JP6790927B2 - Crystal growth device - Google Patents

Crystal growth device Download PDF

Info

Publication number
JP6790927B2
JP6790927B2 JP2017044018A JP2017044018A JP6790927B2 JP 6790927 B2 JP6790927 B2 JP 6790927B2 JP 2017044018 A JP2017044018 A JP 2017044018A JP 2017044018 A JP2017044018 A JP 2017044018A JP 6790927 B2 JP6790927 B2 JP 6790927B2
Authority
JP
Japan
Prior art keywords
heating element
auxiliary heating
crucible
crystal growing
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017044018A
Other languages
Japanese (ja)
Other versions
JP2018145071A (en
Inventor
治男 石川
治男 石川
杉山 正史
正史 杉山
槙 孝一郎
孝一郎 槙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017044018A priority Critical patent/JP6790927B2/en
Publication of JP2018145071A publication Critical patent/JP2018145071A/en
Application granted granted Critical
Publication of JP6790927B2 publication Critical patent/JP6790927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、結晶育成装置に関する。 The present invention relates to a crystal growing device.

酸化物単結晶の製造方法としては、酸化物単結晶になる原料を充填したルツボを高温に加熱してこの原料を溶融し、ルツボ内の原料融液の液面に上方から種結晶を接触させた後に回転させながら上昇させることで種結晶と同一方位の酸化物単結晶を育成するチョクラルスキー法による結晶育成方法が広く実施されている。 As a method for producing an oxide single crystal, a rutsubo filled with a raw material to be an oxide single crystal is heated to a high temperature to melt the raw material, and the seed crystal is brought into contact with the liquid surface of the raw material melt in the rutsubo from above. A crystal growth method by the Czochralski method, in which an oxide single crystal having the same orientation as the seed crystal is grown by raising the crystal while rotating the seed crystal, is widely practiced.

チョクラルスキー法による単結晶育成では、ルツボの周囲に誘導コイルが配置されており、誘導コイルに高周波電流を流すことによってルツボに渦電流が生じ、これによってルツボが発熱してルツボ内の原料が溶融する。 In the single crystal growth by the Czochralski method, an induction coil is arranged around the crucible, and an eddy current is generated in the crucible by passing a high-frequency current through the induction coil, which causes the crucible to generate heat and the raw material in the crucible. Melt.

また、引き上げが進むにつれて単結晶の上部は、シード棒(引き上げ軸)を伝わって冷却されるが、発熱体がルツボのみである場合には、成長中の単結晶内の温度分布が大きくなるため、ルツボ上部を保温する工夫がなされている。例えば、結晶内の温度差に伴う熱応力によるクラックを抑制するため、ルツボの上部に、ルツボ以外の発熱体である円筒状のアフター・ヒーターを配置している。また、ルツボ上部を保温するためドーナツ状のリフレクタを配置することもある。 In addition, as the pulling progresses, the upper part of the single crystal is cooled along the seed rod (pulling shaft), but if the heating element is only a crucible, the temperature distribution in the growing single crystal becomes large. , The upper part of the crucible is kept warm. For example, in order to suppress cracks due to thermal stress due to a temperature difference in the crystal, a cylindrical after-heater, which is a heating element other than the crucible, is arranged above the crucible. In addition, a donut-shaped reflector may be placed to keep the upper part of the crucible warm.

ところで、近年、酸化物単結晶、特にタンタル酸リチウムは表面弾性波デバイス材料として市場が拡大しており、生産量の確保のため単結晶の引き上げ長さが次第に長くなっている。この長尺化に伴い、結晶の曲りや直胴部で発生する多結晶化、あるいは、冷却中の熱歪に起因したクラック、ルツボ底の原料固化などが発生し易くなっており、結晶の良品率を低下させる原因となっている。特に、ルツボ底の原料固化は、長尺化には大きな問題となる。チョクラルスキー法による単結晶育成では、ルツボの原料融解面より種結晶を接触させて回転させ、徐々に引き上げながら結晶を成長させている。結晶を成長させるためには炉内の温度勾配を適正に管理しなければならず、結晶が長くなるに従い、炉内の温度を適切な範囲で低下させなければならない。しかし、結晶を引き上げる上部は結晶育成に適切な温度であっても、これに伴いルツボ底部では温度が低下し、場合によってはルツボ底部中央から固化が開始することがある。ルツボ底部の中央は誘導コイルから離れており固化しやすい。また、このままの状態で結晶の育成を続けた場合、固化した結晶はルツボ底部から上方に成長し、育成している結晶と融着してしまい、育成を中止しなければならない事態が発生することがある。 By the way, in recent years, the market for oxide single crystals, particularly lithium tantalate, has been expanding as a surface acoustic wave device material, and the pulling length of the single crystal is gradually increasing in order to secure the production amount. Along with this lengthening, crystalliteization that occurs in the bending of the crystal and the straight body, cracks due to thermal strain during cooling, solidification of the raw material at the bottom of the rut, etc. are likely to occur, and it is a good crystal. It is a cause of lowering the rate. In particular, solidification of the raw material at the bottom of the crucible poses a big problem for lengthening. In the single crystal growth by the Czochralski method, the seed crystal is brought into contact with the melting surface of the raw material of the crucible and rotated, and the crystal is grown while gradually pulling it up. In order to grow crystals, the temperature gradient in the furnace must be properly controlled, and as the crystals grow longer, the temperature in the furnace must be lowered within an appropriate range. However, even if the temperature of the upper part where the crystal is pulled up is suitable for crystal growth, the temperature drops at the bottom of the crucible, and in some cases, solidification may start from the center of the bottom of the crucible. The center of the bottom of the crucible is separated from the induction coil and easily solidifies. In addition, if the crystal growth is continued in this state, the solidified crystal grows upward from the bottom of the crucible and fuses with the growing crystal, resulting in a situation in which the growth must be stopped. There is.

このため、特許文献1では、ルツボの下側のルツボ台内の空間に、ルツボの底面の面積より小さく、かつルツボの高さ方向に所定の長さを有する補助発熱体を設置する方法が開示されている。この補助発熱体の形状は、様々な形状を示しており、どの形状を用いても効果が得られるとの記載がある。 Therefore, Patent Document 1 discloses a method of installing an auxiliary heating element that is smaller than the area of the bottom surface of the crucible and has a predetermined length in the height direction of the crucible in the space inside the crucible stand below the crucible. Has been done. The shape of this auxiliary heating element shows various shapes, and it is described that the effect can be obtained by using any shape.

また、特許文献2では、円筒状部材からなるルツボの底面をなす円板状部材が円筒状部材の外周面よりも半径方向外方に突出してフランジ状外周部を形成する構成が開示されている。かかるフランジ状外周部は、加熱コイルに最も近い位置となるため、高効率で速く高温となり、ルツボに下部の方が上部よりも高温となる温度勾配を付加することができる。 Further, Patent Document 2 discloses a configuration in which a disk-shaped member forming the bottom surface of a crucible made of a cylindrical member protrudes outward in the radial direction from the outer peripheral surface of the cylindrical member to form a flange-shaped outer peripheral portion. .. Since the flange-shaped outer peripheral portion is located closest to the heating coil, it is possible to add a temperature gradient to the crucible so that the temperature of the lower portion is higher than that of the upper portion.

特開昭54−162686号公報JP-A-54-162686 特開2004−284854号公報Japanese Unexamined Patent Publication No. 2004-284854

しかしながら、特許文献1に記載の構成では、ルツボ台内に補助発熱体が設けられているため、補助発熱体からルツボへの熱の伝達効率が良好でないという問題があった。また、ルツボの下側に補助発熱体を置くことでルツボ底部を加熱する効果は一定の範囲であるが、誘導コイルに高周波電流を流すことによって補助発熱体に渦電流を生じさせて加熱しており、この補助発熱体の形状により発熱する位置や発熱量が変わってくる。当然、ルツボ内の融液への影響もあるが、特許文献1にはそのような補助発熱体の形状とルツボ内の融液への影響が考慮されておらず、融液の温度制御が十分になされていないという問題があった。 However, in the configuration described in Patent Document 1, since the auxiliary heating element is provided in the crucible stand, there is a problem that the heat transfer efficiency from the auxiliary heating element to the crucible is not good. In addition, the effect of heating the bottom of the rutsubo by placing the auxiliary heating element under the rutsubo is within a certain range, but by passing a high-frequency current through the induction coil, an eddy current is generated in the auxiliary heating element and heated. The position and amount of heat generated vary depending on the shape of this auxiliary heating element. Naturally, there is an influence on the melt in the crucible, but Patent Document 1 does not consider the shape of such an auxiliary heating element and the influence on the melt in the crucible, and the temperature control of the melt is sufficient. There was a problem that it was not done.

また、特許文献2に記載の構成では、フランジ状外周部によるルツボの直接的な加熱は可能であるが、加熱コイルに最も近く最も高温となるため、劣化も最も激しくなる。しかしながら、ルツボと一体的に形成されているため、頻繁なフランジ外周部の劣化により、ルツボ全体を頻繁に交換しなければならないという問題があった。 Further, in the configuration described in Patent Document 2, the crucible can be directly heated by the flange-shaped outer peripheral portion, but the crucible is closest to the heating coil and has the highest temperature, so that the deterioration is the most severe. However, since it is integrally formed with the crucible, there is a problem that the entire crucible must be replaced frequently due to frequent deterioration of the outer peripheral portion of the flange.

そこで、本発明は、上記事情に鑑み、チョクラルスキー法による単結晶育成装置において、育成する結晶体の長尺化に伴うルツボ底部の原料固化を、効率的かつ容易に防止できる結晶育成装置を提供することを目的とする。 Therefore, in view of the above circumstances, the present invention provides a crystal growing device capable of efficiently and easily preventing the solidification of the raw material at the bottom of the crucible due to the lengthening of the crystal to be grown in the single crystal growing device by the Czochralski method. The purpose is to provide.

上記目的を達成するため、本発明の一態様に係る結晶育成装置は、チョクラルスキー法により単結晶を育成する結晶育成装置であって、
原料融液を貯留保持可能な金属製のルツボと、
前記ルツボを下方から支持するルツボ台と、
前記ルツボの周囲に設けられ、前記ルツボを誘導加熱する誘導コイルと、
前記ルツボの底面の下方であって、前記誘導コイルが生成する磁場が前記ルツボの下方において最も強くなる高さ位置よりも上方に設けられ、前記誘導コイルにより誘導加熱される底部補助発熱体と、
前記底部補助発熱体と別体であり、前記ルツボ台の側面を円筒状に覆い、前記底部補助発熱体の外径以上の内径を有する側面円筒補助発熱体と、を有する。

In order to achieve the above object, the crystal growth device according to one aspect of the present invention is a crystal growth device that grows a single crystal by the Czochralski method.
A metal crucible that can store and hold the raw material melt,
A crucible stand that supports the crucible from below,
An induction coil provided around the crucible to induce and heat the crucible,
A bottom auxiliary heating element that is below the bottom surface of the crucible and is provided above the height position where the magnetic field generated by the induction coil is strongest below the crucible and is induced and heated by the induction coil.
It is a separate body from the bottom auxiliary heating element, and has a side cylindrical auxiliary heating element that covers the side surface of the crucible base in a cylindrical shape and has an inner diameter equal to or larger than the outer diameter of the bottom auxiliary heating element .

本発明によれば、低コストでクラック等の不具合の発生がなく、結晶育成長さの長尺化に対応できる単結晶育成装置を提供することができる。 According to the present invention, it is possible to provide a single crystal growth apparatus capable of increasing the length of crystal growth without causing defects such as cracks at low cost.

本発明の第1の実施形態に係る結晶育成装置の一例を示した概要図である。It is a schematic diagram which showed an example of the crystal growth apparatus which concerns on 1st Embodiment of this invention. 本発明の実施形態に係る結晶育成装置の一例の底部補助発熱体及び側面円筒補助発熱体を示した図である。It is a figure which showed the bottom auxiliary heating element and the side cylindrical auxiliary heating element of an example of the crystal growth apparatus which concerns on embodiment of this invention. 補助発熱体を使用しない時のルツボ付近の磁場の分布をシミュレーションした結果である。This is the result of simulating the distribution of the magnetic field near the crucible when the auxiliary heating element is not used. 本発明の第1の実施形態に係る結晶育成装置の一例の育成終盤のルツボ付近の温度分布をシミュレーションした結果である。図4(a)は、いずれの補助発熱体も配置しなかった時の炉内の温度分布をシミュレーションした結果である。図4(b)は、底部補助発熱体のみを配置した時の炉内の温度分布をシミュレーションした結果である。図4(c)は、底部補助発熱体及び側面円筒補助発熱体を配置した時の炉内の温度分布をシミュレーションした結果である。This is a result of simulating the temperature distribution in the vicinity of the crucible at the end of growing of an example of the crystal growing device according to the first embodiment of the present invention. FIG. 4A is a result of simulating the temperature distribution in the furnace when none of the auxiliary heating elements was arranged. FIG. 4B is a result of simulating the temperature distribution in the furnace when only the bottom auxiliary heating element is arranged. FIG. 4C is a result of simulating the temperature distribution in the furnace when the bottom auxiliary heating element and the side cylindrical auxiliary heating element are arranged. 第1の実施形態に係る結晶育成装置のルツボ内の原料融液の温度分布を示した図である。It is a figure which showed the temperature distribution of the raw material melt in the crucible of the crystal growth apparatus which concerns on 1st Embodiment. 本発明の第2の実施形態に係る結晶育成装置の一例を示した図である。It is a figure which showed an example of the crystal growth apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る結晶育成装置の一例のルツボ付近の温度分布をシミュレーションした結果である。図7(a)は、底部補助発熱体のみを配置した時の炉内の温度分布をシミュレーションした結果である。図7(b)は、は底部補助発熱体及び側面円筒補助発熱体を配置した時の炉内の温度分布をシミュレーションした結果である。図7(c)は、底部補助発熱体及び側部円環補助発熱体を配置した時の炉内の温度分布をシミュレーションした結果である。This is the result of simulating the temperature distribution near the crucible of an example of the crystal growing apparatus according to the second embodiment of the present invention. FIG. 7A is a result of simulating the temperature distribution in the furnace when only the bottom auxiliary heating element is arranged. FIG. 7B is a result of simulating the temperature distribution in the furnace when the bottom auxiliary heating element and the side cylindrical auxiliary heating element are arranged. FIG. 7C is a result of simulating the temperature distribution in the furnace when the bottom auxiliary heating element and the side ring auxiliary heating element are arranged. 第2の実施形態に係る結晶育成装置のルツボ内の原料融液の温度分布を示した図である。It is a figure which showed the temperature distribution of the raw material melt in the crucible of the crystal growth apparatus which concerns on 2nd Embodiment.

以下、図面を参照して、本発明を実施するための形態の説明を行う。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

本発明のチョクラスキー法を用いた結晶育成装置は、大気中または不活性ガス雰囲気中で育成されるニオブ酸リチウムLiNbO(以下LN)、タンタル酸リチウムLiTaO(以下LT)、イットリウムアルミニウムガーネットYAl12(以下YAG)などの酸化物単結晶の製造に用いる結晶育成装置である。チョクラルスキー法は、ある結晶方位に従って切り出された種と呼ばれる、通常は断面の一辺が数mm程度の直方体単結晶の先端を、同一組成の融液に浸潤し、回転しながら徐々に引上げることによって、種結晶の性質を伝播しながら大口径化して単結晶を製造する方法である。 The crystal growth apparatus using the Czochralski method of the present invention includes lithium niobate LiNbO 3 (hereinafter LN), lithium tantalate LiTaO 3 (hereinafter LT), and yttrium aluminum garnet grown in the air or an inert gas atmosphere. This is a crystal growing device used for producing an oxide single crystal such as Y 3 Al 5 O 12 (hereinafter referred to as YAG). In the Czochralski method, the tip of a rectangular parallelepiped single crystal, which is called a seed cut out according to a certain crystal orientation and usually has a side of several mm in cross section, is infiltrated into a melt of the same composition and gradually pulled up while rotating. This is a method for producing a single crystal by increasing the diameter while propagating the properties of the seed crystal.

[第1の実施形態]
図1は、本発明の第1の実施形態に係る結晶育成装置の一例を示した概要図である。図1に示されるように、第1の実施形態に係る結晶育成装置は、ルツボ10と、ルツボ台20と、リフレクタ30と、アフター・ヒーター40と、断熱材50、51と、耐火物60と、引き上げ軸70と、誘導コイル80と、底部補助発熱体90と、側面円筒補助発熱体91と、電源100と、制御部110とを備える。なお、加熱手段は、ルツボ10と、アフター・ヒーター40と、底部補助発熱体90と、側面円筒補助発熱体91とを加熱する誘導コイル80である。また、電源100は、誘導コイル80に高周波電力を供給するために設けられている。
[First Embodiment]
FIG. 1 is a schematic view showing an example of a crystal growing apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the crystal growing device according to the first embodiment includes a crucible 10, a crucible stand 20, a reflector 30, an after-heater 40, heat insulating materials 50 and 51, and a refractory 60. A pulling shaft 70, an induction coil 80, a bottom auxiliary heating element 90, a side cylindrical auxiliary heating element 91, a power supply 100, and a control unit 110 are provided. The heating means is an induction coil 80 that heats the crucible 10, the after heater 40, the bottom auxiliary heating element 90, and the side cylindrical auxiliary heating element 91. Further, the power supply 100 is provided to supply high frequency power to the induction coil 80.

本実施形態に係る結晶育成装置において、ルツボ10はルツボ台20の上に載置される。ルツボ10の上方には、リフレクタ30を介して、アフター・ヒーター40が設置されている。ルツボ10を取り囲むように断熱材50が設置されている。更に、アフター・ヒーター40を取り囲むように断熱材51が設けられている。また、断熱材50、51の外側には耐火物60が設けられ、ルツボ10の周囲全体を覆っている。耐火物60の側面の外側には、誘導コイル80が配置されている。 In the crystal growing apparatus according to the present embodiment, the crucible 10 is placed on the crucible stand 20. An after-heater 40 is installed above the crucible 10 via a reflector 30. A heat insulating material 50 is installed so as to surround the crucible 10. Further, a heat insulating material 51 is provided so as to surround the after heater 40. Further, a refractory material 60 is provided on the outside of the heat insulating materials 50 and 51 to cover the entire circumference of the crucible 10. An induction coil 80 is arranged on the outside of the side surface of the refractory material 60.

ルツボ台20の一部には、底部補助発熱体90が設置されている。また、底部補助発熱体90の上方であって、ルツボ10の底面よりも下方の範囲の高さ位置のルツボ台20の側面に、円筒形状を有してルツボ台20の側面を帯状に覆う側面円筒補助発熱体91が設けられている。 A bottom auxiliary heating element 90 is installed in a part of the crucible stand 20. Further, a side surface having a cylindrical shape and covering the side surface of the crucible base 20 in a strip shape on the side surface of the crucible base 20 at a height position above the bottom auxiliary heating element 90 and below the bottom surface of the crucible 10. A cylindrical auxiliary heating element 91 is provided.

なお、誘導コイル80が外側に設けられた耐火物60は、図示しない支持台の上に載置される。また、誘導コイル80の周囲を、図示しないチャンバーが覆う。 The refractory material 60 provided with the induction coil 80 on the outside is placed on a support base (not shown). Further, a chamber (not shown) covers the periphery of the induction coil 80.

ルツボ10及びその周囲に設けられた断熱材50は、ホットゾーン部を構成する。また、ルツボ10の上方には、引き上げ軸70が設けられている。引き上げ軸70は、下端に種結晶保持部71を有し、引き上げ軸駆動部72により昇降可能に構成されている。更に、上述の図示しないチャンバーの周辺の外部に、電源100及び制御手段110が設けられる。 The crucible 10 and the heat insulating material 50 provided around the crucible 10 form a hot zone portion. A pull-up shaft 70 is provided above the crucible 10. The pull-up shaft 70 has a seed crystal holding portion 71 at the lower end thereof, and is configured to be able to be raised and lowered by the pull-up shaft drive portion 72. Further, a power supply 100 and a control means 110 are provided outside the periphery of the chamber (not shown) described above.

また、図1において、関連構成要素として、種結晶150と、結晶原料160と、引き上げられた単結晶(結晶体とも呼ぶ)170とが示されている。 Further, in FIG. 1, as related components, a seed crystal 150, a crystal raw material 160, and a pulled-up single crystal (also referred to as a crystal) 170 are shown.

次に、個々の構成要素について説明する。 Next, the individual components will be described.

ルツボ10は、結晶原料160を貯留保持し、単結晶170を育成するための容器である。結晶原料160は、結晶化する金属等が溶融した融液の状態で保持される。ルツボの材質は、結晶原料160にもよるが耐熱性のある白金やイリジウム等で作製される。 The crucible 10 is a container for storing and holding the crystal raw material 160 and growing the single crystal 170. The crystal raw material 160 is held in a molten state in which a metal or the like to be crystallized is melted. The material of the crucible is made of heat-resistant platinum, iridium, or the like, although it depends on the crystal raw material 160.

育成される単結晶170は、単結晶170の引き上げが進むにつれてルツボ10から遠ざかって行く為、単結晶170の温度分布が大きくなり単結晶170の割れ等の不具合が発生する場合がある。これを改善するため、ルツボ10の上方にアフター・ヒーター40を設置して適切な温度分布を維持する。アフター・ヒーター40の形状は、内径が得ようとする酸化物単結晶170の直径より大きく、ルツボ10の直径より小さい円筒形状である。全長は、例えば、得ようとする酸化物単結晶170の全長の半分よりも長く、二倍よりも短く設定する。ルツボ10の材質としては、例えば、白金やイリジウム等の金属が用いられる。 Since the grown single crystal 170 moves away from the crucible 10 as the pulling of the single crystal 170 progresses, the temperature distribution of the single crystal 170 becomes large, and problems such as cracking of the single crystal 170 may occur. In order to improve this, an after-heater 40 is installed above the crucible 10 to maintain an appropriate temperature distribution. The shape of the after heater 40 is a cylindrical shape in which the inner diameter is larger than the diameter of the oxide single crystal 170 to be obtained and smaller than the diameter of the crucible 10. The total length is set to be longer than half of the total length of the oxide single crystal 170 to be obtained and shorter than twice, for example. As the material of the crucible 10, for example, a metal such as platinum or iridium is used.

底部補助発熱体90はルツボ台20の一部に設置される。また、側面円筒補助発熱体91は、底部補助発熱体90の上方であって、ルツボ10の底面の下方の高さ範囲の所定位置に、内径が底部補助発熱体90の外径と同等又は底部補助発熱体90の外径よりも大きくなるように設置されている。なお、底部補助発熱体90及び側面円筒補助発熱体91の詳細については、後述する。 The bottom auxiliary heating element 90 is installed in a part of the crucible stand 20. Further, the side cylindrical auxiliary heating element 91 is above the bottom auxiliary heating element 90, and at a predetermined position in a height range below the bottom surface of the crucible 10, the inner diameter is equal to the outer diameter of the bottom auxiliary heating element 90 or the bottom. It is installed so as to be larger than the outer diameter of the auxiliary heating element 90. The details of the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 will be described later.

誘導コイル80は、ルツボ10、アフター・ヒーター40、底部補助発熱体90及び側面円筒補助発熱体91を加熱するための手段であり、ルツボ10、アフター・ヒーター40、底部補助発熱体90及び側面円筒補助発熱体91を囲むように配置される。誘導コイル80は、ルツボ10やアフター・ヒーター40等を誘導加熱できれば形態は問わないが、例えば、高周波加熱コイルからなる高周波誘導加熱装置として構成される。この場合には、電源100は、誘導コイル80に高周波電力を供給する高周波電源として構成される。 The induction coil 80 is a means for heating the crucible 10, the after heater 40, the bottom auxiliary heating element 90 and the side cylinder auxiliary heating element 91, and the crucible 10, the after heater 40, the bottom auxiliary heating element 90 and the side cylinder. It is arranged so as to surround the auxiliary heating element 91. The form of the induction coil 80 is not limited as long as it can induce and heat the crucible 10, the after-heater 40, and the like, but is configured as, for example, a high-frequency induction heating device including a high-frequency heating coil. In this case, the power supply 100 is configured as a high frequency power supply that supplies high frequency power to the induction coil 80.

また、電源100は、誘導コイル80のみならず、結晶育成装置全体に電源供給を行う。 Further, the power supply 100 supplies power not only to the induction coil 80 but also to the entire crystal growing device.

図示しないチャンバーは、ルツボ10及び誘導コイル80の高熱を遮断するとともに、これらを収容する機能を有する。 A chamber (not shown) has a function of blocking high heat of the crucible 10 and the induction coil 80 and accommodating them.

また、図示しない支持台は、耐火物60全体を支持するための支持台である。 A support base (not shown) is a support base for supporting the entire refractory material 60.

引き上げ軸70は、種結晶150を保持し、ルツボ10に保持された結晶原料(融液)160の表面に種結晶150を接触させ、回転しながら単結晶170を引き上げるための手段である。引き上げ軸70は、種結晶150を保持する種結晶保持部71を下端部に有するとともに、回転機構であるモーターを備えた引き上げ軸駆動機構72を有する。なお、モーターは、結晶の引き上げの際、結晶を回転させながら引き上げる動作を行うための回転駆動機構である。 The pulling shaft 70 is a means for holding the seed crystal 150, bringing the seed crystal 150 into contact with the surface of the crystal raw material (melt) 160 held in the crucible 10, and pulling the single crystal 170 while rotating. The pull-up shaft 70 has a seed crystal holding portion 71 for holding the seed crystal 150 at the lower end portion, and also has a pull-up shaft drive mechanism 72 provided with a motor which is a rotation mechanism. The motor is a rotation drive mechanism for pulling up the crystal while rotating the crystal.

制御部110は、結晶育成装置全体の制御を行うための手段であり、結晶育成プロセスを含めて結晶育成装置全体の動作を制御する。制御部110は、例えば、CPU(Central Processing Unit)、中央処理装置、及びROM(Read Only Memory)、RAM(Random Access Memory)等のメモリを備え、プログラムにより動作するマイクロコンピュータから構成されてもよいし、特定の用途のために開発されたASIC(Application Specified Integra Circuit)等の電子回路から構成されてもよい。 The control unit 110 is a means for controlling the entire crystal growth apparatus, and controls the operation of the entire crystal growth apparatus including the crystal growth process. The control unit 110 may be composed of, for example, a CPU (Central Processing Unit), a central processing unit, and a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory), which are operated by a program. However, it may be composed of an electronic circuit such as an ASIC (Application Specified Integra Circuit) developed for a specific application.

本実施形態に係る結晶育成装置は、種々の結晶原料160に適用することができ、結晶原料160の種類は問わないが、例えば、タンタル酸リチウム原料を用いてもよい。その他、種々の酸化物単結晶を育成するための結晶原料160を用いることができる。 The crystal growing apparatus according to the present embodiment can be applied to various crystal raw materials 160, and the type of the crystal raw material 160 is not limited, but for example, a lithium tantalate raw material may be used. In addition, a crystal raw material 160 for growing various oxide single crystals can be used.

次に、図2を用いて、本発明の特徴である底部補助発熱体90及び側面円筒補助発熱体91について説明する。図2は、本発明の実施形態に係る結晶育成装置の一例の底部補助発熱体90及び側面円筒補助発熱体91を示した図である。 Next, the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91, which are the features of the present invention, will be described with reference to FIG. FIG. 2 is a diagram showing a bottom auxiliary heating element 90 and a side cylindrical auxiliary heating element 91 as an example of the crystal growing device according to the embodiment of the present invention.

図2に示される通り、本発明の第1の実施形態に係る結晶育成装置の補助発熱体は、底部補助発熱体90と側面円筒補助発熱体91との2種類がある。底部補助発熱体90は、ルツボ台20の一部に設置されている。また、側面円筒補助発熱体91は、底部補助発熱体90の上方であって、ルツボ10の底面の下方の範囲の所定の高さ位置に配置されている。また、側面円筒補助発熱体91の内径が底部補助発熱体90の外径以上となるように設定されている。底部補助発熱体90及び側面円筒補助発熱体91は、誘導コイル80からの電磁誘導作用により加熱される。 As shown in FIG. 2, there are two types of auxiliary heating elements of the crystal growing device according to the first embodiment of the present invention: a bottom auxiliary heating element 90 and a side cylindrical auxiliary heating element 91. The bottom auxiliary heating element 90 is installed in a part of the crucible stand 20. Further, the side cylindrical auxiliary heating element 91 is arranged at a predetermined height position in a range above the bottom auxiliary heating element 90 and below the bottom surface of the crucible 10. Further, the inner diameter of the side cylindrical auxiliary heating element 91 is set to be equal to or larger than the outer diameter of the bottom auxiliary heating element 90. The bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 are heated by the electromagnetic induction action from the induction coil 80.

チョクラルスキー法による単結晶育成では、ルツボ10内の融解した結晶原料160に種結晶150を接触させ、上方に引き上げることで結晶体170を冷却して結晶を成長させている。結晶長が長くなるに従い、結晶体170は冷却され、炉内上部の温度は低下していく。ルツボ10内の原料融液160も減少して発熱量も低下し、誘導コイル80から一番離れているルツボ底部の中央部から原料固化が開始する。これを防止するため、本実施形態に係る結晶育成装置では、ルツボ底部の下側にあるルツボ台20の一部に底部補助発熱体90を配置する。 In the single crystal growth by the Czochralski method, the seed crystal 150 is brought into contact with the melted crystal raw material 160 in the crucible 10 and pulled upward to cool the crystal body 170 and grow the crystal. As the crystal length increases, the crystal body 170 is cooled and the temperature of the upper part of the furnace decreases. The raw material melt 160 in the crucible 10 also decreases, the calorific value also decreases, and solidification of the raw material starts from the central portion of the bottom of the crucible farthest from the induction coil 80. In order to prevent this, in the crystal growing device according to the present embodiment, the bottom auxiliary heating element 90 is arranged on a part of the crucible stand 20 under the bottom of the crucible.

図2に示すように、底部補助発熱体90は、ルツボ10の下側にあるルツボ台20の一部をなすように、ルツボ台20の所定高さ位置に配置される。ルツボ台20は複数の耐熱材21から構成されている。底部補助発熱体90は、積載された複数の耐熱材21同士の間に設置する。つまり、円筒状のブロックをなすように構成された複数の耐熱材21が積載されてルツボ台20が構成されるが、これらの複数の耐熱材21の間の所定箇所に挿入されるようにして底部補助発熱体90が配置される。このため底部補助発熱体90が所定の高さになるように耐熱材21の厚さを調整することが好ましい。また、ルツボ台20の一部を側面円筒補助発熱体91の外径より大きく設定して円板状突出部22として構成し、側面円筒補助発熱体91は、円板状突出部22の上に所定の高さとなるように設置する。 As shown in FIG. 2, the bottom auxiliary heating element 90 is arranged at a predetermined height position of the crucible base 20 so as to form a part of the crucible base 20 under the crucible 10. The crucible stand 20 is composed of a plurality of heat-resistant materials 21. The bottom auxiliary heating element 90 is installed between the plurality of loaded heat-resistant materials 21. That is, a plurality of heat-resistant materials 21 configured to form a cylindrical block are loaded to form the crucible stand 20, but the crucible base 20 is formed so as to be inserted at a predetermined position between the plurality of heat-resistant materials 21. The bottom auxiliary heating element 90 is arranged. Therefore, it is preferable to adjust the thickness of the heat-resistant material 21 so that the bottom auxiliary heating element 90 has a predetermined height. Further, a part of the crucible base 20 is set larger than the outer diameter of the side cylindrical auxiliary heating element 91 to form a disc-shaped protrusion 22, and the side cylindrical auxiliary heating element 91 is placed on the disc-shaped protrusion 22. Install so that it has a predetermined height.

底部補助発熱体90は、円形又は円盤状の平板形状を有する。底部補助発熱体90の外径は、ルツボ底面より小さい面積とする。例えば、ルツボ外径よりも40mm〜100mm小さい外径の補助発熱体とする。ルツボ10の下方に底部補助発熱体90を設置した場合、誘導コイル80の磁場は、一般的に誘導コイル80に近い外形端部に集中し易い。しかし、誘導コイル80からこの位置が離れれば、当然発熱量は小さくなる。本実施形態では、誘導コイル80から一番離れているルツボ底部の中央部を発熱させる必要があり、この両方を満足する最適な位置は、ルツボ外径よりも40mm〜100mm小さい外径の位置である。なお、底部補助発熱体90をルツボ外形より大きくすることも可能であるが、この場合、底部補助発熱体90の外形端部はルツボ外径より大きくなるため、この部分がルツボ10の底面の端部より高温になり、ルツボ10内の融液全体が高温になり、底部補助発熱体90が無い場合の従来のプロセス条件から条件を大幅に変更する必要がある。そうすると、新たなプロセス条件の確立に多大な時間を要する。このため、本発明では、底部補助発熱体90の外形をルツボ10の底面の外形よりも小さく構成する。これにより、従来の条件とほぼ同様の条件で結晶育成が可能となる。例えば、ルツボ径がφ200mmであれば、底部補助発熱体90の大きさはφ100mm〜φ160mmが好ましく、例えば、φ130mmに設定されてもよい。 The bottom auxiliary heating element 90 has a circular or disk-shaped flat plate shape. The outer diameter of the bottom auxiliary heating element 90 is smaller than the bottom surface of the crucible. For example, an auxiliary heating element having an outer diameter 40 mm to 100 mm smaller than the outer diameter of the crucible is used. When the bottom auxiliary heating element 90 is installed below the crucible 10, the magnetic field of the induction coil 80 is generally likely to be concentrated on the outer end portion close to the induction coil 80. However, if this position is separated from the induction coil 80, the calorific value naturally decreases. In the present embodiment, it is necessary to heat the central portion of the bottom of the crucible farthest from the induction coil 80, and the optimum position for satisfying both of these is a position having an outer diameter 40 mm to 100 mm smaller than the outer diameter of the crucible. is there. It is possible to make the bottom auxiliary heating element 90 larger than the outer diameter of the crucible, but in this case, since the outer end of the bottom auxiliary heating element 90 is larger than the outer diameter of the crucible, this portion is the end of the bottom surface of the crucible 10. It is necessary to drastically change the conditions from the conventional process conditions when the temperature becomes higher than that of the crucible, the temperature of the entire melt in the crucible 10 becomes high, and the bottom auxiliary heating element 90 is not provided. Then, it takes a lot of time to establish new process conditions. Therefore, in the present invention, the outer shape of the bottom auxiliary heating element 90 is made smaller than the outer shape of the bottom surface of the crucible 10. As a result, crystal growth becomes possible under almost the same conditions as the conventional conditions. For example, when the crucible diameter is φ200 mm, the size of the bottom auxiliary heating element 90 is preferably φ100 mm to φ160 mm, and may be set to, for example, φ130 mm.

底部補助発熱体90の厚みは、0.5mm〜3mmの範囲内であることが好ましい。本実施形態に係る結晶育成装置の加熱方法は、誘導コイル80を使用し、誘導コイル80に高周波電流を流して磁場を発生させ、磁場中の加熱体に渦電流を発生させることで加熱体を加熱する方式である。表皮効果により加熱体の面積に大きく依存するが、加熱体の厚みの依存性は小さい。このため、底部補助発熱体90の厚みに制限はないが、取り扱いの容易性等の観点から、少なくとも0.5mm以上の厚さが必要である。また、底部補助発熱体90の材質は、結晶原料160にもよるが、耐熱性のある白金やイリジウム等で作製される。このため、コストを考慮すると厚みは、薄い方が低コストで底部補助発熱体90を製作することが可能である。よって、底部補助発熱体90の厚さは、3mm以下が好ましく、1mm〜2mmの範囲内にあることが更に好ましい。 The thickness of the bottom auxiliary heating element 90 is preferably in the range of 0.5 mm to 3 mm. In the heating method of the crystal growing device according to the present embodiment, an induction coil 80 is used, a high-frequency current is passed through the induction coil 80 to generate a magnetic field, and an eddy current is generated in the heating body in the magnetic field to generate a heating body. It is a heating method. The skin effect greatly depends on the area of the heating body, but the thickness of the heating body is small. Therefore, the thickness of the bottom auxiliary heating element 90 is not limited, but from the viewpoint of ease of handling and the like, a thickness of at least 0.5 mm or more is required. The material of the bottom auxiliary heating element 90 depends on the crystal raw material 160, but is made of heat-resistant platinum, iridium, or the like. Therefore, considering the cost, it is possible to manufacture the bottom auxiliary heating element 90 at a lower cost when the thickness is thinner. Therefore, the thickness of the bottom auxiliary heating element 90 is preferably 3 mm or less, and more preferably within the range of 1 mm to 2 mm.

底部補助発熱体90は、ルツボ10の底面の下方において、誘導コイル80により生成される磁場の強度が最も強い高さ位置よりも上方に配置する。上述したように、本実施形態に係る結晶育成装置は、誘導コイル80を使用し、誘導コイル80に高周波電流を流して発熱体である底部補助発熱体90及び側面円筒補助発熱体91に渦電流を発生させることで加熱している。かかる渦電流は、誘導コイル80により生成される磁場の最も高い領域に発熱体を配置すると最も高くなり、加熱温度も最も高くなる。しかしながら、目的とする最終的な加熱対象はルツボ10の底面の中央付近であり、この位置から底部補助発熱体90及び側面補助発熱体91が離れると、補助発熱体90、91が高温になっても、目的とするルツボ10の底面の中央付近を効率的に加熱できない場合がある。よって、底部補助発熱体90及び側面補助発熱体91は、誘導コイル80の磁場の強度と、ルツボ10の底面との距離とのバランスを考慮して設定することが好ましい。 The bottom auxiliary heating element 90 is arranged below the bottom surface of the crucible 10 and above the height position where the strength of the magnetic field generated by the induction coil 80 is the strongest. As described above, the crystal growing device according to the present embodiment uses the induction coil 80, and an eddy current is passed through the induction coil 80 to the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91, which are heating elements. Is heated by generating. The eddy current becomes the highest when the heating element is placed in the region where the magnetic field generated by the induction coil 80 is the highest, and the heating temperature also becomes the highest. However, the target final heating target is near the center of the bottom surface of the crucible 10, and when the bottom auxiliary heating element 90 and the side auxiliary heating element 91 are separated from this position, the auxiliary heating elements 90 and 91 become hot. However, it may not be possible to efficiently heat the vicinity of the center of the bottom surface of the target crucible 10. Therefore, the bottom auxiliary heating element 90 and the side auxiliary heating element 91 are preferably set in consideration of the balance between the strength of the magnetic field of the induction coil 80 and the distance from the bottom surface of the crucible 10.

図3は、補助発熱体を使用しない時のルツボ10付近の磁場の分布をシミュレーションした結果である。図3において、ルツボ下方で、誘導コイル80により生成される磁界の最も強い高さ位置が最大磁場高さ位置Maxとして破線で示されている。図3から判るように誘導コイル80に対向して配置され、誘導コイルと距離的に近い所が磁場の密度が高く、発熱が大きくなる。ルツボ底面の磁場は、ルツボ底面に遮蔽されるため弱くなる。ルツボ底面より下方にある程度距離を置くことにより、磁場は大きくなる。しかしながら、ルツボ底面からの距離が大きくなると、底部補助発熱体10の発熱量は増えるが、ルツボ台20等で伝熱率が下がるため、両者の最適値の位置に底面補助発熱体90を配置することが好ましい。例えば、磁場の最も強い最大磁場高さ位置Maxよりも上方で、かつルツボ10の底面よりも下方に底面補助発熱体90を配置すれば、磁場の強度も高く、ルツボ10の底面からの距離も近いので、加熱効率が高くなる。よって、底部補助発熱体90は、誘導コイル80により生成される磁場が最も強くなる最大磁場高さ位置Maxよりも高く、ルツボ10の底面の下方の所定高さ位置に設けることが好ましい。例えば、ルツボ径がφ200mmの場合、磁場の最も強い最大磁場高さ位置Maxはルツボ底面より80〜100mmであり、底面補助発熱体90の位置は、最大磁場高さ位置Maxより20mm〜30mm上方に配置する。よって、底部補助発熱体90は、ルツボ底面から50mm〜80mm下方の位置である。また、ルツボ10の底面より60mm〜70mm下方の位置であることがより好ましい。 FIG. 3 is a result of simulating the distribution of the magnetic field near the crucible 10 when the auxiliary heating element is not used. In FIG. 3, below the crucible, the strongest height position of the magnetic field generated by the induction coil 80 is indicated by a broken line as the maximum magnetic field height position Max. As can be seen from FIG. 3, the magnetic field is densely arranged in a place facing the induction coil 80 and close to the induction coil, and heat generation is large. The magnetic field on the bottom of the crucible is weakened because it is shielded by the bottom of the crucible. The magnetic field increases by placing a certain distance below the bottom of the crucible. However, as the distance from the bottom surface of the crucible increases, the amount of heat generated by the bottom auxiliary heating element 10 increases, but the heat transfer rate decreases at the crucible stand 20 and the like, so the bottom auxiliary heating element 90 is placed at the optimum position for both. Is preferable. For example, if the bottom auxiliary heating element 90 is placed above the maximum magnetic field height position Max, which has the strongest magnetic field, and below the bottom surface of the crucible 10, the strength of the magnetic field is high and the distance from the bottom surface of the crucible 10 is also high. Since it is close, the heating efficiency is high. Therefore, it is preferable that the bottom auxiliary heating element 90 is provided at a predetermined height position below the bottom surface of the crucible 10, which is higher than the maximum magnetic field height position Max where the magnetic field generated by the induction coil 80 is strongest. For example, when the crucible diameter is φ200 mm, the maximum magnetic field height position Max of the strongest magnetic field is 80 to 100 mm from the bottom surface of the crucible, and the position of the bottom auxiliary heating element 90 is 20 mm to 30 mm above the maximum magnetic field height position Max. Deploy. Therefore, the bottom auxiliary heating element 90 is located 50 mm to 80 mm below the bottom surface of the crucible. Further, it is more preferable that the position is 60 mm to 70 mm below the bottom surface of the crucible 10.

なお、図2においては、補助発熱体として、底部補助発熱体90と、側面円筒補助発熱体91の双方が設けられている例を挙げて説明しているが、図3のように、底部補助発熱体90の設置位置を誘導コイル80により生成される誘導磁界との関係から適切に定めれば、底部補助発熱体90のみを設けた場合であっても、相当の加熱効果が得られる。よって、底部補助発熱体90のみを設けた構成としてもよい。 In addition, in FIG. 2, an example in which both the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 are provided as the auxiliary heating element is described, but as shown in FIG. 3, the bottom auxiliary heating element is described. If the installation position of the heating element 90 is appropriately determined in relation to the induced magnetic field generated by the induction coil 80, a considerable heating effect can be obtained even when only the bottom auxiliary heating element 90 is provided. Therefore, the configuration may be such that only the bottom auxiliary heating element 90 is provided.

図2に示されるように、本発明の第1の実施形態に係る結晶育成装置では、底部補助発熱体90とルツボ底面下側の範囲に側面補助発熱板91を配置している。これは、ルツボ底部の下方に設置した底部補助発熱体90とルツボ10の底面との間に、底部補助発熱体90の外径以上の内径を有する側面円筒補助発熱体91を設置することにより、底部補助発熱体90とルツボ10の底面との間で横方向に熱が逃げるのを防止するためである。底部補助発熱体90のみ設けた場合、底部補助発熱体90とルツボ底部との間に設置したルツボ台20の側面から周囲に熱が移動し、ルツボ底部を効率よく暖めることができない場合がある。前述したように磁場の分布等の制約から、ルツボ底部を暖めるべく底部補助発熱体90の発熱量をさらに飛躍的に上げることは難しい。そこで、この底部補助発熱体90の周囲に側面円筒補助発熱体91を追加して熱の壁を作ることにより、ルツボ底部の底部補助発熱体90の熱を周囲に逃がすことなくルツボ底部に伝熱させることができる。 As shown in FIG. 2, in the crystal growing device according to the first embodiment of the present invention, the side auxiliary heating plate 91 is arranged in the range below the bottom auxiliary heating element 90 and the bottom surface of the crucible. This is done by installing a side cylindrical auxiliary heating element 91 having an inner diameter equal to or larger than the outer diameter of the bottom auxiliary heating element 90 between the bottom auxiliary heating element 90 installed below the bottom of the crucible and the bottom surface of the crucible 10. This is to prevent heat from escaping laterally between the bottom auxiliary heating element 90 and the bottom surface of the crucible 10. When only the bottom auxiliary heating element 90 is provided, heat may be transferred from the side surface of the crucible stand 20 installed between the bottom auxiliary heating element 90 and the bottom of the crucible to the surroundings, and the bottom of the crucible may not be heated efficiently. As described above, it is difficult to dramatically increase the amount of heat generated by the bottom auxiliary heating element 90 in order to warm the bottom of the crucible due to restrictions such as the distribution of the magnetic field. Therefore, by adding a side cylindrical auxiliary heating element 91 around the bottom auxiliary heating element 90 to create a heat wall, heat is transferred to the bottom of the crucible without letting the heat of the bottom auxiliary heating element 90 at the bottom of the crucible escape to the surroundings. Can be made to.

側面円筒補助発熱体91の形状は円筒形状であるため、底部補助発熱体90からの熱を効率的に囲み保温することができる。但し、上述のように底部補助発熱体90の周囲に側面補助発熱板91を追加して熱の壁を作ることにより、ルツボ底部の底部補助発熱体90の熱を周囲に逃がすことなくルツボ底部に伝熱させることができれば、種々の形状であってもよい。この点については、第2の実施形態において、別の態様の補助発熱体について後述することとする。 Since the shape of the side cylindrical auxiliary heating element 91 is cylindrical, the heat from the bottom auxiliary heating element 90 can be efficiently surrounded and kept warm. However, as described above, by adding the side auxiliary heating plate 91 around the bottom auxiliary heating element 90 to create a heat wall, the heat of the bottom auxiliary heating element 90 at the bottom of the crucible is not released to the surroundings and is attached to the bottom of the crucible. As long as heat can be transferred, it may have various shapes. Regarding this point, in the second embodiment, another aspect of the auxiliary heating element will be described later.

以下、側面円筒補助発熱体91について更に説明する。側面円筒補助発熱体91の内径は、底部補助発熱体90の外径と同等か底部補助発熱体90の外径より大きい。好ましくは、側面円筒補助発熱体91の内径は、底部補助発熱体90の外径と同等以上であって、外径+40mm以内の範囲である。側面円筒補助発熱体91の内径がこれ以上大きい場合には、ルツボ台20との隙間から熱が逃げ、伝熱効率が悪くなる。側面円筒補助発熱体91の内径がこれより小さい場合には、底部補助発熱体90の発熱が最も大きい箇所である外径端部の熱を確保できない。また、側面円筒補助発熱体91の内径は、底部補助発熱体の外径+10から外径+20mmの範囲内であることがより好ましい。側面円筒補助発熱体91の円筒形の高さは限定しないが、底部補助発熱体90と側面円筒補助発熱体91との高さの差は、20mm以内であることが好ましい。また、ルツボ底部と側面円筒補助発熱体91との高さの差も、20mm以内であることが好ましい。これらの高さの差、つまり両者の隙間が大きい場合、この隙間部分から熱の逃げが大きくなり、伝熱効率が悪くなる。また、底部補助発熱体90と側面円筒補助発熱体91とを一体加工しても同様の効果は得られるが、この場合、発熱が両者の接続部分である角部に集中し、補助発熱体90、91の損傷が激しくなり、補助発熱体90、91の寿命が短くなる、また、部品の加工も一体加工となり加工が難しくなる。このため、底部補助発熱体90と側面円筒補助発熱体91とは各々別個に配置し、両者の距離を10mm〜20mmに設定して互いに離間して配置することが好ましい。 Hereinafter, the side cylindrical auxiliary heating element 91 will be further described. The inner diameter of the side cylindrical auxiliary heating element 91 is equal to the outer diameter of the bottom auxiliary heating element 90 or larger than the outer diameter of the bottom auxiliary heating element 90. Preferably, the inner diameter of the side cylindrical auxiliary heating element 91 is equal to or greater than the outer diameter of the bottom auxiliary heating element 90, and is within the range of the outer diameter +40 mm. If the inner diameter of the side cylindrical auxiliary heating element 91 is larger than this, heat escapes from the gap with the crucible base 20, and the heat transfer efficiency deteriorates. If the inner diameter of the side cylindrical auxiliary heating element 91 is smaller than this, it is not possible to secure the heat of the outer diameter end portion where the bottom auxiliary heating element 90 generates the largest amount of heat. Further, the inner diameter of the side cylindrical auxiliary heating element 91 is more preferably in the range of the outer diameter +10 to the outer diameter +20 mm of the bottom auxiliary heating element. The height of the cylindrical shape of the side cylindrical auxiliary heating element 91 is not limited, but the height difference between the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 is preferably 20 mm or less. Further, the height difference between the bottom of the crucible and the side cylindrical auxiliary heating element 91 is also preferably within 20 mm. When the difference between these heights, that is, the gap between the two is large, the heat escapes from this gap portion becomes large, and the heat transfer efficiency deteriorates. Further, the same effect can be obtained by integrally processing the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91, but in this case, the heat generation is concentrated on the corner portion which is the connecting portion between the two, and the auxiliary heating element 90 , 91 becomes severely damaged, the life of the auxiliary heating elements 90 and 91 is shortened, and the parts are integrally processed, which makes the processing difficult. Therefore, it is preferable that the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 are arranged separately, and the distance between them is set to 10 mm to 20 mm so as to be separated from each other.

側面円筒補助発熱体91の厚み及び材質は、用途により種々の設定としてよいが、例えば、底部補助発熱体90と同等であってもよい。厚みは0.5mm〜3mmの範囲に設定することが好ましい。また、厚さを1mm〜2mmの範囲に設定することがより好ましい。材質は、結晶原料160の種類にもよるが、耐熱性のある白金やイリジウム等で作製されることが好ましい。 The thickness and material of the side cylindrical auxiliary heating element 91 may be set in various ways depending on the application, and may be, for example, the same as the bottom auxiliary heating element 90. The thickness is preferably set in the range of 0.5 mm to 3 mm. Further, it is more preferable to set the thickness in the range of 1 mm to 2 mm. The material depends on the type of the crystal raw material 160, but is preferably made of heat-resistant platinum, iridium, or the like.

図4は、本発明の第1の実施形態に係る結晶育成装置の一例の育成終盤のルツボ付近の温度分布をシミュレーションした結果である。なおルツボ径はφ200mmとし、底部補助発熱体90は、ルツボ10底部より60mm下側に外形φ130mm、内径φ20mm、厚み0.5mmとした。また、側面円筒補助発熱板91は、ルツボ10底部より上端が10mmの位置に外径φ140mm、高さが40mm、板厚0.5mmの円筒形状とした。図4(a)は、いずれの補助発熱体も配置しなかった時の炉内の温度分布をシミュレーションした結果である。図4(b)は、底部補助発熱体90のみを配置した時の炉内の温度分布をシミュレーションした結果である。図4(c)は、底部補助発熱体90と円筒状の側面円筒補助発熱体91を配置した時の炉内の温度分布をシミュレーションした結果である。図4(a)〜(c)において、最も温度の高い領域から順に、領域A、B、C、D、E、F、G、H、I、Jを定めて表示した。 FIG. 4 is a result of simulating the temperature distribution near the crucible at the end of growing of an example of the crystal growing device according to the first embodiment of the present invention. The crucible diameter was φ200 mm, and the bottom auxiliary heating element 90 had an outer diameter of φ130 mm, an inner diameter of φ20 mm, and a thickness of 0.5 mm 60 mm below the bottom of the crucible 10. The side cylindrical auxiliary heating plate 91 has a cylindrical shape with an outer diameter of φ140 mm, a height of 40 mm, and a plate thickness of 0.5 mm at a position where the upper end is 10 mm from the bottom of the crucible 10. FIG. 4A is a result of simulating the temperature distribution in the furnace when none of the auxiliary heating elements was arranged. FIG. 4B is a result of simulating the temperature distribution in the furnace when only the bottom auxiliary heating element 90 is arranged. FIG. 4C is a result of simulating the temperature distribution in the furnace when the bottom auxiliary heating element 90 and the cylindrical side cylindrical auxiliary heating element 91 are arranged. In FIGS. 4A to 4C, regions A, B, C, D, E, F, G, H, I, and J are defined and displayed in order from the region having the highest temperature.

図4(b)の底部補助発熱体90のみを配置した時の炉内の温度分布は、図4(a)の補助発熱体が無い時に比べ底部補助発熱体の全体の部分が高温になりルツボ底面全体を均等に暖めていることが判る。より詳細には、図4(b)のルツボ10の底面の下方の領域において、領域B〜Eの領域が図4(a)よりも増加している。これに対して、図4(c)は、側面円筒補助発熱体91が底部補助発熱体90の外径と同等の内径を有し、かつ、ルツボ底面と底部補助発熱体の高さ方向の間に円筒形に配置した時の結果である。図4(c)に示される通り、側面円筒補助発熱体91の円筒部全体が発熱しており、領域B〜Dの部分がルツボ台20の側面に沿って下方に延びていることが示されている。また、側面円筒補助発熱体91と底部補助発熱体90との間に囲まれている空間の温度の変化は図4(b)に比べ小さく、保温された状態であることが判る。 The temperature distribution in the furnace when only the bottom auxiliary heating element 90 shown in FIG. 4 (b) is arranged is such that the entire part of the bottom auxiliary heating element becomes hotter than when there is no auxiliary heating element shown in FIG. 4 (a). It can be seen that the entire bottom surface is evenly warmed. More specifically, in the region below the bottom surface of the crucible 10 in FIG. 4B, the regions B to E are increased as compared with FIG. 4A. On the other hand, in FIG. 4C, the side cylindrical auxiliary heating element 91 has an inner diameter equivalent to the outer diameter of the bottom auxiliary heating element 90, and is between the bottom surface of the crucible and the bottom auxiliary heating element in the height direction. This is the result when it is arranged in a cylindrical shape. As shown in FIG. 4C, it is shown that the entire cylindrical portion of the side cylindrical auxiliary heating element 91 is generating heat, and the portions B to D extend downward along the side surface of the crucible stand 20. ing. Further, it can be seen that the change in temperature of the space surrounded between the side cylindrical auxiliary heating element 91 and the bottom auxiliary heating element 90 is smaller than that in FIG. 4B, and the temperature is kept warm.

このように、図4(a)と図4(b)との比較から、底部補助発熱体90を設けたことにより、ルツボ10の底面の下方が加熱され、加熱された領域が増加していることが分かる。更に、図4(b)と図4(c)との比較から、底部補助発熱体90に加えて側面円筒補助発熱体91を更に設けたことにより、底部補助発熱体90の熱がルツボ台20の側面から外側に逃げていかなくなり、ルツボ台20付近に熱を保温することができ、ルツボ10底面の下方を更に加熱できていることが分かる。 As described above, from the comparison between FIGS. 4 (a) and 4 (b), the lower part of the bottom surface of the crucible 10 is heated by providing the bottom auxiliary heating element 90, and the heated region is increased. You can see that. Further, from the comparison between FIGS. 4 (b) and 4 (c), the heat of the bottom auxiliary heating element 90 is generated by the crucible stand 20 by further providing the side cylindrical auxiliary heating element 91 in addition to the bottom auxiliary heating element 90. It can be seen that the heat cannot be kept in the vicinity of the crucible stand 20 without escaping to the outside from the side surface of the crucible, and the lower part of the bottom surface of the crucible 10 can be further heated.

図5は、ルツボ内の原料融液の温度分布を示した図であり、ルツボ中央部の温度分布をルツボ底面から上方方向にシミュレーションした時の温度分布のグラフである。図5において、曲線Kが補助発熱体を何ら設けなかった場合のシミュレーション結果を示し、曲線Lが底部補助発熱体90のみを設けた場合のシミュレーション結果を示している。また、曲線Mが、底部補助発熱体90及び円筒形の側面円筒補助発熱体91を設けた場合のシミュレーション結果を示している。 FIG. 5 is a diagram showing the temperature distribution of the raw material melt in the crucible, and is a graph of the temperature distribution when the temperature distribution in the central part of the crucible is simulated upward from the bottom surface of the crucible. In FIG. 5, the curve K shows the simulation result when no auxiliary heating element is provided, and the curve L shows the simulation result when only the bottom auxiliary heating element 90 is provided. Further, the curve M shows the simulation result when the bottom auxiliary heating element 90 and the cylindrical side cylindrical auxiliary heating element 91 are provided.

縦軸がゼロの点におけるルツボ底部での温度は、補助発熱体なしでは、曲線Kに示される通り1642℃であり、底部補助発熱体90のみでは、曲線Lに示される通り1650℃である。よって、底部補助発熱体90のみを設けた場合でも、ルツボ10の底部の温度は高くなって改善されている。また、底部補助発熱体90及び側面円筒補助発熱体91の双方を設けた場合は、曲線Mに示される通り、1660℃と10°改善されている。本発明の第1の実施形態に係る結晶育成装置で想定している原料融液160はタンタル酸リチウム(TL)であり、融点は1650℃である。よって、曲線Lに示される通り、底部補助発熱体90のみを設けた場合でも原料固化は発生しないことが分かる。更に、曲線Mに示される通り、底部補助発熱体90に加えて側面円筒補助発熱体91を更に設けることで、ルツボ底面の温度をタンタル酸リチウム(TL)の融点である1650℃を大幅に上回る1660℃とすることができ、余裕を持つことができる。また、図5のグラフから判るように、両者の温度分布は、ルツボ底面の温度は違うものの、ルツボ底面から15mm以上の高い位置ではほぼ同一である。これは、側面円筒補助発熱体91を設けたとしても、従来の結晶育成の条件と変更する必要が無いことを意味する。なお、側面円筒補助発熱体91は、ルツボ底部を加熱することが目的ではなく、底部補助発熱体90の加熱した熱がルツボ10に伝導する途中でルツボ台20の側面から外側に逃げることを防止し、効率よくルツボ底面を加熱することを目的とする。このように、底部補助発熱体90と側面円筒補助発熱体91との協働により、ルツボ10内の原料融液160の温度分布を大きく変化させること無く底部補助発熱体90の発熱を効率良くルツボ10の底部に伝達することができる。 The temperature at the bottom of the crucible at the point where the vertical axis is zero is 1642 ° C. as shown in the curve K without the auxiliary heating element, and 1650 ° C. as shown in the curve L only with the bottom auxiliary heating element 90. Therefore, even when only the bottom auxiliary heating element 90 is provided, the temperature at the bottom of the crucible 10 is high and improved. Further, when both the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 are provided, the temperature is improved by 10 ° to 1660 ° C. as shown by the curve M. The raw material melt 160 assumed in the crystal growing apparatus according to the first embodiment of the present invention is lithium tantalate (TL) and has a melting point of 1650 ° C. Therefore, as shown in the curve L, it can be seen that solidification of the raw material does not occur even when only the bottom auxiliary heating element 90 is provided. Further, as shown by the curve M, by further providing the side cylindrical auxiliary heating element 91 in addition to the bottom auxiliary heating element 90, the temperature of the bottom surface of the crucible greatly exceeds 1650 ° C., which is the melting point of lithium tantalate (TL). It can be set to 1660 ° C. and can have a margin. Further, as can be seen from the graph of FIG. 5, the temperature distributions of the two are almost the same at a position higher than 15 mm from the bottom surface of the crucible, although the temperature of the bottom surface of the crucible is different. This means that even if the side cylindrical auxiliary heating element 91 is provided, it does not need to be changed from the conventional crystal growth conditions. The side cylindrical auxiliary heating element 91 is not intended to heat the bottom of the crucible, and prevents the heated heat of the bottom auxiliary heating element 90 from escaping from the side surface of the crucible stand 20 to the outside while being conducted to the crucible 10. The purpose is to heat the bottom of the crucible efficiently. In this way, the cooperation between the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 efficiently generates heat from the bottom auxiliary heating element 90 without significantly changing the temperature distribution of the raw material melt 160 in the crucible 10. It can be transmitted to the bottom of 10.

このように、第1の実施形態に係る結晶育成装置によれば、ルツボ10の下方に底部補助発熱体90を設けたことにより、ルツボ10の底面の温度の低下を抑制し、高温に保つことができる。また、底部補助発熱体90をルツボ台20の一部に設けることにより、省スペースで効率的にルツボ10の底面を加熱することができる。更に、側面円筒補助発熱体91をルツボ台20の側面に設けることにより、底部補助発熱体90からルツボ10の底面に伝達する熱がルツボ台20の側面から放出され、逃げてしまうことを防止することができる。 As described above, according to the crystal growing apparatus according to the first embodiment, by providing the bottom auxiliary heating element 90 below the crucible 10, the temperature drop of the bottom surface of the crucible 10 is suppressed and kept at a high temperature. Can be done. Further, by providing the bottom auxiliary heating element 90 on a part of the crucible stand 20, the bottom surface of the crucible 10 can be efficiently heated in a space-saving manner. Further, by providing the side cylindrical auxiliary heating element 91 on the side surface of the crucible stand 20, the heat transferred from the bottom auxiliary heating element 90 to the bottom surface of the crucible 10 is prevented from being released from the side surface of the crucible stand 20 and escaping. be able to.

[第2の実施形態]
図6は、本発明の第2の実施形態に係る結晶育成装置の一例を示した図である。第2の実施形態に係る結晶育成装置は、側面円筒補助発熱体91の代わりに、円環状の側部円環補助発熱体92がルツボ台20aに設けられている点で、第1の実施形態に係る結晶育成装置と異なっている。他の構成要素については、第1の実施形態に係る結晶育成装置と同様であるので、その説明を省略する。また、第1の実施形態に対応する構成要素には、同一の参照符号を付してその説明を省略する。
[Second Embodiment]
FIG. 6 is a diagram showing an example of a crystal growing apparatus according to a second embodiment of the present invention. The crystal growing device according to the second embodiment has a first embodiment in that an annular side annular auxiliary heating element 92 is provided on the crucible base 20a instead of the side cylindrical auxiliary heating element 91. It is different from the crystal growing device according to. Since the other components are the same as those of the crystal growing apparatus according to the first embodiment, the description thereof will be omitted. Further, the components corresponding to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

円環状の側部円環補助発熱体92は、側面円筒補助発熱体91と同様に、その内径は底部補助発熱体90の外径と同等かそれより大きい形状を有する。より詳細には、側部円環補助発熱体92の内径は、底部補助発熱体90の外径と同等以上であって、外径+40mm以内の範囲内であることが好ましい。側部円環補助発熱体92の内径が底部補助発熱体90の外径+40mmよりも大きい場合には、ルツボ台20aの側面との隙間から熱が逃げ、熱伝達効率が悪くなる。側部円環補助発熱体92の内径が底部補助発熱体90の外径よりも小さい場合には、底部補助発熱体90の発熱の大きい箇所である外径端部の熱を確保できない。更に、側部円環補助発熱体92の内径は、底部補助発熱体90の外径+10から外径+20mmの範囲内にあることがより好ましい。側部円環補助発熱体92の外形は、ルツボ径と同等もしくは、ルツボ径よりも小さくすることが好ましい。円環状である側部円環補助発熱体92の外径端部は誘導コイル80と距離が近くなるため、局部的に高温になりやすく、ルツボ径より大きくなるとルツボ10の発熱より高くなる可能性が高い。よって、側部円環補助発熱体92の外形は、ルツボ径より20mm〜30mm小さくすることが好ましい。側部円環補助発熱体92を配置する高さは限定しないが、ルツボ底面と底部補助発熱体90と中間点、又は中間点よりも底面補助発熱体90側の20mm以内に配置することが好ましい。後述するが、側部円環補助発熱体92は、発熱体が高温に発熱するため、中間点より底部補助発熱体90側に接近させて配置することで、底部補助発熱体90の熱を逃がさずに保温することが可能となる。側部円環補助発熱体92の板厚と材質は、円筒状の側面円筒補助発熱体91と同様である。 The annular side annular auxiliary heating element 92, like the side cylindrical auxiliary heating element 91, has an inner diameter equal to or larger than the outer diameter of the bottom auxiliary heating element 90. More specifically, it is preferable that the inner diameter of the side annular auxiliary heating element 92 is equal to or larger than the outer diameter of the bottom auxiliary heating element 90 and is within the range of the outer diameter +40 mm. When the inner diameter of the side annular auxiliary heating element 92 is larger than the outer diameter of the bottom auxiliary heating element 90 + 40 mm, heat escapes from the gap with the side surface of the crucible base 20a, and the heat transfer efficiency deteriorates. When the inner diameter of the side annular auxiliary heating element 92 is smaller than the outer diameter of the bottom auxiliary heating element 90, the heat of the outer diameter end portion where the bottom auxiliary heating element 90 generates a large amount of heat cannot be secured. Further, the inner diameter of the side annular auxiliary heating element 92 is more preferably in the range of the outer diameter +10 to the outer diameter +20 mm of the bottom auxiliary heating element 90. The outer shape of the side annular auxiliary heating element 92 is preferably equal to or smaller than the crucible diameter. Since the outer diameter end of the annular auxiliary heating element 92 is close to the induction coil 80, the temperature tends to be locally high, and if it is larger than the crucible diameter, it may be higher than the heat generated by the crucible 10. Is high. Therefore, the outer shape of the side ring auxiliary heating element 92 is preferably 20 mm to 30 mm smaller than the crucible diameter. The height at which the side annular auxiliary heating element 92 is arranged is not limited, but it is preferable to arrange the side ring auxiliary heating element 92 at an intermediate point between the bottom surface of the crucible and the bottom auxiliary heating element 90, or within 20 mm of the bottom auxiliary heating element 90 side of the intermediate point. .. As will be described later, since the heating element of the side annular auxiliary heating element 92 generates heat at a high temperature, the heat of the bottom auxiliary heating element 90 is released by arranging the side annular auxiliary heating element 92 closer to the bottom auxiliary heating element 90 side than the intermediate point. It is possible to keep warm without having to. The plate thickness and material of the side annular auxiliary heating element 92 are the same as those of the cylindrical side cylindrical auxiliary heating element 91.

側部円環補助発熱体92は、図6に示されるように、ルツボ台20aの円板状突出部22aの円環状の平板上に載置して設けてもよい。円板状突出部22a上に載置すればよいので、設置及び交換は極めて容易である。なお、図6に示されるルツボ台20aの円板状突出部22aは、図2に示した円板状突出部22よりも厚い形状となっているが、これは、側部円環補助発熱体92をルツボ10の底面と底部補助発熱体90との略中間地点に配置するためである。即ち、図2に示した側面円筒補助発熱体91は、鉛直方向に延びているため、ルツボ10の底面と底部補助発熱体90との略中間地点に側面円筒補助発熱体91を配置するためには、側面円筒補助発熱体91の高さを考慮して円板状突出部22の厚さを薄くする必要がある。一方、側部円環補助発熱体92は平板状であるため、側部円環補助発熱体92を上方に配置するため、円板状突出部22aの厚さを厚く構成する必要があるためである。 As shown in FIG. 6, the side annular auxiliary heating element 92 may be provided by being placed on an annular flat plate of the disc-shaped protruding portion 22a of the crucible base 20a. Since it may be placed on the disc-shaped protrusion 22a, it is extremely easy to install and replace. The disk-shaped protrusion 22a of the crucible base 20a shown in FIG. 6 has a shape thicker than that of the disk-shaped protrusion 22 shown in FIG. 2, which is a side ring auxiliary heating element. This is because the 92 is arranged at a substantially intermediate point between the bottom surface of the crucible 10 and the bottom auxiliary heating element 90. That is, since the side cylindrical auxiliary heating element 91 shown in FIG. 2 extends in the vertical direction, the side cylindrical auxiliary heating element 91 is arranged at a substantially intermediate point between the bottom surface of the crucible 10 and the bottom auxiliary heating element 90. It is necessary to reduce the thickness of the disc-shaped protruding portion 22 in consideration of the height of the side cylindrical auxiliary heating element 91. On the other hand, since the side annular auxiliary heating element 92 has a flat plate shape, the disc-shaped protruding portion 22a needs to be thickened in order to arrange the side annular auxiliary heating element 92 above. is there.

次に、側面補助発熱体が円盤状のシミュレーション結果について説明する。 Next, the simulation result in which the side auxiliary heating element has a disk shape will be described.

図7は、本発明の第2の実施形態に係る結晶育成装置の一例のルツボ付近の温度分布をシミュレーションした結果である。図7(a)は、底部補助発熱体90のみを配置した時の炉内の温度分布をシミュレーションした結果である。図7(b)は、は底部補助発熱体90及び側面円筒補助発熱体91を配置した時の炉内の温度分布をシミュレーションした結果である。図7(c)は、底部補助発熱体90及び側部円環補助発熱体92を配置した時の炉内の温度分布をシミュレーションした結果である。なお、図7(a)〜(c)において、温度の高い順に、領域A〜Jを用いて温度分布が示されている。 FIG. 7 is a result of simulating the temperature distribution near the crucible of an example of the crystal growing apparatus according to the second embodiment of the present invention. FIG. 7A is a result of simulating the temperature distribution in the furnace when only the bottom auxiliary heating element 90 is arranged. FIG. 7B is a result of simulating the temperature distribution in the furnace when the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 are arranged. FIG. 7C is a result of simulating the temperature distribution in the furnace when the bottom auxiliary heating element 90 and the side ring auxiliary heating element 92 are arranged. In addition, in FIGS. 7A to 7C, the temperature distribution is shown using the regions A to J in descending order of temperature.

また、側部円環補助発熱体92は、内径が130mm、外径が185mm、厚さは0.5mmに設定した。側部円環補助発熱体92の外径は、ルツボ10の外径よりも15mm内側となるように設定した。また、側部円環補助発熱体92は、ルツボ底面と底部補助発熱体と中間の位置に設定した。 The side ring auxiliary heating element 92 has an inner diameter of 130 mm, an outer diameter of 185 mm, and a thickness of 0.5 mm. The outer diameter of the side ring auxiliary heating element 92 was set to be 15 mm inside the outer diameter of the crucible 10. Further, the side ring auxiliary heating element 92 was set at a position intermediate between the bottom surface of the crucible and the bottom auxiliary heating element.

図7(b)は、側面円筒補助発熱体91の内径が底部補助発熱体90の外径と同等以上の大きさであり、かつ、高さ方向において側面円筒補助発熱体91をルツボ底面と底部補助発熱体90との間に配置した時の結果である。図7(b)においては、側面円筒補助発熱体91の円筒部全体が発熱しており、側面円筒補助発熱体91と底部補助発熱体90との間に囲まれた空間の温度の変化は図7(a)に比較して小さく、保温された状態であることが判る。即ち、高温領域である領域B、Cが、側面円筒補助発熱体91に沿ってルツボ10の底面の下方に延びている。 FIG. 7B shows that the inner diameter of the side cylindrical auxiliary heating element 91 is equal to or larger than the outer diameter of the bottom auxiliary heating element 90, and the side cylindrical auxiliary heating element 91 is attached to the bottom surface and the bottom of the crucible in the height direction. This is the result when placed between the auxiliary heating element 90. In FIG. 7B, the entire cylindrical portion of the side cylindrical auxiliary heating element 91 is generating heat, and the change in temperature of the space surrounded between the side cylindrical auxiliary heating element 91 and the bottom auxiliary heating element 90 is shown in FIG. It can be seen that it is smaller than 7 (a) and is kept warm. That is, the regions B and C, which are high temperature regions, extend below the bottom surface of the crucible 10 along the side cylindrical auxiliary heating element 91.

これに対して、図7(c)は、側部円環補助発熱体92を設置したシミュレーション結果である。図7(c)から判るように、高温領域A,Bが、ルツボ10の底面から下方に拡大しており、側部円環補助発熱体92のある箇所は、最も高温の領域Aとなっている。このように、図7(c)から、側部円環補助発熱体92は、円環状の外径端部が誘導コイル80と近いため、発熱量が大きく高温になることがわかる。このため、側面円筒補助発熱体91に比べ、底面補助発熱体90を囲んではいないものの、発熱量が大きいため、ルツボ底面の中央部付近の温度勾配は、側面円筒補助発熱体91と同じ効果がある。 On the other hand, FIG. 7C is a simulation result in which the side ring auxiliary heating element 92 is installed. As can be seen from FIG. 7C, the high temperature regions A and B expand downward from the bottom surface of the crucible 10, and the portion where the side ring auxiliary heating element 92 is located is the hottest region A. There is. As described above, from FIG. 7C, it can be seen that the side annular auxiliary heating element 92 has a large amount of heat generation and a high temperature because the annular outer diameter end portion is close to the induction coil 80. Therefore, compared to the side cylindrical auxiliary heating element 91, although the bottom auxiliary heating element 90 is not surrounded, the amount of heat generated is large, so that the temperature gradient near the center of the bottom surface of the crucible has the same effect as the side cylindrical auxiliary heating element 91. is there.

また、図8は、ルツボ内の原料融液160の温度分布を示した図であり、ルツボ中央部の温度分布をルツボ底面から上方方向にシミュレーションした時の温度分布のグラフである。図8において、横軸は融液温度(℃)、縦軸はルツボ底からの距離(mm)を示している。また、底部補助発熱体90を含めていずれの補助発熱体を有しない場合の温度特性を曲線K、底部補助発熱体90のみを設けた場合の温度特性を曲線L、底部補助発熱体90及び側面円筒補助発熱体91を設けた場合の温度特性を曲線Mで示している。更に、底部補助発熱体90及び側部円環補助発熱体92を設けた場合の温度特性を曲線Nで示している。 Further, FIG. 8 is a diagram showing the temperature distribution of the raw material melt 160 in the crucible, and is a graph of the temperature distribution when the temperature distribution in the central part of the crucible is simulated upward from the bottom surface of the crucible. In FIG. 8, the horizontal axis represents the melt temperature (° C.) and the vertical axis represents the distance (mm) from the bottom of the crucible. Further, the temperature characteristic when no auxiliary heating element is provided including the bottom auxiliary heating element 90 is a curve K, and the temperature characteristic when only the bottom auxiliary heating element 90 is provided is a curve L, the bottom auxiliary heating element 90 and the side surface. The temperature characteristic when the cylindrical auxiliary heating element 91 is provided is shown by a curve M. Further, the temperature characteristics when the bottom auxiliary heating element 90 and the side ring auxiliary heating element 92 are provided are shown by a curve N.

図8において、縦軸がゼロの場合のルツボ底部での温度は、底部補助発熱体90のみでは、曲線Lに示されるように1650℃であるが、底部補助発熱体90及び側面円筒補助発熱体91を設けた場合は曲線Mに示されるように1660℃であり、10℃改善されている。更に、底部補助発熱体90及び側部円環補助発熱体92を設けた場合は、1663℃であり、底部補助発熱体90のみを設けた場合よりも13℃改善されている。円環状の側部円環補助発熱体92を設けた場合も、側面円筒補助発熱体91を設けた場合とルツボ底面中央部の温度上昇させる効果は同一にある。但し、図7(c)から判るように、円環状の側部円環補助発熱体92は、円環形状の外径端部が誘導コイル80と接近しているため、発熱量が大きく高温になる。このため、側部円環補助発熱体92を設置した箇所に相当するルツボ底面(外側の部分)は、局所的に高温になっていることがわかる。このため、ルツボ10内の温度分布は、従来条件に対し変更する必要がある。また、円環形状の外径端部が局所的に高温になるため、側部円環補助発熱体92の損傷が大きくなる場合がある。 In FIG. 8, the temperature at the bottom of the crucible when the vertical axis is zero is 1650 ° C. as shown in the curve L only for the bottom auxiliary heating element 90, but the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 90 When 91 is provided, it is 1660 ° C. as shown by the curve M, which is an improvement of 10 ° C. Further, when the bottom auxiliary heating element 90 and the side ring auxiliary heating element 92 are provided, the temperature is 1663 ° C, which is 13 ° C. higher than when only the bottom auxiliary heating element 90 is provided. Even when the annular side annular auxiliary heating element 92 is provided, the effect of raising the temperature at the center of the bottom surface of the crucible is the same as when the side cylindrical auxiliary heating element 91 is provided. However, as can be seen from FIG. 7C, the annular side annular auxiliary heating element 92 has a large amount of heat generation and a high temperature because the annular outer diameter end is close to the induction coil 80. Become. Therefore, it can be seen that the bottom surface (outer portion) of the crucible corresponding to the portion where the side ring auxiliary heating element 92 is installed is locally hot. Therefore, the temperature distribution in the crucible 10 needs to be changed with respect to the conventional conditions. Further, since the outer diameter end portion of the annular shape becomes locally hot, the side annular auxiliary heating element 92 may be significantly damaged.

よって、図7及び図8のシミュレーション結果から総合的に判断すると、底部補助発熱体90と側面円筒補助発熱体91との組み合わせが最も好ましい組み合わせと考えられるが、側部円環補助発熱体92の方が温度をより高温に出来ること、設置がルツボ台20aに設けられた円板状突出部22a上に載置するだけで良く、設置及び交換が極めて容易であるという利点もあるため、用途に応じて適宜適切な組み合わせとすることができる。 Therefore, comprehensively judging from the simulation results of FIGS. 7 and 8, the combination of the bottom auxiliary heating element 90 and the side cylindrical auxiliary heating element 91 is considered to be the most preferable combination, but the side annular auxiliary heating element 92 This has the advantage that the temperature can be raised to a higher temperature, the installation only needs to be placed on the disc-shaped protrusion 22a provided on the crucible stand 20a, and the installation and replacement are extremely easy. Depending on the situation, an appropriate combination can be used.

また、上述のように、底部補助発熱体90のみを設ける場合も加熱の効果は得られるので、底部補助発熱体90を設けるだけで十分な場合には、底部補助発熱体90のみを設ける構成としてもよい。 Further, as described above, the effect of heating can be obtained even when only the bottom auxiliary heating element 90 is provided. Therefore, when it is sufficient to provide the bottom auxiliary heating element 90, only the bottom auxiliary heating element 90 is provided. May be good.

このように、本発明の第2の実施形態に係る結晶育成装置によれば、ルツボ10の底面を効率的に加熱することができるとともに、側部円環補助発熱体92の設置を極めて容易に行うことができる。 As described above, according to the crystal growing device according to the second embodiment of the present invention, the bottom surface of the crucible 10 can be efficiently heated, and the side ring auxiliary heating element 92 can be installed extremely easily. It can be carried out.

以上説明したように、本発明の実施形態に係る結晶育成装置によれば、ルツボ10の底面の下方に底部補助発熱体90を設けることにより、ルツボ10の底面の保温効果を高めることができる。更に、必要に応じて側面円筒補助発熱体91又は側部円環補助発熱体92を設けることにより、底部補助発熱体90からの熱がルツボ台20の側面から逃げることを防止し、更に保温効果を高めることができる。また、いずれの補助発熱体90〜92も交換可能な単独部品であるため、容易に交換が可能であり、部品の劣化が発生した場合も容易に対処可能である。 As described above, according to the crystal growing apparatus according to the embodiment of the present invention, the heat retention effect of the bottom surface of the crucible 10 can be enhanced by providing the bottom auxiliary heating element 90 below the bottom surface of the crucible 10. Further, by providing the side cylindrical auxiliary heating element 91 or the side annular auxiliary heating element 92 as necessary, it is possible to prevent the heat from the bottom auxiliary heating element 90 from escaping from the side surface of the crucible stand 20, and further to have a heat retaining effect. Can be enhanced. Further, since each of the auxiliary heating elements 90 to 92 is a replaceable single component, it can be easily replaced, and even if deterioration of the component occurs, it can be easily dealt with.

以上、本発明の好ましい実施形態について詳説したが、本発明は、上述した実施形態に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態に種々の変形及び置換を加えることができる。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and substitutions are made to the above-described embodiments without departing from the scope of the present invention. Can be added.

10 ルツボ
20、20a ルツボ台
30 レフレクター
40 アフター・ヒーター
50、51 断熱材
60 耐火物
70 引き上げ軸
71 種結晶保持部
72 引き上げ軸駆動部
80 誘導コイル
90 底部補助発熱体
91 側面円筒補助発熱体
92 側部円環補助発熱体
100 電源
110 制御部
150 種結晶
160 結晶原料
170 単結晶
10 Crucible 20, 20a Crucible stand 30 Reflector 40 After heater 50, 51 Insulation material 60 Refractory 70 Pull-up shaft 71 Seed crystal holding part 72 Pull-up shaft drive part 80 Induction coil 90 Bottom auxiliary heat generator 91 Side cylindrical auxiliary heat generator 92 side Crucible auxiliary heating element 100 Power supply 110 Control unit 150 Seed crystal 160 Crystal raw material 170 Single crystal

Claims (12)

チョクラルスキー法により単結晶を育成する結晶育成装置であって、
原料融液を貯留保持可能な金属製のルツボと、
前記ルツボを下方から支持するルツボ台と、
前記ルツボの周囲に設けられ、前記ルツボを誘導加熱する誘導コイルと、
前記ルツボの底面の下方であって、前記誘導コイルが生成する磁場が前記ルツボの下方において最も強くなる高さ位置よりも上方に設けられ、前記誘導コイルにより誘導加熱される底部補助発熱体と、
前記底部補助発熱体と別体であり、前記ルツボ台の側面を円筒状に覆い、前記底部補助発熱体の外径以上の内径を有する側面円筒補助発熱体と、を有する結晶育成装置。
A crystal growth device that grows single crystals by the Czochralski method.
A metal crucible that can store and hold the raw material melt,
A crucible stand that supports the crucible from below,
An induction coil provided around the crucible to induce and heat the crucible,
A bottom auxiliary heating element that is below the bottom surface of the crucible and is provided above the height position where the magnetic field generated by the induction coil is strongest below the crucible and is induced and heated by the induction coil.
A crystal growing device having a side cylindrical auxiliary heating element which is separate from the bottom auxiliary heating element, covers the side surface of the crucible base in a cylindrical shape, and has an inner diameter equal to or larger than the outer diameter of the bottom auxiliary heating element .
前記底部補助発熱体の外形は、前記ルツボの底面の外形よりも小さい請求項1に記載の結晶育成装置。 The crystal growing device according to claim 1, wherein the outer shape of the bottom auxiliary heating element is smaller than the outer shape of the bottom surface of the crucible. 前記ルツボと前記底部補助発熱体は、同一材料からなる請求項1又は2に記載の結晶育成装置。 The crystal growing device according to claim 1 or 2, wherein the crucible and the bottom auxiliary heating element are made of the same material. 前記同一材料は、白金又はイリジウムである請求項3に記載の結晶育成装置。 The crystal growing apparatus according to claim 3, wherein the same material is platinum or iridium. 記底部補助発熱体は、前記ルツボ台の所定高さ位置に配置された請求項1乃至4のいずれか一項に記載の結晶育成装置。 Before Kisoko unit auxiliary heating element, the crystal growing apparatus according to any one of claims 1 to 4 arranged in a predetermined height position of the crucible base. 前記底部補助発熱体は板状であり、積載されて前記ルツボ台の少なくとも一部を構成する2つの円筒形ブロックの間に挿入配置された請求項5に記載の結晶育成装置。 The crystal growing device according to claim 5, wherein the bottom auxiliary heating element has a plate shape and is loaded and arranged between two cylindrical blocks forming at least a part of the crucible base. 前記側面円筒補助発熱体は、前記ルツボの底面と前記底部補助発熱体との間の高さ位置に設けられた請求項1乃至6のいずれか一項に記載の結晶育成装置。 The crystal growing device according to any one of claims 1 to 6, wherein the side cylindrical auxiliary heating element is provided at a height position between the bottom surface of the crucible and the bottom auxiliary heating element. 前記側面円筒補助発熱体は、前記底部補助発熱体と同一材料からなる請求項1乃至7のいずれか一項に記載の結晶育成装置。 The crystal growing device according to any one of claims 1 to 7, wherein the side cylindrical auxiliary heating element is made of the same material as the bottom auxiliary heating element. 前記ルツボ台の側面の周囲を円環状の水平面にて囲む側部円環補助発熱体を更に有する請求項5又は6に記載の結晶育成装置。 The crystal growing apparatus according to claim 5 or 6, further comprising a side annular auxiliary heating element that surrounds the side surface of the crucible stand with an annular horizontal plane. 前記側部円環補助発熱体は、前記ルツボの底面と前記底部補助発熱体との間の高さ位置に設けられた請求項に記載の結晶育成装置。 The crystal growing device according to claim 9 , wherein the side annular auxiliary heating element is provided at a height position between the bottom surface of the crucible and the bottom auxiliary heating element. 前記ルツボ台は、外径が前記側部円環補助発熱体の外径以上の円板状の突出部を有し、前記側部円環補助発熱体は、前記突出部の表面上に載置されて設けられた請求項又は10に記載の結晶育成装置。 The crucible stand has a disc-shaped protrusion whose outer diameter is equal to or larger than the outer diameter of the side annular auxiliary heating element, and the side annular auxiliary heating element is placed on the surface of the protruding portion. The crystal growing apparatus according to claim 9 or 10 , wherein the crystal growing apparatus is provided. 前記側部円環補助発熱体は、前記底部補助発熱体と同一材料からなる請求項乃至11のいずれか一項に記載の結晶育成装置。 The crystal growing device according to any one of claims 9 to 11 , wherein the side annular auxiliary heating element is made of the same material as the bottom auxiliary heating element.
JP2017044018A 2017-03-08 2017-03-08 Crystal growth device Active JP6790927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044018A JP6790927B2 (en) 2017-03-08 2017-03-08 Crystal growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044018A JP6790927B2 (en) 2017-03-08 2017-03-08 Crystal growth device

Publications (2)

Publication Number Publication Date
JP2018145071A JP2018145071A (en) 2018-09-20
JP6790927B2 true JP6790927B2 (en) 2020-11-25

Family

ID=63588778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044018A Active JP6790927B2 (en) 2017-03-08 2017-03-08 Crystal growth device

Country Status (1)

Country Link
JP (1) JP6790927B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6702249B2 (en) * 2017-04-03 2020-05-27 信越化学工業株式会社 Oxide single crystal manufacturing method and oxide single crystal pulling apparatus
CN109338461A (en) * 2018-12-18 2019-02-15 北方民族大学 The auxiliary heating means and device and single crystal growing furnace of induction heating monocrystalline growth with czochralski
JP7379999B2 (en) * 2019-09-25 2023-11-15 住友金属鉱山株式会社 induction furnace
JP7379998B2 (en) * 2019-09-25 2023-11-15 住友金属鉱山株式会社 induction furnace

Also Published As

Publication number Publication date
JP2018145071A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6790927B2 (en) Crystal growth device
JP2019147698A (en) Apparatus and method for growing crystal
JP2020066555A (en) Apparatus and method for growing single crystal
JP2018058736A (en) Crystal growth apparatus and crystal growth method
JP6805886B2 (en) Crystal growth device
JP6977319B2 (en) Crystal growth device and crystal growth method using this
JP6834493B2 (en) Oxide single crystal growing device and growing method
JP2019500492A (en) Apparatus for generating microstructures with structural gradients in axisymmetric parts
JP4203647B2 (en) Single crystal manufacturing apparatus and manufacturing method thereof
JP6750550B2 (en) Crystal growth equipment
JP2019094251A (en) Method for manufacturing single crystal
JP7056173B2 (en) Crystal growth device
JP2021100901A (en) Single crystal growth device and single crystal growth method
DK2880205T3 (en) DEVICE FOR CREATING A single crystal by crystallization MONOKRYSTALLET OF IN MELT ZONE
JP7106978B2 (en) CRYSTAL GROWING APPARATUS AND SINGLE CRYSTAL MANUFACTURING METHOD
JP6984511B2 (en) After heater
JP2022025994A (en) Apparatus and method for growing single crystal
JP6759926B2 (en) Crystal growth device
JP2018193277A (en) Crystal growth apparatus
JP2021095316A (en) Single crystal growth apparatus and single crystal growth method
JP6992488B2 (en) Crucible for growing single crystals
JP2019026486A (en) Crystal growth apparatus, and production method of single crystal
JP2018156750A (en) Heating element module and growing apparatus including heating element module
JP2018002573A (en) Crystal growth apparatus
JP2021100900A (en) Single crystal growth device and single crystal growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150