JP2019199119A - 飛行体及び飛行体の制御方法 - Google Patents

飛行体及び飛行体の制御方法 Download PDF

Info

Publication number
JP2019199119A
JP2019199119A JP2018093169A JP2018093169A JP2019199119A JP 2019199119 A JP2019199119 A JP 2019199119A JP 2018093169 A JP2018093169 A JP 2018093169A JP 2018093169 A JP2018093169 A JP 2018093169A JP 2019199119 A JP2019199119 A JP 2019199119A
Authority
JP
Japan
Prior art keywords
thrust
rotation axis
subunit
circumferential direction
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018093169A
Other languages
English (en)
Other versions
JP7085892B2 (ja
Inventor
範明 片山
Noriaki Katayama
範明 片山
雄一 隈本
Yuichi Kumamoto
雄一 隈本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2018093169A priority Critical patent/JP7085892B2/ja
Priority to CN201980028677.7A priority patent/CN112292317B/zh
Priority to EP19802833.4A priority patent/EP3795470B1/en
Priority to PCT/JP2019/018972 priority patent/WO2019221071A1/ja
Publication of JP2019199119A publication Critical patent/JP2019199119A/ja
Priority to US17/096,981 priority patent/US11822348B2/en
Application granted granted Critical
Publication of JP7085892B2 publication Critical patent/JP7085892B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/385Variable incidence wings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Transmission Devices (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

【課題】機体本体の姿勢を維持しながら生み出す推力方向を変更することができる飛行体及び飛行体の制御方法を提供する。【解決手段】対応する推力発生サブユニットが生み出す推力方向と交差する第1回動軸線を中心とする円周方向に回動自在に連結する関節と、を備え、各推力発生サブユニットは推力発生部を有し、推力発生部は生み出す推力の大きさを互いに独立して変更可能であり、各前記推力発生サブユニットにおいて、推力発生部のうち1以上の推力発生部によって構成される第1推力発生部群は、推力によって第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の推力発生部によって構成される第2推力発生部群は、推力によって第1回動軸線Rを中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設する。【選択図】図1

Description

本発明は、飛行体及び飛行体の制御方法に関する。
従来から複数のロータを用いた航空機が知られている(例えば特許文献1参照)。
この航空機は、多数のロータを備え、個々のロータの回転速度を調整することによって、所望の飛行姿勢をとり、飛行姿勢に対応する方向に推力を生み出して飛行するように構成されている。
米国特許出願公開第2017/267367号明細書
しかし、特許文献1に記載の航空機は、機体を大型化した場合に主として機体や推力発生装置の慣性モーメントの増大により運動性が低下する場合があった。そして、例えば、ガスト等の外乱によりホバリングを行っている飛行体の姿勢が乱れたときに、元の位置及び姿勢に速やかに復帰させることは困難となり、安定性が低下する場合があった。
上記課題を解決するため、本発明のある態様に係る飛行体は、機体本体と、1以上の推力発生サブユニットを有する推力発生ユニットと、各前記推力発生サブユニットに対応して設けられ、対応する前記推力発生サブユニットを前記機体本体に対して、対応する前記推力発生サブユニットが生み出す推力方向と交差する第1回動軸線を中心とする円周方向に回動自在に連結する関節と、を備え、各前記推力発生サブユニットは複数の推力発生部を有し、複数の前記推力発生部は生み出す推力の大きさを互いに独立して変更可能であり、各前記推力発生サブユニットにおいて、複数の前記推力発生部のうち1以上の前記推力発生部によって構成される第1推力発生部群は、生み出した推力によって前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の前記推力発生部によって構成される第2推力発生部群は、生み出した推力によって前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設されている。
この構成によれば、機体本体の姿勢を維持しながら生み出す推力方向を変更できる。また、推力発生サブユニットが生み出す推力の向きを変更するために推力発生サブユニットを第1回動軸線を中心とする円周方向に回動させるための専用のアクチュエータを省略又は小型化することができる。これによって、飛行体の構成を簡素化することができ、機体を軽量化することができる。また、推力を発生させる機構の配置の自由度を高めることができ、様々な形態に対応させることができる。更に、製造に有利、且つ、製造コストも安価となる。
各前記推力発生部の動作を制御する制御部を更に備え、前記制御部は、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整してもよい。
この構成によれば、関節の第1回動軸線を中心とする円周方向の角度位置が維持され、推力発生サブユニットが生み出す推力の方向を維持することができる。
前記制御部は、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩すように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整してもよい。
この構成によれば、各推力発生サブユニットの第1回動軸線回りの推力の向きを適切に調整することができる。
各前記推力発生部の動作を制御する制御部と、前記関節の前記第1回動軸線を中心とする円周方向の角度位置を検知するための情報を検知する傾斜角検知部と、を更に備え、前記制御部は、入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じていないときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じたときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩し、前記偏差を小さくするように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整してもよい。
この構成によれば、各推力発生サブユニットの第1回動軸線回りの推力の向きを制御することができる。
前記推力発生ユニットは、第1推力発生サブユニット乃至第4推力発生サブユニットを有し、前記第1推力発生サブユニット乃至前記第4推力発生サブユニットは、この順に前記飛行体のヨー軸を中心とする円周方向に等間隔に配設され、前記第1推力発生サブユニット及び前記第3推力発生サブユニットに対応する関節の前記第1回動軸線は前後方向に延び、前記第2推力発生サブユニット及び前記第4推力発生サブユニットに対応する関節の前記第1回動軸線は左右方向に延びていてもよい。
この構成によれば、前後方向及び左右方向への移動を適切におこなうことができる。
前記関節は、更に、対応する前記推力発生サブユニットを前記機体本体に対して、対応する前記推力発生サブユニットが生み出す推力方向及び前記第1回動軸線と交差する第2回動軸線を中心とする円周方向に回動自在に連結し、各前記推力発生サブユニットは3以上の前記推力発生部を有し、各前記推力発生サブユニットにおいて、3以上の前記推力発生部のうち1以上の前記推力発生部によって構成される第3推力発生部群は、生み出した推力によって前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の前記推力発生部によって構成される第4推力発生部群は、生み出した推力によって前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設されていてもよい。
この構成によれば、推力発生サブユニットが生み出す推力の向きを変更するために推力発生サブユニットを第2回動軸線を中心とする円周方向に回動させるアクチュエータを省略、又は小型化することができる。これによって、構成を簡素化することができ、飛行体を軽量化することができる。また、推力を発生させる機構の配置の自由度を高めることができ、様々な形態に対応させることができる。更に、製造に有利、且つ、製造コストも安価となる。
各前記推力発生部の動作を制御する制御部を更に備え、前記制御部は、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第3推力発生部群を構成する各前記推力発生部の推力及び前記第4推力発生部群を構成する各前記推力発生部の推力の大きさを調整してもよい。
この構成によれば、各推力発生サブユニットの第1回動線に加え、第2回動軸線回りの推力の向きを維持することができる。
前記制御部は、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩すように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩すように前記第3推力発生部群を構成する各前記推力発生部の推力及び前記第4推力発生部群を構成する各前記推力発生部の推力の大きさを調整してもよい。
この構成によれば、各推力発生サブユニットの第1回動線に加え、第2回動軸線回りの推力の向きを変更することができる。
各前記推力発生部の動作を制御する制御部と、前記関節の前記第1回動軸線及び前記第2回動軸線を中心とする円周方向の角度位置を検知するための情報を検知する傾斜角検知部と、を更に備え、前記制御部は、入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じていないときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じたときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩し、前記偏差を小さくするように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ入力された前記関節の前記第2回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第2回動軸線を中心とする円周方向の角度位置との偏差が生じていないときは、前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第3推力発生部群を構成する各前記推力発生部の推力及び前記第4推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ入力された前記関節の前記第2回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第2回動軸線を中心とする円周方向の角度位置との偏差が生じたときは、前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩し、前記偏差を小さくするように前記第3推力発生部群を構成する各前記推力発生部の推力及び前記第4推力発生部群を構成する各前記推力発生部の推力の大きさを調整してもよい。
この構成によれば、各推力発生サブユニットの第1回動軸線に加え、第2回動軸線回りの推力の向きを制御することができる。
前記推力発生ユニットは、第1推力発生サブユニット乃至第4推力発生サブユニットを有し、第1推力発生サブユニット乃至第4推力発生サブユニットは、この順に前記飛行体のヨー軸を中心とする円周方向に等間隔に配設されていてもよい。
この構成によれば、各推力発生サブユニットを任意の方向に傾斜させることができ、同一の方向に傾斜させることによって横方向への制御力を大きくすることができる。
上記課題を解決するため、本発明の他の態様に係る飛行体は、機体本体と、1以上の推力発生サブユニットを有する推力発生ユニットであって、各前記推力発生サブユニットは一列に並ぶ複数の推力発生部及び複数の前記推力発生部を互いに連結する連結部を有し、複数の前記推力発生部は生み出す推力の大きさを互いに独立して変更可能であり、1以上の前記推力発生サブユニットのそれぞれに対応して設けられ、対応する前記推力発生サブユニットの連結部を前記機体本体に対して、複数の前記推力発生部が並ぶ方向及び対応する前記推力発生サブユニットが生み出す推力方向と交差する第1回動軸線を中心とする円周方向に回動自在に連結する関節と、を備える。
この構成によれば、機体本体の姿勢を維持しながら生み出す推力方向を変更できる。また、推力発生サブユニットが生み出す推力の向きを変更するために推力発生サブユニットを第1回動軸線を中心とする円周方向に回動させるための専用のアクチュエータを省略又は小型化することができる。これによって、飛行体の構成を簡素化することができ、機体を軽量化することができる。また、推力を発生させる機構の配置の自由度を高めることができ、様々な形態に対応させることができる。更に、製造に有利、且つ、製造コストも安価となる。
それぞれ基端部が前記機体本体に固定され、該機体本体から該機体本体の左方及び右方に延び、該機体本体が前進することによって揚力を発生させる左右一対の固定翼部を有し、前記推力発生ユニットは、左側の前記固定翼部に連結された前記推力発生サブユニットである左側推力発生サブユニットと、右側の前記固定翼部に連結された前記推力発生サブユニットである右側推力発生サブユニットとを有し、前記左側推力発生サブユニット及び前記右側推力発生サブユニットの前記第1回動軸線は左右方向に延びていてもよい。
この構成によれば、ホバリング性能と高速性能の両立を図りながら、ロータ機構やチルト機構の構成を簡素化することができ、機体を軽量化することができる。
前記第1回動軸線と平行な固定翼部回動軸線を中心とする円周方向に翼弦方向が上下方向を向く第1角度位置と翼弦方向が水平方向を向く第2角度位置との間で揺動可能に基端部が前記機体本体に連結され、前記機体本体の左方及び右方に延び、第2角度位置に位置させた状態で該機体本体が前進することによって揚力を発生させる固定翼部を有し、前記推力発生ユニットは、左側の前記固定翼部に連結された前記推力発生サブユニットである左側推力発生サブユニットと、右側の前記固定翼部に連結された前記推力発生サブユニットである右側推力発生サブユニットとを有していてもよい。
この構成によれば、ホバリング性能と高速性能の両立を図りながら、ロータ機構の構成を簡素化することができ、機体を軽量化することができる。また、固定翼部が推力発生部が生み出す空気流に与える影響を低下させることができ、ホバリング効率を向上させることができる。
前記固定翼部は、前記第1角度位置と前記第2角度位置との間で揺動自在であり、前記左側推力発生サブユニットに対応する前記関節及び前記右側推力発生サブユニットに対応する前記関節の前記第1回動軸線を中心とする円周方向の前記関節の動作の規制及び動作の規制の解除を行う関節固定機構と、前記固定翼部回動軸線を中心とする円周方向への前記固定翼部の揺動の規制及び揺動の規制の解除を行う固定翼部固定機構と、を更に備え、前記左側推力発生サブユニット及び前記右側推力発生サブユニットのそれぞれにおいて、複数の前記推力発生部のうち1以上の前記推力発生部によって構成される第1推力発生部群は、生み出した推力によって前記第1回動軸線及び前記固定翼部回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の前記推力発生部によって構成される第2推力発生部群は、生み出した推力によって前記第1回動軸線及び前記固定翼部回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設されていてもよい。
この構成によれば、ホバリング性能と高速性能の両立を図りながら、チルト機構の構成を簡素化することができ、機体を軽量化することができる。
前記推力発生ユニットは、前記推力発生サブユニットを複数有し、前記機体本体は、吊索と、前記吊索を介して吊荷を吊り下げる吊下部とを含み、前記吊索は前記吊下部から垂れ下げられ、前記関節は、対応する前記推力発生サブユニットと前記吊下部とを連結してもよい。
この構成によれば、機体本体の姿勢を維持しながら生み出す推力方向を変更することができ、吊荷の姿勢を安定させた状態で吊荷を運搬することができる。また、吊荷が重量物である場合における応答性の低下を抑制することができる。
前記吊索は、複数設けられ、複数の前記吊索は、前記吊下部の互いに異なる位置から垂れ下げられていてもよい。
この構成によれば、吊荷の振れを効果的に抑制した状態で吊荷を運搬することができる。
前記関節の動作の規制及び動作の規制の解除を行うブレーキを更に備えていてもよい。
この構成によれば、各推力発生サブユニットの第1回動軸線又は第2回動軸線回りの推力の向きを保つことができる。
前記関節の回動動作に減衰力を付与するダンパを更に備えていてもよい。
この構成によれば、各推力発生サブユニットの第1回動軸線又は第2回動軸線を中心とする円周方向の挙動を安定させることができる。
上記課題を解決するため、本発明のある態様に係る飛行体の制御方法は、機体本体と、1以上の推力発生サブユニットを有する推力発生ユニットと、各前記推力発生サブユニットに対応して設けられ、対応する前記推力発生サブユニットを前記機体本体に対して、対応する前記推力発生サブユニットが生み出す推力方向と交差する第1回動軸線を中心とする円周方向に回動自在に連結する関節と、前記関節の前記第1回動軸線を中心とする円周方向の角度位置を検知する第1検知部と、を備え、各前記推力発生サブユニットは複数の推力発生部を有し、複数の前記推力発生部は生み出す推力の大きさを互いに独立して変更可能であり、各前記推力発生サブユニットにおいて、複数の前記推力発生部のうち1以上の前記推力発生部によって構成される第1推力発生部群は、生み出した推力によって前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の前記推力発生部によって構成される第2推力発生部群は、生み出した推力によって前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設されている、飛行体の制御方法であって、入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記第1検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じていないときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整するステップと、入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記第1検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じたときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩し、前記偏差を小さくするように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整するステップと、を有する。
この構成によれば、機体本体の姿勢を維持しながら生み出す推力方向を変更できる。また、推力発生サブユニットが生み出す推力の向きを変更するために推力発生サブユニットを第1回動軸線を中心とする円周方向に回動させるための専用のアクチュエータを省略又は小型化することができる。これによって、飛行体の構成を簡素化することができ、機体を軽量化することができる。また、推力を発生させる機構の配置の自由度を高めることができ、様々な形態に対応させることができる。更に、製造に有利、且つ、製造コストも安価となる。
本発明は、機体本体の姿勢を維持しながら生み出す推力方向を変更できるという効果を奏する。
本発明の実施の形態1に係る飛行体の構成例を示す斜視図である。 図1の飛行体の推力発生ユニットの構成例を示す平面図である。 図1の飛行体の制御系統の構成例を概略的に示すブロック図である。 図1の飛行体の推力発生サブユニットの動作例を示す側面図である。 図1の飛行体の推力発生サブユニットが生み出す推力の方向を変更する制御例を示すフローチャートである。 本発明の実施の形態2に係る飛行体の構成例を示す平面図である。 図6の飛行体の推力発生サブユニットが生み出す推力の方向を変更する制御例を示すフローチャートである。 図6の飛行体の推力発生サブユニットの動作例を示す側面図である。 本発明の実施の形態3に係る飛行体の推力発生サブユニットの構成例を示す要部拡大平面図である。 本発明の実施の形態4に係る飛行体の構成例を示す平面図である。 図10の飛行体の動作例を示す側面図であり、推力発生サブユニットを第1角度位置に位置させた状態を示す図である。 図10の飛行体の動作例を示す側面図であり、推力発生サブユニットを第2角度位置に位置させた状態を示す図である。 本発明の実施の形態5に係る飛行体の構成例を示す平面図である。 図12の飛行体の動作例を示す側面図であり、推力発生サブユニットを第1角度位置に位置させた状態を示す図である。 図12の飛行体の動作例を示す側面図であり、推力発生サブユニットを第2角度位置に位置させた状態を示す図である。 本発明の実施の形態6に係る飛行体の構成例を示す平面図である。 本発明の実施の形態7に係る飛行体の構成例を示す斜視図である。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。また、以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
また、明細書及び図面の全体を通して、符号の末尾に付した「A」「B」「C」「D」の符号は、その符号の直前の数字符号等の符号に対応した構成要素であることを表している。例えば、「第1推力発生サブユニット3A」「第2推力発生サブユニット3B」「第3推力発生サブユニット3C」「第4推力発生サブユニット3D」は「推力発生サブユニット3」に対応した構成要素であることを表している。符号の末尾に「A」「B」「C」「D」の符号を付した何れかの構成要素であることを明示的に説明するときは「A」「B」「C」「D」を付して説明し、各構成要素に共通する事項について説明するときは「A」「B」「C」「D」を付さずに説明する。
(実施の形態1)
図1は、本発明の実施の形態1に係る飛行体100の構成例を示す斜視図である。
飛行体100は、例えば、垂直離着陸可能なマルチロータ航空機である。飛行体100は、例えば有人機であるが、無人機であってもよい。
飛行体100は、図1に示すように、機体本体1と、支持部2及び関節5を介して機体本体1に接続されている推力発生ユニット6と、飛行制御器4(図3参照)とを備える。
機体本体1は、例えば、周知のヘリコプタのボディと同様の形状を有し、操縦者等の乗員が搭乗可能に構成されている。また、機体本体1は、飛行体100を操縦するための操縦機器10が設けられ、飛行制御器4を搭載している。また、機体本体1には、飛行体100が前進することによって揚力を発生させる固定翼部11が機体本体1に設けられていてもよい。これによって、高速飛行時の推力発生ユニット6の揚力に余裕をもたせることができ、より大きな推力を前進方向に向けることができ、飛行体100を高速化できる。なお、本実施の形態において、機体本体1は、推力発生ユニット6の下方に配設されているがこれに限られるものではない。これに代えて、推力発生ユニット6の上方に配設されてもよく、更には推力発生ユニット6と同一平面上に配設されてもよい。
図2は、推力発生ユニット6の構成例を示す平面図である。
推力発生ユニット6は、例えば空気流を生み出し、空気流の流れ方向と反対向きに推力を発生させる機構である。推力発生ユニット6は、1以上の推力発生サブユニット3を有する。本実施の形態においては、例えば、図1及び図2に示すように、機体本体1の前方に位置する第1推力発生サブユニット3Aと、機体本体1の左方に位置する第2推力発生サブユニット3Bと、機体本体1の後方に位置する第3推力発生サブユニット3Cと、機体本体1の右方に位置する第4推力発生サブユニット3Dとを含む。推力発生サブユニット3A〜3Dは、この順に飛行体100のヨー軸を中心とする円周方向に等間隔に配設されている。すなわち、ある水平面上において、4つの推力発生サブユニット3は90度の回転対称に配置されている。
なお、以下では、機体本体1の前方、後方、左方、右方、上方、下方をそれぞれ単に前、後、左、右、上、下ということがある。
推力発生サブユニット3は、複数の推力発生部9を有する。本実施の形態においては、例えば、第1推力発生部9A及び第2推力発生部9Bの2つの推力発生部を有する。また、推力発生サブユニット3は、第1推力発生部9A及び第2推力発生部9Bを連結するビームである連結部36を有する。連結部36は、第1推力発生部9A及び第2推力発生部9Bを一列に並ぶように、これらを互いに連結する。なお、本実施の形態において、4つ推力発生サブユニット3は、何れも2つの推力発生部を有するが、これに限られるものではない。
推力発生部9は、本実施の形態において、図1に示すように、それぞれ、ロータ51と、ロータ駆動部53(図3も参照)とを含む。なお、図1においては、第1推力発生サブユニット3Aのみに符号を付して説明するが、他の推力発生サブユニット3についても同様である。
ロータ51は、所定の回転軸回りに回転する回転翼である。そして、回転するロータ51の軌跡がロータ面である。ロータ51は、回転によって、ロータ面と直交する方向、すなわちロータ面を向けた方向に推力を生み出すことができる。図1においては、ロータヘッド51aと、ロータヘッド51aに取り付けられた2枚のロータブレード51bを有する迎角固定のロータ51を例示している。ロータヘッド51aとロータブレード51bとは、ロータブレード51bの迎角を変化させることができる図示しない関節を介して接続されていてもよい。
ロータ駆動部53は、ロータ51を回転させる駆動部である。ロータ駆動部53は、例えば、電動モータ、レシプロエンジン、ガスタービンエンジン等の駆動源と、駆動源の駆動力をロータ51に伝達するギヤトレイン、プーリ等の駆動力伝達機構とを含む。ロータ駆動部53は、回転駆動出力を変化させることにより、推力発生部9が生み出す推力の大きさを変更できる。また、各推力発生部9にはそれぞれロータ駆動部53が設けられており、複数の推力発生部9が生み出す推力の大きさは、互いに独立して変更可能である。なお、ロータブレード51bの迎角を変化させることができるように構成されているときは、コレクティブピッチを変化させることによって推力発生部9が生み出す推力の大きさを変化させてもよい。
このように、第1推力発生部9A及び第2推力発生部9Bは、ロータ51を回転させて推力を得る機構であるがこれに限られるものではない。これに代えて、例えば2重反転ローター、ダクトファンやジェットエンジンであってもよい。
そして、連結部36は、推力発生サブユニット3の第1推力発生部9A及び第2推力発生部9Bのロータ51の回転軸が同一の方向を向くように第1推力発生部9Aと第2推力発生部9Bとを位置決めして連結している。よって、第1推力発生部9A及び第2推力発生部9Bのロータ面及び推力の発生方向は、同一の方向を向いている。そして、第1推力発生部9Aが生み出す推力と第2推力発生部9Bが生み出す推力との合力が推力発生サブユニット3が生み出す推力である。
支持部2は、推力発生ユニット6と機体本体1とを接続し、例えば推力発生ユニット6から機体本体1を吊り下げた状態で、機体本体1を支持する。支持部2は、機体本体1の重心の上方に取り付けられたハブ21と、各推力発生サブユニット3に対応づけて設けられた支持ビーム22とを有する。支持ビーム22の基端部は、ハブ21に取り付けられ、機体本体1に接続されている。また、支持ビーム22の先端部は、関節5を介して推力発生サブユニット3に取り付けられている。なお、支持部2は機体本体1と区別することなく一体に構成されてもよい。
関節5は、各推力発生サブユニット3に対応して設けられている。そして、関節5は、対応する推力発生サブユニット3の推力発生部9が生み出す推力方向と交差する回動軸線R(第1回動軸線)を中心とする円周方向に回動自在である回動軸5aを有する。関節5は、この回動軸5aを介して推力発生サブユニット3の連結部36を支持ビーム22に対して、回動軸線Rを中心とする円周方向に回動自在に連結している。本実施の形態において、飛行体100は、第1推力発生サブユニット3Aに対応づけられた第1関節5Aと、第2推力発生サブユニット3Bに対応づけられた第2関節5Bと、第3推力発生サブユニット3Cに対応づけられた第3関節5Cと、第4推力発生サブユニット3Dに対応づけられた第4関節5Dとを有する。
そして、第1関節5A及び第3関節5Cは、それぞれ前後方向に延びる回動軸線RA、RCを中心とする円周方向に回動自在である回動軸を有する。そして、機体本体1に対して第1推力発生サブユニット3A及び第3推力発生サブユニット3Cをそれぞれ回動軸線RA、RCを中心とする円周方向に回動させることによって、第1推力発生サブユニット3A及び第3推力発生サブユニット3Cの推力発生部9のロータ面を左右に傾斜させることができる。すなわち、回動軸線Rは、第1推力発生部9A及び第2推力発生部9Bが並ぶ方向及び推力発生サブユニット3の推力発生部9が生み出す推力方向と交差する。
同様に、第2関節5B及び第4関節5Dは、それぞれ左右方向に延びる回動軸線RB、RDを中心とする円周方向に回動自在である回動軸を有する。そして、機体本体1に対して第2推力発生サブユニット3B及び第4推力発生サブユニット3Dをそれぞれ回動軸線RB、RDを中心とする円周方向に回動させることによって、第2推力発生サブユニット3B及び第4推力発生サブユニット3Dの推力発生部9のロータ面を前後に傾斜させることができる。
本実施の形態において、回動軸線RCは回動軸線RAと同一線上に位置し、回動軸線RDは回動軸線RBと同一線上に位置するが、これに限られるものではない。また、各回動軸線Rが延びる方向も任意の方向とすることができ、例えば進行方向に対して傾斜して延びていてもよい。
そして、推力発生部9のロータ面を水平面に対して傾斜させることによって、推力発生部9が生み出した推力に水平面に沿った方向成分を発生させることができ、この成分に対応する水平方向に、機体本体1を移動させることできる。
そして、図4に示すように、回動軸線R方向から見て、第1推力発生部9Aと第2推力発生部9Bとの間に回動軸線Rが位置する。好ましくは、第1推力発生部9Aと第2推力発生部9Bとが並ぶ方向において、第1推力発生部9Aと第2推力発生部9Bの中央に回動軸線Rが位置する。したがって、第1推力発生部9Aが第1推力発生部群G1を構成し、生み出した推力によって回動軸線Rを中心とする円周方向一方側へ推力発生サブユニット3を付勢するトルクτ1を発生させることができる。また、第2推力発生部9Bが第2推力発生部群G2を構成し、生み出した推力によって対応する回動軸線Rを中心とする円周方向他方側へ推力発生サブユニット3を付勢するトルクτ2を発生させることができる。
そして、図3に示すように、機体本体1は、関節5の回動軸線Rを中心とする円周方向の角度位置を検知するための情報を検知する傾斜角検知部7を更に備える。本実施の形態において、飛行体100は、第1関節5A、第2関節5B、第3関節5C、及び第4関節5Dのそれぞれに対応付けられて設けられた第1傾斜角検知部7A、第2傾斜角検知部7B、第3傾斜角検知部7C、及び第4傾斜角検知部7Dの4つの傾斜角検知部7を有する。そして、傾斜角検知部7は対応する関節5の回動軸線Rを中心とする円周方向の角度位置を検知する。傾斜角検知部7によって検知された情報は飛行制御器4(図3参照)に入力される。
また、関節5は、関節5の回動軸5aの回動動作を安定させる傾動補助部8を備える。傾動補助部8は、例えば回動軸の周期振動を抑制するダンパ装置を有する。これによって、推力発生サブユニット3の回動制御を容易に行うことができ、飛行体100の挙動を安定させることができる。
なお、傾動補助部8は、その作動によって対応する関節5の回動軸の回動動作を規制し、その解除によって関節5の回動軸の回動動作を許容するブレーキ装置を有していてもよい。これによって、推力の向きを容易に維持することができる。また、傾動補助部8は、関節5の回動軸を回動させようとする方向へのモーメントを発生させるアクチュエータを有していてもよい。
図3は、飛行体100の制御系統の構成例を概略的に示すブロック図である。
図3に示すように、飛行制御器4は、例えば、CPU等の演算器を有する制御部41と、ROM及びRAM等のメモリを有する記憶部42とを備えている。第1傾斜角検知部7A〜第4傾斜角検知部7D、及び操縦機器10から出力された情報は、飛行制御器4に入力される。制御部41は、集中制御する単独の制御器で構成されていてもよく、互いに協働して分散制御する複数の制御器で構成されてもよい。制御部41は、記憶部42に記憶された飛行制御プログラム、傾斜角検知部7が検出した関節5の回動軸を中心とする円周方向の角度位置、及び操縦者が操縦機器10に入力した操縦内容を含む飛行制御に関する情報の少なくとも何れかに基づいて、各推力発生サブユニット3の第1推力発生部9A及び第2推力発生部9Bのそれぞれのロータ駆動部53の動作を互いに独立して制御する。よって、制御部41は、それぞれの推力発生部9が生み出す推力の大きさを互いに独立して変更する。記憶部42には、所定の制御プログラムが格納されており、この所定の制御プログラムを制御部41が実行することにより飛行体100の飛行制御が行われる。
[動作例]
以下、飛行体100の飛行制御について詳述する。
図5は、飛行体100の推力発生サブユニット3が生み出す推力の方向を変更する制御例を示すフローチャートである。
まず、推力発生サブユニット3が生み出す推力の方向制御について述べる。
まず、飛行制御器4は、関節5の回動軸線Rを中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節5の回動軸線Rを中心とする円周方向の角度位置との偏差が生じているか否かを判定する(ステップS1)。
そして、飛行制御器4は、関節5の回動軸線Rを中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節5の回動軸線Rを中心とする円周方向の角度位置との偏差が生じていないとき(ステップS1においてNo)は、回動軸線Rを中心とする円周方向一方側へ推力発生サブユニット3を付勢するトルクτ1と回動軸線Rを中心とする円周方向他方側へ推力発生サブユニット3を付勢するトルクτ2との釣り合いをとるように第1推力発生部9A(第1推力発生部群G1)が生み出す推力及び第2推力発生部9B(第2推力発生部群G2)が生み出す推力の大きさを調整する(ステップS2)。これによって、関節5の回動軸線Rを中心とする円周方向の角度位置が維持され、推力発生サブユニット3が生み出す推力の方向が維持される。これにより、ガスト等がなく推力発生サブユニット3の推力の向きが適切である場合に、その向きを維持することができる。
一方、飛行制御器4は、関節5の回動軸線Rを中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節5の回動軸線Rを中心とする円周方向の角度位置との偏差が生じているとき(ステップS1においてYes)は、回動軸線Rを中心とする円周方向一方側へ推力発生サブユニット3を付勢するトルクτ1と回動軸線Rを中心とする円周方向他方側へ推力発生サブユニット3を付勢するトルクτ2との釣り合いを崩し、これら2つのトルクのうち偏差を小さくする回動方向に対応するトルクが大きくなるように第1推力発生部9A(第1推力発生部群G1)が生み出す推力及び第2推力発生部9B(第2推力発生部群G2)が生み出す推力の大きさを調整する(ステップS3)。これによって、目標角度位置が変更された場合においても、変更された目標角度位置に追従するように、推力発生サブユニット3の回動軸線R回りの推力の向きを適切に調整することができる。また、ガスト等の外乱により推力発生サブユニット3が回動軸線Rを中心とする円周方向に回動した場合においても、推力発生サブユニット3の回動軸線R回りの推力の向きを適切に調整することができる。
すなわち、図4に示すように、飛行制御器4は、推力発生サブユニット3を反時計回りに回動させて左方に傾斜させるときは、トルクτ1がトルクτ2よりも大きくなるように、例えば第1推力発生部9Aが生み出す推力T1を増大させ、また、第2推力発生部9Bが生み出す推力T2を減少させる。これによって、推力発生サブユニット3を図4の左方に傾斜させることができる。
同様に、飛行制御器4は、推力発生サブユニット3を時計回りに回動させて右方に傾斜させるときは、トルクτ2がトルクτ1よりも大きくなるように、例えば第1推力発生部9Aが生み出す推力T1を減少させ、また、第2推力発生部9Bが生み出す推力T2を増大させる。これによって、第1推力発生サブユニット3Aを図4の右方に傾斜させることができる。
このように、飛行制御器4は、第1推力発生部9A及び第2推力発生部9Bが生み出す推力を調整することによって、推力発生サブユニット3をこの推力発生サブユニット3が生み出す推力方向と交差する回動軸線Rを中心とする円周方向に回動させる。なお、推力発生サブユニット3と機体本体1とは回動自在な関節5を介して接続されているので、推力発生サブユニット3に作用するモーメントは機体本体1に伝達されず、機体本体1は推力発生サブユニットが発生する推力変化の影響だけを受ける。
そして、飛行制御器4は、ステップS1を再び実行する。
このようにして、飛行制御器4は、推力発生サブユニット3の推力発生部9のロータ面が目標角度位置に対応する方向を向くように制御する。したがって、推力の方向を速やかに変更することができる。また、推力方向の変化と推力の大きさの変化により周囲の気流変動等の外乱に対する飛行体100の挙動を安定させることができる。すなわち、例えば、ガスト等の外乱によって回動軸線Rを中心とする円周方向一方側へ推力発生サブユニット3を付勢するトルクが加わったときは、飛行制御器4は、第2推力発生部9B(第2推力発生部群G2)が生み出す推力の大きさを増大させ、回動軸線Rを中心とする円周方向他方側へ推力発生サブユニット3を付勢するトルクτ2を増大させる。これによって、推力発生サブユニット3の回動軸線R回りの推力の向きの変化を抑制することができ、推力発生サブユニット3の挙動を安定させ、飛行体100の挙動を安定させる事ができる。なお、回動軸線R周りのトルクを検知するセンサを設けてもよい。
次に、飛行体100の力制御について述べる。
飛行体100を前後方向(X軸方向)に移動させるときは、飛行制御器4は、第2推力発生サブユニット3B及び第4推力発生サブユニット3Dの推力発生部9のロータ面を前方又は後方に傾斜させる。これによって、推力発生ユニット6が生み出す推力に前後方向に沿った方向成分を発生させ、飛行体100を前後方向に移動させることができる。このようにして、飛行体100の前後方向への移動を制御できる。
また、飛行体100を左右方向(Y軸方向)に移動させるときは、飛行制御器4は、第1推力発生サブユニット3A及び第3推力発生サブユニット3Cの推力発生部9のロータ面を機体本体1の左方又は右方に傾斜させる。これによって、推力発生ユニット6が生み出す推力に左右方向に沿った方向成分を発生させ、飛行体100を左右方向に移動させることができる。このようにして、飛行体100の左右方向への移動を制御できる。
そして、これらX軸方向への移動及びY軸への移動に係る制御を同時に行って、組み合わせることにより、飛行体100をXY平面における任意の方向に移動させることができる。
以上のように、飛行体100は、機体本体1の姿勢を維持しながら生み出す推力方向を変更できる。また、推力発生サブユニット3の第1推力発生部9A及び第2推力発生部9Bの推力の相対的な大きさを変更することによって、推力発生サブユニット3と機体本体1とを接続する関節5の回動軸線Rを中心とする円周方向に推力発生サブユニット3を回転させ、推力発生サブユニット3を傾斜させることができる。したがって、推力発生サブユニット3が生み出す推力の向きを変更するために推力発生サブユニット3を回動軸線Rを中心とする円周方向に回動させるための専用のアクチュエータを省略又は小型化することができる。これによって、推力の方向を変更する機構の構成を簡素化することができ、機体を軽量化することができる。また、推力を発生させる機構の配置の自由度を高めることができ、様々な形態に対応させることができる。更に、製造に有利、且つ、製造コストも安価となる。特に、推力発生部9がロータ等の回転体を回転させて推力を得る機構である場合、ジャイロ効果によってその姿勢の変更には大きな力を要する。しかし、飛行体100は、このような大きな力を発生させるための大型の専用のアクチュエータが不要となり、構成を大きく簡素化することができ、機体を大きく軽量化することができる。
以上、本発明の特徴である機体本体1の姿勢角を維持しながら推力発生サブユニット3が生み出す推力の方向を変更する制御を中心に述べてきたが、飛行体100の姿勢角を変更することも可能である。すなわち、飛行制御器4が第1推力発生サブユニット3A全体が生み出す推力と第3推力発生サブユニット3C全体が生み出す推力との間に推力差を発生させることにより、機体本体1をピッチ軸周りに回転させるモーメントを生み出すことができる。また、飛行制御器4が第2推力発生サブユニット3B全体が生み出す推力と第4推力発生サブユニット3D全体が生み出す推力との間に推力差を発生させることにより、機体本体1をロール軸周りに回転させるモーメントを生み出すことができる。更に、複数のロータ51の回転方向を一方側に回転する群と他方側に回転する群とに分け、飛行制御器4が、一方の群に属するロータ51の回転によって生じる機体本体1のヨー軸周り一方側のトルクと、他方の群に属するロータ51の回転によって生じる機体本体1のヨー軸周り他方側のトルクとの釣り合いを崩すことによって、機体本体1をヨー軸周りに回転させるモーメントを生み出すことができる。これにより、推力の方向制御、すなわちX軸、Y軸、X軸の各軸方向への力制御、及びピッチ軸、ロール軸、ヨー軸周りの3つの姿勢制御とを独立に制御することができる。このことは後で述べる各実施の形態でも同様である。
(実施の形態2)
以下では実施の形態2の構成、動作について、実施の形態1との相違点を中心に述べる。
図6は、本発明の実施の形態2に係る飛行体200の構成例を示す平面図である。
飛行体200は、機体本体201と、関節205を介して機体本体201に接続されている推力発生ユニット6と、飛行制御器4(図3参照)とを備える。機体本体201は、飛行体200を操縦するための操縦機器10が設けられ飛行制御器4を搭載している。そして、図6に示すように、推力発生ユニット6は、第1推力発生サブユニット203Aと、第2推力発生サブユニット203Bと、第3推力発生サブユニット203Cと、第4推力発生サブユニット203Dとを含む。第1推力発生サブユニット203A、第2推力発生サブユニット203B、第3推力発生サブユニット203C、及び第4推力発生サブユニット203Dは、この順に飛行体200のヨー軸を中心とする円周方向に等間隔に配設されている。すなわち、第1推力発生サブユニット203A、第2推力発生サブユニット203B、第3推力発生サブユニット203C、及び第4推力発生サブユニット203Dは、それぞれ機体本体201の左前方、左後方、右後方、右前方に位置する。なお、図6においては、紙面の右方が飛行体200の前方である。
各推力発生サブユニット203は、3以上の推力発生部を有する。本実施の形態においては、第1推力発生部209A、第2推力発生部209B、第3推力発生部209C、第4推力発生部209Dの4つの推力発生部を有する。そして、第1推力発生部209A、第2推力発生部209B、第3推力発生部209C、及び第4推力発生部209Dは、それぞれ対応する関節205の前方、後方、左方、及び右方に位置する。そして、第1推力発生部209A及び第2推力発生部209Bは前後方向に並んで位置し、第3推力発生部209C及び第4推力発生部209Dは左右方向に並んで位置する。本実施の形態において、第1推力発生部209A、第3推力発生部209C、第2推力発生部209B、第4推力発生部209Dは、この順に関節205のヨー軸を中心とする円周方向に等間隔に配設されている。
また、推力発生サブユニット203は、推力発生部209A〜209Dを互いに連結する連結部236を有する。連結部236は、関節205から前方、後方、左方及び右方に延びる連結ビームを有し、それぞれの連結ビームの基端部が関節205に接続され、それぞれの連結ビームの先端に推力発生部209が一つずつ固定されている。そして、連結部236は、推力発生サブユニット203の推力発生部209A〜209Dのロータ51の回転軸が同一の方向を向くように推力発生部209A〜209Dを位置決めして互いに連結している。よって、推力発生部209A〜209Dのロータ面及び推力の発生方向は、同一の方向を向いている。推力発生サブユニット203のその他の構成は、上記実施の形態と同様であるのでその詳細な説明を省略する。
そして、各推力発生サブユニット203は、各推力発生サブユニット203に対応づけられて設けられた関節205を介して回動可能に対応する支持ビーム22に接続され、更に機体本体201に接続されている。
次に、関節205について説明する。関節205は、対応する推力発生サブユニット203が生み出す推力方向と交差する回動軸線R1(第1回動軸線)を中心とする円周方向に回動自在、且つ推力発生サブユニット203が生み出す推力方向及び回動軸線R1と交差する回動軸線R2(第2回動軸線)を中心とする円周方向に回動自在である回動軸205aを有する。そして、関節205は、回動軸205aを介して推力発生サブユニット203を支持ビーム22に対して、回動軸線R1及び回動軸線R2を中心とする円周方向に回動自在に連結している。好ましくは、回動軸線R1及び回動軸線R2は互いに直交する。すなわち、関節205は、2回転自由度を有する関節、即ち自在継手であり、例えばカルダンジョイントである。そして、関節205は、XY平面に対して推力発生サブユニット203の推力発生部209のロータ面を任意の方向に傾斜させることができるように、機体本体201と推力発生サブユニット203とを接続する。本実施の形態において、回動軸線R1及び回動軸線R2は、飛行制御器4が飛行制御を行うために設定される自在接手の中心を通る基準線であり、物理的な実体として互いに区別することができない線である。しかし、カルダンジョイントの回動軸のように物理的な実体として互いに区別できるものであってもよい。そして、回動軸線R1は、第1推力発生部209A及び第2推力発生部209Bが並ぶ方向と直交する方向に延在するように設定され、回動軸線R2は第3推力発生部209C及び第4推力発生部209Dが並ぶ方向と直交する方向に延在するように設定される。
そして、上下方向から見て、推力発生部209A〜209Dによって囲まれる領域に関節205が位置する。好ましくは、推力発生部209A〜209Dによって囲まれる領域の中心に関節205が位置する。
したがって、第1推力発生部209Aが第1推力発生部群G1を構成し、生み出した推力によって回動軸線R1を中心とする円周方向一方側へ推力発生サブユニット203を付勢するトルクを発生させる。また、第2推力発生部209Bが第2推力発生部群G2を構成し、生み出した推力によって回動軸線R1を中心とする円周方向他方側へ推力発生サブユニット203を付勢するトルクを発生させる。更に、第3推力発生部209Cが第3推力発生部群G3を構成し、生み出した推力によって回動軸線R2を中心とする円周方向一方側へ推力発生サブユニット203を付勢するトルクを発生させる。また、第4推力発生部209Dが第4推力発生部群G4を構成し、生み出した推力によって回動軸線R2を中心とする円周方向他方側へ推力発生サブユニット203を付勢するトルクを発生させる。
本実施の形態において傾斜角検知部7は、回動軸線R1を中心とする円周方向の角度位置を検知するための情報に加えて、回動軸線R2を中心とする円周方向の角度位置を検知するための情報を検知する。傾斜角検知部7によって検知された情報は飛行制御器4(図3参照)に入力される。
[動作例]
以下、飛行体200の飛行制御について詳述する。
図7は、飛行体200の推力発生サブユニット203が生み出す推力の方向を変更する制御例を示すフローチャートである。
最初に、推力発生サブユニット203が生み出す推力の方向制御について述べる。
まず、飛行制御器4は、関節205の回動軸線R1を中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節205の回動軸線R1を中心とする円周方向の角度位置との偏差が生じているか否かを判定する(ステップS21)。
そして、飛行制御器4は、関節205の回動軸線R1を中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節205の回動軸線R1を中心とする円周方向の角度位置との偏差が生じていないとき(ステップS21においてNo)は、回動軸線R1を中心とする円周方向一方側へ推力発生サブユニット203を付勢するトルクと回動軸線R1を中心とする円周方向他方側へ推力発生サブユニット203を付勢するトルクとの釣り合いをとるように第1推力発生部209A(第1推力発生部群G1)が生み出す推力及び第2推力発生部209B(第2推力発生部群G2)が生み出す推力の大きさを調整する(ステップS22)。これによって、関節205の回動軸線R1を中心とする円周方向の角度位置が維持され、推力発生サブユニット203が生み出す推力の方向が維持される。
一方、飛行制御器4は、関節205の回動軸線R1を中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節205の回動軸線R1を中心とする円周方向の角度位置との偏差が生じているとき(ステップS21においてYes)は、回動軸線R1を中心とする円周方向一方側へ推力発生サブユニット203を付勢するトルクと回動軸線R1を中心とする円周方向他方側へ推力発生サブユニット203を付勢するトルクとの釣り合いを崩し、これら2つのトルクのうち偏差を小さくする回動方向に対応するトルクが大きくなるように第1推力発生部209A(第1推力発生部群G1)が生み出す推力及び第2推力発生部209B(第2推力発生部群G2)が生み出す推力の大きさを調整する(ステップS23)。これによって、飛行制御器4は、推力発生サブユニット203が前方又は後方に傾斜するように、推力発生サブユニット203を回動軸線R1を中心とする円周方向に回動させることができる。
そして、飛行制御器4は、上記ステップS21〜S23と同時に以下のステップS31〜ステップS33を実行する。
まず、飛行制御器4は、関節205の回動軸線R2を中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節205の回動軸線R2を中心とする円周方向の角度位置との偏差が生じているか否かを判定する(ステップS31)。
そして、飛行制御器4は、関節205の回動軸線R2を中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節205の回動軸線R2を中心とする円周方向の角度位置との偏差が生じていないとき(ステップS31においてNo)は、回動軸線R2を中心とする円周方向一方側へ推力発生サブユニット203を付勢するトルクと回動軸線R2を中心とする円周方向他方側へ推力発生サブユニット203を付勢するトルクとの釣り合いをとるように第3推力発生部209C(第3推力発生部群G3)が生み出す推力及び第4推力発生部209D(第4推力発生部群G4)が生み出す推力の大きさを調整する(ステップS32)。これによって、関節205の回動軸線R2を中心とする円周方向の角度位置が維持され、推力発生サブユニット203が生み出す推力の方向が維持される。
一方、飛行制御器4は、関節205の回動軸線R2を中心とする円周方向の目標角度位置と傾斜角検知部7が検知した関節205の回動軸線R2を中心とする円周方向の角度位置との偏差が生じているとき(ステップS31においてYes)は、回動軸線R2を中心とする円周方向一方側へ推力発生サブユニット203を付勢するトルクと回動軸線R2を中心とする円周方向他方側へ推力発生サブユニット203を付勢するトルクとの釣り合いを崩し、これら2つのトルクのうち偏差を小さくする回動方向に対応するトルクが大きくなるように第3推力発生部209C(第3推力発生部群G3)が生み出す推力及び第4推力発生部209D(第4推力発生部群G4)が生み出す推力の大きさを調整する(ステップS33)。これによって、飛行制御器4は、推力発生サブユニット203が左方又は右方に傾斜するように推力発生サブユニット203を回動軸線R2を中心とする円周方向に回動させることができる。
そして、飛行制御器4は、推力発生サブユニット203の回動軸線R1を中心とする円周方向の回動動作と回動軸線R2を中心とする円周方向の回動動作とを組み合わされることにより、推力発生サブユニット203をXY平面から任意の方向に傾斜させることができる。
次に、飛行体200の力制御について述べる。
図8は、飛行体200の推力発生サブユニット203の動作例を示す側面図である。
本実施の形態において、飛行体200をXY平面において移動させるときは、飛行制御器4は、図8に示すように、第1推力発生サブユニット203A〜第4推力発生サブユニット203Dの推力発生部209のロータ面を移動方向に傾斜させて、推力発生ユニット6が生み出す推力TにX軸方向成分Tx及びY軸方向成分Tyを発生させ、飛行体200をXY平面における任意の方向に移動させる。
このように、推力発生サブユニット203A〜203Dの何れもがXY平面内の任意の方向への推力を生み出すことができるので、発生させることができる移動方向への推力の大きさを大きくすることができ、効率的に機体を移動させることができる。
(実施の形態3)
以下では実施の形態3の構成、動作について、上記実施の形態2との相違点を中心に述べる。
図9は、本発明の実施の形態3に係る飛行体の推力発生サブユニット303の構成例を示す要部拡大平面図である。
本実施の形態においては、推力発生サブユニット303は、第1推力発生部309A、第2推力発生部309B、第3推力発生部309Cの3つの推力発生部を有する。そして、第1推力発生部309A、第2推力発生部309B、第3推力発生部309Cは、それぞれ対応する関節205の右前方、左方、及び右後方に位置する。そして、第1推力発生部309A、第2推力発生部309B、第3推力発生部309Cは、この順に関節205のヨー軸を中心とする円周方向に等間隔に配設されている。
そして、第1推力発生部309Aが第1推力発生部群G1を構成し、生み出した推力によって回動軸線R1を中心とする円周方向一方側へ推力発生サブユニット303を付勢するトルクを発生させ、第3推力発生部309Cが第2推力発生部群G2を構成し、生み出した推力によって回動軸線R1を中心とする円周方向他方側へ推力発生サブユニット303を付勢するトルクを発生させる。また、第2推力発生部309Bが第3推力発生部群G3を構成し、生み出した推力によって回動軸線R2を中心とする円周方向一方側へ推力発生サブユニット303を付勢するトルクを発生させ、第1推力発生部309A及び第3推力発生部309Cが第4推力発生部群G4を構成し、生み出した推力によって回動軸線R2を中心とする円周方向他方側へ推力発生サブユニット303を付勢するトルクを発生させる。
(実施の形態4)
以下では実施の形態4の構成、動作について、上記実施の形態2との相違点を中心に述べる。
図10は、本発明の実施の形態4に係る飛行体400の構成例を示す平面図である。
図10に示すように、本実施の形態において、飛行体400は、チルトロータ機である。飛行体400は、左右一対の固定翼部411及び尾翼を有する機体本体401と、関節405を介して固定翼部411に接続されている推力発生ユニット6と、飛行制御器4(図3参照)とを備える。
機体本体401は、周知の固定翼機のボディと同様の形状を有し、操縦者等の乗員が搭乗可能に構成されている。また、機体本体401は、飛行体400を操縦するための操縦機器10が設けられ、飛行制御器4を搭載している。左右一対の固定翼部411は、それぞれ基端部が機体本体401に固定され、機体本体401から機体本体401の左方及び右方に延びる。固定翼部411は、機体本体401が前進することによって揚力を発生させる。
推力発生ユニット6は、左側の固定翼部411に連結された推力発生サブユニットである左側推力発生サブユニット403Aと、右側の固定翼部411に連結された推力発生サブユニットである右側推力発生サブユニット403Bとを有する。推力発生サブユニット403のその他の構成は、推力発生サブユニット203と同様であるので、その詳細な説明を省略する。
そして、関節405は、対応する推力発生サブユニット403が生み出す推力方向と交差する回動軸線R1を中心とする円周方向に回動自在、且つ推力発生サブユニット403が生み出す推力方向及び回動軸線R1と交差する回動軸線R2を中心とする円周方向に回動自在である回動軸405aを有し、この回動軸405aを介して推力発生サブユニット403と固定翼部411とが連結されている。このうち、回動軸線R1は、左右方向、すなわち固定翼部411が延びる方向に延びている。したがって、関節405は、推力発生サブユニット403の推力発生部209のロータ面が上方を向く第1角度位置P401(図11A参照)と推力発生サブユニット403の推力発生部209のロータ面が前方を向く第2角度位置P402(図11B参照)との間で回動自在に推力発生サブユニット403と機体本体401とを連結する。その他の関節405の構成は関節205と同様であるので、その詳細な説明を省略する。
[動作例]
図11A、図11Bは、飛行体400の動作例を示す側面図であり、このうち図11Aは推力発生サブユニット403を第1角度位置P401に位置させた状態を示す図であり、図11Bは推力発生サブユニット403を第2角度位置P402に位置させた状態を示す図である。
図11Aに示すように、飛行制御器4は、水平飛行からホバリングに移行するときや着陸時には、回動軸線R1を中心とする円周方向一方側へ推力発生サブユニット403を付勢するトルクと回動軸線R1を中心とする円周方向他方側へ推力発生サブユニット403を付勢するトルクとの釣り合いを崩し、回動軸線R1を中心とする円周方向他方側のトルクが回動軸線R1を中心とする円周方向一方側のトルクよりも大きくなるように、第1推力発生部209Aが生み出す推力及び第2推力発生部209Bが生み出す推力を調整する。これによって、推力発生サブユニット403を第2角度位置P402から第1角度位置P401に向かって回動させることができ、推力発生部209のロータ面を上方に向け、上方への大きな推力を発生させることができる。
なお、ホバリング時においては、飛行体400を左右方向(Y軸方向)に移動させるときは、飛行制御器4は、推力発生サブユニット403を左右に傾斜させるように、第3推力発生部209C及び第4推力発生部209Dが生み出す推力を調整する。これによって、推力発生ユニット6が生み出す推力に左右方向に沿った方向成分を発生させ、飛行体400を左右方向に移動させることができる。
また、図11Bに示すように、飛行制御器4は、ホバリングから水平飛行に移行するときや離陸時には、回動軸線R1を中心とする円周方向一方側へ推力発生サブユニット403を付勢するトルクと回動軸線R1を中心とする円周方向他方側へ推力発生サブユニット403を付勢するトルクとの釣り合いを崩し、回動軸線R1を中心とする円周方向一方側のトルクが回動軸線R1を中心とする円周方向他方側のトルクよりも大きくなるように、第1推力発生部209Aが生み出す推力及び第2推力発生部209Bが生み出す推力を調整する。これによって、推力発生サブユニット403を第1角度位置P401から第2角度位置P402に向かって回動させることができ、推力発生部209のロータ面を前方に向け、前方への大きな推力を発生させることができる。これによって、飛行速度を高めることができる。
以上のように、飛行体400は、推力発生サブユニット403の推力を用いて推力発生サブユニット403を第1角度位置P401と第2角度位置P402との間で回動させることができるので、推力発生サブユニット403を第1角度位置P401と第2角度位置P402との間で回動させるための専用のアクチュエータを省略又は小型化することができる。これによって、ホバリング性能と高速性能の両立を図りながら、推力の方向を変更するチルト機構の構成を簡素化することができ、機体を軽量化することができる。
特に、固定翼部411を有する飛行体400において、高速で飛行するために推力発生サブユニット403には大型のものを用いる必要があり、ジャイロ効果が大きく、推力発生サブユニット403を回動させるための専用のアクチュエータも大型のアクチュエータを用いる必要があり、機体構造上の制約が大きかった。しかし、上記構成により、機体の構成を簡素化することができ、機体構造の制約を緩和することができる。
また、チルト・ローター機や一般的なヘリコプタで機体姿勢を制御するために設けられるサイクリックピッチ変換機構を省略することができ、ホバリング性能と高速性能の両立を図りながら、ロータ機構の構成を簡素化することができる。
(実施の形態5)
以下では実施の形態5の構成、動作について、上記実施の形態2との相違点を中心に述べる。
図12は、本発明の実施の形態5に係る飛行体500の構成例を示す平面図である。
図12に示すように、本実施の形態において、飛行体500は、チルトウィング機である。飛行体500は、左右一対の固定翼部511及び尾翼を有する機体本体501と、関節505を介して固定翼部511に接続されている推力発生ユニット6と、関節固定部(関節固定機構)560と、固定翼部固定部(固定翼部固定機構)561と、飛行制御器4(図3参照)とを備える。
機体本体501は、固定翼部511を除き機体本体401と同様に構成される。固定翼部511は、関節505の回動軸線R1と平行に延びる固定翼部回動軸線R503を中心とする円周方向に翼弦方向が上下方向を向く第1角度位置P501と翼弦方向が水平方向を向く第2角度位置P502との間で揺動可能(又は回動自在)に基端部が機体のボディに連結されている。そして、左右一対の固定翼部511は、機体本体1から機体本体1の左方及び右方に延びる。固定翼部511は、第2角度位置P502に位置させた状態で機体本体1が前進することによって揚力を発生させる。なお、上記水平方向とは、固定翼部511が水平飛行に必要な揚力を得るための方向を意味し、例えば水平方向プラス10度未満の角度位置をいう。したがって、上記水平方向とは、重力方向に対して垂直な方向に限定されない。同様に、上記上下方向とは、固定翼部511を第2角度位置P502よりも起こして、推力発生部209の空気流の後流が固定翼部511によって妨げられ難くすることができる方向を意味し、重力方向に限定されない。
推力発生ユニット6は、左側の固定翼部511に連結された推力発生サブユニットである左側推力発生サブユニット503Aと、右側の固定翼部511に連結された推力発生サブユニットである右側推力発生サブユニット503Bとを有する。
また、推力発生サブユニット503の第1推力発生部209Aが第1推力発生部群G1を構成し、生み出した推力によって回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向一方側、すなわち第1角度位置P501から第2角度位置P502に向かう側へ推力発生サブユニット503及び固定翼部511を付勢するトルクを発生させ、第2推力発生部209Bが第2推力発生部群G2を構成し、生み出した推力によって回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向他方側、すなわち第2角度位置P502から第1角度位置P501に向かう側へ推力発生サブユニット503及び固定翼部511を付勢するトルクを発生させる。推力発生サブユニット503のその他の構成は、推力発生サブユニット203と同様であるので、その詳細な説明を省略する。
そして、関節505は、対応する推力発生サブユニット503が生み出す推力方向と交差する回動軸線R1を中心とする円周方向に回動自在、且つ推力発生サブユニット503が生み出す推力方向及び回動軸線R1と交差する回動軸線R2を中心とする円周方向に回動自在である回動軸505aを有し、この回動軸505aを介して推力発生サブユニット503と固定翼部511とが連結されている。このうち、回動軸線R1は、左右方向、すなわち固定翼部511が延びる方向に延びている。その他の関節505の構成は関節205と同様であるので、その詳細な説明を省略する。
関節固定部560は、例えばブレーキであり、少なくとも関節505の回動軸線R1を中心とする円周方向への関節505の動作の規制及び動作の規制の解除を行う。すなわち、関節固定部560は、その作動によって、関節505が回動軸線R1を中心とする円周方向への自由度をなくすように動作し、その解除によって関節505が回動軸線R1を中心とする円周方向への自由度を有するように動作する。
固定翼部固定部561は、例えばブレーキであり、固定翼部511の固定翼部回動軸線R503を中心とする円周方向への固定翼部511の動作の規制及び動作の規制の解除を行う。すなわち、固定翼部固定部561は、その作動によって、固定翼部511が固定翼部回動軸線R503を中心とする円周方向への自由度をなくすように動作し、その解除によって固定翼部511が固定翼部回動軸線R503を中心とする円周方向への自由度を有するように動作する。
また、本実施の形態において、飛行制御器4は、更に、関節固定部560及び固定翼部固定部561の作動及びその解除を制御する。
[動作例]
図13A、図13Bは、飛行体500の動作例を示す側面図であり、このうち図13Aは推力発生サブユニット503及び固定翼部511を第1角度位置P501に位置させた状態を示す図であり、図13Bは推力発生サブユニット503及び固定翼部511を第2角度位置P502に位置させた状態を示す図である。
図13Aに示すように、水平飛行からホバリングに移行するときや着陸時には、飛行制御器4は、関節固定部560を作動させ、関節505の回動軸線R1を中心とする円周方向への自由度をなくす。また、飛行制御器4は、固定翼部固定部561を解除し、固定翼部511が固定翼部回動軸線R503を中心とする円周方向に回動可能にする。
次に、飛行制御器4は、回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向一方側へ推力発生サブユニット503及び固定翼部511を付勢するトルクと回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向他方側へ推力発生サブユニット503及び固定翼部511を付勢するトルクとの釣り合いを崩し、回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向他方側へ推力発生サブユニット503及び固定翼部511を付勢するトルクが回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向一方側へ推力発生サブユニット503及び固定翼部511を付勢するトルクよりも大きくなるように、第1推力発生部209A(第1推力発生部群G1)が生み出す推力及び第2推力発生部209B(第2推力発生部群G2)が生み出す推力を調整する。関節505の動作は関節固定部560によって規制されているため、これによって、固定翼部511及び推力発生部209が第2角度位置P502から第1角度位置P501に向かって回動し、推力発生部209のロータ面を上方に向けることができる。
なお、ホバリング時においては、飛行制御器4は、関節固定部560を解除し、関節505が回動軸線R1周りに回動可能にする。また、飛行制御器4は、固定翼部固定部561を作動させ、固定翼部511の固定翼部回動軸線R503を中心とする円周方向への自由度をなくす。固定翼部511の動作は固定翼部固定部561によって規制されるため、関節505のみが動作し、推力発生サブユニット503を任意の方向に傾斜させることができ、飛行体500をXY平面における任意の方向に移動させることができる。
また、図13Bに示すように、ホバリングから水平飛行に移行するときや離着陸時には、飛行制御器4は、関節固定部560を作動させ、関節505の回動軸線R1を中心とする円周方向への自由度をなくす。また、飛行制御器4は、固定翼部固定部561を解除し、固定翼部511が固定翼部回動軸線R503を中心とする円周方向に回動可能にする。
次に、飛行制御器4は、回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向一方側へ推力発生サブユニット503及び固定翼部511を付勢するトルクと回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向他方側へ推力発生サブユニット503及び固定翼部511を付勢するトルクとの釣り合いを崩し、回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向一方側へ推力発生サブユニット503及び固定翼部511を付勢するトルクが回動軸線R1及び固定翼部回動軸線R503を中心とする円周方向他方側へ推力発生サブユニット503及び固定翼部511を付勢するトルクよりも大きくなるように、第1推力発生部209A(第1推力発生部群G1)が生み出す推力及び第2推力発生部209B(第2推力発生部群G2)が生み出す推力を調整する。関節505の動作は関節固定部560によって規制されているため、これによって、固定翼部511が第1角度位置P501から第2角度位置P502に向かって回動し、推力発生部209のロータ面を前方に向けることができる。これによって、飛行速度を高めることができる。
以上のように、飛行体500は、上記実施の形態4に係るチルトロータ機と同様にロータ機構及びチルト機構を簡素化できる。また、飛行体500は、推力発生部209のロータ面を上方に向けた状態においては、固定翼部511が第1角度位置P501に位置し、翼弦方向が上下方向を向くので、推力発生部209の空気流の後流が固定翼部511によって妨げられ難くでき、ホバリングの効率を向上することができる。
(実施の形態6)
以下では実施の形態6の構成、動作について、上記実施の形態5との相違点を中心に述べる。
図14は、本発明の実施の形態6に係る飛行体600の構成例を示す平面図である。
図14に示すように、本実施の形態において、飛行体600は、上記実施の形態5と同様にチルトウィング機である。飛行体600は、機体本体501と、関節605を介して固定翼部511に接続されている推力発生ユニット6と、連結部駆動部670と、飛行制御器4(図3参照)とを備える。
推力発生ユニット6は、左側の固定翼部511に連結された推力発生サブユニットである左側推力発生サブユニット603Aと、右側の固定翼部511に連結された推力発生サブユニットである右側推力発生サブユニット603Bとを有する。
推力発生サブユニット603は、第1推力発生部209A、第2推力発生部209B、第3推力発生部209C、第4推力発生部209Dの4つの推力発生部を有する。第3推力発生部209C及び第4推力発生部209Dは固定翼部511の前縁付近に位置するように固定翼部511に取り付けられている。また、第1推力発生部209A及び第2推力発生部209Bは、固定翼部511の翼幅方向(飛行体600の左右方向)において、第3推力発生部209Cと第4推力発生部209Dの中央に固定翼部511の翼厚方向に並ぶように設けられている。また、推力発生サブユニット603は、第1推力発生部209A及び第2推力発生部209Bを連結するビームである連結部636を有する。
関節605は、固定翼部511の翼弦方向及び翼幅方向と交差する連結部回動軸線R604を中心として回動自在である回動軸605aを有し、この回動軸605aを介して推力発生サブユニット603の連結部636と固定翼部511とが連結されている。
したがって、第1推力発生部209Aが生み出した推力によって固定翼部回動軸線R503を中心とする円周方向一方側へ推力発生サブユニット603を介して固定翼部511を付勢するトルクを発生させ、第2推力発生部209Bが生み出した推力によって固定翼部回動軸線R503を中心とする円周方向他方側へ推力発生サブユニット603を介して固定翼部511を付勢するトルクを発生させる。
連結部駆動部670は、連結部回動軸線R604を中心とする円周方向に連結部636を回動させる駆動部であり、第1推力発生部209A及び第2推力発生部209Bを左右方向に傾斜させることができる。
また、本実施の形態において、飛行制御器4は、更に連結部駆動部670の動作を制御する。
[動作例]
以下、飛行体600の飛行制御について詳述する。
まず、水平飛行からホバリングに移行するときや着陸時には、飛行制御器4は、固定翼部回動軸線R503を中心とする円周方向一方側へ固定翼部511を付勢するトルクと固定翼部回動軸線R503を中心とする円周方向他方側へ固定翼部511を付勢するトルクとの釣り合いを崩し、固定翼部回動軸線R503を中心とする円周方向他方側へ固定翼部511を付勢するトルクが固定翼部回動軸線R503を中心とする円周方向一方側へ固定翼部511を付勢するトルクよりも大きくなるように、第1推力発生部209Aが生み出す推力及び第2推力発生部209Bが生み出す推力を調整する。これによって、固定翼部511及び推力発生サブユニット603を第2角度位置P502から第1角度位置P501に向かって回動させることができ、推力発生部209のロータ面を上方に向けることができる。
なお、ホバリング時において、飛行体600を左右方向(Y軸方向)に移動させるときは、飛行制御器4は、連結部駆動部670を制御し、連結部636を回動させ、各推力発生サブユニット603の第1推力発生部209A及び第2推力発生部209Bを左右に傾斜させる。これによって、推力発生ユニット6が生み出す推力に左右方向に沿った成分を発生させ、飛行体600を左右方向に移動させることができる。このようにして、飛行体600の左右方向への移動を制御できる。
また、ホバリングから水平飛行に移行するときや離陸時には、飛行制御器4は、固定翼部回動軸線R503を中心とする円周方向一方側へ固定翼部511を付勢するトルクと固定翼部回動軸線R503を中心とする円周方向他方側へ固定翼部511を付勢するトルクとの釣り合いを崩し、固定翼部回動軸線R503を中心とする円周方向一方側へ固定翼部511を付勢するトルクが固定翼部回動軸線R503を中心とする円周方向他方側へ固定翼部511を付勢するトルクよりも大きくなるように、第1推力発生部209Aが生み出す推力及び第2推力発生部209Bが生み出す推力を調整する。これによって、固定翼部511及び推力発生サブユニット603が第1角度位置P501から第2角度位置P502に向かって回動し、推力発生部209のロータ面を前方に向けることができる。これによって、飛行速度を高めることができる。
(実施の形態7)
以下では実施の形態7の構成、動作について、上記実施の形態2との相違点を中心に述べる。
図15は、本発明の実施の形態7に係る飛行体700の構成例を示す斜視図である。
図15に示すように、本実施の形態において、飛行体700は、機体本体701と、関節705を介して機体本体701に接続されている推力発生ユニット6と、飛行制御器4(図3参照)とを備える。
機体本体701は、複数の吊索702と、複数の吊索702を介して吊荷Wを吊り下げる吊下部703とを含む。複数の吊索702は、吊下部703の互いに異なる位置から垂れ下げられている。
また、関節705は、前後方向に延びる回動軸線R1を中心とする円周方向に回動自在、且つ左右方向に延びる回動軸線R2を中心とする円周方向に回動自在である回動軸を有し、この回動軸を介して推力発生サブユニット203と吊下部703とが連結されている。
飛行体700の飛行制御は、上記実施の形態2の飛行体200と同様に行われる。すなわち、推力発生サブユニット203のロータ面を移動方向に傾斜させて、推力発生ユニット6が生み出す推力にX軸方向成分及びY軸方向成分を発生させ、飛行体700をXY平面における任意の方向に移動させることができる。したがって、吊下部703の姿勢を一定の姿勢に保ち、飛行体700を水平方向に移動させることができ、吊荷Wの姿勢を安定させた状態で吊荷Wを運搬できる。また、吊荷Wが重量物である場合における応答性の低下を抑制することができる。更に、吊荷Wは、複数の吊索702を介して吊下部703の互いに異なる位置からつられているので、移動時における振れを効果的に抑制することができる。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
G1 第1推力発生部群
G2 第2推力発生部群
R 回動軸線
1 機体本体
3 推力発生サブユニット
4 飛行制御器
5 関節
6 推力発生ユニット
8 傾動補助部
9 推力発生部
100 飛行体

Claims (19)

  1. 機体本体と、
    1以上の推力発生サブユニットを有する推力発生ユニットと、
    各前記推力発生サブユニットに対応して設けられ、対応する前記推力発生サブユニットを前記機体本体に対して、対応する前記推力発生サブユニットが生み出す推力方向と交差する第1回動軸線を中心とする円周方向に回動自在に連結する関節と、を備え、
    各前記推力発生サブユニットは複数の推力発生部を有し、複数の前記推力発生部は生み出す推力の大きさを互いに独立して変更可能であり、
    各前記推力発生サブユニットにおいて、複数の前記推力発生部のうち1以上の前記推力発生部によって構成される第1推力発生部群は、生み出した推力によって前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の前記推力発生部によって構成される第2推力発生部群は、生み出した推力によって前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設されている、飛行体。
  2. 各前記推力発生部の動作を制御する制御部を更に備え、
    前記制御部は、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整する、請求項1に記載の飛行体。
  3. 前記制御部は、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩すように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整する、請求項2に記載の飛行体。
  4. 各前記推力発生部の動作を制御する制御部と、
    前記関節の前記第1回動軸線を中心とする円周方向の角度位置を検知するための情報を検知する傾斜角検知部と、を更に備え、
    前記制御部は、入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じていないときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じたときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩し、前記偏差を小さくするように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整する、請求項1に記載の飛行体。
  5. 前記推力発生ユニットは、第1推力発生サブユニット乃至第4推力発生サブユニットを有し、前記第1推力発生サブユニット乃至前記第4推力発生サブユニットは、この順に前記飛行体のヨー軸を中心とする円周方向に等間隔に配設され、
    前記第1推力発生サブユニット及び前記第3推力発生サブユニットに対応する関節の前記第1回動軸線は前後方向に延び、前記第2推力発生サブユニット及び前記第4推力発生サブユニットに対応する関節の前記第1回動軸線は左右方向に延びる、請求項1乃至4の何れか1に記載の飛行体。
  6. 前記関節は、更に、対応する前記推力発生サブユニットを前記機体本体に対して、対応する前記推力発生サブユニットが生み出す推力方向及び前記第1回動軸線と交差する第2回動軸線を中心とする円周方向に回動自在に連結し、
    各前記推力発生サブユニットは3以上の前記推力発生部を有し、
    各前記推力発生サブユニットにおいて、3以上の前記推力発生部のうち1以上の前記推力発生部によって構成される第3推力発生部群は、生み出した推力によって前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の前記推力発生部によって構成される第4推力発生部群は、生み出した推力によって前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設されている、請求項1に記載の飛行体。
  7. 各前記推力発生部の動作を制御する制御部を更に備え、
    前記制御部は、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第3推力発生部群を構成する各前記推力発生部の推力及び前記第4推力発生部群を構成する各前記推力発生部の推力の大きさを調整する、請求項6に記載の飛行体。
  8. 前記制御部は、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩すように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩すように前記第3推力発生部群を構成する各前記推力発生部の推力及び前記第4推力発生部群を構成する各前記推力発生部の推力の大きさを調整する、請求項7に記載の飛行体。
  9. 各前記推力発生部の動作を制御する制御部と、
    前記関節の前記第1回動軸線及び前記第2回動軸線を中心とする円周方向の角度位置を検知するための情報を検知する傾斜角検知部と、を更に備え、
    前記制御部は、入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じていないときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じたときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩し、前記偏差を小さくするように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ入力された前記関節の前記第2回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第2回動軸線を中心とする円周方向の角度位置との偏差が生じていないときは、前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第3推力発生部群を構成する各前記推力発生部の推力及び前記第4推力発生部群を構成する各前記推力発生部の推力の大きさを調整し、且つ入力された前記関節の前記第2回動軸線を中心とする円周方向の目標角度位置と前記傾斜角検知部が検知した前記関節の前記第2回動軸線を中心とする円周方向の角度位置との偏差が生じたときは、前記第2回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第2回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩し、前記偏差を小さくするように前記第3推力発生部群を構成する各前記推力発生部の推力及び前記第4推力発生部群を構成する各前記推力発生部の推力の大きさを調整する、請求項6に記載の飛行体。
  10. 前記推力発生ユニットは、第1推力発生サブユニット乃至第4推力発生サブユニットを有し、第1推力発生サブユニット乃至第4推力発生サブユニットは、この順に前記飛行体のヨー軸を中心とする円周方向に等間隔に配設されている、請求項6乃至9の何れか1に記載の飛行体。
  11. 機体本体と、
    1以上の推力発生サブユニットを有する推力発生ユニットであって、各前記推力発生サブユニットは一列に並ぶ複数の推力発生部及び複数の前記推力発生部を互いに連結する連結部を有し、複数の前記推力発生部は生み出す推力の大きさを互いに独立して変更可能であり、
    1以上の前記推力発生サブユニットのそれぞれに対応して設けられ、対応する前記推力発生サブユニットの連結部を前記機体本体に対して、複数の前記推力発生部が並ぶ方向及び対応する前記推力発生サブユニットが生み出す推力方向と交差する第1回動軸線を中心とする円周方向に回動自在に連結する関節と、を備える、飛行体。
  12. それぞれ基端部が前記機体本体に固定され、該機体本体から該機体本体の左方及び右方に延び、該機体本体が前進することによって揚力を発生させる左右一対の固定翼部を有し、
    前記推力発生ユニットは、左側の前記固定翼部に連結された前記推力発生サブユニットである左側推力発生サブユニットと、右側の前記固定翼部に連結された前記推力発生サブユニットである右側推力発生サブユニットとを有し、
    前記左側推力発生サブユニット及び前記右側推力発生サブユニットの前記第1回動軸線は左右方向に延びる、請求項1乃至4、6乃至9、11の何れか1に記載の飛行体。
  13. 前記第1回動軸線と平行な固定翼部回動軸線を中心とする円周方向に翼弦方向が上下方向を向く第1角度位置と翼弦方向が水平方向を向く第2角度位置との間で揺動可能に基端部が前記機体本体に連結され、前記機体本体の左方及び右方に延び、第2角度位置に位置させた状態で該機体本体が前進することによって揚力を発生させる固定翼部を有し、
    前記推力発生ユニットは、左側の前記固定翼部に連結された前記推力発生サブユニットである左側推力発生サブユニットと、右側の前記固定翼部に連結された前記推力発生サブユニットである右側推力発生サブユニットとを有する、請求項1乃至4、6乃至9、11の何れか1に記載の飛行体。
  14. 前記固定翼部は、前記第1角度位置と前記第2角度位置との間で揺動自在であり、
    前記左側推力発生サブユニットに対応する前記関節及び前記右側推力発生サブユニットに対応する前記関節の前記第1回動軸線を中心とする円周方向の前記関節の動作の規制及び動作の規制の解除を行う関節固定機構と、
    前記固定翼部回動軸線を中心とする円周方向への前記固定翼部の揺動の規制及び揺動の規制の解除を行う固定翼部固定機構と、を更に備え、
    前記左側推力発生サブユニット及び前記右側推力発生サブユニットのそれぞれにおいて、複数の前記推力発生部のうち1以上の前記推力発生部によって構成される第1推力発生部群は、生み出した推力によって前記第1回動軸線及び前記固定翼部回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の前記推力発生部によって構成される第2推力発生部群は、生み出した推力によって前記第1回動軸線及び前記固定翼部回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設されている、請求項13に記載の飛行体。
  15. 前記推力発生ユニットは、前記推力発生サブユニットを複数有し、
    前記機体本体は、吊索と、前記吊索を介して吊荷を吊り下げる吊下部とを含み、前記吊索は前記吊下部から垂れ下げられ、前記関節は、対応する前記推力発生サブユニットと前記吊下部とを連結する、請求項1乃至11の何れか1に記載の飛行体。
  16. 前記吊索は、複数設けられ、
    複数の前記吊索は、前記吊下部の互いに異なる位置から垂れ下げられている、請求項15に記載の飛行体。
  17. 前記関節の動作の規制及び動作の規制の解除を行うブレーキを更に備える、請求項1乃至15の何れか1に記載の飛行体。
  18. 前記関節の回動動作に減衰力を付与するダンパを更に備える、請求項1乃至16の何れか1に記載の飛行体。
  19. 機体本体と、
    1以上の推力発生サブユニットを有する推力発生ユニットと、
    各前記推力発生サブユニットに対応して設けられ、対応する前記推力発生サブユニットを前記機体本体に対して、対応する前記推力発生サブユニットが生み出す推力方向と交差する第1回動軸線を中心とする円周方向に回動自在に連結する関節と、
    前記関節の前記第1回動軸線を中心とする円周方向の角度位置を検知する第1検知部と、を備え、
    各前記推力発生サブユニットは複数の推力発生部を有し、複数の前記推力発生部は生み出す推力の大きさを互いに独立して変更可能であり、
    各前記推力発生サブユニットにおいて、複数の前記推力発生部のうち1以上の前記推力発生部によって構成される第1推力発生部群は、生み出した推力によって前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクを発生させるように配設され、他の1以上の前記推力発生部によって構成される第2推力発生部群は、生み出した推力によって前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクを生み出すように配設されている、飛行体の制御方法であって、
    入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記第1検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じていないときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いをとるように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整するステップと、
    入力された前記関節の前記第1回動軸線を中心とする円周方向の目標角度位置と前記第1検知部が検知した前記関節の前記第1回動軸線を中心とする円周方向の角度位置との偏差が生じたときは、前記第1回動軸線を中心とする円周方向一方側へ前記推力発生サブユニットを付勢するトルクと前記第1回動軸線を中心とする円周方向他方側へ前記推力発生サブユニットを付勢するトルクとの釣り合いを崩し、前記偏差を小さくするように前記第1推力発生部群を構成する各前記推力発生部の推力及び前記第2推力発生部群を構成する各前記推力発生部の推力の大きさを調整するステップと、を有する飛行体の制御方法。
JP2018093169A 2018-05-14 2018-05-14 飛行体及び飛行体の制御方法 Active JP7085892B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018093169A JP7085892B2 (ja) 2018-05-14 2018-05-14 飛行体及び飛行体の制御方法
CN201980028677.7A CN112292317B (zh) 2018-05-14 2019-05-13 飞行体以及飞行体的控制方法
EP19802833.4A EP3795470B1 (en) 2018-05-14 2019-05-13 Flight vehicle and method of controlling flight vehicle
PCT/JP2019/018972 WO2019221071A1 (ja) 2018-05-14 2019-05-13 飛行体及び飛行体の制御方法
US17/096,981 US11822348B2 (en) 2018-05-14 2020-11-13 Flight vehicle and method of controlling flight vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018093169A JP7085892B2 (ja) 2018-05-14 2018-05-14 飛行体及び飛行体の制御方法

Publications (2)

Publication Number Publication Date
JP2019199119A true JP2019199119A (ja) 2019-11-21
JP7085892B2 JP7085892B2 (ja) 2022-06-17

Family

ID=68539932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018093169A Active JP7085892B2 (ja) 2018-05-14 2018-05-14 飛行体及び飛行体の制御方法

Country Status (5)

Country Link
US (1) US11822348B2 (ja)
EP (1) EP3795470B1 (ja)
JP (1) JP7085892B2 (ja)
CN (1) CN112292317B (ja)
WO (1) WO2019221071A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124570A (zh) * 2020-09-25 2020-12-25 成都纵横自动化技术股份有限公司 一种飞行器起飞控制方法、装置、飞行器和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2912732T3 (es) * 2018-11-30 2022-05-27 Umiles Urban Air Mobility S L Vehículos aéreos con grados de libertad desacoplados
EP4281364A1 (de) * 2021-01-20 2023-11-29 Germanium Skies GmbH Transporteinheit für ein fluggerät und fluggerät

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042508A1 (en) * 2009-08-24 2011-02-24 Bevirt Joeben Controlled take-off and flight system using thrust differentials
US20110042509A1 (en) * 2009-08-24 2011-02-24 Bevirt Joeben Lightweight Vertical Take-Off and Landing Aircraft and Flight Control Paradigm Using Thrust Differentials
US20120261523A1 (en) * 2010-10-06 2012-10-18 Donald Orval Shaw Aircraft with Wings and Movable Propellers
US20140124613A1 (en) * 2011-06-21 2014-05-08 Zhaoxi Yang Vertical take-off and landing aircraft with tiltrotor power for use on land and in air
US20160167776A1 (en) * 2007-02-16 2016-06-16 Donald Orval Shaw Modular Flight Vehicle
JP2017525621A (ja) * 2014-09-02 2017-09-07 アミット,レジェブ 傾斜翼付きマルチロータ
KR20170122550A (ko) * 2016-04-27 2017-11-06 한국항공우주연구원 기울기 제어 날개를 가지는 비행체
JP2018508407A (ja) * 2015-02-19 2018-03-29 アマゾン テクノロジーズ インコーポレイテッド 上昇ポジションと推進ポジションとの間で回転するモータを有する輸送手段の構成

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092084A (en) * 1976-07-22 1978-05-30 The South African Inventions Development Corporation Of Scientia Rotor for an autogiro
FR2591188A1 (fr) * 1985-12-05 1987-06-12 Rabouyt Denis Perfectionnements aux voilures tournantes d'aeronefs.
US20020104922A1 (en) * 2000-12-08 2002-08-08 Mikio Nakamura Vertical takeoff and landing aircraft with multiple rotors
US20070181742A1 (en) * 2006-01-19 2007-08-09 Silverlit Toys Manufactory, Ltd. Flying object with tandem rotors
EP2817219B1 (de) 2012-02-22 2020-06-03 Volocopter GmbH Fluggerät
US9399982B2 (en) * 2012-12-07 2016-07-26 Sky Windpower Corporation Auto-gyro rotor flying electric generator (FEG) with wing lift augmentation
EP3007973B1 (en) * 2013-06-09 2019-01-02 ETH Zurich Controlled flight of a multicopter experiencing a failure affecting an effector
WO2015061857A1 (en) * 2013-11-01 2015-05-07 The University Of Queensland A rotorcraft
US20150175258A1 (en) * 2013-12-20 2015-06-25 Hung-Fu Lee Helicopter with h-pattern structure
KR101554487B1 (ko) * 2013-12-23 2015-09-21 이상현 멀티 로터 비행체
IL231811A (en) * 2014-03-30 2017-08-31 Yefim Kereth Asymmetric helicopter with multiple rotors
US11254430B2 (en) * 2014-09-02 2022-02-22 Amit REGEV Tilt winged multi rotor
US9764829B1 (en) * 2015-06-09 2017-09-19 Amazon Technologies, Inc. Multirotor aircraft with enhanced yaw control
KR102415393B1 (ko) * 2016-06-03 2022-07-01 에어로바이론먼트, 인크. 상보적 앵글형 로터를 구비한 수직 이착륙 날개형 비행체
GB2560181B (en) * 2017-03-02 2019-11-13 Michael Tapper Paul Swiveling tandem rotorcraft
US10577096B2 (en) * 2017-07-20 2020-03-03 Textron Innovations Inc. Proprotor flapping control systems for tiltrotor aircraft
CN110733624B (zh) * 2019-01-23 2021-09-28 杭州零零科技有限公司 无人驾驶飞行系统和用于无人驾驶飞行系统的控制系统
EP3959125A4 (en) * 2019-04-26 2023-03-22 Aergility Corporation HYBRID GIRODYNE TYPE AIRCRAFT
CN110015415B (zh) * 2019-05-09 2024-02-09 福州大学 一种双轴倾斜四旋翼飞行器
CN210555569U (zh) * 2019-07-23 2020-05-19 孙浩然 一种新型无轴四旋翼
US11106221B1 (en) * 2019-11-25 2021-08-31 Kitty Hawk Corporation Multicopter with self-adjusting rotors
CN114044122A (zh) * 2021-11-01 2022-02-15 汪鸣飞 一种可变翼垂直起降自抓载飞行器
CN114394228B (zh) * 2022-01-13 2024-02-27 矩星(广州)创新科技有限公司 一种飞行器以及飞行器的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160167776A1 (en) * 2007-02-16 2016-06-16 Donald Orval Shaw Modular Flight Vehicle
US20110042508A1 (en) * 2009-08-24 2011-02-24 Bevirt Joeben Controlled take-off and flight system using thrust differentials
US20110042509A1 (en) * 2009-08-24 2011-02-24 Bevirt Joeben Lightweight Vertical Take-Off and Landing Aircraft and Flight Control Paradigm Using Thrust Differentials
US20120261523A1 (en) * 2010-10-06 2012-10-18 Donald Orval Shaw Aircraft with Wings and Movable Propellers
US20140124613A1 (en) * 2011-06-21 2014-05-08 Zhaoxi Yang Vertical take-off and landing aircraft with tiltrotor power for use on land and in air
JP2017525621A (ja) * 2014-09-02 2017-09-07 アミット,レジェブ 傾斜翼付きマルチロータ
JP2018508407A (ja) * 2015-02-19 2018-03-29 アマゾン テクノロジーズ インコーポレイテッド 上昇ポジションと推進ポジションとの間で回転するモータを有する輸送手段の構成
KR20170122550A (ko) * 2016-04-27 2017-11-06 한국항공우주연구원 기울기 제어 날개를 가지는 비행체

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124570A (zh) * 2020-09-25 2020-12-25 成都纵横自动化技术股份有限公司 一种飞行器起飞控制方法、装置、飞行器和存储介质

Also Published As

Publication number Publication date
EP3795470A4 (en) 2022-02-23
CN112292317B (zh) 2024-04-30
EP3795470B1 (en) 2023-12-06
US20210064062A1 (en) 2021-03-04
CN112292317A (zh) 2021-01-29
WO2019221071A1 (ja) 2019-11-21
JP7085892B2 (ja) 2022-06-17
US11822348B2 (en) 2023-11-21
EP3795470A1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6158459B2 (ja) マルチコプター
JP6456641B2 (ja) マルチロータクラフトの姿勢安定化制御装置
EP3483065B1 (en) Multirotor aircraft with collective for autorotation
EP2899118B1 (en) Rotorcraft with a fuselage and at least one main rotor
CN103085970B (zh) 主动螺旋桨旋翼稳定系统
WO2019221071A1 (ja) 飛行体及び飛行体の制御方法
US5951608A (en) Flight control system for jet powered tri-mode aircraft
JP2020535079A (ja) 垂直離着陸機
JP2008513296A (ja) 回転翼航空機
JP7443365B2 (ja) 分離した自由度を有する航空機
US9611036B1 (en) Rotor-mast-tilting apparatus and method for lower flapping loads
JP2002503170A (ja) 垂直離着陸を行う重航空機
KR20170012543A (ko) 고정 로터 추력 벡터링
JP7265845B2 (ja) 飛行体及び飛行体の制御方法
KR102245397B1 (ko) 다중회전익 무인비행체
CN107908193B (zh) 一种非平面式八旋翼全向飞行器及控制方法
EP3730404B1 (en) Vertical take-off and landing aircraft and related control method
JP2017007429A (ja) 制御装置、航空機、及びプログラム
JPH07132893A (ja) 回転翼機
JP2023532329A (ja) 多自由度飛行モードを有するドローン
JP2019089548A (ja) 回転翼機
WO2019026200A1 (ja) 姿勢安定制御装置および垂直離着陸機
JP2018127217A (ja) 回転翼機
WO2011007850A1 (ja) ローター・ヘッド
JP3021232B2 (ja) ヘリコプタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7085892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150