好ましくは6〜200ミリモル、特に好ましくは10〜70ミリモルの範囲である。
イソプレン、または、イソプレンおよび芳香族ビニル化合物を含む単量体を重合する際における重合温度は、本発明の効果がより優れる理由から、好ましくは−80〜+150℃、より好ましくは0〜100℃、さらに好ましくは20〜90℃の範囲である。重合様式としては、回分式、連続式など、いずれの様式をも採用できる。また、結合様式としては、たとえば、ブロック状、テーパー状、およびランダム状などの種々の結合様式とすることができる。
また、本発明の効果がより優れる理由から、重合体ブロック(A)におけるイソプレン単量体単位中のビニル結合含有量を調節するために、重合に際し、不活性溶媒に極性化合物を添加することが好ましい。極性化合物としては、上述した極性化合物と同じものを用いることができる。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1モルに対して、0.01〜30モルが好ましく、0.05〜10モルがより好ましい。極性化合物の使用量が上記範囲内にあると、イソプレン単量体単位中のビニル結合含有量の調節が容易であり、しかも、重合開始剤の失活による不具合も発生し難い。また、上記範囲内で極性化合物の使用量を増加させることで、イソプレン単量体単位中のビニル結合含有量を増加させることができる。
重合体ブロック(A)におけるイソプレン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、5〜90質量%が好ましく、5〜80質量%がより好ましい。なお、本明細書中において、イソプレン単量体単位中のビニル結合含有量とは、イソプレン単量体単位中の、1,2−構造を有するイソプレン単量体単位および3,4−構造を有するイソプレン単量体単位の合計量の割合を指すものとする。
重合体ブロック(A)の重量平均分子量(Mw)は、本発明の効果がより優れる理由から、ゲルパーミエーションクロマトグラフィによって測定されるポリスチレン換算の値として、500〜15,000であることが好ましく、1000〜12,000であることがより好ましく、1,500〜10,000であることが特に好ましい。
また、重合体ブロック(A)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、本発明の効果がより優れる理由から、1.0〜1.5であることが好ましく、1.0〜1.3であることがより好ましい。重合体ブロック(A)の分子量分布の値(Mw/Mn)が上記範囲内にあると、共役ジエン系ゴムの製造がより容易となる。
(工程B)
工程Bで形成される共役ジエン系重合体鎖中の重合体ブロック(B)は、重合体ブロック(B)中、1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含むものであればよいが、本発明の効果がより優れる理由から、1,3−ブタジエン単量体単位52〜95質量%および芳香族ビニル単量体単位5〜48質量%を含むものであることが好ましい。1,3−ブタジエン単量体単位と芳香族ビニル単量体単位との含有割合が上記範囲内にあると、共役ジエン系ゴムの製造がより容易となる。
重合体ブロック(B)に含まれる芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル化合物としては、上述した芳香族ビニル化合物と同じものを用いることができ、これらの中でも、本発明の効果がより優れる理由から、スチレンが好ましい。
重合体ブロック(B)は、本発明の効果がより優れる理由から、1,3−ブタジエン単量体単位のみ、または1,3−ブタジエン単量体単位および芳香族ビニル単量体単位からなるものであることが好ましいが、本発明における本質的な特性を損なわない範囲において、所望により、1,3−ブタジエン単量体単位、または1,3−ブタジエン単量体単位および芳香族ビニル単量体単位に加えて、その他の単量体単位を含んでいてもよい。その他の単量体単位を構成するために用いられるその他の単量体としては、上述した重合体ブロック(A)において例示された化合物(ただし、1,3−ブタジエンを除く)と同じものを用いることができる。また、重合体ブロック(B)においては、その他の単量体としてイソプレンを用いることもできる。重合体ブロック(B)中における、その他の単量体単位の含有割合は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、35質量%以下であることがさらに好ましい。
共役ジエン系重合体鎖中の重合体ブロック(B)は、上述した活性末端を有する重合体ブロック(A)と、1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体と、を混合して重合反応を継続させることにより、重合体ブロック(A)と一続きに形成される。形成された重合体ブロック(B)は、活性末端を有するものとなる。一方、重合体ブロック(A)からは、活性末端が消失する。
重合体ブロック(B)を形成するために、重合体ブロック(A)と、1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体との重合に用いられる不活性溶媒としては、特に限定されず、上述した不活性溶媒と同じものを用いることができる。
重合体ブロック(B)を形成する際における、活性末端を有する重合体ブロック(A)の使用量は、目的とする分子量に応じて決定すればよいが、本発明の効果がより優れる理由から、1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体100g当り、好ましくは0.1〜5ミリモル、より好ましくは0.15〜2ミリモル、さらに好ましくは0.2〜1.5ミリモルの範囲である。
重合体ブロック(A)と1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体との混合方法は、特に限定されず、1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体の溶液中に活性末端を有する重合体ブロック(A)を加えてもよいし、活性末端を有する重合体ブロック(A)の溶液中に1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体を加えてもよい。重合の制御の観点より、1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体の溶液中に活性末端を有する重合体ブロック(A)を加える方法が好ましい。
1,3−ブタジエン、または1,3−ブタジエンおよび芳香族ビニル化合物を含む単量体を重合する際における重合温度は、本発明の効果がより優れる理由から、好ましくは−80〜+150℃、より好ましくは0〜100℃、さらに好ましくは20〜90℃の範囲である。重合様式としては、回分式、連続式など、いずれの様式をも採用できる。重合体ブロック(B)を共重合体鎖とする場合には、結合のランダム性を制御しやすい点で、回分式が好ましい。
重合体ブロック(B)を共重合体鎖とする場合の各単量体の結合様式は、たとえば、ブロック状、テーパー状、およびランダム状などの種々の結合様式とすることができる。これらの中でも、本発明の効果がより優れる理由から、ランダム状が好ましい。なお、1,3−ブタジエンおよび芳香族ビニル化合物の結合様式をランダム状にする場合、本発明の効果がより優れる理由から、重合系内において、1,3−ブタジエンと芳香族ビニル化合物との合計量に対する芳香族ビニル化合物の比率が高くなりすぎないように、1,3−ブタジエンまたは1,3−ブタジエンと芳香族ビニル化合物とを、連続的または断続的に重合系内に供給して重合することが好ましい。
また、本発明の効果がより優れる理由から、重合体ブロック(B)における1,3−ブタジエン単量体単位中のビニル結合含有量を調節するために、重合体ブロック(A)におけるイソプレン単量体単位中のビニル結合含有量の調節時と同様に、重合に際し、不活性溶媒に極性化合物を添加することが好ましい。ただし、重合体ブロック(A)の調製時に、不活性溶媒に、重合体ブロック(B)における1,3−ブタジエン単量体単位中のビニル結合含有量を調節するのに十分な量の極性化合物を添加している場合は、新たに極性化合物を添加しなくてもよい。ビニル結合含有量を調節するために用いられる極性化合物としては、上述した極性化合物と同じものを用いることができる。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、初めの重合反応(1つ目の重合体ブロック(A)を形成するための重合反応)に使用した重合開始剤1モルに対して、好ましくは0.01〜100モル、より好ましくは0.1〜30molの範囲で調節すればよい。極性化合物の使用量がこの範囲にあると、1,3−ブタジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ、重合開始剤の失活による不具合も発生し難い。
重合体ブロック(B)における1,3−ブタジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、好ましくは1〜90質量%、より好ましくは3〜80質量%、特に好ましくは5〜70質量%である。
このようにして、重合体ブロック(A)および重合体ブロック(B)を有する、活性末端を有する共役ジエン系重合体鎖を得ることができる。活性末端を有する共役ジエン系重合体鎖は、生産性の観点より、重合体ブロック(A)−重合体ブロック(B)で構成され、かつ、重合体ブロック(B)の末端が活性末端であることが好ましいが、重合体ブロック(A)を複数有するものであってもよいし、その他の重合体ブロックを有するものであってもよい。たとえば、重合体ブロック(A)−重合体ブロック(B)−重合体ブロック(A)などの、活性末端を有する共役ジエン系重合体鎖が挙げられる。この場合には、重合体ブロック(B)に続いて形成された重合体ブロック(A)の末端に、活性末端が形成されることとなる。共役ジエン系重合体鎖の活性末端側に重合体ブロック(A)を形成させる場合、本発明の効果がより優れる理由から、イソプレンの使用量は、初めの重合反応(1つ目の重合体ブロック(A)を形成するための重合反応)に使用した重合開始剤1モルに対して、10〜100モルであることが好ましく、15〜70モルであることがより好ましく、20〜35モルであることが特に好ましい。
活性末端を有する共役ジエン系重合体鎖における重合体ブロック(A)と重合体ブロック(B)との質量比(重合体ブロック(A)、重合体ブロック(B)が複数存在する場合は、それぞれの合計質量を基準とした質量比)は、本発明の効果がより優れる理由から、(重合体ブロック(A)の質量)/(重合体ブロック(B)の質量)で、0.001〜0.1であることが好ましく、0.003〜0.07であることがより好ましく、0.005〜0.05であることが特に好ましい。
重合体ブロック(A)および重合体ブロック(B)を有する、活性末端を有する共役ジエン系重合体鎖における、イソプレン単量体単位および1,3−ブタジエン単量体単位の合計単量体単位と、芳香族ビニル単量体単位との含有割合は、本発明の効果がより優れる理由から、活性末端を有する共役ジエン系重合体鎖中、イソプレン単量体単位および1,3−ブタジエン単量体単位の合計単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%であることが好ましく、イソプレン単量体単位および1,3−ブタジエン単量体単位の合計単量体単位52〜95質量%、および芳香族ビニル単量体単位5〜48質量%であることがより好ましい。また、重合体ブロック(A)および重合体ブロック(B)を有する、活性末端を有する共役ジエン系重合体鎖における、イソプレン単量体単位中および1,3−ブタジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、上述した重合体ブロック(B)における1,3−ブタジエン単量体単位中のビニル結合含有量と同じ範囲にあることが好ましい。
〔第2工程〕
第2工程は、第1工程にて得られた活性末端を有する共役ジエン系重合体鎖に、下記一般式(1)で表されるポリオルガノシロキサンを、第1工程で使用した重合開始剤1モルに対して、ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる工程である。
一般式(1)中、R〜Rは、炭素数1〜6のアルキル基、または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。XおよびXは、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、炭素数1〜5のアルコキシ基、および、エポキシ基を含有する炭素数4〜12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。Xは、炭素数1〜5のアルコキシ基、またはエポキシ基を含有する炭素数4〜12の基であり、複数あるXは互いに同一であっても相違していてもよい。Xは、2〜20のアルキレングリコールの繰返し単位を含有する基であり、Xが複数あるときは、それらは互いに同一であっても相違していてもよい。mは3〜200の整数、nは0〜200の整数、kは0〜200の整数であり、m+n+kは3以上である。
一般式(1)で表されるポリオルガノシロキサンにおいて、一般式(1)中のR〜R、XおよびXを構成し得る炭素数1〜6のアルキル基としては、たとえば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、へキシル基およびシクロへキシル基などが挙げられる。炭素数6〜12のアリール基としては、たとえば、フェニル基およびメチルフェニル基などが挙げられる。これらの中でも、ポリオルガノシロキサン自体の製造の容易性の観点から、メチル基およびエチル基が好ましい。
また、一般式(1)で表されるポリオルガノシロキサンにおいて、X、XおよびXを構成し得る炭素数1〜5のアルコキシ基としては、たとえば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基およびブトキシ基などが挙げられる。これらの中でも、ポリオルガノシロキサン自体の製造の容易性の観点から、メトキシ基およびエトキシ基が好ましい。
さらに、一般式(1)で表されるポリオルガノシロキサンにおいて、X、XおよびXを構成し得るエポキシ基を含有する炭素数4〜12の基としては、たとえば、下記一般式(6)で表される基が挙げられる。
−Z−Z−E (6)
一般式(6)中、Zは、炭素数1〜10のアルキレン基、またはアルキルアリーレン基であり、Zはメチレン基、硫黄原子、または酸素原子であり、Eはエポキシ基を有する炭素数2〜10の炭化水素基である。
一般式(6)で表される基としては、本発明の効果がより優れる理由から、Zが酸素原子であるものが好ましく、Zが酸素原子であり、かつ、Eがグリシジル基であるものがより好ましく、Zが炭素数1〜3のアルキレン基であり、Zが酸素原子であり、かつ、Eがグリシジル基であるものが特に好ましい。
また、一般式(1)で表されるポリオルガノシロキサンにおいて、XおよびXとしては、上記の中でも、本発明の効果がより優れる理由から、エポキシ基を含有する炭素数4〜12の基、または、炭素数1〜6のアルキル基が好ましい。また、Xとしては、上記の中でも、本発明の効果がより優れる理由から、エポキシ基を含有する炭素数4〜12の基が好ましい。さらに、本発明の効果がより優れる理由から、XおよびXが炭素数1〜6のアルキル基であり、Xがエポキシ基を含有する炭素数4〜12の基であることがより好ましい。
また、一般式(1)で表されるポリオルガノシロキサンにおいて、X、すなわち2〜20のアルキレングリコールの繰返し単位を含有する基としては、本発明の効果がより優れる理由から、下記一般式(7)で表される基が好ましい。
一般式(7)中、tは2〜20の整数であり、Xは炭素数2〜10のアルキレン基またはアルキルアリーレン基であり、R15は水素原子またはメチル基であり、Xは炭素数1〜10のアルコキシ基またはアリールオキシ基である。これらの中でも、tが2〜8の整数であり、Xが炭素数3のアルキレン基であり、R15が水素原子であり、かつ、Xがメトキシ基であるものが好ましい。なお、一般式(7)中、*は結合位置である。
一般式(1)で表されるポリオルガノシロキサンにおいて、mは3〜200の整数、好ましくは20〜150の整数、より好ましくは30〜120の整数である。mが3以上であると、得られる共役ジエン系ゴムのカップリング率が高くなり、その結果、本発明の効果がより優れる。また、mが200以下であると、一般式(1)で表されるポリオルガノシロキサン自体の製造がより容易になると共に、その粘度が高くなりすぎず、取り扱いもより容易となる。
また、一般式(1)で表されるポリオルガノシロキサンにおいて、nは0〜200の整数、好ましくは0〜150の整数、より好ましくは0〜120の整数である。kは0〜200の整数、好ましくは0〜150の整数、より好ましくは0〜130の整数である。m、nおよびkの合計数は3以上であり、3〜400であることが好ましく、20〜300であることがより好ましく、30〜250であることが特に好ましい。m、nおよびkの合計数が3以上であると、一般式(1)で表されるポリオルガノシロキサンと活性末端を有する共役ジエン系重合体鎖との反応が進行し易く、さらに、m、nおよびkの合計数が400以下であると、一般式(1)で表されるポリオルガノシロキサン自体の製造が容易になると共に、その粘度が高くなりすぎず、取り扱いも容易となる。
第2工程における、ポリオルガノシロキサンの使用量は、上述した第1工程において重合に使用した重合開始剤1モルに対して、ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、1モル以上であり、本発明の効果がより優れる理由から、好ましくは1〜2.5モルであり、より好ましくは1.1〜2モルである。
ポリオルガノシロキサンの使用量を、重合開始剤1モルに対して、シロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上とすることにより、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端のうち、実質的に全ての活性末端を、ポリオルガノシロキサンと反応させることができるため、好ましい。すなわち、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の、活性末端としてのアルキル金属基、すなわち、−R(Rは、重合体鎖末端を形成する炭化水素基、Mは、アルカリ金属原子、アルカリ土類金属原子、または、ランタン系列金属原子)で表される基が実質的に残存しないような状態とすることができる。
そして、これにより、後述する第3工程において、一般式(2)で表される化合物を反応させた際に、一般式(2)で表される化合物が、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端と直接反応してしまうことを実質的に抑制することができる。その結果、一般式(2)で表される化合物を、共役ジエン系重合体鎖と、一般式(1)で表されるポリオルガノシロキサンとが反応することにより生じた反応残基に対して、適切に反応させることができる。そして、これにより、共役ジエン系重合体鎖に、一般式(1)で表されるポリオルガノシロキサンに由来する構造を介した、一般式(2)で表される化合物による変性構造を適切に導入することができ、このような変性構造を導入することによる効果、すなわち、優れた氷雪路上性能およびウェット性能を実現できるものである。また、加工性も良好になるものと考えられる。
ポリオルガノシロキサンと活性末端を有する共役ジエン系重合体鎖とを反応させる方法は、特に限定されないが、これらを、それぞれが溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した第1工程において用いる不活性溶媒として例示したものなどを用いることができる。また、この際においては、活性末端を有する共役ジエン系重合体鎖を得るための重合に用いた重合溶液に、ポリオルガノシロキサンを添加する方法が簡便であり好ましい。また、この際においては、ポリオルガノシロキサンは、不活性溶媒に溶解して重合系内に添加することが好ましく、その溶液濃度は、1〜50質量%の範囲とすることが好ましい。反応温度は、特に限定されないが、通常0〜120℃であり、反応時間も特に限定されないが、通常1分〜1時間である。
活性末端を有する共役ジエン系重合体鎖を含有する溶液に、ポリオルガノシロキサンを添加する時期は特に限定されないが、重合反応が完結しておらず、活性末端を有する共役ジエン系重合体鎖を含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する共役ジエン系重合体鎖を含有する溶液が、100ppm以上、より好ましくは300〜50,000ppmの単量体を含有している状態で、この溶液にポリオルガノシロキサンを添加することが望ましい。ポリオルガノシロキサンの添加をこのように行なうことにより、活性末端を有する共役ジエン系重合体鎖と重合系中に含まれる不純物などとの副反応を抑制して、反応を良好に制御することが可能となる。
第2工程においては、上述した第1工程にて得られた活性末端を有する共役ジエン系重合体鎖の活性末端に、変性剤としてのポリオルガノシロキサンを反応させるものであるが、共役ジエン系重合体鎖の活性末端は、シロキサン構造中のケイ素原子と反応することとなる。あるいは、共役ジエン系重合体鎖の活性末端のうち一部は、ポリオルガノシロキサンの側鎖のアルコキシ基またはエポキシ基(一般式(1)中、必須として含まれるXを形成するアルコキシ基またはエポキシ基等)と反応することとなる。そして、第2工程によれば、このような反応により、共役ジエン系重合体鎖に、シロキサンによる変性構造を導入するものである。
具体的には、共役ジエン系重合体鎖の活性末端が、シロキサン構造中のケイ素原子と反応することで、共役ジエン系重合体鎖は、シロキサン構造中のケイ素原子と共役ジエン系重合体鎖の活性末端との間に新たな結合を形成し、共役ジエン系重合体鎖の末端に、シロキサンによる変性構造が導入されるとともに、シロキサン構造中の酸素原子と、共役ジエン系重合体鎖の活性末端を形成していた金属原子との間で、これらの反応残基として、−O(Mは、アルカリ金属原子、アルカリ土類金属原子、または、ランタン系列金属原子)で表される基が形成されると考えられる。
あるいは、共役ジエン系重合体鎖の活性末端が、ポリオルガノシロキサンの側鎖のエポキシ基と反応することで、エポキシ基が開環し、エポキシ基が開環した部分の炭素原子と共役ジエン系重合体鎖の活性末端との間に新たな結合を形成し、共役ジエン系重合体鎖の末端に、シロキサン構造が導入されるとともに、エポキシ基中の酸素原子と、共役ジエン系重合体鎖の活性末端を形成していた金属原子との間で、これらの反応残基として、−Oで表される基が形成されると考えられる。または、共役ジエン系重合体鎖の活性末端が、ポリオルガノシロキサンの側鎖のアルコキシ基と反応することで、アルコキシ基が脱離し、共役ジエン系重合体鎖は、シロキサン構造中のケイ素原子と共役ジエン系重合体鎖の活性末端との間に新たな結合を形成し、共役ジエン系重合体鎖の末端に、シロキサン構造が導入される。
特に、第2工程においては、ポリオルガノシロキサンの使用量を、重合開始剤1モルに対して、シロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上とするものであるため、第1工程により得られた活性末端を有する共役ジエン系重合体鎖のうち、ほぼ全ての共役ジエン系重合体鎖に、シロキサンによる変性構造が導入することができる。そのため、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端としてのアルキル金属基、すなわち、−Rのうち、ほぼ全てを残存しないような状態とすることができ、これに代えて、反応残基としての−Oで表される基が形成されることとなる。ただし、本発明においては、ごく少量(たとえば、5質量%以下)であれば、シロキサンによる変性がされていない未変性の活性末端を有する共役ジエン系重合体鎖を含むものであってもよく(すなわち、ごく少量であれば、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端としてのアルキル金属基、すなわち、−Rが残存したものが含まれていてもよく)、このような場合を排除するものではない。
なお、第2工程において、活性末端を有する共役ジエン系重合体鎖に、一般式(1)で表されるポリオルガノシロキサンを反応させる前の状態のときに、本発明の効果を阻害しない範囲で、活性末端を有する共役ジエン系重合体鎖の活性末端の一部を、従来から通常使用されているカップリング剤や変性剤などを重合系内に添加して、カップリングや変性を行ってもよい。
〔第3工程〕
第3工程は、第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、下記一般式(2)で表される化合物を反応させる工程である。
一般式(2)中、Rは、ヒドロカルビル基であり、Aは、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基と反応しうる基であり、Aは、窒素原子を含有する基であり、pは0〜2の整数、qは1〜3の整数、rは1〜3の整数、p+q+r=4である。
本発明によれば、上述の第2工程において、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端としてのアルキル金属基、すなわち、−Rのうち、ほぼ全てを残存しないような状態とし、これに代えて、一般式(1)で表されるポリオルガノシロキサンとの反応による、反応残基としての−Oで表される基を有するものとしているため、本発明の第3工程によれば、一般式(2)で表される化合物は、このような反応残基としての−Oで表される基(−Oで表される基が加水分解され、水酸基に変換されたものを含む)と適切に反応させることができるものである。
すなわち、本発明によれば、一般式(2)で表される化合物が、−Rで表される基と反応してしまうことにより、共役ジエン系重合体鎖に、直接、一般式(2)で表される化合物による変性構造が導入されてしまうことを適切に抑制することができ、これにより、共役ジエン系重合体鎖に、一般式(1)で表されるポリオルガノシロキサンに由来する構造を介した、一般式(2)で表される化合物による変性構造を、適切に導入することができるものである。そして、その結果として、優れた氷雪路上性能およびウェット性能を実現できるものである。また、加工性も良好になるものと考えられる。
ただし、第3工程において用いる、ポリオルガノシロキサンを反応させた共役ジエン系重合体鎖としては、上述した第2工程を経たものであればよく、シロキサンによる変性構造が導入された共役ジエン系重合体鎖に加えて、ごく少量(たとえば、5質量%以下)であれば、シロキサン変性構造が導入されていない未変性の活性末端を有する共役ジエン系重合体鎖が残存したものであってもよく(すなわち、ごく少量であれば、第1工程により得られた活性末端を有する共役ジエン系重合体鎖の活性末端としてのアルキル金属基、すなわち、−Rが残存したものが含まれていてもよく)、さらには、シロキサンによる変性構造が導入された結果形成された、反応残基としての−Oの一部が加水分解され、水酸基に変換されたものを含むものであってもよい。
一般式(2)で表される化合物において、一般式(2)中のRは、ヒドロカルビル基であり、たとえば、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基などが挙げられるが、本発明の効果がより優れる理由から、炭素数1〜6のアルキル基であることが好ましい。炭素数1〜6のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、へキシル基などが挙げられ、これらのなかでも、本発明の効果がより優れる理由から、メチル基、エチル基がより好ましい。
一般式(2)で表される化合物において、一般式(2)中のAは、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基(典型的には、−Oで表される基)と反応しうる基であり、−OR10(R10は水素原子またはヒドロカルビル基)で表される基であることが好ましい。R10を構成し得るヒドロカルビル基としては、たとえば、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基などが挙げられるが、上記反応残基との反応性の観点より、炭素数1〜6のアルキル基であることが好ましい。炭素数1〜6のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ペンチル基、へキシル基などが挙げられ、これらのなかでも、本発明の効果がより優れる理由から、メチル基、エチル基がより好ましい。
一般式(2)で表される化合物において、一般式(2)中のAは、窒素原子を含有する基であり、窒素原子を含有する基であれば特に限定されないが、窒素原子を有する有機基であることが好ましく、たとえば、3−アミノプロピル基、4−アミノブチル基、3−(2−アミノエチルアミノ)プロピル基、2−ジメチルアミノエチル基、3−ジメチルアミノプロピル基、3−ジエチルアミノプロピル基、3−ジプロピルアミノプロピル基、3−ジブチルアミノプロピル基、3−フェニルメチルアミノプロピル基、3−(4−メチルピペラジニル)プロピル基、N,N−ビス(トリメチルシリル)アミノプロピル基、N,N−ビス(トリエチルシリル)アミノプロピル基、N,N’、N’−トリス(トリメチルシリル)−N−(2−アミノエチル)−3−アミノプロピル基などが挙げられる。これらの中でも、本発明の効果がより優れる理由から、3−アミノプロピル基、4−アミノブチル基、3−(2−アミノエチルアミノ)プロピル基などの、活性水素原子を有する1級アミノ基および/または活性水素原子を有する2級アミノ基を含有する基であることが好ましい。なお、「活性水素原子」とは、炭素原子以外の原子に結合した水素原子をいい、ポリメチレン鎖の炭素−水素結合よりも結合エネルギーが低いことが好ましい。
一般式(2)で表される化合物において、pは0〜2の整数、qは1〜3の整数、rは1〜3の整数、p+q+r=4である。活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基との反応性の観点より、好ましくは、pは0〜1の整数、qは2〜3の整数であり、rは1〜2の整数であり、より好ましくは、p=0、q=3、r=1である。なお、pが2である場合において、一般式(2)で表される化合物1分子中に2個含まれるRで表される基は、同一のものであってもよいし、互いに異なるものであってもよい。同様に、qが2または3である場合において、一般式(2)で表される化合物1分子中に複数含まれるAで表される基は、同一のものであってもよいし、互いに異なるものであってもよく、rが2または3である場合において、一般式(2)で表される化合物1分子中に複数含まれるAで表される基は、同一のものであってもよいし、互いに異なるものであってもよい。
一般式(2)で表される化合物の具体例としては、特に限定されないが、たとえば、一般式(2)中のAが、活性水素原子を有する1級アミノ基および/または活性水素原子を有する2級アミノ基を含有する基である化合物として、3−アミノプロピルジメチルメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−アミノプロピルトリエトキシシランなどのAとして、3−アミノプロピル基を有する化合物;4−アミノブチルジメチルメトキシシラン、4−アミノブチルメチルジメトキシシラン、4−アミノブチルトリメトキシシラン、4−アミノブチルジメチルエトキシシラン、4−アミノブチルメチルジエトキシシラン、4−アミノブチルトリエトキシシランなどのAとして4−アミノブチル基を有する化合物;3−(2−アミノエチルアミノ)プロピルジメチルメトキシシラン、3−(2−アミノエチルアミノ)プロピルメチルジメトキシシラン、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン、3−(2−アミノエチルアミノ)プロピルジメチルエトキシシラン、3−(2−アミノエチルアミノ)プロピルメチルジエトキシシラン、3−(2−アミノエチルアミノ)プロピルトリエトキシシランなどのAとして、3−(2−アミノエチルアミノ)プロピル基を有する化合物;などが挙げられる。
また、一般式(2)中のAが、活性水素原子を有する1級アミノ基および/または活性水素原子を有する2級アミノ基を含有する基以外の基である化合物として、3−ジメチルアミノプロピルトリメトキシシラン、3−ジメチルアミノプロピルメチルジメトキシシラン、3−ジメチルアミノプロピルジメチルメトキシシラン、3−ジメチルアミノプロピルトリエトキシシラン、3−ジメチルアミノプロピルメチルジエトキシシラン、3−ジメチルアミノプロピルジメチルエトキシシランなどのAとして、3−ジメチルアミノプロピル基を有する化合物;3−ジエチルアミノプロピルトリメトキシシラン、3−ジエチルアミノプロピルメチルジメトキシシラン、3−ジエチルアミノプロピルジメチルメトキシシラン、3−ジエチルアミノプロピルトリエトキシシラン、3−ジエチルアミノプロピルメチルジエトキシシラン、3−ジエチルアミノプロピルジメチルエトキシシランなどのAとして、3−ジエチルアミノプロピル基を有する化合物;3−ジプロピルアミノプロピルトリメトキシシラン、3−ジプロピルアミノプロピルメチルジメトキシシラン、3−ジプロピルアミノプロピルジメチルメトキシシラン、3−ジプロピルアミノプロピルトリエトキシシラン、3−ジプロピルアミノプロピルメチルジエトキシシラン、3−ジプロピルアミノプロピルジメチルエトキシシランなどのAとして、3−ジプロピルアミノプロピル基を有する化合物;3−ジブチルアミノプロピルトリメトキシシラン、3−ジブチルアミノプロピルメチルジメトキシシラン、3−ジブチルアミノプロピルジメチルメトキシシラン、3−ジブチルアミノプロピルトリエトキシシラン、3−ジブチルアミノプロピルメチルジエトキシシラン、3−ジブチルアミノプロピルジメチルエトキシシランなどのAとして、3−ジブチルアミノプロピル基を有する化合物;3−フェニルメチルアミノプロピルトリメトキシシラン、3−フェニルメチルアミノプロピルメチルジメトキシシラン、3−フェニルメチルアミノプロピルジメチルメトキシシラン、3−フェニルメチルアミノプロピルトリエトキシシラン、3−フェニルメチルアミノプロピルメチルジエトキシシラン、3−フェニルメチルアミノプロピルジメチルエトキシシランなどのAとして、3−フェニルメチルアミノプロピル基を有する化合物;3−(4−メチルピペラジニル)プロピルトリメトキシシラン、3−(4−メチルピペラジニル)プロピルメチルジメトキシシラン、3−(4−メチルピペラジニル)プロピルジメチルメトキシシラン、3−(4−メチルピペラジニル)プロピルトリエトキシシラン、3−(4−メチルピペラジニル)プロピルメチルジエトキシシラン、3−(4−メチルピペラジニル)プロピルジメチルエトキシシランなどのAとして、3−(4−メチルピペラジニル)プロピル基を有する化合物;
N,N−ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランなどのAとして、N,N−ビス(トリメチルシリル)アミノプロピル基を有する化合物;N,N−ビス(トリエチルシリル)アミノプロピルトリメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N−ビス(トリエチルシリル)アミノプロピルメチルジメトキシシラン、N,N−ビス(トリエチルシリル)アミノプロピルメチルジエトキシシランなどのAとして、N,N−ビス(トリエチルシリル)アミノプロピル基を有する化合物;N,N’,N’−トリス(トリメチルシリル)−N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N,N’,N’−トリス(トリメチルシリル)−N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、N,N’,N’−トリス(トリメチルシリル)−N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N’,N’−トリス(トリメチルシリル)−N−(2−アミノエチル)−3−アミノプロピルメチルジエトキシシランなどのAとして、N,N’,N’−トリス(トリメチルシリル)−N−(2−アミノエチル)−3−アミノプロピル基を有する化合物;などが挙げられる。
一般式(2)で表される化合物の使用量は、特に限定されないが、本発明の効果がより優れる理由から、第1工程で使用した重合開始剤1モルに対して、好ましくは0.1〜5モルであり、より好ましくは0.2〜2モル、さらに好ましくは0.4〜1.5モルである。
共役ジエン系重合体鎖を含有する溶液に、一般式(2)で表される化合物を添加する時期は、上述した第2工程において一般式(1)で表されるポリオルガノシロキサンを添加した後であれば、特に限定されない。たとえば、上述した第2工程と同様に、重合反応が完結しておらず、共役ジエン系重合体鎖を含有する溶液が単量体をも含有している状態、より具体的には、共役ジエン系重合体鎖を含有する溶液が、100ppm以上、より好ましくは300〜50,000ppmの単量体を含有している状態で、この溶液に一般式(2)で表される化合物を添加することができる。一般式(2)で表される化合物の添加をこのように行なうことにより、共役ジエン系重合体鎖と重合系中に含まれる不純物などとの副反応を抑制して、反応を良好に制御することが可能となる。あるいは、共役ジエン系重合体鎖を含有する溶液に、一般式(2)で表される化合物を添加する前、あるいは添加した後に、この溶液に、水やメタノールなどのアルコールを添加することで、一般式(1)で表されるポリオルガノシロキサンとの反応により形成された、反応残基としての−Oで表される基を加水分解し、水酸基に変換した状態にて、変性反応を行ってもよい。一般式(2)で表される化合物を共役ジエン系重合体鎖を含有する溶液に添加する際、一般式(2)で表される化合物は不活性溶媒に溶解してから添加してもよいし、不活性溶媒に溶解せずに直接添加してもよい。反応温度、反応時間は、第1工程と同様である。
そして、一般式(2)で表される化合物を反応させた後、必要に応じて、公知の重合停止剤などを添加して、反応系を失活させた後、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤、クラム化剤、およびスケール防止剤などを反応溶液に添加し、その後、直接乾燥またはスチームストリッピングなどにより反応溶液から重合溶媒を分離して、共役ジエン系ゴムを回収する。なお、反応溶液から重合溶媒を分離する前に、重合溶液に伸展油を混合し、共役ジエン系ゴムを油展ゴムとして回収してもよい。
共役ジエン系ゴムを油展ゴムとして回収する場合に用いる伸展油としては、たとえば、パラフィン系、芳香族系およびナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸などが挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、共役ジエン系ゴム100質量部に対して、好ましくは5〜100質量部、より好ましくは10〜60質量部、さらに好ましくは20〜50質量部である。
上述のとおり、特定共役ジエン系ゴムは、上述した第2工程において、変性剤としての、一般式(1)で表されるポリオルガノシロキサンを、第1工程で使用した重合開始剤1モルに対して、ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応を行い、次いで、上述した第3工程において、変性剤として、一般式(2)で表される化合物を用いて反応を行うことにより、得られるものである。そのため、特定共役ジエン系ゴムは、重合体鎖末端に、シロキサンによる変性構造および一般式(2)で表される化合物による変性構造が導入されたものを含むものであるが、このようなもの以外にも、重合体鎖末端に、シロキサンによる変性構造のみが導入されたものを含むものであってもよい。さらには、本発明の効果を阻害しない範囲で、たとえば、重合体鎖末端に、一般式(2)で表される化合物による変性構造のみが導入されたものや、いずれの変性構造も導入されていないものなどを含有するものであってもよい。特に、本発明においては、本発明の効果をより適切に実現するという観点より、重合体鎖末端に、シロキサンによる変性構造および一般式(2)で表される化合物による変性構造が導入されたものの割合が、10質量%以上であるものが好ましく、20質量%以上であるものがより好ましい。なお、上限は、特に限定されない。
<単量体単位含有量>
特定共役ジエン系ゴムは、本発明の効果がより優れる理由から、共役ジエン単量体単位50〜100質量%を含むものが好ましく、52〜95質量%を含むものがより好ましく、また、芳香族ビニル単量体単位0〜50質量%を含むものが好ましい。
<ビニル結合含有量>
特定共役ジエン系ゴムにおける共役ジエン単量体単位中のビニル結合含有量は、本発明の効果がより優れる理由から、好ましくは1〜90質量%、より好ましくは3〜80質量%、特に好ましくは5〜70質量%である。
〔カップリング率〕
また、特定共役ジエン系ゴムのカップリング率は、特に限定されないが、本発明の効果がより優れる理由から、好ましくは10質量%以上、より好ましくは20質量%以上、特に好ましくは40質量%以上であり、また、好ましくは80質量%以下、より好ましくは75質量%以下、特に好ましくは70質量%以下である。なお、カップリング率は、一般式(1)で表されるポリオルガノシロキサンおよび一般式(2)で表される化合物、ならびに、必要に応じて用いられるカップリング剤やその他の変性剤と反応させる前の活性末端を有する共役ジエン系重合体鎖のピークトップ分子量の1.8倍以上の分子量を有する重合体分子の、最終的に得られた共役ジエン系ゴムの全量に対する質量分率であり、このときの分子量の測定は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めるものとする。
〔分子量〕
また、特定共役ジエン系ゴムの重量平均分子量(Mw)は、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値で、好ましくは100,000〜3,000,000、より好ましくは150,000〜2,000,000、特に好ましくは200,000〜1,500,000である。共役ジエン系ゴムの重量平均分子量を上記範囲内とすることにより、共役ジエン系ゴムへのシリカの配合が容易となり、ゴム組成物の加工性を高めることができ、さらには、本発明の効果がより優れるものとなる。
特定共役ジエン系ゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、本発明の効果がより優れる理由から、1.1〜3.0であることが好ましく、1.2〜2.5であることがより好ましく、1.2〜2.2であることが特に好ましい。
〔粘度〕
また、特定共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、本発明の効果がより優れる理由から、好ましくは20〜100、より好ましくは30〜90、特に好ましくは35〜80である。なお、共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。
〔含有量〕
共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量の上限は特に制限されず、100質量%である。共役ジエン系ゴム中の特定共役ジエン系ゴムの含有量は、本発明の効果がより優れる理由から、40質量%以上であることが好ましく、50〜100質量%であることがより好ましい。
[その他のゴム成分]
上記ジエン系ゴムは特定共役ジエン系ゴム以外のゴム成分(その他のゴム成分)を含有していてもよい。
そのようなその他のゴム成分としては、上記特定共役ジエン系ゴム以外の共役ジエン系ゴム(y)が挙げられる。
上記共役ジエン系ゴム(y)としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)のような芳香族ビニルと共役ジエンとの共重合体、アクリロニトリル−ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br−IIR、Cl−IIR)、クロロプレンゴム(CR)などが挙げられる。なかでも、本発明の効果がより優れる理由から、芳香族ビニルと共役ジエンとの共重合体、ブタジエンゴム(BR)であることが好ましい。
共役ジエン系ゴム中のその他のゴム成分の含有量は特に制限されないが、本発明の効果がより優れる理由から、0〜60質量%であることが好ましく、0〜50質量%であることがより好ましい。
上記共役ジエン系ゴムが、上記特定共役ジエン系ゴムと上記共役ジエン系ゴム(y)とを含む場合、上記特定共役ジエン系ゴムのガラス転移温度と、上記共役ジエン系ゴム(y)のガラス転移温度との差の絶対値は、本発明の効果により優れるという観点から、30℃以上であることが好ましく、35〜80℃がより好ましい。
上記事項は下記式で表すことができる。
|(特定共役ジエン系ゴムのガラス転移温度)−(共役ジエン系ゴム(y)のガラス転移温度)|≧30℃
なお、本発明において、共役ジエン系ゴム(例えば、特定共役ジエン系ゴム、共役ジエン系ゴム(y))のガラス転移温度は、示差走査熱量計(DSC)を用いて20℃/分の昇温速度で測定し、中点法にて算出することができる。
上記共役ジエン系ゴムは、本発明の効果により優れるという観点から、ガラス転移温度が−60℃以下である共役ジエン系ゴムと、ガラス転移温度が−60℃を超える共役ジエン系ゴムとを併用することが好ましい態様の1つとして挙げられる。
上記共役ジエン系ゴムは、ガラス転移温度が−60℃以下である共役ジエン系ゴムと、ガラス転移温度が−60℃を超える共役ジエン系ゴムとのうちのいずれかとして、または、両方として、特定共役ジエン系ゴムを含めばよい。
なお、上記共役ジエン系ゴムが、ガラス転移温度が−60℃以下である共役ジエン系ゴムとして、特定共役ジエン系ゴムを含む場合、上記共役ジエン系ゴムは、ガラス転移温度が−60℃以下である共役ジエン系ゴムと、ガラス転移温度が−60℃を超える共役ジエン系ゴムとのうちのいずれかとして、または、両方として、共役ジエン系ゴム(y)を、更に、含むことができる。上記共役ジエン系ゴムが、ガラス転移温度が−60℃を超える共役ジエン系ゴムとして、特定共役ジエン系ゴムを含む場合も同様である。
上記特定共役ジエン系ゴムのガラス転移温度は、−60℃以下、または、−60℃を超えるとできる。
本発明において、ガラス転移温度が−60℃以下である特定共役ジエン系ゴムを、特定共役ジエン系ゴム(T1)と称する場合がある。また、ガラス転移温度が−60℃を超える特定共役ジエン系ゴムを、特定共役ジエン系ゴム(T2)と称する場合がある。
上記共役ジエン系ゴムは、本発明の効果により優れるという観点から、少なくとも上記特定共役ジエン系ゴム(T2)を含むことが好ましく、上記特定共役ジエン系ゴム(T1)と上記特定共役ジエン系ゴム(T2)とを含むことがより好ましい。
[2]可塑剤
本発明の組成物は、特定可塑剤を含む可塑剤を含有する。
本発明において、上記可塑剤は、ゴムを可塑化又は軟化させうる化合物であれば特に制限されない。
なお、本発明において、上記可塑剤が共役ジエン系ゴムである場合、上記可塑剤としての共役ジエン系ゴムは、本発明の組成物に含有される「(特定共役ジエン系ゴムを30質量%以上含む)共役ジエン系ゴム」に該当しない。
また、上記可塑剤は、ゴム組成物に添加され得る、軟化剤、滑剤;ゴムに対してゴムの可塑化を目的として使用され得る伸展油を含むものとする。
ただし、上記可塑剤は、ワックスを含まない。
上記可塑剤は、室温条件下において、液状であることが好ましい態様の1つとして挙げられる。
上記可塑剤としては、例えば、ナフテン系油(低粘度または高粘度、特に水素化されたもの、またはその他)、ポリオレフィン系油、ナフテン系油、パラフィン系油、留出物芳香族系抽出物(Distillate Aromatic Extract)(DAE)油、中度抽出溶媒和物(Medium Extracted Solvate)(MES)油、処理留出物芳香族系抽出物(Treated Distillate Aromatic Extract)(TDAE)油、残留芳香族系抽出物(Residual Aromatic Extract)(RAE)油、処理残留芳香族系抽出物(Treated Residual Aromatic Extract)(TRAE)油、安全残留芳香族系抽出物(Safety Residual Aromatic Extract)(SRAE)油、鉱油、植物油、エーテル可塑剤、ホスフェート可塑剤のようなエステル可塑剤、スルホネート可塑剤が挙げられる。
[特定可塑剤]
本発明において、上記特定可塑剤は、ガラス転移温度が−50℃以下である可塑剤である。
〔特定可塑剤のガラス転移温度〕
なお、本発明において、可塑剤のガラス転移温度は、示差走査熱量計(DSC)を用いて20℃/分の昇温速度で測定し、中点法にて算出することができる。
上記特定可塑剤のガラス転移温度は、本発明の効果により優れるという観点から、−60℃以下であることが好ましい。
上記特定可塑剤のガラス転移温度の下限は例えば、−150℃以上とできる。
上記特定可塑剤のガラス転移温度は、氷雪路上性能により優れ、可塑効果にも優れるという観点から、−70℃以下であることが好ましく、−80℃以下であることが好ましい。
上記特定可塑剤のガラス転移温度は、ウェット性能および氷雪路上性能により優れるという観点から、−120℃以上であることが好ましく、−105℃以上であることが好ましい。
なお、上記の特定可塑剤のガラス転移温度の好適範囲は、特定可塑剤として使用される各可塑剤が有するガラス転移温度を意味する。
上記可塑剤は、本発明の効果により優れ、ウェット性能と氷雪路上の両立に優れるという観点から、ガラス転移温度が−60℃以下である可塑剤と、ガラス転移温度が−50℃以下であり−60℃を超える可塑剤とを併用することが好ましい態様の1つとして挙げられる。
上記特定可塑剤としては、例えば、TDAEオイル(処理留出物芳香族系抽出物油)、パラフィンオイル(パラフィン系油)、液状ポリブタジエン、リン酸エステル(ホスフェート)が挙げられる。
上記特定可塑剤は、本発明の効果により優れという観点から、TDAEオイル、パラフィンオイル、液状ポリブタジエン及びリン酸エステルからなる群から選ばれる少なくとも1種を含むことが好ましく、パラフィンオイル、液状ポリブタジエンおよびリン酸エステルからなる群から選ばれる少なくとも1種の可塑剤(p1)を含むことががより好ましく、液状ポリブタジエンが更に好ましい。
また、上記可塑剤は、本発明の効果により優れ、ウェット性能と氷雪路上の両立に優れるという観点から、TDAEオイルと、パラフィンオイル、液状ポリブタジエンおよびリン酸エステルからなる群から選ばれる少なくとも1種の可塑剤(p1)とを併用することが好ましい態様の1つとして挙げられる。
〔TDAEオイル〕
TDAEオイル(処理留出物芳香族系抽出物油)は特に制限されない。例えば、従来公知のものが挙げられる。
〔パラフィンオイル〕
特定可塑剤としてのパラフィンオイルは、飽和炭化水素化合物を含むオイルであれば特に制限されない。具体的には例えば、石油留分もしくは残油を水素添加し、精製したもの、または、分解により得られる油が挙げられる。
〔液状ポリブタジエン〕
特定可塑剤としての液状ポリブタジエンは、室温条件下において液状であり、ブタジエンによる繰り返し単位を有する重合体であれば特に制限されない。
液状ポリブタジエンは、ブタジエンの単独重合体であることが好ましい態様の1つとして挙げられる。
なお、上記液状ポリブタジエンは、上記共役ジエン系ゴムに該当しない。
上記液状ポリブタジエンの重量平均分子量は、本発明の効果により優れるという観点から、2,000〜100,000であることが好ましく、3,000〜50,000がより好ましい。
本発明において、液状ポリブタジエンの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)による測定値をもとにした標準ポリスチレン換算値である。
〔リン酸エステル〕
特定可塑剤としてのリン酸エステルは、リン酸(H3PO5)のエステルであれば特に制限されない。上記リン酸エステルは、モノエステル、ジエステルまたはトリエステルのいずれであってもよい。
上記リン酸エステルにおいて、エステルを構成する炭化水素基は特に制限されない。例えば、脂肪族炭化水素基(直鎖状、分岐状もしくは環状)、芳香族炭化水素基、または、これらの組合せが挙げられる。
上記炭化水素基は、例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子;塩素原子のようなハロゲンを有してもよい。
上記リン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリオクチル(特に、トリ2−エチルヘキシルフォスフェート)、リン酸トリス(2−ブトキシエチル)、リン酸トリス(2−クロロエチル)、リン酸2−エチルヘキシルジフェニルのようなリン酸トリスエステルが挙げられる。
上記可塑剤は、更に、ガラス転移温度が−50℃を超える可塑剤を含むことができる。
上記ガラス転移温度が−50℃を超える可塑剤は特に制限されない。
ガラス転移温度が−50℃を超える可塑剤としては、例えば、液状ポリスチレンブタジエンが挙げられる。
[特定可塑剤の含有量]
本発明において、上記特定可塑剤の含有量は、上記共役ジエン系ゴム100質量部に対して、5質量部以上である。
上記特定可塑剤の含有量は、本発明の効果により優れるという観点から、上記共役ジエン系ゴム100質量部に対して、5〜70質量部であることが好ましく、8〜60質量部であることがより好ましい。
上記特定可塑剤の含有量は、本発明の効果により優れるという観点から、上記可塑剤全量に対して、5〜100質量%であることが好ましい。
[共役ジエン系ゴムと可塑剤との平均ガラス転移温度]
本発明において、上記共役ジエン系ゴムと上記可塑剤との平均ガラス転移温度は、−50℃よりも低い(−50℃未満である)。
上記共役ジエン系ゴムと上記可塑剤との平均ガラス転移温度は、上記共役ジエン系ゴムのガラス転移温度と上記可塑剤のガラス転移温度との平均を意味する。
上記所定のガラス転移温度は、本発明の効果により優れるという観点から、−70〜−51℃であることが好ましく、−65〜52℃がより好ましい。
上記所定の平均ガラス転移温度は、共役ジエン系ゴムとして使用される各共役ジエン系ゴム(例えば、特定共役ジエン系ゴム、共役ジエン系ゴム(y)等)または各可塑剤(例えば、上記特定可塑剤等)が有するガラス転移温度(Tg)に、上記共役ジエン系ゴムと上記可塑剤との合計に対する上記各成分の質量%をそれぞれ掛け合わせて、これらを足し合わせたものである。
[3]シリカ
本発明の組成物に含有されるシリカは、特に制限されず、従来公知の任意のシリカを用いることができる。上記シリカの具体例としては、湿式シリカ、乾式シリカ、ヒュームドシリカ、珪藻土などが挙げられる。
上記シリカのCTAB吸着比表面積は、本発明の効果がより優れる理由から、100〜250m/gであることが好ましく、120〜220m/gであることがより好ましい。
ここで、CTAB吸着比表面積は、シリカ表面へのCTAB吸着量をJIS K6217−3:2001「第3部:比表面積の求め方−CTAB吸着法」にしたがって測定した値である。
本発明の組成物において、シリカの含有量は、上述した共役ジエン系ゴム100質量部に対して、30質量部以上である。なかでも、本発明の効果がより優れる理由から、50質量部以上であることが好ましく、100質量部以上であることがより好ましい。
シリカの含有量の上限は特定に制限されないが、本発明の効果がより優れる理由から、上述した共役ジエン系ゴム100質量部に対して、300質量部以下であることが好ましく、200質量部以下であることがより好ましい。
[4]シランカップリング剤
本発明の組成物に含有されるシランカップリング剤は、加水分解性基および有機官能基を有するシラン化合物であれば特に制限されない。
上記加水分解性基は特に制限されないが、例えば、アルコキシ基、フェノキシ基、カルボキシル基、アルケニルオキシ基などが挙げられる。なかでも、本発明の効果がより優れる理由から、アルコキシ基であることが好ましい。加水分解性基がアルコキシ基である場合、アルコキシ基の炭素数は、本発明の効果がより優れる理由から、1〜16であることが好ましく、1〜4であることがより好ましい。炭素数1〜4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。
上記有機官能基は特に制限されないが、有機化合物と化学結合を形成し得る基であることが好ましく、例えば、エポキシ基、ビニル基、アクリロイル基、メタクリロイル基、アミノ基、スルフィド基、メルカプト基、ブロックメルカプト基(保護メルカプト基)(例えば、オクタノイルチオ基)などが挙げられ、なかでも、本発明の効果がより優れる理由から、スルフィド基(特に、ジスルフィド基、テトラスルフィド基)、メルカプト基、ブロックメルカプト基が好ましい。
上記シランカップリング剤の具体例としては、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイル−テトラスルフィド、トリメトキシシリルプロピル−メルカプトベンゾチアゾールテトラスルフィド、トリエトキシシリルプロピル−メタクリレート−モノスルフィド、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイル−テトラスルフィド、3−オクタノイルチオ−1−プロピルトリエトキシシラン等が挙げられ、これらのうち1種を単独で用いてもよく、2種以上を併用してもよい。
本発明の組成物において、シランカップリング剤の含有量は、上述したシリカの含有量に対して、3〜30質量%である。なかでも、本発明の効果がより優れる理由から、5〜20質量%であることが好ましい。
また、本発明の組成物において、シランカップリング剤の含有量は、本発明の効果がより優れる理由から、上述した共役ジエン系ゴム100質量部に対して、1〜50質量部であることが好ましく、2〜45質量部であることがより好ましく、4〜40質量部であることがさらに好ましい。
[5]任意成分
本発明の組成物は、必要に応じて、上述した成分以外の成分(任意成分)を含有することができる。
そのような成分としては、例えば、シリカ以外の充填剤(例えば、カーボンブラック)、テルペン樹脂(好ましくは、芳香族変性テルペン樹脂)、熱膨張性マイクロカプセル、酸化亜鉛(亜鉛華)、ステアリン酸、老化防止剤、ワックス、加工助剤、熱硬化性樹脂、加硫剤(例えば、硫黄)、加硫促進剤などのゴム組成物に一般的に使用される各種添加剤などが挙げられる。
[カーボンブラック]
本発明の組成物は、本発明の効果がより優れる理由から、カーボンブラックを含有するのが好ましい。
上記カーボンブラックは特に限定されず、例えば、SAF−HS、SAF、ISAF−HS、ISAF、ISAF−LS、IISAF−HS、HAF−HS、HAF、HAF−LS、FEF、GPF、SRF等の各種グレードのものを使用することができる。
上記カーボンブラックの窒素吸着比表面積(NSA)は特に制限されないが、本発明の効果がより優れる理由から、50〜200m/gであることが好ましく、70〜150m/gであることがより好ましい。
ここで、窒素吸着比表面積(N2SA)は、カーボンブラック表面への窒素吸着量をJIS K6217−2:2001「第2部:比表面積の求め方−窒素吸着法−単点法」にしたがって測定した値である。
本発明の組成物において、カーボンブラックの含有量は特に制限されないが、本発明の効果がより優れる理由から、上述したジエン系ゴム100質量部に対して、1〜100質量部であることが好ましく、2〜10質量部であることがより好ましい。
[特定アルキルトリエトキシシラン]
本発明の組成物は、本発明の効果がより優れる理由から、下記一般式(I)で表されるアルキルトリエトキシシラン(以下、「特定アルキルトリエトキシシラン」とも言う)を含有するのが好ましい。
上記一般式(I)中、Rは炭素数7〜20のアルキル基を表す。Etはエチル基を表す。
上記炭素数7〜20のアルキル基としては、具体的には、例えば、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が挙げられる。なかでも、本発明の効果がより優れる理由から、オクチル基、ノニル基が好ましい。
本発明の組成物において、特定アルキルトリエトキシシランの含有量は特に制限されないが、本発明の効果がより優れる理由から、上述したシリカの含有量に対して、2.0〜10.0質量%であることが好ましい。
[冬用タイヤトレッド用ゴム組成物の調製方法]
本発明の組成物の製造方法は特に限定されず、その具体例としては、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロールなど)を用いて、混練する方法などが挙げられる。本発明の組成物が硫黄または加硫促進剤を含有する場合は、硫黄および加硫促進剤以外の成分を先に高温(好ましくは100〜160℃)で混合し、冷却してから、硫黄または加硫促進剤を混合するのが好ましい。
また、本発明の組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
[II]冬用空気入りタイヤ
本発明の冬用空気入りタイヤは、上述した本発明の組成物を用いて製造された、冬用の空気入りタイヤである。なかでも、本発明の組成物をタイヤトレッド(キャップトレッド)に用いた(配置した)空気入りタイヤであることが好ましい。
図1に、本発明の冬用空気入りタイヤの実施態様の一例を表す空気入りタイヤの部分断面概略図を示すが、本発明の冬用空気入りタイヤは図1に示す態様に限定されるものではない。
図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3はタイヤトレッド部を表す。
また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
また、タイヤトレッド部3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
なお、タイヤトレッド部3は上述した本発明の組成物により形成されている。
本発明の冬用空気入りタイヤは、例えば、従来公知の方法に従って製造することができる。また、冬用空気入りタイヤに充填する気体としては、通常のまたは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。
以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
〔特定共役ジエン系ゴムおよび比較共役ジエン系ゴムの製造〕
以下のとおり、特定共役ジエン系ゴム1〜4および比較共役ジエン系ゴム1〜4を製造した。
ここで、特定共役ジエン系ゴム1〜4は上述した第1〜3工程を備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、上述した特定共役ジエン系ゴムに該当する。さらに、特定共役ジエン系ゴム2〜3は第1工程が上述した工程Aと工程Bとを備えるものであり、特定共役ジエン系ゴムがPIブロックを有する。
一方、比較共役ジエン系ゴム1は、ポリオルガノシロキサンの添加量が上述した第2工程を満たさないため、上述した特定共役ジエン系ゴムに該当しない。また、比較共役ジエン系ゴム2〜4は上述した第1〜2工程を備える(上述した第3工程を備えない)共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、上述した特定共役ジエン系ゴムに該当しない。
<特定共役ジエン系ゴム1>
攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、テトラメチルエチレンジアミン1.42mmol、1,3−ブタジエン87.6g、およびスチレン32.4gを仕込んだ後、n−ブチルリチウム0.79mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、下記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、0.26g(ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン0.79mmol(使用したn−ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間攪拌させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴム1とする。特定共役ジエン系ゴム1の重量平均分子量(Mw)は467,000、カップリング率は54.4%、スチレン単量体単位含有量は26.9質量%、ビニル結合含有量は58.5質量%であった。
上記式(11)中、X、X、R〜RおよびR〜Rはメチル基である。上記式(11)中、mは80、kは120である。上記式(11)中、Xは下記式(12)で表される基である(ここで、*は結合位置を表す)。
<特定共役ジエン系ゴム2>
窒素置換された100mlアンプル瓶に、シクロヘキサン50.0g、およびテトラメチルエチレンジアミン0.66mmolを添加し、さらに、n−ブチルリチウム6.6mmolを添加した。次いで、イソプレン11.61g、およびスチレン0.87gをゆっくりと添加し、50℃のアンプル瓶内で120分間反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の重量平均分子量(Mw)は3,500、分子量分布(Mw/Mn)は1.10、スチレン単量体単位含有量は7.0質量%、イソプレン単量体単位含有量は93.0質量%、ビニル結合含有量は7.7質量%であった。
次に、攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、テトラメチルエチレンジアミン11.lmmol、1,3−ブタジエン393.0g、およびスチレン207.0gを仕込んだ後、上記にて得られた活性末端を有する重合体ブロック(A)を全量加え、40℃で重合を開始した。重合を開始してから10分間経過後、1,3−ブタジエン337.0g、およびスチレン63.0gを40分間かけて連続的に添加した。重合反応中の最高温度は60℃であった。連続添加終了後、さらに20分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、2.13g(ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン6.6mmol(使用したn−ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間攪拌させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴム2とする。特定共役ジエン系ゴム2の重量平均分子量(Mw)は488,000、カップリング率は60.2%、スチレン単量体単位含有量は26.6質量%、ビニル結合含有量は60.4質量%であった。
<特定共役ジエン系ゴム3>
窒素置換された800mlアンプル瓶に、シクロヘキサン70.0g、およびテトラメチルエチレンジアミン0.77mmolを添加し、さらに、n−ブチルリチウム7.69mmolを添加した。次いで、イソプレン27.9g、およびスチレン2.1gをゆっくりと添加し、50℃のアンプル瓶内で120分間反応させることにより、活性末端を有する重合体ブロック(A)を得た。この重合体ブロック(A)の重量平均分子量(Mw)は6,500、分子量分布(Mw/Mn)は1.10、スチレン単量体単位含有量は7.0質量%、イソプレン単量体単位含有量は93.0質量%、ビニル結合含有量は7.7質量%であった。
次に、攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン4000g、テトラメチルエチレンジアミン2.69mmol、1,3−ブタジエン474g、およびスチレン126gを仕込んだ後、上記にて得られた活性末端を有する重合体ブロック(A)を全量加え、50℃で重合を開始した。重合を開始してから10分間経過後、1,3−ブタジエン376g、およびスチレン24gを60分間かけて連続的に添加した。重合反応中の最高温度は75℃であった。連続添加終了後、さらに10分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、2.44g(ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。次いで、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン7.69mmol(使用したn−ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間攪拌させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴム3とする。特定共役ジエン系ゴム3の重量平均分子量(Mw)は460,000、カップリング率は58.0%、スチレン単量体単位含有量は15.0質量%、ビニル結合含有量は30.5質量%であった。
<特定共役ジエン系ゴム4>
攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、1,3−ブタジエン120gを仕込んだ後、n−ブチルリチウム1.00mmolを加え、80℃で重合を開始した。90分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサン0.32g(ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの1.1倍モルに相当する量)を添加し、30分間反応させた。次いで、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン1.00mmol(使用したn−ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間反応させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(BASF社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを特定共役ジエン系ゴム4とする。特定共役ジエン系ゴム4の重量平均分子量(Mw)は485,000、カップリング率は55.5%、ビニル結合含有量は9.8質量%であった。
<比較共役ジエン系ゴム1>
攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、テトラメチルエチレンジアミン1.42mmol、1,3−ブタジエン87.6g、およびスチレン32.4gを仕込んだ後、n−ブチルリチウム0.79mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、0.16g(ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの0.7倍モルに相当する量)添加し、30分間反応させた。次いで、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン0.79mmol(使用したn−ブチルリチウムの1.0倍モルに相当する量)を添加し、10分間攪拌させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴム1とする。比較共役ジエン系ゴム1の重量平均分子量(Mw)は383,000、カップリング率は34.4%、スチレン単量体単位含有量は26.6質量%、ビニル結合含有量は58.5質量%であった。
<比較共役ジエン系ゴム2>
攪拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン800g、テトラメチルエチレンジアミン1.42mmol、1,3−ブタジエン87.6g、およびスチレン32.4gを仕込んだ後、n−ブチルリチウム0.79mmolを加え、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記式(11)で表されるポリオルガノシロキサンを、40質量%濃度のキシレン溶液の状態にて、0.26g(ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数に換算して、使用したn−ブチルリチウムの1.1倍モルに相当する量)添加し、30分間反応させた。その後、重合停止剤として、使用したn−ブチルリチウムの2倍モルに相当する量のメタノールを添加して、共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤として、イルガノックス1520L(チバスペシャリティーケミカルズ社製)を、共役ジエン系ゴム100部に対して0.15部添加した後、スチームストリッピングにより溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴム2とする。比較共役ジエン系ゴム2の重量平均分子量(Mw)は460,000、カップリング率は52.5%、芳香族ビニル単量体(スチレン単量体)単位含有量は27.6質量%、ビニル結合含有量は58.8質量%、ガラス転移温度(Tg)は−22℃、分子量分布(Mw/Mn)は1.4であった。
<比較共役ジエン系ゴム3>
3−(2−アミノエチルアミノ)プロピルトリメトキシシラン7.69mmolを添加しなかったこと以外は、上記特定共役ジエン系ゴム3の製造方法と同様に操作して、固形状の共役ジエン系ゴムを得た。得られた上記共役ジエン系ゴムを比較共役ジエン系ゴム3とする。共役ジエン系ゴム3の重量平均分子量は450,000、カップリング率は56.8%、スチレン単量体単位含有量は15.0質量%、ビニル結合含有量は30.0質量%であった。
<比較共役ジエン系ゴム4>
3−(2−アミノエチルアミノ)プロピルトリメトキシシラン1.00mmolを添加しなかったこと以外は、上記特定共役ジエン系ゴム4の製造方法と同様に操作して、固形状の共役ジエン系ゴムを得た。得られた上記共役ジエン系ゴムを比較共役ジエン系ゴム4とする。共役ジエン系ゴム4の重量平均分子量は460,000、カップリング率は54.0%、ビニル結合含有量は9.1質量%であった。
〔タイヤトレッド用ゴム組成物の調製〕
下記表1に示す成分を、同表に示す割合(質量部)で配合した。
具体的には、まず、下記表1に示す成分のうち硫黄および加硫促進剤を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて140℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得た。さらに、上記バンバリーミキサーを用いて、得られたマスターバッチに硫黄および加硫促進剤を混合し、タイヤトレッド用ゴム組成物を得た。
表1において、各ゴム成分の量(質量部)はゴムの正味の量である。
〔評価〕
得られたタイヤトレッド用ゴム組成物について下記のとおり評価を行った。
<加硫ゴムシートの作製>
得られたタイヤトレッド用ゴム組成物(未加硫)を金型(15cm×15cm×0.2cm)中で、160℃で40分間プレス加硫して加硫ゴムシートを作製した。
<氷雪路上性能>
得られた加硫ゴムシートについて、JIS K6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±0.5%、振動数20Hz、温度−10℃の条件で貯蔵弾性率E′(−10℃)を測定した。
結果を表1に示す。結果は比較例1を100とする指数で表した。指数が小さい方が氷雪路上性能(Snow性能)に優れる。実用上、100未満であることが好ましい。
<ウェット性能>
得られた加硫ゴムシートについて、JIS K6394:2007に準じ、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度0℃の条件でtanδ(0℃)を測定した。
結果を表1に示す。結果は比較例1を100とする指数で表した。指数が大きい方がウェット性能(ウェットグリップ性能)に優れる。実用上、101以上であることが好ましい。
上記表1中の各成分の詳細は以下のとおりである。
・特定共役ジエン系ゴム1〜4:上述のとおり製造した特定共役ジエン系ゴム1〜4
・比較共役ジエン系ゴム1〜4:上述のとおり製造した比較共役ジエン系ゴム1〜4
・シリカ:Zeosil 1165MP(シリカ、CTAB吸着比表面積=159m2/g、ローディア社製)
・カーボンブラック:ショウブラックN339(カーボンブラック、キャボットジャパン社製)
・シランカップリング剤:Si69(シランカップリング剤、ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
・酸化亜鉛:酸化亜鉛3種(正同化学工業社社製)
・ステアリン酸:ビーズステアリン酸(日油社製)
・老化防止剤:オゾノン6C(精工化学社製)
・特定可塑剤1:エキストラクト4号S(TDAEオイル、ガラス転移温度−53℃、 昭和シェル石油社製。)
・特定可塑剤2:プロセスオイル 123(パラフィンオイル、ガラス転移温度−70℃、昭和シェル石油社製。)
・特定可塑剤3:LBR307(液状ポリブタジエン、ガラス転移温度−94℃、重量平均分子量9,000、クラレ社製。)
・特定可塑剤4:トリ2−エチルヘキシルフォスフェート(ガラス転移温度−100℃、Lanxess社製。)
・比較可塑剤:RICON100(液状スチレンブタジエン共重合体、ガラス転移温度−22℃、CRAY VALLEY社製。)
・硫黄:金華印油入微粉硫黄(硫黄の含有量95.24質量%、鶴見化学工業社製)
・加硫促進剤(CZ):大内新興化学工業社製ノクセラーCZ−G
・加硫促進剤(DPG):1,3−ジフェニルグアニジン(ソクシノールD−G、住友化学工業社製)
表1から分かるように、特定共役ジエン系ゴムを含有する実施例1〜8は、優れた氷雪路上性能およびウェット性能を示した。
実施例4と実施例2との対比から、特定共役ジエン系ゴムがPIブロックを含む場合、より優れた氷雪路上性能およびウェット性能を示した。
実施例1〜3の対比(特定共役ジエン系ゴムとして特定共役ジエン系ゴム1を含有する態様同士の対比)から、特定可塑剤のガラス転移温度が低いほど、より優れた氷雪路上性能を示した。
実施例1〜4と実施例5〜6との対比から、共役ジエン系ゴムが、ガラス転移温度が高めの共役ジエン系ゴムとして、特定共役ジエン系ゴムを含む場合、より優れた氷雪路上性能を示した。
実施例7と8との対比から、共役ジエン系ゴムが、ガラス転移温度が高めの共役ジエン系ゴムとして特定共役ジエン系ゴムを含み、かつ、ガラス転移温度が低めの共役ジエン系ゴムとして特定共役ジエン系ゴムを含む場合、より優れた氷雪路上性能およびウェット性能を示した。
一方、共役ジエン系ゴムと可塑剤との平均ガラス転移温度が所定の範囲より高い比較例1は、氷雪路上性能およびウェット性能が不十分であった。
特定共役ジエン系ゴムを含有しない比較例2、3および6は、氷雪路上性能およびウェット性能が不十分であった。
特定共役ジエン系ゴムの含有量が所定の範囲を外れる比較例4および5は、氷雪路上性能およびウェット性能が不十分であった。
シリカの含有量が所定の範囲を外れる比較例7は、氷雪路上性能およびウェット性能が不十分であった。
共役ジエン系ゴムと可塑剤との平均ガラス転移温度が所定の範囲より高い比較例8は、氷雪路上性能が不十分であった。
1 ビード部
2 サイドウォール部
3 タイヤトレッド部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
8 リムクッション
上記共役ジエン系ゴムと上記可塑剤との平均ガラス転移温度は、上記共役ジエン系ゴムのガラス転移温度と上記可塑剤のガラス転移温度との平均を意味する。
上記所定のガラス転移温度は、本発明の効果により優れるという観点から、−70〜−51℃であることが好ましく、−65〜52℃がより好ましい。
上記所定の平均ガラス転移温度は、共役ジエン系ゴムとして使用される各共役ジエン系ゴム(例えば、特定共役ジエン系ゴム、共役ジエン系ゴム(y)等)または各可塑剤(例えば、上記特定可塑剤等)が有するガラス転移温度(Tg)に、上記共役ジエン系ゴムと上記可塑剤との合計に対する上記各成分の質量%をそれぞれ掛け合わせて、これらを足し合わせたものを100で除した値である。

Claims (12)

  1. 特定共役ジエン系ゴムを30質量%以上含む共役ジエン系ゴムと、
    特定可塑剤を含む可塑剤と、
    シリカと、
    シランカップリング剤とを含有し、
    前記特定可塑剤の含有量が、前記共役ジエン系ゴム100質量部に対して、5質量部以上であり、
    前記シリカの含有量が、前記共役ジエン系ゴム100質量部に対して、30質量部以上であり、
    前記シランカップリング剤の含有量が、前記シリカの含有量に対して、3〜30質量%であり、
    前記特定共役ジエン系ゴムが、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含む単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る第1工程と、前記活性末端を有する共役ジエン系重合体鎖に、下記一般式(1)で表されるポリオルガノシロキサンを、前記第1工程で使用した重合開始剤1モルに対して、前記ポリオルガノシロキサン中のシロキサン構造(−Si−O−)の繰り返し単位数換算で1モル以上の割合にて添加して反応させる第2工程と、前記第2工程で得られるポリオルガノシロキサンを反応させた共役ジエン系重合体鎖に、下記一般式(2)で表される化合物を反応させる第3工程とを備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであり、
    前記特定可塑剤が、ガラス転移温度が−50℃以下である可塑剤であり、
    前記共役ジエン系ゴムと前記可塑剤との平均ガラス転移温度が、−50℃よりも低い、冬用タイヤトレッド用ゴム組成物。
    一般式(1)中、R〜Rは、炭素数1〜6のアルキル基、または炭素数6〜12のアリール基であり、これらは互いに同一であっても相違していてもよい。
    一般式(1)中、XおよびXは、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、炭素数1〜5のアルコキシ基、および、エポキシ基を含有する炭素数4〜12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。
    一般式(1)中、Xは、炭素数1〜5のアルコキシ基、またはエポキシ基を含有する炭素数4〜12の基であり、複数あるXは、互いに同一であっても相違していてもよい。
    一般式(1)中、Xは、2〜20のアルキレングリコールの繰返し単位を含有する基であり、Xが複数あるときは、それらは互いに同一であっても相違していてもよい。
    一般式(1)中、mは3〜200の整数、nは0〜200の整数、kは0〜200の整数であり、m+n+kは3以上である。
    一般式(2)中、Rは、ヒドロカルビル基である。
    一般式(2)中、Aは、活性末端を有する共役ジエン系重合体鎖とポリオルガノシロキサンとの反応により生成した反応残基と反応しうる基である。
    一般式(2)中、Aは、窒素原子を含有する基である。
    一般式(2)中、pは0〜2の整数、qは1〜3の整数、rは1〜3の整数、p+q+r=4である。
  2. 前記共役ジエン系ゴムが、更に、前記特定共役ジエン系ゴム以外の共役ジエン系ゴム(y)を含み、
    前記特定共役ジエン系ゴムのガラス転移温度と、前記共役ジエン系ゴム(y)のガラス転移温度との差の絶対値が、30℃以上である、請求項1に記載の冬用タイヤトレッド用ゴム組成物。
  3. 前記特定共役ジエン系ゴムのガラス転移温度が、−60℃以下である、請求項1または2に記載の冬用タイヤトレッド用ゴム組成物。
  4. 前記特定共役ジエン系ゴムのガラス転移温度が、−60℃を超える、請求項1または2に記載の冬用タイヤトレッド用ゴム組成物。
  5. 前記共役ジエン系ゴムが、ガラス転移温度が−60℃を超える特定共役ジエン系ゴム(T1)と、ガラス転移温度が−60℃以下である特定共役ジエン系ゴム(T2)とを含む、請求項1に記載の冬用タイヤトレッド用ゴム組成物。
  6. 前記シリカの含有量が、前記共役ジエン系ゴム100質量部に対して、100質量部以上である、請求項1〜5のいずれか1項に記載の冬用タイヤトレッド用ゴム組成物。
  7. 前記特定共役ジエン系ゴムが、
    イソプレン単量体単位80〜100質量%および芳香族ビニル単量体単位0〜20質量%を含む重合体ブロック(A)と、
    1,3−ブタジエン単量体単位50〜100質量%および芳香族ビニル単量体単位0〜50質量%を含む重合体ブロック(B)とが一続きにして形成された構造を有する、請求項1〜6のいずれか1項に記載の冬用タイヤトレッド用ゴム組成物。
  8. 前記特定可塑剤のガラス転移温度が、−60℃以下である、請求項1〜7のいずれか1項に記載の冬用タイヤトレッド用ゴム組成物。
  9. 前記特定可塑剤の含有量が、前記可塑剤全量に対して、5〜100質量%である、請求項1〜8のいずれか1項に記載の冬用タイヤトレッド用ゴム組成物。
  10. 前記特定可塑剤が、パラフィンオイル、液状ポリブタジエンおよびリン酸エステルからなる群から選ばれる少なくとも1種の可塑剤(p1)を含む、請求項1〜9のいずれか1項に記載の冬用タイヤトレッド用ゴム組成物。
  11. 前記液状ポリブタジエンの重量平均分子量が、2,000〜100,000である、請求項10に記載の冬用タイヤトレッド用ゴム組成物。
  12. 請求項1〜11のいずれか1項に記載の冬用タイヤトレッド用ゴム組成物を用いて製造されたタイヤトレッド部を備える、冬用空気入りタイヤ。
JP2018094661A 2018-05-16 2018-05-16 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ Active JP6791205B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018094661A JP6791205B2 (ja) 2018-05-16 2018-05-16 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ
EP19804263.2A EP3795628A4 (en) 2018-05-16 2019-05-15 RUBBER COMPOUND FOR WINTER TIRE PROFILE AND WINTER PNEUMATIC TIRES
PCT/JP2019/019334 WO2019221179A1 (ja) 2018-05-16 2019-05-15 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ
CN201980032432.1A CN112166149B (zh) 2018-05-16 2019-05-15 冬用轮胎胎面用橡胶组合物及冬用充气轮胎

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018094661A JP6791205B2 (ja) 2018-05-16 2018-05-16 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ

Publications (2)

Publication Number Publication Date
JP2019199536A true JP2019199536A (ja) 2019-11-21
JP6791205B2 JP6791205B2 (ja) 2020-11-25

Family

ID=68539968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018094661A Active JP6791205B2 (ja) 2018-05-16 2018-05-16 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ

Country Status (4)

Country Link
EP (1) EP3795628A4 (ja)
JP (1) JP6791205B2 (ja)
CN (1) CN112166149B (ja)
WO (1) WO2019221179A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417047B2 (ja) 2019-11-11 2024-01-18 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
US11926734B2 (en) 2021-06-22 2024-03-12 Toyo Tire Corporation Rubber composition for tires and pneumatic tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7004025B2 (ja) * 2020-05-29 2022-01-21 横浜ゴム株式会社 タイヤ用ゴム組成物及びタイヤ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203288A (ja) * 2008-02-26 2009-09-10 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2017082235A (ja) * 2016-12-28 2017-05-18 日本ゼオン株式会社 共役ジエン系ゴムの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064952B2 (ja) 2014-08-27 2017-01-25 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
EP3315535B1 (en) * 2015-06-26 2019-11-13 Zeon Corporation Method of production of conjugated diene rubber
JP2017110230A (ja) * 2016-03-30 2017-06-22 日本ゼオン株式会社 ゴム組成物
WO2018092716A1 (ja) * 2016-11-16 2018-05-24 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2017082236A (ja) * 2016-12-28 2017-05-18 日本ゼオン株式会社 ポリブタジエンゴムの製造方法
SG11202009097PA (en) * 2018-03-27 2020-10-29 Zeon Corp Method for producing conjugated diene rubber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203288A (ja) * 2008-02-26 2009-09-10 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2017082235A (ja) * 2016-12-28 2017-05-18 日本ゼオン株式会社 共役ジエン系ゴムの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417047B2 (ja) 2019-11-11 2024-01-18 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
US11926734B2 (en) 2021-06-22 2024-03-12 Toyo Tire Corporation Rubber composition for tires and pneumatic tire

Also Published As

Publication number Publication date
WO2019221179A1 (ja) 2019-11-21
CN112166149B (zh) 2023-02-28
EP3795628A1 (en) 2021-03-24
JP6791205B2 (ja) 2020-11-25
CN112166149A (zh) 2021-01-01
EP3795628A4 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
JP6331267B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6064953B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6520018B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
WO2018092716A1 (ja) 共役ジエン系ゴムの製造方法
JP6064952B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
KR101750818B1 (ko) 타이어용 고무 조성물 및 공기입 타이어
WO2019221182A1 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2021241746A1 (ja) タイヤ用ゴム組成物及びタイヤ
JP2019199548A (ja) スタッドレスタイヤトレッド用ゴム組成物およびスタッドレスタイヤ
WO2019221179A1 (ja) 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ
JP2019199525A (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6791204B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6791201B2 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6791202B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2019221184A1 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6791206B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP7102926B2 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP7244244B2 (ja) 共役ジエン系ゴムの製造方法
JP7106980B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
WO2019221180A1 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP6879263B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2019199512A (ja) 共役ジエン系ゴムの製造方法
JP7370734B2 (ja) ポリブタジエンゴムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6791205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250