JP2019199375A - Crystal growth apparatus and manufacturing method of single crystal - Google Patents

Crystal growth apparatus and manufacturing method of single crystal Download PDF

Info

Publication number
JP2019199375A
JP2019199375A JP2018094336A JP2018094336A JP2019199375A JP 2019199375 A JP2019199375 A JP 2019199375A JP 2018094336 A JP2018094336 A JP 2018094336A JP 2018094336 A JP2018094336 A JP 2018094336A JP 2019199375 A JP2019199375 A JP 2019199375A
Authority
JP
Japan
Prior art keywords
crucible
auxiliary heater
single crystal
crystal growth
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018094336A
Other languages
Japanese (ja)
Other versions
JP7106978B2 (en
Inventor
高塚 裕二
Yuji Takatsuka
裕二 高塚
治男 石川
Haruo Ishikawa
治男 石川
杉山 正史
Masashi Sugiyama
正史 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018094336A priority Critical patent/JP7106978B2/en
Publication of JP2019199375A publication Critical patent/JP2019199375A/en
Application granted granted Critical
Publication of JP7106978B2 publication Critical patent/JP7106978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a crystal growth apparatus capable of correcting a change in heat distribution caused by a crucible deformation accompanied by an increase in a number of growth of a crystal and preventing solidification of a raw material on a bottom of the crucible in a single crystal growth apparatus by Chokralsky method in consideration of above circumstances.SOLUTION: A crystal growth apparatus includes a metal crucible capable of reserving a raw material melt, a crucible table supporting the crucible from a bottom and having an auxiliary heater part arranged at a predetermined position outward of the crucible, an induction coil arranged around the crucible, and an auxiliary heater arranged in the auxiliary heater part when the crucible deforms in an outward direction.SELECTED DRAWING: Figure 7

Description

本発明は、結晶育成装置及び単結晶の製造方法に関する。   The present invention relates to a crystal growth apparatus and a method for producing a single crystal.

酸化物単結晶の製造方法としては、酸化物単結晶になる原料を充填したルツボを高温に加熱してこの原料を溶融し、ルツボ内の原料融液の液面に上方から種結晶を接触させた後に回転させながら上昇させることで種結晶と同一方位の酸化物単結晶を育成するチョクラルスキー法による結晶育成方法が広く実施されている。   As a method for producing an oxide single crystal, a crucible filled with a raw material to become an oxide single crystal is heated to a high temperature to melt the raw material, and a seed crystal is brought into contact with the liquid surface of the raw material melt in the crucible from above. Thereafter, a crystal growth method by the Czochralski method is widely practiced in which an oxide single crystal having the same orientation as that of the seed crystal is grown by rotating it while rotating.

図1は、チョクラルスキー法による結晶育成を行うための一般的な結晶育成装置の一例を示した図である。酸化物単結晶育成は、図1に示すようにルツボ10の外側に誘導コイル70を配置し、誘導コイル70に高周波電流を流すことによってルツボ10に渦電流を生じさせ、これによってルツボ10が発熱してルツボ10内の原料が溶融する方法により主に行われている。   FIG. 1 is a diagram showing an example of a general crystal growth apparatus for performing crystal growth by the Czochralski method. In the oxide single crystal growth, as shown in FIG. 1, an induction coil 70 is disposed outside the crucible 10, and an eddy current is generated in the crucible 10 by causing a high-frequency current to flow through the induction coil 70, whereby the crucible 10 generates heat. And it is mainly performed by the method in which the raw material in the crucible 10 melts.

また、引き上げが進むにつれて単結晶の上部は、シード棒(引き上げ軸)80からの伝熱や結晶表面からの熱輻射により冷却される。成長中の単結晶内の温度分布が大きくなるため、ルツボ10の上部を保温する工夫がなされている。例えば、結晶内の温度差に伴う熱応力によるクラックを抑制するため、ルツボ10の上部に、ルツボ10以外の発熱体である円筒状のアフター・ヒーター40を配置している。また、ルツボ10の上部を保温するためドーナツ状のリフレクタ30を配置することもある。   Further, as the pulling progresses, the upper part of the single crystal is cooled by heat transfer from the seed rod (pickup shaft) 80 or heat radiation from the crystal surface. Since the temperature distribution in the growing single crystal becomes large, a device for keeping the upper part of the crucible 10 warm is devised. For example, a cylindrical after-heater 40 that is a heating element other than the crucible 10 is disposed above the crucible 10 in order to suppress cracking due to thermal stress accompanying a temperature difference in the crystal. In addition, a donut-shaped reflector 30 may be arranged to keep the upper part of the crucible 10 warm.

チョクラルスキー法による単結晶育成では、ルツボ10の原料融解面に種結晶を接触させて回転させ、徐々に引き上げながら結晶を成長させている。結晶を成長させるためには融液界面温度は融点に保ちつつ結晶成長に伴って発生する潜熱を結晶上部に放熱しなければならない。そのため結晶が成長するに伴って、加熱源である高周波電力を適切な範囲で低下させなければならない。   In single crystal growth by the Czochralski method, a seed crystal is brought into contact with the raw material melting surface of the crucible 10 and rotated, and the crystal is grown while being gradually pulled up. In order to grow a crystal, it is necessary to dissipate the latent heat generated during crystal growth to the upper part of the crystal while keeping the melt interface temperature at the melting point. Therefore, as the crystal grows, the high-frequency power as a heating source must be reduced within an appropriate range.

これらの加熱法では、炉内設置した誘導コイル70に高周波電流を流し、それによって高周波磁場を発生させる。高周波磁場により金属製のルツボ10や金属製の円筒(アフター・ヒーター40)に電流が誘導され、この誘導電流によって金属にジュール熱が発生する。   In these heating methods, a high frequency current is passed through the induction coil 70 installed in the furnace, thereby generating a high frequency magnetic field. Current is induced in the metal crucible 10 and the metal cylinder (after heater 40) by the high frequency magnetic field, and Joule heat is generated in the metal by the induced current.

誘導コイル70と導電材料の位置、導電材料の形状により、磁場分布が変化するとそれに伴って誘導電流量、発熱量が変化する。これらの位置が固定されることで発熱分布が決まるので、高周波電力の増減で発熱分布の強度を変えることができる。   When the magnetic field distribution changes depending on the position of the induction coil 70 and the conductive material, and the shape of the conductive material, the amount of induced current and the amount of heat generation change accordingly. Since the heat generation distribution is determined by fixing these positions, the intensity of the heat generation distribution can be changed by increasing or decreasing the high frequency power.

図2は、図1に示した結晶育成装置のルツボ10の周囲の磁場を計算した結果を示した図である。図2の磁場の計算結果が示すように、磁場はルツボ10や導電体の角に集中する。そのため角部の誘導電流が大きくなり、ルツボ10の角部の発熱が大きくなる。ルツボ底の中央部やルツボの胴部等の発熱は小さい。   FIG. 2 is a diagram showing the result of calculating the magnetic field around the crucible 10 of the crystal growing apparatus shown in FIG. As shown in the calculation result of the magnetic field in FIG. 2, the magnetic field concentrates on the crucible 10 or the corner of the conductor. Therefore, the induced current at the corner increases, and the heat generation at the corner of the crucible 10 increases. Heat generation at the center of the crucible bottom and the body of the crucible is small.

これらの発熱が熱伝導や対流により伝熱してルツボ内の融液温度分布が決まる。結晶育成時には、結晶の成長に伴って融液の液面が低下し、融液と結晶の固液界面が融点を保つように高周波出力を低下させる。これに伴いルツボ底部中央部では温度が低下し、場合によってはルツボ底部中央より原料融液が固化する現象(融液固化)が発生することがある。また、このままの状態で結晶の育成を続けた場合、固化した結晶はルツボ底部から上方に成長し、育成している結晶と融着してしまい、育成を中止しなければならない事態が発生することもある。   These heat generations are transferred by heat conduction or convection to determine the melt temperature distribution in the crucible. During crystal growth, the liquid level of the melt decreases with the growth of the crystal, and the high-frequency output is decreased so that the solid-liquid interface between the melt and the crystal maintains the melting point. Along with this, the temperature is lowered at the center of the crucible bottom, and in some cases, the phenomenon that the raw material melt is solidified from the center of the bottom of the crucible (melt solidification) may occur. In addition, if the crystal growth is continued in this state, the solidified crystal grows upward from the bottom of the crucible, and is fused with the crystal being grown, resulting in a situation where the growth must be stopped. There is also.

近年、上記のような単結晶を製造するコストを低減するために、ルツボの使用回数をできる限り増やして長期間使用する試みがなされている。しかしながら、ルツボの使用回数を増加させるにつれてルツボの変形が進み、ルツボの角部が丸くなる等により角部の発熱が減少し、ルツボ底部中央の融液固化が起きやすくなるという問題があった。   In recent years, attempts have been made to increase the number of times the crucible is used as much as possible in order to reduce the cost of manufacturing the single crystal as described above. However, there has been a problem that as the number of times the crucible is used increases, the deformation of the crucible progresses, the corner portion of the crucible becomes round, and the heat generation at the corner portion decreases, so that solidification of the melt at the center of the crucible bottom tends to occur.

特許文献1では、ルツボの使用回数を増加させるにつれてルツボの変形が進み、その変形の仕方によっては、歩留まりが低下したりボイド等が単結晶中に含まれたりするという問題が指摘され、その対策としてルツボ底面側の板厚を側面方向の板厚よりも薄くして、底面側に変形を逃がすようなルツボ構造が提案されている。   In Patent Document 1, the crucible deformation progresses as the number of crucible uses increases, and depending on how the crucible is deformed, the problem that the yield decreases or voids are included in the single crystal is pointed out. For example, a crucible structure has been proposed in which the thickness on the bottom surface side of the crucible is made thinner than the thickness in the side surface direction to allow deformation to escape to the bottom surface side.

特開2012−250874号公報JP2012-250874A

しかしながら、特許文献1に記載の構成では、底面側に変形を逃がすとしてもルツボ底部の角の発熱は減少し、ルツボ底部中央の融液固化の問題は解決しない。   However, in the configuration described in Patent Document 1, even if the deformation is released to the bottom side, the heat generation at the corner of the crucible bottom is reduced, and the problem of melt solidification at the center of the crucible bottom is not solved.

そこで、本発明は、上記事情に鑑み、チョクラルスキー法による単結晶育成装置において、結晶体の育成回数増加に伴うルツボ変形による発熱分布の変化を補正し、ルツボ底部の原料固化を、効率的に防止できる結晶育成装置を提供することを目的とする。   Therefore, in view of the above circumstances, the present invention corrects a change in heat generation distribution due to crucible deformation accompanying an increase in the number of crystal growths in a single crystal growth apparatus using the Czochralski method, and efficiently solidifies the raw material at the bottom of the crucible. It is an object of the present invention to provide a crystal growth apparatus that can prevent the problem.

上記目的を達成するため、本発明の一態様に係る結晶育成装置は、原料融液を貯留保持可能な金属製のルツボと、
該ルツボを下方から支持するとともに、該ルツボよりも外側の所定位置に設けられた補助ヒータ設置部を有するルツボ台と、
前記ルツボの周囲に設けられた誘導コイルと、
前記ルツボが外側方向に変形したときに、前記補助ヒータ設置部に設置される補助ヒータと、を有する。
In order to achieve the above object, a crystal growth apparatus according to one aspect of the present invention includes a metal crucible capable of storing and holding a raw material melt,
A crucible base for supporting the crucible from below and having an auxiliary heater installation portion provided at a predetermined position outside the crucible;
An induction coil provided around the crucible;
And an auxiliary heater installed in the auxiliary heater installation portion when the crucible is deformed outward.

本発明によれば、結晶育成回数が増加してもルツボ底部中央からの融液固化が無く育成できる単結晶育成装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if the frequency | count of crystal growth increases, the single crystal growth apparatus which can be grown without melt solidification from the crucible bottom center can be provided.

本発明の実施形態に係るルツボ変形前の結晶育成装置の一例を示した概要図である。It is the schematic which showed an example of the crystal growth apparatus before the crucible deformation | transformation which concerns on embodiment of this invention. 図1に示した結晶育成装置のルツボの周囲の磁場を計算した結果を示した図である。It is the figure which showed the result of having calculated the magnetic field around the crucible of the crystal growth apparatus shown in FIG. 図1に示した結晶育成装置のルツボの周囲の磁場強度分布を計算した結果を示した図である。It is the figure which showed the result of having calculated the magnetic field strength distribution around the crucible of the crystal growth apparatus shown in FIG. 変形が生じたルツボを有する結晶育成装置の一例を示した図である。It is the figure which showed an example of the crystal growth apparatus which has the crucible which the deformation | transformation produced. 図1と図4に示すルツボの発熱密度を計算した結果を示した図である。It is the figure which showed the result of having calculated the heat generation density of the crucible shown in FIG. 1 and FIG. シーディング時のルツボと融液の温度分布を示した図である。It is the figure which showed the temperature distribution of the crucible and melt at the time of seeding. ルツボ変形後の本発明の実施形態に係る結晶育成装置の一例を示した概要図である。It is the schematic which showed an example of the crystal growth apparatus which concerns on embodiment of this invention after a crucible deformation | transformation.

以下、図面を参照して、本発明を実施するための形態の説明を行う。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

本発明の実施形態に係るチョクラスキー法を用いた結晶育成装置は、大気中または酸素を含んだ不活性ガス雰囲気中で育成されるニオブ酸リチウムLiNbO(以下LN)、タンタル酸リチウムLiTaO(以下LT)、イットリウムアルミニウムガーネットYAl12(以下YAG)などの酸化物単結晶の製造に用いる結晶育成装置である。チョクラルスキー法は、ある結晶方位に従って切り出された種と呼ばれる、通常は数mm程度の単結晶の先端を、同一組成の融液に浸潤し、回転しながら徐々に引上げることによって、種結晶の方位と同一の単結晶を製造する方法である。 A crystal growth apparatus using a chocsky method according to an embodiment of the present invention includes lithium niobate LiNbO 3 (hereinafter referred to as LN) and lithium tantalate LiTaO 3 grown in the atmosphere or an inert gas atmosphere containing oxygen. (Hereinafter referred to as LT) and a crystal growth apparatus used for manufacturing oxide single crystals such as yttrium aluminum garnet Y 3 Al 5 O 12 (hereinafter referred to as YAG). The Czochralski method is called a seed cut out according to a certain crystal orientation. Usually, the tip of a single crystal of about several millimeters is infiltrated into a melt of the same composition, and is gradually pulled up while rotating, thereby producing a seed crystal. This is a method for producing a single crystal having the same orientation.

図1は、本発明の実施形態に係るルツボ変形前の結晶育成装置の一例を示した概要図である。本実施形態に係る結晶育成装置において、ルツボ変形前は、従来の結晶育成装置と同様の構成を有する結晶育成装置を使用する。よって、図1の結晶育成装置を、ルツボ変形前の本実施形態に係る結晶育成装置として説明する。   FIG. 1 is a schematic diagram showing an example of a crystal growing apparatus before crucible deformation according to an embodiment of the present invention. In the crystal growth apparatus according to the present embodiment, a crystal growth apparatus having the same configuration as that of a conventional crystal growth apparatus is used before the crucible is deformed. Therefore, the crystal growth apparatus of FIG. 1 is demonstrated as a crystal growth apparatus which concerns on this embodiment before a crucible deformation | transformation.

図1に示されるように、本実施形態に係る結晶育成装置は、ルツボ10と、ルツボ台20と、リフレクタ30と、アフター・ヒーター40と、断熱材50、60と、誘導コイル70と、引き上げ軸80と、載置台90と、チャンバー100とを備える。   As shown in FIG. 1, the crystal growing apparatus according to the present embodiment includes a crucible 10, a crucible base 20, a reflector 30, an after heater 40, heat insulating materials 50 and 60, an induction coil 70, and a lifting A shaft 80, a mounting table 90, and a chamber 100 are provided.

また、引上げ軸80の下端には種結晶保持部81が設けられ、種結晶120を保持している。また、ルツボ10内には原料融液130が貯留保持されている。   A seed crystal holding portion 81 is provided at the lower end of the pulling shaft 80 to hold the seed crystal 120. In addition, the raw material melt 130 is stored and held in the crucible 10.

本実施形態に係る結晶育成装置において、ルツボ10はルツボ台20の上に載置されている。ルツボ10の上方には、リフレクタ30を介して、アフター・ヒーター40が設置されている。ルツボ10、リフレクタ30及びアフター・ヒーター40の周囲を囲むように断熱材50、60が設けられている。更に、ルツボ10、ルツボ台20、リフレクタ30、アフター・ヒーター40及び断熱材50、60を取り囲むように誘導コイル70が設けられている。また、誘導コイル70の外側にはチャンバー100が設けられ、断熱材50及び誘導コイル70の周囲全体を覆っている。   In the crystal growth apparatus according to the present embodiment, the crucible 10 is placed on the crucible base 20. An after heater 40 is installed above the crucible 10 through a reflector 30. Insulating materials 50 and 60 are provided so as to surround the crucible 10, the reflector 30, and the after heater 40. Furthermore, an induction coil 70 is provided so as to surround the crucible 10, the crucible base 20, the reflector 30, the after heater 40, and the heat insulating materials 50 and 60. A chamber 100 is provided outside the induction coil 70 and covers the entire periphery of the heat insulating material 50 and the induction coil 70.

ルツボ10の上方には、引き上げ軸80が設けられている。引き上げ軸80は、下端に種結晶保持部81を有し、図示しない引き上げ軸駆動モータにより昇降可能に構成されている。断熱材50の下方かつチャンバー100内には載置台90が設けられ、チャンバー100以外の全体を支持している。   A pulling shaft 80 is provided above the crucible 10. The pulling shaft 80 has a seed crystal holding portion 81 at the lower end and is configured to be lifted and lowered by a pulling shaft drive motor (not shown). A mounting table 90 is provided below the heat insulating material 50 and in the chamber 100, and supports the whole other than the chamber 100.

また、図示していないが、結晶育成装置全体の動作を制御するための制御部と、誘導コイル70及び結晶育成装置全体に電力を供給するための電源がチャンバー100の外部に設けられる。   Although not shown, a control unit for controlling the operation of the entire crystal growth apparatus and a power source for supplying power to the induction coil 70 and the entire crystal growth apparatus are provided outside the chamber 100.

次に、個々の構成要素について説明する。   Next, individual components will be described.

ルツボ10は、結晶原料を貯留保持し、単結晶を育成するための容器である。ルツボは高周波誘導加熱による発熱体になるため抵抗の低い金属が使用される。LT等の酸化物結晶育成では酸素を含む雰囲気で育成されるため、耐熱性があり酸素と反応しない貴金属、Pt(白金)、Rh(ロジウム)やIr(イリジウム)等の単体又はそれらの合金からなることが好ましい。   The crucible 10 is a container for storing and holding a crystal raw material and growing a single crystal. Since the crucible becomes a heating element by high frequency induction heating, a metal with low resistance is used. Since oxide crystals such as LT are grown in an atmosphere containing oxygen, they are made of a noble metal that does not react with oxygen and does not react with oxygen, a simple substance such as Pt (platinum), Rh (rhodium), Ir (iridium), or an alloy thereof. It is preferable to become.

ルツボ台20は、ルツボ10を下方から支持する支持台として設けられる。ルツボ台20は、誘導コイル70の加熱に耐え得る十分な耐熱性及びルツボ10を支持する耐久性を有すれば、種々の材料から構成されてよい。   The crucible base 20 is provided as a support base that supports the crucible 10 from below. The crucible base 20 may be made of various materials as long as it has sufficient heat resistance to withstand the heating of the induction coil 70 and durability to support the crucible 10.

本実施形態に係る結晶育成装置のルツボ台20は、ルツボ10の変形後には、補助ヒータ設置部が設けられ、補助ヒータが設置可能なルツボ台が用いられるが、ルツボ10の変形前は、そのような補助ヒータ設置部を有しないルツボ台20を用いてよい。   The crucible base 20 of the crystal growth apparatus according to the present embodiment is provided with an auxiliary heater installation portion after the crucible 10 is deformed, and a crucible base on which the auxiliary heater can be installed is used. You may use the crucible base 20 which does not have such an auxiliary heater installation part.

リフレクタ30とアフター・ヒーター40もルツボ10と同様の特性が要求されるため、ルツボ10と同様に貴金属、Pt、RhやIr等の単体又はそれらの合金からなることが好ましい。   Since the reflector 30 and the after-heater 40 are also required to have the same characteristics as the crucible 10, it is preferable that the reflector 30 and the after-heater 40 are made of a noble metal, a simple substance such as Pt, Rh, Ir, or an alloy thereof.

断熱材50、ルツボ台20にはアルミナやジルコニア、マグネシア、カルシア等の焼結体耐火物が使われる。一方ルツボ周囲の断熱材60には加熱冷却時に変形可能なアルミナやジルコニア、マグネシア、カルシア等の粉末が好ましい。   Sintered refractories such as alumina, zirconia, magnesia, and calcia are used for the heat insulating material 50 and the crucible base 20. On the other hand, the heat insulating material 60 around the crucible is preferably powder of alumina, zirconia, magnesia, calcia or the like that can be deformed during heating and cooling.

誘導コイル70は、ルツボ10、リフレクタ30及びアフター・ヒーター40を加熱するための手段であり、ルツボ10、リフレクタ30及びアフター・ヒーター40を囲むように配置する。誘導コイル70は、ルツボ10、リフレクタ30及びアフター・ヒーター40を誘導加熱できれば形態は問わないが、例えば、高周波加熱コイルからなる高周波誘導加熱装置として構成される。   The induction coil 70 is a means for heating the crucible 10, the reflector 30, and the after heater 40, and is disposed so as to surround the crucible 10, the reflector 30, and the after heater 40. The induction coil 70 may have any form as long as the crucible 10, the reflector 30, and the after heater 40 can be induction-heated. For example, the induction coil 70 is configured as a high-frequency induction heating device including a high-frequency heating coil.

引き上げ軸80は、種結晶120を保持し、ルツボ10に保持された原料融液130の表面に種結晶120を接触させ、回転しながら単結晶を引き上げるための手段である。引き上げ軸80は、種結晶120を保持する種結晶保持部81を下端部に有するとともに、図示しない引き上げ軸駆動モータを備える。なお、引き上げ軸駆動モータは、結晶の引き上げの際、結晶を回転させながら引き上げる動作を行うための回転駆動機構である。   The pulling shaft 80 is a means for holding the seed crystal 120, bringing the seed crystal 120 into contact with the surface of the raw material melt 130 held in the crucible 10, and pulling the single crystal while rotating. The pulling shaft 80 has a seed crystal holding portion 81 for holding the seed crystal 120 at its lower end, and includes a pulling shaft driving motor (not shown). The pulling shaft drive motor is a rotation drive mechanism for performing the pulling operation while rotating the crystal when pulling the crystal.

チャンバー100は、ルツボ10及びアフター・ヒーター40の誘導コイル70による発熱を内部に保持し、外部への放出を防ぐ役割を果たす。チャンバー100は、耐熱性の高い材料で構成される。断熱材50及びチャンバー100は、天井面に開口51、101を有し、引き上げ軸80を挿入可能に構成される。   The chamber 100 plays a role of keeping heat generated by the crucible 10 and the induction coil 70 of the after-heater 40 inside and preventing discharge to the outside. The chamber 100 is made of a material having high heat resistance. The heat insulating material 50 and the chamber 100 have openings 51 and 101 on the ceiling surface, and are configured so that the lifting shaft 80 can be inserted.

載置台90は、断熱材50を含む全体を支持するための支持手段である。   The mounting table 90 is a support means for supporting the whole including the heat insulating material 50.

図1の構成の結晶育成炉のコイルに高周波電流を流した時の電磁界解析を行った。図2に磁力線分布、図3に磁場強度分布を示す。磁界強度は、図3に示す領域Aが最も強く、以下、領域B、領域C、領域D、領域E、領域Fと順次段階的に磁界強度が小さくなっている。図2、図3から、ルツボ10やアフター・ヒーター40のような導電体で囲まれた領域やルツボ10の底部の下側の領域には磁力線が侵入できないあるいは磁力線がまばらであるため磁場エネルギーが小さいことが分かる。   An electromagnetic field analysis was performed when a high-frequency current was passed through the coil of the crystal growth furnace having the configuration shown in FIG. FIG. 2 shows the magnetic field line distribution, and FIG. 3 shows the magnetic field intensity distribution. The magnetic field strength is strongest in the region A shown in FIG. 3, and the magnetic field strength is gradually decreased in the order of region B, region C, region D, region E, and region F. 2 and 3, the magnetic field energy cannot enter the region surrounded by the conductor such as the crucible 10 or the after heater 40 or the region below the bottom of the crucible 10 or the magnetic field lines are sparse. I understand that it is small.

高周波磁力線の近くに導電物があると導電物に渦電流が生じる。導電物には電気抵抗があるため電流の二乗に比例するジュール熱が生じて導電物が自己発熱する。渦電流は磁場強度が大きいと大きくなるため図3に示すようにルツボ10の底面の外周部やリフレクタ30の外周に磁場エネルギーが集中しその部分の発熱が大きくなる。磁力線は導電体内に侵入できないため、磁力線を遮る導電物があるとその周囲の磁場エネルギーが小さくなる。   If there is a conductive material near the high-frequency magnetic field lines, an eddy current is generated in the conductive material. Since the conductive material has electric resistance, Joule heat proportional to the square of the current is generated, and the conductive material self-heats. Since the eddy current increases as the magnetic field strength increases, the magnetic field energy concentrates on the outer periphery of the bottom surface of the crucible 10 and the outer periphery of the reflector 30 as shown in FIG. Since the magnetic field lines cannot penetrate into the conductor, if there is a conductive material that blocks the magnetic field lines, the magnetic field energy around it will be reduced.

図4は、変形が生じたルツボ10aを有する結晶育成装置の一例を示した図である。図1に示した結晶育成装置を用いて単結晶の製造を繰り返すと、加熱及び冷却の熱負荷により、ルツボ10が変形してくる。ルツボ10の変形は、ルツボ10の底面付近が外側に張り出す、又は広がるような変形が多い。即ち、図4に示すように、ルツボ10の変形が進むとルツボ底面の角(底面と側面がなす角)が丸くなり、ルツボ下側の円筒部が膨らむ等の変形が起こる。   FIG. 4 is a diagram showing an example of a crystal growth apparatus having a crucible 10a in which deformation has occurred. When the production of a single crystal is repeated using the crystal growth apparatus shown in FIG. 1, the crucible 10 is deformed by the heat load of heating and cooling. There are many deformations of the crucible 10 such that the vicinity of the bottom surface of the crucible 10 protrudes outward or spreads out. That is, as shown in FIG. 4, when the crucible 10 is further deformed, the corner of the bottom of the crucible (the angle formed by the bottom and the side) becomes round, and deformation occurs such that the cylindrical portion below the crucible swells.

図5は、図1と図4に示すルツボの発熱密度を計算した結果を示した図である。図5において、横軸は高さ方向におけるルツボ底からの距離(mm)、縦軸は横軸の高さ位置における発熱密度の平均値(W/m)を示している。図5に示されるように、変形が無いルツボ10はルツボ底(0mm)での発熱密度が高くなっているのに対し、変形のあるルツボ10aはルツボ底部より高い位置の発熱密度が大きくなっているものの、ルツボ変形無しの場合に比べてルツボ底近辺の発熱密度が低下している。即ち、図5から、ルツボ10に変形が生じると、底部付近の発熱密度が著しく低下することが分かる。 FIG. 5 is a diagram showing the calculation results of the heat generation density of the crucible shown in FIGS. 1 and 4. 5, the horizontal axis is the distance from the crucible bottom in the height direction (mm), the vertical axis indicates the mean value of the heat density at the height position of the horizontal axis (W / m 3). As shown in FIG. 5, the crucible 10 without deformation has a high heat generation density at the crucible bottom (0 mm), whereas the crucible 10a with deformation has a high heat generation density at a position higher than the bottom of the crucible. However, the heat generation density near the bottom of the crucible is lower than in the case without crucible deformation. That is, it can be seen from FIG. 5 that when the crucible 10 is deformed, the heat generation density in the vicinity of the bottom is significantly reduced.

図6は、シーディング時のルツボと融液の温度分布を示した図である。図6(a)がルツボ10に変形が無い場合の原料融液130の温度分布を示し、図6(b)がルツボ10に変形が有る場合の原料融液130の温度分布を示す。温度は、領域Aが最も高く、領域B、領域C、領域D、領域E、領域F、領域G、領域Hと順に徐々に小さくなっている。シード(種結晶120)と融液界面温度がLTの融点に一致するように計算を行った。変形の無い図6(a)の温度分布の温度の方が、変形の有る図6(b)の温度分布よりも高い温度範囲にあることが分かる。このように、図6から、ルツボ10に変形が生じるとルツボ底端部の温度が低下し、融液全体の温度も低いことが分かる。   FIG. 6 is a diagram showing the temperature distribution of the crucible and the melt during seeding. 6A shows the temperature distribution of the raw material melt 130 when the crucible 10 is not deformed, and FIG. 6B shows the temperature distribution of the raw material melt 130 when the crucible 10 is deformed. The temperature is highest in the region A, and gradually decreases in the order of the region B, the region C, the region D, the region E, the region F, the region G, and the region H. Calculation was performed so that the seed (seed crystal 120) and melt interface temperature coincided with the melting point of LT. It can be seen that the temperature distribution of FIG. 6A without deformation is in a higher temperature range than the temperature distribution of FIG. 6B with deformation. Thus, it can be seen from FIG. 6 that when the crucible 10 is deformed, the temperature at the bottom end of the crucible is lowered and the temperature of the entire melt is also low.

ルツボ10の発熱は高周波電流を増加させることで大きくなるが、図1の構成のように一つの誘導コイル70の場合は電流増加により、アフター・ヒーター40やリフレクタ30の発熱が増加するため、ルツボ10の発熱とのバランスが崩れてしまう。よって、ルツボ変形による発熱減少をコイル電流で調整することは好ましくない。   The heat generation of the crucible 10 is increased by increasing the high-frequency current. However, in the case of one induction coil 70 as shown in FIG. 1, the heat generation of the after heater 40 and the reflector 30 increases due to the increase in current. The balance with the heat generation of 10 is lost. Therefore, it is not preferable to adjust the reduction in heat generation due to crucible deformation with the coil current.

一方、誘導コイル70の長さを調整することによりアフター・ヒーター40の磁場強度を相対的に減少させ、高周波電流を大きくして変形による発熱減少をコイル電流で調整することは可能である。しかしリフレクタ30はルツボ10とアフター・ヒーター40の中間に位置するため、ルツボ10の発熱を大きくすると発熱が大きくなり、誘導コイル70の長さとコイル電流で調整し一定の発熱にすることは難しい。   On the other hand, by adjusting the length of the induction coil 70, it is possible to relatively reduce the magnetic field strength of the after-heater 40, increase the high-frequency current, and adjust the heat generation reduction due to deformation by the coil current. However, since the reflector 30 is positioned between the crucible 10 and the after-heater 40, if the heat generation of the crucible 10 is increased, the heat generation becomes large, and it is difficult to adjust the length of the induction coil 70 and the coil current to make the heat generation constant.

そこで、ルツボ底より外側、かつルツボ底より下側に導電体を補助ヒータとして設置し、補助ヒータによる加熱を検討した。つまり、補助ヒータも導電体であるため、誘導コイル70により加熱される。   Therefore, a conductor was installed as an auxiliary heater outside the crucible bottom and below the crucible bottom, and heating with the auxiliary heater was examined. That is, since the auxiliary heater is also a conductor, it is heated by the induction coil 70.

図7は、ルツボ変形後の本発明の実施形態に係る結晶育成装置の一例を示した概要図である。図7に示されるように、本実施形態に係る結晶育成装置は、ルツボ10aの変形後は、ルツボ台20aが図1のルツボ台20の代わりに設けられる。ルツボ台20aは、ルツボ10aよりも上面視において広い面積を有し、ルツボ10aを包含する。そして、ルツボ10aよりも外側の部分に補助ヒータ設置部21aを有する。補助ヒータ設置部21aは、ルツボ10aよりも外側であり、かつ、ルツボ10aの底面よりも下方に設けられることが好ましい。補助ヒータ設置部21aは、例えば、ルツボ台20aの外縁部に、ルツボ台20aのルツボ10aを支持している支持面よりも高さが低い円環状の水平な段差面として構成される。そして水平面をなす補助ヒータ設置部21a上に補助ヒータ110が設置される。   FIG. 7 is a schematic diagram showing an example of a crystal growth apparatus according to an embodiment of the present invention after the crucible is deformed. As shown in FIG. 7, in the crystal growing apparatus according to the present embodiment, the crucible base 20a is provided instead of the crucible base 20 of FIG. 1 after the crucible 10a is deformed. The crucible base 20a has a larger area in top view than the crucible 10a and includes the crucible 10a. And it has the auxiliary heater installation part 21a in the part outside the crucible 10a. The auxiliary heater installation portion 21a is preferably provided outside the crucible 10a and below the bottom surface of the crucible 10a. The auxiliary heater installation portion 21a is configured, for example, as an annular horizontal step surface having a lower height than the support surface supporting the crucible 10a of the crucible base 20a at the outer edge of the crucible base 20a. And the auxiliary heater 110 is installed on the auxiliary heater installation part 21a which makes a horizontal surface.

補助ヒータ110の材質は、耐熱性かつ耐酸化性のある白金、ロジウムやイリジウムとそれらの合金等で作製される。このため、コストを考慮すると厚みは、薄い方が低コストで補助ヒータを製作することが可能である。よって補助ヒータ110の厚さは0.5mm〜3mmの範囲内であることが好ましく、1mm〜2mmの範囲内にあることが更に好ましい。   The material of the auxiliary heater 110 is made of heat-resistant and oxidation-resistant platinum, rhodium, iridium and their alloys. For this reason, considering the cost, it is possible to manufacture an auxiliary heater at a lower cost when the thickness is thinner. Therefore, the thickness of the auxiliary heater 110 is preferably in the range of 0.5 mm to 3 mm, and more preferably in the range of 1 mm to 2 mm.

ルツボ10aの変形は、大きな変形でなくてもルツボ底面とルツボ側壁とがなす角度が90度より大きくなると影響が現れる。ルツボ底面とルツボ側壁とがなす角度が100度を超えると、ルツボ底での固化が早まり120度以上では結晶の大きさに影響が現れる。そのため、補助ヒータ110は、ルツボ底面の側面とのなす角度が100度になった段階で設置することが望ましい。この角度が大きくなるにつれて、ルツボ10a内の発熱量は低下する。   Even if the deformation of the crucible 10a is not a large deformation, an influence appears when the angle formed between the bottom surface of the crucible and the side wall of the crucible becomes larger than 90 degrees. When the angle formed between the bottom of the crucible and the side wall of the crucible exceeds 100 degrees, solidification at the bottom of the crucible is accelerated, and the crystal size is affected at 120 degrees or more. Therefore, it is desirable to install the auxiliary heater 110 when the angle formed with the side surface of the bottom surface of the crucible reaches 100 degrees. As this angle increases, the amount of heat generated in the crucible 10a decreases.

このため、この角度に応じ、所定の発熱量になるように補助ヒータ110の位置を設定する。特に、ルツボ底の角部付近が発熱する(発熱密度が高くなる)ように補助ヒータ110を配置することが好ましい。例えば、水平方向における位置は補助ヒータ110を誘導コイル70側に近づけると発熱量が大きくなる。また、補助ヒータ110の上下方向における設置位置は、ルツボの発熱位置(発熱密度が最大値となる位置)を調整することができる。ルツボ底部(ルツボ10aを支持している支持面)より下方側に設定することで、より発熱位置を下げること(ルツボの角部に近づけること)が可能となる。   Therefore, the position of the auxiliary heater 110 is set so as to obtain a predetermined heat generation amount according to this angle. In particular, it is preferable to arrange the auxiliary heater 110 so that the vicinity of the corner of the crucible bottom generates heat (the heat generation density increases). For example, if the auxiliary heater 110 is brought closer to the induction coil 70 side in the horizontal direction, the amount of heat generation increases. Moreover, the installation position in the up-down direction of the auxiliary heater 110 can adjust the heat generation position of the crucible (the position where the heat generation density reaches the maximum value). By setting the crucible bottom (the support surface supporting the crucible 10a) below the crucible bottom, it is possible to lower the heat generation position (closer to the corner of the crucible).

補助ヒータ110の形状は円環状である。補助ヒータ110の大きさは、補助ヒータ110の外径の位置がルツボ10の外径より片側5mm以上20mm以下大きくすることが好ましく、10mm以上15mm以下がより好ましい。補助ヒータ110の外径の位置がルツボの外径より小さいと、磁場強度が弱く発熱が十分でない。外径の位置がルツボ外径より片側20mmを超えるとルツボ10aまでの距離が長すぎて伝熱効率が悪くなる。また補助ヒータ110の外周部の温度が上がりクラックが発生しやすい。   The auxiliary heater 110 has an annular shape. The size of the auxiliary heater 110 is preferably such that the position of the outer diameter of the auxiliary heater 110 is larger than the outer diameter of the crucible 10 by 5 mm or more and 20 mm or less on one side, and more preferably 10 mm or more and 15 mm or less. If the position of the outer diameter of the auxiliary heater 110 is smaller than the outer diameter of the crucible, the magnetic field strength is weak and heat generation is not sufficient. If the position of the outer diameter exceeds 20 mm on one side from the outer diameter of the crucible, the distance to the crucible 10a is too long and the heat transfer efficiency is deteriorated. Further, the temperature of the outer peripheral portion of the auxiliary heater 110 rises and cracks are likely to occur.

補助ヒータの内径の位置はルツボ外径より片側0を超え10mm以下大きくすることが好ましい。補助ヒータ110の円環状の幅は5mm以上20mm以下が好ましい。   The position of the inner diameter of the auxiliary heater is preferably larger than 0 on one side and larger by 10 mm or less than the outer diameter of the crucible. The annular width of the auxiliary heater 110 is preferably 5 mm or more and 20 mm or less.

補助ヒータ110とルツボ10aが接触すると、連続した導電体となりルツボ近傍の磁場強度が低下するため、接触させないようにする。補助ヒータ110の厚みは0.5mm以上3mm以下が好ましく、1mm以上2mm以下がより好ましい。補助ヒータ110の厚みが3mmを超えると、熱容量が大きくなり温度が低下してしまうが、小さくすると高温になり効率的に加熱可能である。一方、補助ヒータ110の厚みが0.5mm未満では、補助ヒータ110自体の強度が低く、破損しやすくなってしまう。   When the auxiliary heater 110 and the crucible 10a come into contact with each other, it becomes a continuous conductor and the magnetic field strength in the vicinity of the crucible is lowered. The thickness of the auxiliary heater 110 is preferably 0.5 mm or more and 3 mm or less, and more preferably 1 mm or more and 2 mm or less. If the thickness of the auxiliary heater 110 exceeds 3 mm, the heat capacity increases and the temperature decreases. However, if the thickness of the auxiliary heater 110 decreases, the temperature becomes high and heating can be performed efficiently. On the other hand, if the thickness of the auxiliary heater 110 is less than 0.5 mm, the strength of the auxiliary heater 110 itself is low, and the auxiliary heater 110 is easily damaged.

補助ヒータ110の上下方向の設置位置は、ルツボ10aを支持している支持面より下側に0以上35mm以下が好ましい。設置位置が支持面より下側35mmを超えると、ルツボ10aまでの距離が長すぎて伝熱効率が悪くなる。上述したように、補助ヒータ110の上下方向の設置位置は、ルツボ10aの変形する角度に応じ、ルツボ底部の角部付近が発熱するように適宜配置することが好ましい。   The vertical installation position of the auxiliary heater 110 is preferably 0 to 35 mm below the support surface that supports the crucible 10a. If the installation position exceeds 35 mm below the support surface, the distance to the crucible 10a is too long, resulting in poor heat transfer efficiency. As described above, it is preferable that the installation position of the auxiliary heater 110 in the vertical direction is appropriately arranged so that the vicinity of the corner of the bottom of the crucible generates heat according to the angle at which the crucible 10a is deformed.

なお、補助ヒータ110を十分に発熱させるためには、誘導コイルの下端よりも30mm以上上側に補助ヒータ110を配置することが好ましい。   In order to sufficiently heat the auxiliary heater 110, it is preferable to arrange the auxiliary heater 110 at least 30 mm above the lower end of the induction coil.

また、ルツボ台20aの補助ヒータ設置部21aについては、補助ヒータ110を適切な位置に配置できる限り、その構成は問わず、窪んだ平坦面を有する構成に限定する趣旨ではない。   Further, the auxiliary heater installation portion 21a of the crucible base 20a is not limited to a configuration having a recessed flat surface, as long as the auxiliary heater 110 can be disposed at an appropriate position.

なお、本実施形態においては、ルツボ10の変形前は補助ヒータ設置部21aを有しないルツボ台20を使用し、ルツボ10の変形後に補助ヒータ設置部21aを有するルツボ台20aを使用して補助ヒータ110を設置する例を説明したが、最初からルツボ台20aを用いるが、ルツボ10の変形前は補助ヒータ110を設置せず、ルツボ10aの変形後に補助ヒータ110を設置する、という使用方法も可能である。しかしながら、ルツボ台20aは、ルツボ台20よりも体積が大きくコスト増に繋がってしまうので、変形後のルツボ10aにのみルツボ台20a及び補助ヒータ110を用いる使用方法で十分である。但し、この使用方法に限定する趣旨ではなく、変形前からルツボ台20aを使用してもよい。   In this embodiment, the crucible base 20 that does not have the auxiliary heater installation portion 21a is used before the crucible 10 is deformed, and the auxiliary heater is used by using the crucible base 20a that has the auxiliary heater installation portion 21a after the crucible 10 is deformed. Although the crucible base 20a is used from the beginning, the auxiliary heater 110 is not installed before the crucible 10 is deformed, and the auxiliary heater 110 is installed after the crucible 10a is deformed. It is. However, since the crucible base 20a is larger in volume than the crucible base 20 and leads to an increase in cost, a method of using the crucible base 20a and the auxiliary heater 110 is sufficient only for the crucible 10a after deformation. However, the purpose is not limited to this method of use, and the crucible base 20a may be used before deformation.

[実施例]
次に、本実施形態に係る結晶育成装置及び単結晶の製造方法を実施した実施例について説明する。なお、以下の実施例において、本実施形態と対応する構成要素については、理解の容易のため、同一の参照符号を付して説明する。
[Example]
Next, examples in which the crystal growth apparatus and the method for producing a single crystal according to the present embodiment are implemented will be described. In the following examples, components corresponding to the present embodiment will be described with the same reference numerals for easy understanding.

[実施例1]
図7と同様の育成装置に結晶育成の使用回数が50回以上のルツボ10aと補助ヒータ110を用いて6インチLT結晶を育成した。ルツボ底の変形角度は円周状で145度であった。なお、ルツボ10の変形角度は、任意の均等に分けた4ヶ所の平均値とした。イリジウム製補助ヒータ110については、円環状で、厚み1.5mm、幅10mm、内径位置はルツボの外径から片側5mm、外径位置はルツボの外形より片側15mm大きくなるように設置した。補助ヒータ110の上下方向の設置位置はルツボ10aを支持している支持面と同一とした。
[Example 1]
A 6-inch LT crystal was grown in the same growth apparatus as in FIG. 7 using the crucible 10a and the auxiliary heater 110 that were used 50 times or more for crystal growth. The deformation angle of the bottom of the crucible was 145 degrees in a circumferential shape. In addition, the deformation angle of the crucible 10 was an average value of four places divided arbitrarily. The auxiliary heater 110 made of iridium was annular, having a thickness of 1.5 mm, a width of 10 mm, an inner diameter position that was 5 mm on one side from the outer diameter of the crucible, and an outer diameter position that was 15 mm larger on one side than the outer shape of the crucible. The vertical installation position of the auxiliary heater 110 was the same as the support surface supporting the crucible 10a.

結晶育成中、ルツボ底からの固化を監視するためルツボ底の近傍に熱電対を設置してルツボ底で固化した時の温度変化を確認し固化の発生の有無を確認した。また、ルツボ底に固化が確認された時点で、結晶の育成は終了した。   During crystal growth, in order to monitor the solidification from the bottom of the crucible, a temperature change was confirmed when a thermocouple was installed near the bottom of the crucible and solidified at the bottom of the crucible to confirm the occurrence of solidification. Further, when solidification was confirmed at the bottom of the crucible, the crystal growth was completed.

また、LTの結晶重量から以下の(1)式で結晶化率を算出した。   Further, the crystallization rate was calculated from the crystal weight of LT by the following formula (1).

結晶化率=結晶重量/原料重量 (1)
なお、ルツボ底に固化が発生した時は、固化が発生した時に育成を終了するためその時の結晶重量として算出した。固化が発生しなかった場合は、所定の結晶長さに育成し、その結晶重量として算出した。
Crystallization rate = crystal weight / raw material weight (1)
When solidification occurred at the bottom of the crucible, the crystal weight at that time was calculated to terminate the growth when the solidification occurred. When solidification did not occur, it was grown to a predetermined crystal length and calculated as the crystal weight.

また、育成終了後、補助ヒータ110の状況を確認した。その結果、実施例1では、育成中の固化信号の発生が無く、固化率45%の結晶が育成できた。   In addition, after the completion of the growth, the status of the auxiliary heater 110 was confirmed. As a result, in Example 1, no solidification signal was generated during growth, and a crystal with a solidification rate of 45% could be grown.

[実施例2]
幅5mmの円環状のイリジウム製補助ヒータ110を、内径位置がルツボの外径から片側5mm、外形位置がルツボの外径から片側10mm大きくなるように設置した。それ以外は、実施例1と同様の方法で引き上げ試験を行った。実施例2では、育成中の固化信号の発生が無く、固化率44%の結晶が育成できた。
[Example 2]
An annular iridium auxiliary heater 110 having a width of 5 mm was installed such that the inner diameter position was 5 mm on one side from the outer diameter of the crucible and the outer position was 10 mm on one side from the outer diameter of the crucible. Other than that, the pulling-up test was conducted in the same manner as in Example 1. In Example 2, no solidification signal was generated during the growth, and crystals with a solidification rate of 44% could be grown.

[実施例3]
補助ヒータ110を、補助ヒータ110の上下方向の設置位置がルツボ10aを支持している支持面より20mm下方に設置した以外は、実施例1と同様の方法で引き上げ試験を行った。実施例3では、育成中の固化信号の発生が無く、固化率45%の結晶が育成できた。
[Example 3]
A pulling-up test was conducted in the same manner as in Example 1 except that the auxiliary heater 110 was installed 20 mm below the support surface supporting the crucible 10a. In Example 3, no solidification signal was generated during the growth, and crystals with a solidification rate of 45% could be grown.

[実施例4]
ルツボ底と変形角度が円周状で125度のルツボ110aを用いた。それ以外は実施例1と同様の方法で引上げ試験を行った。実施例4では、育成中の固化信号の発生が無く、固化率46%の結晶が育成できた。
[Example 4]
A crucible 110a having a crucible bottom and a deformation angle of 125 degrees and having a circumferential shape was used. Other than that, the pulling-up test was conducted in the same manner as in Example 1. In Example 4, no solidification signal was generated during the growth, and crystals with a solidification rate of 46% could be grown.

[比較例1]
補助ヒータ110の外径位置をルツボの外径から片側25mm大きくし、円環状幅を10mmとした以外は、実施例1と同様の方法で引き上げ試験を行った。育成中の固化信号の発生が無く、固化率25%の結晶が育成された。結晶の形状が悪く、補助ヒータ110の外周部にクラックが発生した。
[Comparative Example 1]
A pulling-up test was performed in the same manner as in Example 1 except that the outer diameter position of the auxiliary heater 110 was increased by 25 mm on one side from the outer diameter of the crucible and the annular width was 10 mm. There was no generation of a solidification signal during growth, and crystals with a solidification rate of 25% were grown. The crystal shape was poor, and cracks occurred in the outer peripheral portion of the auxiliary heater 110.

[比較例2]
補助ヒータ110の内径位置をルツボの外径から片側10mm小さくし、外形位置をルツボ外径と同じとし、円環状の幅は10mmとした。それ以外は、実施例1と同様の方法で引き上げ試験を行った。育成中の固化率28%でルツボ底の固化信号が発生した。変形ルツボ10aの底部の発熱が低下したと考えられる。
[Comparative Example 2]
The inner diameter position of the auxiliary heater 110 was made 10 mm smaller than the outer diameter of the crucible, the outer position was the same as the outer diameter of the crucible, and the annular width was 10 mm. Other than that, the pulling-up test was conducted in the same manner as in Example 1. A solidification signal was generated at the bottom of the crucible at a solidification rate of 28% during growth. It is considered that the heat generation at the bottom of the deformed crucible 10a has decreased.

[比較例3]
補助ヒータ110を、補助ヒータ110の上下方向の設置位置がルツボ10aを支持している支持面より40mm下方に設置した以外は、実施例1と同様の方法で引き上げ試験を行った。育成中の固化率27%で、ルツボ底の固化信号が発生した。変形ルツボ10aの底部の発熱が低下したと考えられる。
[Comparative Example 3]
A pull-up test was performed in the same manner as in Example 1 except that the auxiliary heater 110 was installed 40 mm below the support surface supporting the crucible 10 a in the vertical position of the auxiliary heater 110. A solidification signal at the bottom of the crucible was generated at a solidification rate of 27% during the growth. It is considered that the heat generation at the bottom of the deformed crucible 10a has decreased.

[比較例4]
補助ヒータ110を用いない以外は、実施例1と同様の方法で引き上げ試験を行った。育成中の固化率19%でルツボ底の固化信号が発生した。
[Comparative Example 4]
A pulling-up test was performed in the same manner as in Example 1 except that the auxiliary heater 110 was not used. A solidification signal was generated at the bottom of the crucible at a solidification rate of 19% during growth.

実施例1〜4及び比較例1〜4の実施結果を表1に示す。表1に示される通り、実施例1〜4においては、44〜46%と高い固化率が得られているが、比較例1〜4においては、19〜28%と低い固化率であった。また、実施例1〜4においては、クラックも発生せず、固化信号も無かったが、比較例1〜4においては、比較例1でクラックが発生し、比較例2〜3で固化信号が発生した。また、実施例1〜4の評価は合格であったが、比較例1〜4の評価は不合格であった。   The results of Examples 1 to 4 and Comparative Examples 1 to 4 are shown in Table 1. As shown in Table 1, in Examples 1 to 4, a high solidification rate of 44 to 46% was obtained, but in Comparative Examples 1 to 4, the solidification rate was as low as 19 to 28%. Further, in Examples 1 to 4, no crack was generated and no solidification signal was generated. However, in Comparative Examples 1 to 4, a crack was generated in Comparative Example 1, and a solidification signal was generated in Comparative Examples 2 to 3. did. Moreover, although evaluation of Examples 1-4 was a pass, evaluation of Comparative Examples 1-4 was disqualified.

このように、本実施例によれば、ルツボ10aに変形が発生してからは補助ヒータ110を設置することにより、固化率が高く高品質の単結晶を製造できることが示された。 Thus, according to the present embodiment, it was shown that a high-quality single crystal with a high solidification rate can be manufactured by installing the auxiliary heater 110 after the crucible 10a is deformed.

以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態及び実施例に種々の変形及び置換を加えることができる。   The preferred embodiments and examples of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments and examples, and the above-described embodiments and examples can be performed without departing from the scope of the present invention. Various modifications and substitutions can be made to the embodiments.

10、10a ルツボ
20、20a ルツボ台
21a 補助ヒータ設置部
30 リフレクタ
40 アフター・ヒーター
50、60 断熱材
70 誘導コイル
80 引上げ軸
100 チャンバー
110 補助ヒータ
120 種結晶
130 原料融液
10, 10a Crucible 20, 20a Crucible base 21a Auxiliary heater installation part 30 Reflector 40 After heater 50, 60 Heat insulating material 70 Induction coil 80 Pulling shaft 100 Chamber 110 Auxiliary heater 120 Seed crystal 130 Raw material melt

Claims (6)

原料融液を貯留保持可能な金属製のルツボと、
該ルツボを下方から支持するとともに、該ルツボよりも外側の所定位置に設けられた補助ヒータ設置部を有するルツボ台と、
前記ルツボの周囲に設けられた誘導コイルと、
前記ルツボが外側方向に変形したときに、前記補助ヒータ設置部に設置される補助ヒータと、を有する結晶育成装置。
A metal crucible capable of storing and holding the raw material melt;
A crucible base for supporting the crucible from below and having an auxiliary heater installation portion provided at a predetermined position outside the crucible;
An induction coil provided around the crucible;
A crystal growth apparatus comprising: an auxiliary heater installed in the auxiliary heater installation section when the crucible is deformed outward.
前記補助ヒータは、前記ルツボを支持する支持面と同一あるいは支持面よりも下方に設けられた請求項1に記載の結晶育成装置。   The crystal growth apparatus according to claim 1, wherein the auxiliary heater is provided on the same side as or below the support surface that supports the crucible. 前記補助ヒータは、前記ルツボの外径より外側に水平に設置された請求項2に記載の結晶育成装置。   The crystal growth apparatus according to claim 2, wherein the auxiliary heater is horizontally installed outside the outer diameter of the crucible. 前記補助ヒータは円環状の平面形状を有する請求項3に記載の結晶育成装置。   The crystal growth apparatus according to claim 3, wherein the auxiliary heater has an annular planar shape. 誘導コイルにより加熱されたルツボ内に貯留保持された原料融液に種結晶を接触させて単結晶を育成しながら引き上げる単結晶育成工程と、
育成された単結晶を除去して単結晶を取得する単結晶取得工程と、
前記ルツボを洗浄及び冷却し、次の単結晶育成に備える単結晶育成準備工程と、
前記単結晶育成工程、前記単結晶取得工程及び前記単結晶育成準備工程を循環的に繰り返し、単結晶を継続して製造する単結晶量産工程と、
該単結晶量産工程の実施により前記ルツボが外側方向に変形したときに、前記ルツボを支持するルツボ台に設けられた所定の補助ヒータ設置部に補助ヒータを設置する補助ヒータ設置工程と、
前記補助ヒータが前記ルツボ台に設置された状態で前記単結晶量産工程を実施する単結晶量産継続工程と、を有する単結晶の製造方法。
A single crystal growth step in which the seed crystal is brought into contact with the raw material melt stored and held in the crucible heated by the induction coil and pulled up while growing the single crystal;
A single crystal acquisition step of acquiring the single crystal by removing the grown single crystal;
Washing and cooling the crucible, and preparing a single crystal growth preparation for the next single crystal growth;
The single crystal mass production process for continuously producing a single crystal by cyclically repeating the single crystal growth process, the single crystal acquisition process and the single crystal growth preparation process,
An auxiliary heater installation step of installing an auxiliary heater in a predetermined auxiliary heater installation portion provided in a crucible base that supports the crucible when the crucible is deformed in an outward direction by performing the single crystal mass production step;
A single-crystal mass-production continuation step of performing the single-crystal mass-production step in a state where the auxiliary heater is installed on the crucible base.
前記ルツボの変形前には、前記補助ヒータ設置部を有しない第2のルツボ台が用いられ、
前記ルツボの変形後に前記ルツボ台が用いられる請求項5に記載の単結晶の製造方法。
Before the crucible is deformed, a second crucible base that does not have the auxiliary heater installation portion is used.
The method for producing a single crystal according to claim 5, wherein the crucible base is used after the crucible is deformed.
JP2018094336A 2018-05-16 2018-05-16 CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD Active JP7106978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018094336A JP7106978B2 (en) 2018-05-16 2018-05-16 CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018094336A JP7106978B2 (en) 2018-05-16 2018-05-16 CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2019199375A true JP2019199375A (en) 2019-11-21
JP7106978B2 JP7106978B2 (en) 2022-07-27

Family

ID=68611799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018094336A Active JP7106978B2 (en) 2018-05-16 2018-05-16 CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP7106978B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101486A (en) * 1984-10-25 1986-05-20 Mitsui Mining & Smelting Co Ltd Production of single crystal
JPH04285091A (en) * 1991-03-14 1992-10-09 Toshiba Corp Manufacturing device for oxide single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101486A (en) * 1984-10-25 1986-05-20 Mitsui Mining & Smelting Co Ltd Production of single crystal
JPH04285091A (en) * 1991-03-14 1992-10-09 Toshiba Corp Manufacturing device for oxide single crystal

Also Published As

Publication number Publication date
JP7106978B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
JP6302192B2 (en) Single crystal growth apparatus and method
JP2007223830A (en) Method of growing oxide single crystal
JP6790927B2 (en) Crystal growth device
JP6631460B2 (en) Method for producing silicon single crystal and silicon single crystal
JP5163386B2 (en) Silicon melt forming equipment
JP2019147698A (en) Apparatus and method for growing crystal
JP2021109826A (en) Crucible deformation quantity measuring method and method of manufacturing oxide single crystal
JP7115252B2 (en) Oxide single crystal production method and crystal growth apparatus
JP7106978B2 (en) CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD
JP6834493B2 (en) Oxide single crystal growing device and growing method
JP6790698B2 (en) Crystal growth device and crystal growth method
JP2020066555A (en) Apparatus and method for growing single crystal
JPH09328394A (en) Production of oxide single crystal
JP2021100901A (en) Single crystal growth device and single crystal growth method
JP6805886B2 (en) Crystal growth device
JP2010265150A (en) Method for producing sapphire single crystal and method for producing seed crystal
JP6702249B2 (en) Oxide single crystal manufacturing method and oxide single crystal pulling apparatus
JP2022025994A (en) Apparatus and method for growing single crystal
JP6992488B2 (en) Crucible for growing single crystals
JP2019026492A (en) Deformation prevention body and single crystal growth apparatus
JP2021095316A (en) Single crystal growth apparatus and single crystal growth method
JP2019043788A (en) Method and apparatus for growing single crystal
JP2019052067A (en) Single crystal growth apparatus
JP2019189488A (en) Single crystal manufacturing method
JP2018002573A (en) Crystal growth apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7106978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150