JP2019194512A - Integrated vapor chamber module allowing communication between multiple vapor chambers with extended capillary layer - Google Patents

Integrated vapor chamber module allowing communication between multiple vapor chambers with extended capillary layer Download PDF

Info

Publication number
JP2019194512A
JP2019194512A JP2018125930A JP2018125930A JP2019194512A JP 2019194512 A JP2019194512 A JP 2019194512A JP 2018125930 A JP2018125930 A JP 2018125930A JP 2018125930 A JP2018125930 A JP 2018125930A JP 2019194512 A JP2019194512 A JP 2019194512A
Authority
JP
Japan
Prior art keywords
capillary layer
concave groove
stretched
capillary
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018125930A
Other languages
Japanese (ja)
Inventor
曾惓祺
Quan Qi Ceng
廖文靖
wen jing Liao
崔明全
Ming Quan Cui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tai Sol Electronics Co Ltd
Original Assignee
Tai Sol Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tai Sol Electronics Co Ltd filed Critical Tai Sol Electronics Co Ltd
Publication of JP2019194512A publication Critical patent/JP2019194512A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Abstract

To provide an integrated vapor chamber module which allows communication between multiple vapor chambers with an extended capillary layer.SOLUTION: An integrated vapor chamber module 10 allowing communication between multiple vapor chambers with an extended capillary layer includes a base 11, a lid 12, a capillary structure, and an extended capillary layer. The base has a first recessed groove, a second recessed groove, a liquid flow passage 113, and an airflow passage 114 connected to each other. The lid 12 is attached onto the base 11 to form a seal space. The seal space includes the first recessed groove, the second recessed groove, the airflow passage 114, and the liquid flow passage 113. The capillary structure is disposed in the seal structure so as to correspond to the first recessed groove and the second recessed groove. The extended capillary layer is located in the liquid flow passage 113 and is distributed at a part of the liquid flow passage 113 to maintain a state that a gas flows in the first recessed groove and the second recessed groove without passing through the liquid flow passage 113. Both ends of the extended capillary layer protrude to the liquid flow passage 113 and contact with the capillary structure.SELECTED DRAWING: Figure 4

Description

本発明は、放熱装置に関し、詳しくは延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュールに関するものである。   The present invention relates to a heat dissipation device, and more particularly to an integrated vapor chamber module that connects a plurality of vapor chambers with a stretched capillary layer.

周知の還流型ベイパーチャンバーにおいて、特許文献1により掲示された「冷却装置および電子設備」は受熱プレートになるベイパーチャンバーおよび放熱プレートになるベイパーチャンバーを気流管および液流管によって連結し、気液分離型還流ベイパーチャンバーを構成する。気流管および液流管は溶接方式によって受熱プレートおよび放熱プレートに連結される。   In a well-known reflux-type vapor chamber, “Cooling device and electronic equipment” posted in Patent Document 1 connects a vapor chamber serving as a heat receiving plate and a vapor chamber serving as a heat radiating plate by an air flow tube and a liquid flow tube to separate the gas and liquid. A mold reflux vapor chamber is constructed. The airflow pipe and the liquid flow pipe are connected to the heat receiving plate and the heat radiating plate by a welding method.

しかし、溶接加工作業は品質管理が難しく、製品の歩合を降下させるという問題がある。また溶接箇所の構造が比較的脆いため、衝撃を受けるか長時間にわたって使用されると製品の損壊を発生し、製品の使用寿命を短縮する。   However, the quality of the welding process is difficult, and there is a problem that the yield of the product is lowered. In addition, since the structure of the welded portion is relatively brittle, the product will be damaged when subjected to impact or used for a long time, and the service life of the product will be shortened.

米国公開US2016/0128234号公報US Publication No. 2016/0128234

本発明は、延伸毛細管層で複数のベイパーチャンバーを連絡することによって放熱効果を向上させる統合型ベイパーチャンバーモジュールを提供することを主な目的とする。   The main object of the present invention is to provide an integrated vapor chamber module that improves the heat dissipation effect by connecting a plurality of vapor chambers with a stretched capillary layer.

上述した課題を解決するための延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュールにおいて、ベイパーチャンバーの内部の密封空間は真空状態である。作動液体は密封空間内に充填される。延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュールはベース、蓋、毛細管構造および延伸毛細管層を備える。ベースは第一凹状溝、第二凹状溝、液流流路および気流流路を有する。第一凹状溝、第二凹状溝、液流流路および気流流路は相互に繋がる。蓋はベースに被さって密封空間を構成する。密封空間は第一凹状溝、第二凹状溝、気流流路および液流流路を含む。毛細管構造は第一凹状溝および第二凹状溝に対応するように密封空間内に配置される。延伸毛細管層は液流流路内に位置付けられ、液流流路の一部分に分布することによって気体が液流流路を通らず第一凹状溝および第二凹状溝内を流動することを維持する。延伸毛細管層は両端が液流流路に突出して毛細管構造に接触する。   In an integrated vapor chamber module in which a plurality of vapor chambers are connected with an extended capillary layer for solving the above-described problem, the sealed space inside the vapor chamber is in a vacuum state. The working liquid is filled in the sealed space. An integrated vapor chamber module that communicates a plurality of vapor chambers with a stretched capillary layer comprises a base, a lid, a capillary structure, and a stretched capillary layer. The base has a first concave groove, a second concave groove, a liquid flow channel and an air flow channel. The first concave groove, the second concave groove, the liquid flow channel and the air flow channel are connected to each other. The lid covers the base to form a sealed space. The sealed space includes a first concave groove, a second concave groove, an air flow channel, and a liquid flow channel. The capillary structure is disposed in the sealed space so as to correspond to the first concave groove and the second concave groove. The stretched capillary layer is positioned in the liquid flow channel, and is distributed in a part of the liquid flow channel to maintain the gas flowing in the first concave groove and the second concave groove without passing through the liquid flow channel. . Both ends of the stretched capillary layer protrude into the liquid flow channel and come into contact with the capillary structure.

上述したとおり、延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュールは液体作動液の還流を迅速に誘導し、良好な放熱効果を発揮することができる。   As described above, the integrated vapor chamber module that communicates a plurality of vapor chambers with the stretched capillary layer can quickly induce the reflux of the liquid working fluid and exhibit a good heat dissipation effect.

本発明の第1実施形態を示す斜視図である。1 is a perspective view showing a first embodiment of the present invention. 図1中の2−2線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 図1中の3−3線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 1. 本発明の第1実施形態を示す分解斜視図である。1 is an exploded perspective view showing a first embodiment of the present invention. 図4中の蓋および第一毛細管層を取り外した状態を示す平面図である。It is a top view which shows the state which removed the lid | cover and 1st capillary layer in FIG. 本発明の第2実施形態を示す分解斜視図である。It is a disassembled perspective view which shows 2nd Embodiment of this invention. 図6中の蓋および第一毛細管層を取り外した状態を示す平面図である。It is a top view which shows the state which removed the lid | cover and 1st capillary layer in FIG. 本発明の第3実施形態を示す分解斜視図である。It is a disassembled perspective view which shows 3rd Embodiment of this invention. 図8中の蓋および第一毛細管層を取り外した状態を示す平面図である。It is a top view which shows the state which removed the lid | cover and 1st capillary layer in FIG. 本発明の第4実施形態を示す分解斜視図である。It is a disassembled perspective view which shows 4th Embodiment of this invention. 図10中の蓋および第一毛細管層を取り外した状態を示す平面図である。It is a top view which shows the state which removed the lid | cover and 1st capillary layer in FIG. 本発明の第5実施形態を示す分解斜視図である。It is a disassembled perspective view which shows 5th Embodiment of this invention.

以下、本発明による延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュールを図面に基づいて説明する。   Hereinafter, an integrated vapor chamber module that communicates a plurality of vapor chambers with a stretched capillary layer according to the present invention will be described with reference to the drawings.

(第1実施形態)
図1から図5に示すように、本発明の第1実施形態による延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール10において、ベイパーチャンバーの内部の密封空間115は真空状態である。作動液体は密封空間115内に充填される。
延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール10はベース11、蓋12、延伸毛細管層17および毛細管構造を備える。本実施形態において、毛細管構造は第一毛細管層13、第二毛細管層14、第三毛細管層15および第四毛細管層16を含むが、これに限らない。別の実施形態において、毛細管構造は層が増減してもよい。密封空間内の配置方式は本実施形態に限定されない。
(First embodiment)
As shown in FIGS. 1 to 5, in the integrated vapor chamber module 10 that connects a plurality of vapor chambers with a stretched capillary layer according to the first embodiment of the present invention, the sealed space 115 inside the vapor chamber is in a vacuum state. . The working liquid is filled in the sealed space 115.
An integrated vapor chamber module 10 that communicates a plurality of vapor chambers with a stretched capillary layer comprises a base 11, a lid 12, a stretched capillary layer 17, and a capillary structure. In the present embodiment, the capillary structure includes the first capillary layer 13, the second capillary layer 14, the third capillary layer 15, and the fourth capillary layer 16, but is not limited thereto. In another embodiment, the capillary structure may increase or decrease in layers. The arrangement method in the sealed space is not limited to this embodiment.

ベース11は、第一凹状溝111、第二凹状溝112、液流流路113および気流流路114を有する。第一凹状溝111、第二凹状溝112、液流流路113および気流流路114は同じ平面に位置し、かつ相互に繋がる。   The base 11 has a first concave groove 111, a second concave groove 112, a liquid flow channel 113 and an air flow channel 114. The first concave groove 111, the second concave groove 112, the liquid flow channel 113, and the air flow channel 114 are located on the same plane and connected to each other.

第一凹状溝111、第二凹状溝112、液流流路113および気流流路114は同じ平面に位置するが、これに限らず、四つとも異なる水平面上に位置するか、一部分が同じ水平面上に位置し、別の一部分が異なる水平面上に位置してもよい。別の実施形態において、第一凹状溝111、第二凹状溝112、液流流路113および気流流路114の底面は異なる水平面上に位置する。   The first concave groove 111, the second concave groove 112, the liquid flow channel 113, and the air flow channel 114 are located on the same plane, but the present invention is not limited to this. Located above and another portion may be located on a different horizontal plane. In another embodiment, the bottom surfaces of the first concave groove 111, the second concave groove 112, the liquid flow channel 113, and the air flow channel 114 are located on different horizontal planes.

蓋12は第一凹状溝111、第二凹状溝112、液流流路113および気流流路114の輪郭に対応するようにベース11に被さるため、第一凹状溝111、第二凹状溝112、液流流路113および気流流路114が密封空間115になる。   Since the lid 12 covers the base 11 so as to correspond to the contours of the first concave groove 111, the second concave groove 112, the liquid flow channel 113 and the air flow channel 114, the first concave groove 111, the second concave groove 112, The liquid flow channel 113 and the air flow channel 114 become a sealed space 115.

本実施形態において、ベース11および蓋12はそれぞれCNC工程またはエッチング工程によって一体成型されるが、これに限らない。別の実施形態において、ベース11および蓋12は別の加工手段によって成型されるか、別々に異なる加工手段によって成型される。   In the present embodiment, the base 11 and the lid 12 are integrally formed by a CNC process or an etching process, respectively, but are not limited thereto. In another embodiment, the base 11 and the lid 12 are molded by different processing means or separately by different processing means.

第一毛細管層13は金属メッシュまたは銅粉末焼結によって成形される。本実施形態において、第一毛細管層13は銅粉末焼結によって成形され、第一凹状溝111に相対するように蓋12に配置される。   The first capillary layer 13 is formed by metal mesh or copper powder sintering. In the present embodiment, the first capillary layer 13 is formed by copper powder sintering and is disposed on the lid 12 so as to face the first concave groove 111.

第二毛細管層14は金属メッシュまたは銅粉末焼結によって成形される。本実施形態において、第二毛細管層14は銅粉末焼結によって成形され、第二凹状溝112に相対するように蓋12に配置される。   The second capillary layer 14 is formed by metal mesh or copper powder sintering. In the present embodiment, the second capillary layer 14 is formed by copper powder sintering and is disposed on the lid 12 so as to face the second concave groove 112.

第三毛細管層15は金属メッシュまたは銅粉末焼結によって成形される。本実施形態において、第三毛細管層15は銅粉末焼結によって成形され、ベース11の第一凹状溝111内に配置される。   The third capillary layer 15 is formed by metal mesh or copper powder sintering. In the present embodiment, the third capillary layer 15 is formed by copper powder sintering and is disposed in the first concave groove 111 of the base 11.

第四毛細管層16は金属メッシュまたは銅粉末焼結によって成形される。本実施形態において、第四毛細管層16は銅粉末焼結によって成形され、ベース11の第二凹状溝112内に配置される。   The fourth capillary layer 16 is formed by metal mesh or copper powder sintering. In the present embodiment, the fourth capillary layer 16 is formed by copper powder sintering and is disposed in the second concave groove 112 of the base 11.

第一毛細管層13、第二毛細管層14、第三毛細管層15および第四毛細管層16はそれぞれ複数の凸状部131、141、151、161を有する。凸状部131、141、151、161は銅ブロックからなるか、銅粉末焼結によって成形された毛細管層からなる。凸状部131、151はそれぞれ第一毛細管層13および第三毛細管層15の間に当接する。凸状部141、161はそれぞれ第二毛細管層14および第四毛細管層16の間に当接する。   The first capillary layer 13, the second capillary layer 14, the third capillary layer 15, and the fourth capillary layer 16 have a plurality of convex portions 131, 141, 151, 161, respectively. The convex portions 131, 141, 151, 161 are made of a copper block or a capillary layer formed by copper powder sintering. The convex portions 131 and 151 abut between the first capillary layer 13 and the third capillary layer 15, respectively. The convex portions 141 and 161 abut between the second capillary layer 14 and the fourth capillary layer 16, respectively.

延伸毛細管層17は銅粉末焼結によって成形され、液流流路113内に位置付けられ、液流流路113の一部分に分布することによって気体が液流流路113を通らず第一凹状溝111および第二凹状溝112内を流動することを維持する。延伸毛細管層17は両端が液流流路113の外側の所定距離まで突出し、二つの延伸部位171、172を有する。延伸部位171、172は別々に第一凹状溝111および第二凹状溝112に入り込み、端部が同じ側の所定の長さまで伸びる。   The stretched capillary layer 17 is formed by sintering copper powder, is positioned in the liquid flow channel 113, and is distributed in a part of the liquid flow channel 113 so that the gas does not pass through the liquid flow channel 113 and the first concave groove 111. And the flow in the second concave groove 112 is maintained. The stretched capillary layer 17 projects at both ends to a predetermined distance outside the liquid flow channel 113, and has two stretched portions 171 and 172. The extending portions 171 and 172 separately enter the first concave groove 111 and the second concave groove 112, and the end portions extend to a predetermined length on the same side.

本実施形態において、作動液(図中未表示)は純水からなり、密封空間115内に充填され、第一毛細管層13、第二毛細管層14、第三毛細管層15、第四毛細管層16および延伸毛細管層17に吸着する。気体、即ち気体作動液は熱エネルギーを吸収した液体作動液の蒸発によって生成される。   In the present embodiment, the hydraulic fluid (not shown in the figure) is made of pure water, filled in the sealed space 115, and the first capillary layer 13, the second capillary layer 14, the third capillary layer 15, and the fourth capillary layer 16. And adsorbed on the stretched capillary layer 17. The gas, that is, the gas hydraulic fluid, is generated by evaporation of the liquid hydraulic fluid that has absorbed thermal energy.

本実施形態において、二つの延伸部位171、172は気流流路114の方向に伸び、第一凹状溝111および第二凹状溝112の溝壁面に接触せず適切な間隔を保つ。二つの延伸部位171、172は第三毛細管層15および第四毛細管層16のいずれか一つに接触するか、図4に示すように第三毛細管層15および第四毛細管層16に接触する。   In the present embodiment, the two extending portions 171 and 172 extend in the direction of the air flow channel 114 and do not come into contact with the groove wall surfaces of the first concave groove 111 and the second concave groove 112 and maintain an appropriate interval. The two extending portions 171 and 172 are in contact with any one of the third capillary layer 15 and the fourth capillary layer 16 or are in contact with the third capillary layer 15 and the fourth capillary layer 16 as shown in FIG.

以上は第1実施形態の構造についての説明である。続いて作動状態について説明を進める。   The above is the description of the structure of the first embodiment. Next, the description of the operating state will proceed.

延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール10が作動する際、第一凹状溝111に対応する蓋12の表面は受熱部位になる。
受熱部位は熱源に接触し、熱源に生じた熱エネルギーを吸収する。熱源はマイクロプロセッサ、集積回路、RFコンポーネント、別の熱エネルギーを生じる部材またはモジュールである。モジュールは一つまたは複数の上述した部材または電子部品から構成された電子回路を含む。
When the integrated vapor chamber module 10 that connects a plurality of vapor chambers with the stretched capillary layer operates, the surface of the lid 12 corresponding to the first concave groove 111 becomes a heat receiving portion.
The heat receiving portion contacts the heat source and absorbs heat energy generated in the heat source. A heat source is a microprocessor, an integrated circuit, an RF component, another thermal energy generating member or module. The module includes an electronic circuit composed of one or more of the above-described members or electronic components.

第二凹状溝112に対応する蓋12の表面は放熱部位になる。放熱部位は放熱モジュールに直接または間接に接触する。放熱部位が放熱モジュールに直接に接触する際、放熱モジュールは放熱フィンまたは放熱フィンおよびファンの組み合わせによって放熱部位に直接に接触し、放熱部位を冷却させる。放熱部位が放熱モジュールに間接に接触する際、放熱モジュールは放熱部位に接触せず、ファンの生じた気流などの流体によって放熱部位を冷却させる。別の実施形態において、放熱モジュールは上述に限らず、複数の放熱フィン、複数のファンまたは別の部材からなってもよい。   The surface of the lid 12 corresponding to the second concave groove 112 becomes a heat radiating portion. The heat dissipating part contacts the heat dissipating module directly or indirectly. When the heat dissipating part directly contacts the heat dissipating module, the heat dissipating module directly contacts the heat dissipating part by the heat dissipating fin or the combination of the heat dissipating fin and the fan, and cools the heat dissipating part. When the heat dissipating part contacts the heat dissipating module indirectly, the heat dissipating module does not contact the heat dissipating part, and the heat dissipating part is cooled by a fluid such as an air flow generated by the fan. In another embodiment, the heat dissipation module is not limited to the above, and may include a plurality of heat dissipation fins, a plurality of fans, or another member.

図5に示すように、受熱部位が熱エネルギーを吸収し、蓋12から第一凹状溝11へ伝送する際、第一凹状溝111内の液体動作流体は熱エネルギーを吸収した後蒸発して気体作動流体に変わる。続いて気体動作流動液は気流流路114によって放熱部位に対応する第二凹状溝112に流入し、降温して液体作動液に変わる。
続いて、相互に当接する第二毛細管層14の複数の凸状部141および第四毛細管層16の複数の凸状部161と、第二凹状溝112内に位置する延伸毛細管層17の延伸部位172とによって冷却した液体作動液は誘導され、液流流路113内の延伸毛細管層17を通って延伸毛細管層17の別の延伸部位171へ迅速に前進し、第一凹状溝111に流入し、第三毛細管層15に付着することができる。このとき液体作動液は第一凹状溝111内の延伸毛細管層17が第三毛細管層15および第一毛細管層13に接触することによって受熱部位に還流する。上述した循環作用は熱源に生じた熱エネルギーを持続的に引き出し、良好な放熱効果を発揮することができる。
As shown in FIG. 5, when the heat receiving part absorbs thermal energy and transmits it from the lid 12 to the first concave groove 11, the liquid working fluid in the first concave groove 111 absorbs the thermal energy and then evaporates to become a gas. Change to working fluid. Subsequently, the gas working fluid flows into the second concave groove 112 corresponding to the heat radiating portion by the air flow channel 114 and is cooled to change into the liquid working fluid.
Subsequently, the plurality of convex portions 141 of the second capillary layer 14 and the plurality of convex portions 161 of the fourth capillary layer 16 that are in contact with each other, and the stretched portion of the stretched capillary layer 17 located in the second concave groove 112 The liquid working fluid cooled by the liquid flow channel 172 is guided, rapidly advances to another stretched portion 171 of the stretched capillary layer 17 through the stretched capillary layer 17 in the liquid flow channel 113, and flows into the first concave groove 111. The third capillary layer 15 can be attached. At this time, the liquid hydraulic fluid is refluxed to the heat receiving portion when the stretched capillary layer 17 in the first concave groove 111 comes into contact with the third capillary layer 15 and the first capillary layer 13. The above-described circulation action can continuously extract the heat energy generated in the heat source and exhibit a good heat dissipation effect.

上述したとおり、本発明は延伸毛細管層17が第四毛細管層16および第三毛細管層15に接触するため、第二毛細管層14と第四毛細管層16との間に配置される複数の凸状部141および複数の凸状部161と、第三毛細管層15と第一毛細管層13との間に配置される複数の凸状部151および複数の凸状部131と、延伸毛細管層17の二つの延伸部位171、172とによって誘導および伝送作用を発揮し、液体作動液を熱源に対応する第一凹状溝111に順調に還流させ、放熱および循環を加速させ、放熱効果を向上させることができる。   As described above, since the stretched capillary layer 17 contacts the fourth capillary layer 16 and the third capillary layer 15, the present invention has a plurality of convex shapes disposed between the second capillary layer 14 and the fourth capillary layer 16. A plurality of convex portions 151, a plurality of convex portions 161, a plurality of convex portions 151 and a plurality of convex portions 131 disposed between the third capillary layer 15 and the first capillary layer 13, and a stretched capillary layer 17. The two extending portions 171 and 172 exhibit induction and transmission functions, and the liquid working fluid can be smoothly circulated to the first concave groove 111 corresponding to the heat source to accelerate heat dissipation and circulation, thereby improving the heat dissipation effect. .

(第2実施形態)
図6および図7に示したのは本発明の第2実施形態による延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール20である。第1実施形態との違いは次の通りである。
(Second Embodiment)
6 and 7 show an integrated vapor chamber module 20 that communicates a plurality of vapor chambers with a stretched capillary layer according to a second embodiment of the present invention. Differences from the first embodiment are as follows.

第2実施形態において、ベース21は二つの気流流路214を有する。二つの気流流路214は第一凹状溝211および第二凹状溝212の両側に配置される。液流流路213は第一凹状溝211および第二凹状溝212の間に配置される。蓋22はベース21の輪郭に対応する。延伸毛細管層27は両端が液流流路213の外側の所定距離まで突出し、二つの延伸部位271、272を有する。延伸部位271は第一凹状溝211に入り込み、端部が異なる両側の所定の長さまで伸びる。延伸部位272は第二凹状溝212に入り込み、端部が異なる両側の所定の長さまで伸びる。   In the second embodiment, the base 21 has two air flow channels 214. The two air flow channels 214 are arranged on both sides of the first concave groove 211 and the second concave groove 212. The liquid flow channel 213 is disposed between the first concave groove 211 and the second concave groove 212. The lid 22 corresponds to the contour of the base 21. The stretched capillary layer 27 protrudes to a predetermined distance outside the liquid flow channel 213 at both ends, and has two stretched portions 271 and 272. The extending portion 271 enters the first concave groove 211 and extends to a predetermined length on both sides with different end portions. The extending portion 272 enters the second concave groove 212 and extends to a predetermined length on both sides with different end portions.

第2実施形態のほかの構造および達成できる効果は第1実施形態と同じであるため、詳細な説明を省略する。   Since the other structures and effects that can be achieved in the second embodiment are the same as those in the first embodiment, a detailed description thereof will be omitted.

(第3実施形態)
図8および図9に示したのは本発明の第3実施形態による延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール30である。第1実施形態との違いは次の通りである。
(Third embodiment)
FIGS. 8 and 9 show an integrated vapor chamber module 30 that communicates a plurality of vapor chambers with a stretched capillary layer according to a third embodiment of the present invention. Differences from the first embodiment are as follows.

第3実施形態において、延伸毛細管層37は一端が液流流路313の外部の所定の長さまで突出し、別の一端に延伸部位371を有する。延伸部位371は第一凹状溝311に充満せず、第一凹状溝311内に広がる。延伸部位371は主要部位3711および複数のサイド部位3712を有する。主要部位3711は矩形を呈する。複数のサイド部位3712は相互に間隔を置いて主要部位3711の一側から気流流路314の方向へ伸びるように配置される。   In the third embodiment, one end of the stretched capillary layer 37 protrudes to a predetermined length outside the liquid flow channel 313 and has a stretched portion 371 at another end. The extending portion 371 does not fill the first concave groove 311 and extends into the first concave groove 311. The extending part 371 has a main part 3711 and a plurality of side parts 3712. The main part 3711 has a rectangular shape. The plurality of side portions 3712 are arranged so as to extend from one side of the main portion 3711 toward the air flow channel 314 at intervals.

第3実施形態のほかの構造および達成できる効果は第1実施形態と同じであるため、詳細な説明を省略する。   Since the other structures and effects that can be achieved in the third embodiment are the same as those in the first embodiment, detailed description thereof is omitted.

(第4実施形態)
図10および図11に示したのは本発明の第4実施形態による延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール40である。第1実施形態との違いは次の通りである。
(Fourth embodiment)
FIGS. 10 and 11 show an integrated vapor chamber module 40 that communicates a plurality of vapor chambers with a stretched capillary layer according to a fourth embodiment of the present invention. Differences from the first embodiment are as follows.

第4実施形態において、ベース41は二つの液流流路413および二つの気流流路414を有する。二つの延伸毛細管層47はそれぞれ二つの液流流路413からはみ出し、所定距離まで伸びるように配置される。二つの延伸毛細管層47の両端は液流流路413の外部の所定距離まで突出し、第一凹状溝411および第二凹状溝412に別々に入り込み、かつ延伸部位471によって相互に連結される。   In the fourth embodiment, the base 41 has two liquid flow channels 413 and two air flow channels 414. The two extended capillary layers 47 are arranged so as to protrude from the two liquid flow channels 413 and extend to a predetermined distance. Both ends of the two stretched capillary layers 47 protrude to a predetermined distance outside the liquid flow channel 413, separately enter the first concave groove 411 and the second concave groove 412, and are connected to each other by the stretched portion 471.

第4実施形態において、第一凹状溝411および第二凹状溝412は二つの連絡通路48によって繋がる。二つの連絡通路48は内部がスペーサー481によって二つの液流流路413および二つの気流流路414に仕切られる。   In the fourth embodiment, the first concave groove 411 and the second concave groove 412 are connected by two communication passages 48. The two communication passages 48 are internally divided into two liquid flow channels 413 and two air flow channels 414 by spacers 481.

第4実施形態のほかの構造および達成できる効果は第1実施形態と同じであるため、詳細な説明を省略する。   Since the other structures and effects that can be achieved in the fourth embodiment are the same as those in the first embodiment, a detailed description thereof will be omitted.

(第5実施形態)
図12に示すように、第5実施形態と第1実施形態との違いは図4中の第一毛細管層13および第四毛細管層16を毛細管構造から削除したことにある。
本発明の第5実施形態による延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール50は、ベース51、蓋52、延伸毛細管層57および毛細管構造を備える。ベース51は相互に繋がる第一凹状溝511および第二凹状溝512、液流流路513および気流流路514を有する。延伸毛細管層57は両端に形成された二つの延伸部位571、572を有する。
延伸部位571は第一凹状溝511内に伸びる。延伸部位572は第二凹状溝512内に伸びる。毛細管構造は第二毛細管層54および第三毛細管層55を有する。第5実施形態のほかの構造および達成できる効果は第1実施形態と同じであるため、詳細な説明を省略する。
(Fifth embodiment)
As shown in FIG. 12, the difference between the fifth embodiment and the first embodiment is that the first capillary layer 13 and the fourth capillary layer 16 in FIG. 4 are deleted from the capillary structure.
An integrated vapor chamber module 50 that communicates a plurality of vapor chambers with a stretched capillary layer according to a fifth embodiment of the present invention includes a base 51, a lid 52, a stretched capillary layer 57, and a capillary structure. The base 51 includes a first concave groove 511 and a second concave groove 512, a liquid flow channel 513, and an air flow channel 514 that are connected to each other. The stretched capillary layer 57 has two stretched portions 571 and 572 formed at both ends.
The extending portion 571 extends into the first concave groove 511. The stretched portion 572 extends into the second concave groove 512. The capillary structure has a second capillary layer 54 and a third capillary layer 55. Since the other structures of the fifth embodiment and the effects that can be achieved are the same as those of the first embodiment, detailed description thereof is omitted.

図12に示すように、第5実施形態は図4に示した第1実施形態と比べて毛細管構造の層が少ない。毛細管構造の配置方式は上述に限らず、層が増減してもよい。層が比較的多い毛細管構造は毛細管層部位を分化し、多層構造を形成することができる。   As shown in FIG. 12, the fifth embodiment has fewer layers of capillary structure than the first embodiment shown in FIG. The arrangement method of the capillary structure is not limited to the above, and the number of layers may be increased or decreased. A capillary structure having a relatively large number of layers can differentiate a capillary layer region to form a multilayer structure.

上述したとおり、延伸毛細管層17は少なくとも毛細管構造の第一毛細管層13、第二毛細管層14、第三毛細管層15および第四毛細管層16に接触し、延伸部位171、172を有することによって誘導および伝送作用を発揮するため、受熱部位に対応する第一凹状溝111まで液体作動液を順調に還流させ、熱源に生じた熱エネルギーを持続的に引き出すことができる。従って、本発明は放熱および循環を加速させ、良好な放熱効果を発揮することができる。   As described above, the stretched capillary layer 17 is in contact with at least the first capillary layer 13, the second capillary layer 14, the third capillary layer 15, and the fourth capillary layer 16 having a capillary structure and is guided by having stretched portions 171 and 172. In order to exert the transmission action, the liquid working fluid can be smoothly circulated to the first concave groove 111 corresponding to the heat receiving portion, and the heat energy generated in the heat source can be continuously drawn out. Therefore, the present invention can accelerate heat dissipation and circulation and exhibit a good heat dissipation effect.

10、20、30、40、50 延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール
11、21、41、51 ベース
111、211、311、411、511 第一凹状溝
112、212、412、512 第二凹状溝
113、213、313、413、513 液流流路
114、214、314、414、514 気流流路
115 密封空間
12、22、52 蓋
13 第一毛細管層
131、141、151、161 凸状部
14、54 第二毛細管層
15、55 第三毛細管層
16 第四毛細管層
17、27、37、47、57 延伸毛細管層
171、172、271、271、371、471、571、572 延伸部位
3711 主要部位
3712 サイド部位
48 連絡通路
481 スペーサー
10, 20, 30, 40, 50 Integrated vapor chamber module 11, 21, 41, 51 Base 111, 211, 311, 411, 511 First concave groove 112, 212, connecting a plurality of vapor chambers with a stretched capillary layer 412, 512 Second concave groove 113, 213, 313, 413, 513 Liquid flow channel 114, 214, 314, 414, 514 Air flow channel 115 Sealed space 12, 22, 52 Lid 13 First capillary layer 131, 141, 151, 161 Convex portion 14, 54 Second capillary layer 15, 55 Third capillary layer 16 Fourth capillary layer 17, 27, 37, 47, 57 Stretched capillary layer 171, 172, 271, 271, 371, 471, 571 572 Extension part 3711 Main part 3712 Side part 48 Communication path 481 Spacer

Claims (12)

ベイパーチャンバーの内部の密封空間が真空状態であり、作動液体が密封空間内に充填され、
ベース、蓋、毛細管構造および延伸毛細管層を備え、
前記ベースは、第一凹状溝、第二凹状溝、液流流路および気流流路を有し、前記第一凹状溝、前記第二凹状溝、前記液流流路および前記気流流路は相互に繋がり、
前記蓋は、前記ベースに被さって前記密封空間を構成し、前記密封空間は前記第一凹状溝、前記第二凹状溝、前記気流流路および前記液流流路を含み、
前記毛細管構造は、前記第一凹状溝および前記第二凹状溝に対応するように前記密封空間内に配置され、
前記延伸毛細管層は、前記液流流路内に位置付けられ、前記液流流路の一部分に分布することによって気体が前記液流流路を通らず前記第一凹状溝および前記第二凹状溝内を流動することを維持し、
前記延伸毛細管層は、両端が前記液流流路に突出して前記毛細管構造に接触することを特徴とする、
延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。
The sealed space inside the vapor chamber is in a vacuum state, the working liquid is filled in the sealed space,
Comprising a base, a lid, a capillary structure and a stretched capillary layer;
The base has a first concave groove, a second concave groove, a liquid flow channel and an air flow channel, and the first concave groove, the second concave groove, the liquid flow channel and the air flow channel are mutually connected. Leads to
The lid covers the base to form the sealed space, and the sealed space includes the first concave groove, the second concave groove, the air flow channel, and the liquid flow channel,
The capillary structure is disposed in the sealed space so as to correspond to the first concave groove and the second concave groove,
The stretched capillary layer is positioned in the liquid flow channel, and is distributed in a part of the liquid flow channel so that gas does not pass through the liquid flow channel and in the first concave groove and the second concave groove. Keeps flowing and
The stretched capillary layer is characterized in that both ends protrude into the liquid flow channel and contact the capillary structure.
Integrated vapor chamber module that connects multiple vapor chambers with a stretched capillary layer.
前記延伸毛細管層は、前記液流流路の内部に充満することを特徴とする請求項1に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   2. The integrated vapor chamber module for connecting a plurality of vapor chambers with a stretched capillary layer according to claim 1, wherein the stretched capillary layer fills the liquid flow path. 前記延伸毛細管層は、両端に形成された二つの延伸部位を有し、二つの前記延伸部位は別々に前記第一凹状溝および前記第二凹状溝内の所定の長さまで伸び、前記第一凹状溝および前記第二凹状溝の溝壁面に接触せず適切な間隔を保つことを特徴とする請求項1に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   The stretched capillary layer has two stretched portions formed at both ends, and the two stretched portions separately extend to a predetermined length in the first concave groove and the second concave groove, and the first concave shape 2. The integrated vapor chamber module for connecting a plurality of vapor chambers with an extended capillary layer according to claim 1, wherein the gap is not in contact with the groove and the groove wall surface of the second concave groove and is maintained at an appropriate interval. 二つの前記延伸部位は、前記延伸毛細管層の二つの端部から同じ側へ伸びて形成されることを特徴とする請求項3に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   The integrated vaporizer that connects a plurality of vapor chambers in the stretched capillary layer according to claim 3, wherein the two stretched portions are formed to extend from two ends of the stretched capillary layer to the same side. Chamber module. 二つの前記延伸部位は、前記延伸毛細管層の二つの端部から異なる両側へ伸びて形成されることを特徴とする請求項3に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   The integrated vaporizer for connecting a plurality of vapor chambers in the stretched capillary layer according to claim 3, wherein the two stretched portions are formed to extend from two ends of the stretched capillary layer to different sides. Chamber module. 前記延伸毛細管層は、一端に延伸部位を有し、前記延伸部位は前記第一凹状溝の空間に充満せず、前記第一凹状溝内に広がり、前記延伸部位は主要部位および複数のサイド部位を有し、前記主要部位は矩形を呈し、複数の前記サイド部位は相互に間隔を置いて前記主要部位の一側から前記気流流路の方向へ伸びるように配置されることを特徴とする請求項1に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   The stretched capillary layer has a stretched portion at one end, the stretched portion does not fill the space of the first concave groove, and extends into the first concave groove, and the stretched portion includes a main portion and a plurality of side portions. The main part has a rectangular shape, and the plurality of side parts are arranged so as to extend from one side of the main part in the direction of the air flow channel at intervals. An integrated vapor chamber module that communicates a plurality of vapor chambers with the stretched capillary layer according to Item 1. 前記ベースは二つの前記液流流路および二つの前記気流流路を有し、二つの前記延伸毛細管層は、それぞれ二つの前記液流流路内の少なくとも一部分に分布するように二つの前記液流流路に形成され、前記気流流路から流出した気体作動液が二つの前記液流流路へ流入することを妨害し、二つの前記延伸毛細管層は、それぞれの両端が二つの前記液流流路の外部の所定距離まで突出し、前記第一凹状溝および前記第二凹状溝に別々に入り込み、かつ二つの前記延伸部位によって相互に連結されることを特徴とする請求項1に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   The base has two liquid flow channels and two air flow channels, and the two drawn capillary layers are distributed in at least a part of the two liquid flow channels, respectively. Formed in the flow channel and prevents the gas working fluid flowing out from the air flow channel from flowing into the two liquid flow channels, and the two stretched capillary layers have two liquid flows at each end. The extension according to claim 1, wherein the extension protrudes to a predetermined distance outside the flow path, separately enters the first concave groove and the second concave groove, and is connected to each other by the two extension portions. An integrated vapor chamber module that connects multiple vapor chambers with a capillary layer. 前記ベースの前記第一凹状溝および前記第二凹状溝は、二つの連絡通路によって繋がり、二つの前記連絡通路はそれぞれの内部がスペーサーによって前記液流流路および前記気流流路に仕切られ、二つの前記液流流路は二つの前記連絡通路の相対する内側に配置され、二つの前記気流流路は二つの前記連絡通路の相対する外側に配置されることを特徴とする請求項7に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   The first concave groove and the second concave groove of the base are connected by two communication passages, and each of the two communication passages is partitioned into the liquid flow channel and the air flow channel by a spacer. The two liquid flow paths are disposed on the inner sides of the two communication passages, and the two air flow paths are disposed on the outer sides of the two communication paths. Integrated vapor chamber module that connects multiple vapor chambers with a stretched capillary layer. 前記第一凹状溝、前記第二凹状溝、前記液流流路および前記気流流路は、同じ平面に位置することを特徴とする請求項1に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   The first capillary groove, the second concave groove, the liquid flow channel, and the air flow channel are located in the same plane, and the plurality of vapor chambers are connected by the stretched capillary layer according to claim 1. Integrated vapor chamber module. 前記毛細管構造は、第一毛細管層、第二毛細管層、第三毛細管層および第四毛細管層を含み、前記第一毛細管層は前記第一凹状溝に対応するように蓋に形成され、前記第二毛細管層は前記第二凹状溝に対応するように蓋に形成され、前記第三毛細管層は前記ベースの前記第一凹状溝内に形成され、前記第四毛細管層は前記ベースの前記第二凹状溝内に形成されることを特徴とする請求項1に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   The capillary structure includes a first capillary layer, a second capillary layer, a third capillary layer, and a fourth capillary layer, and the first capillary layer is formed on the lid so as to correspond to the first concave groove, A two-capillary layer is formed in the lid so as to correspond to the second concave groove, the third capillary layer is formed in the first concave groove of the base, and the fourth capillary layer is formed in the second groove of the base. 2. The integrated vapor chamber module for connecting a plurality of vapor chambers with a stretched capillary layer according to claim 1, wherein the integrated vapor chamber module is formed in a concave groove. 前記第一毛細管層、前記第二毛細管層、前記第三毛細管層および前記第四毛細管層の間には複数の凸状部が配置され、複数の前記凸状部は銅ブロックからなることを特徴とする請求項10に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   A plurality of convex portions are disposed between the first capillary layer, the second capillary layer, the third capillary layer, and the fourth capillary layer, and the plurality of convex portions are made of a copper block. An integrated vapor chamber module for communicating a plurality of vapor chambers with the stretched capillary layer according to claim 10. 前記第一毛細管層、前記第二毛細管層、前記第三毛細管層および前記第四毛細管層の間には複数の凸状部が配置され、複数の前記凸状部は銅粉末焼結によって成形された毛細管層からなることを特徴とする請求項10に記載の延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール。   A plurality of convex portions are disposed between the first capillary layer, the second capillary layer, the third capillary layer, and the fourth capillary layer, and the plurality of convex portions are formed by copper powder sintering. The integrated vapor chamber module for connecting a plurality of vapor chambers with the stretched capillary layer according to claim 10, wherein the vapor chamber is composed of a plurality of capillary layers.
JP2018125930A 2018-05-04 2018-07-02 Integrated vapor chamber module allowing communication between multiple vapor chambers with extended capillary layer Pending JP2019194512A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107115226A TW201948015A (en) 2018-05-04 2018-05-04 Joint vapor chamber assembly with vapor chambers connected by extension wick layer
TW107115226 2018-05-04

Publications (1)

Publication Number Publication Date
JP2019194512A true JP2019194512A (en) 2019-11-07

Family

ID=68383842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125930A Pending JP2019194512A (en) 2018-05-04 2018-07-02 Integrated vapor chamber module allowing communication between multiple vapor chambers with extended capillary layer

Country Status (3)

Country Link
US (1) US20190339021A1 (en)
JP (1) JP2019194512A (en)
TW (1) TW201948015A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11234344B2 (en) * 2019-04-29 2022-01-25 Motorola Mobility Llc Heat transfer apparatus for a mobile device
CN113099679A (en) * 2019-12-23 2021-07-09 亚浩电子五金塑胶(惠州)有限公司 Temperature equalizing plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543839A (en) * 1969-05-14 1970-12-01 Trw Inc Multi-chamber controllable heat pipe
US20060283577A1 (en) * 2005-06-17 2006-12-21 Tay-Jian Liu Loop-type heat exchange device
JP2013072627A (en) * 2011-09-29 2013-04-22 Fujitsu Ltd Loop heat pipe and electronic apparatus
JP3206206U (en) * 2016-06-02 2016-09-01 泰碩電子股▲分▼有限公司 Vapor chamber with gas-liquid separation structure
WO2017037921A1 (en) * 2015-09-03 2017-03-09 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic device
US20180066896A1 (en) * 2016-09-08 2018-03-08 Taiwan Microloops Corp. Vapor chamber and heat pipe combined structure
US20180106552A1 (en) * 2016-10-14 2018-04-19 Taiwan Microloops Corp. Vapor chamber and heat pipe combined structure and combining method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469744A (en) * 2010-11-09 2012-05-23 富准精密工业(深圳)有限公司 Flat plate type heat pipe
US9453688B2 (en) * 2013-09-24 2016-09-27 Asia Vital Components Co., Ltd. Heat dissipation unit
US10077945B2 (en) * 2016-05-27 2018-09-18 Asia Vital Components Co., Ltd. Heat dissipation device
US11320211B2 (en) * 2017-04-11 2022-05-03 Cooler Master Co., Ltd. Heat transfer device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543839A (en) * 1969-05-14 1970-12-01 Trw Inc Multi-chamber controllable heat pipe
US20060283577A1 (en) * 2005-06-17 2006-12-21 Tay-Jian Liu Loop-type heat exchange device
JP2013072627A (en) * 2011-09-29 2013-04-22 Fujitsu Ltd Loop heat pipe and electronic apparatus
WO2017037921A1 (en) * 2015-09-03 2017-03-09 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic device
JP3206206U (en) * 2016-06-02 2016-09-01 泰碩電子股▲分▼有限公司 Vapor chamber with gas-liquid separation structure
US20180066896A1 (en) * 2016-09-08 2018-03-08 Taiwan Microloops Corp. Vapor chamber and heat pipe combined structure
US20180106552A1 (en) * 2016-10-14 2018-04-19 Taiwan Microloops Corp. Vapor chamber and heat pipe combined structure and combining method thereof

Also Published As

Publication number Publication date
US20190339021A1 (en) 2019-11-07
TW201948015A (en) 2019-12-16

Similar Documents

Publication Publication Date Title
US20190335619A1 (en) Loop heat transfer device with gaseous and liquid working fluid channels separated by partition wall
US6317322B1 (en) Plate type heat pipe and a cooling system using same
US20170314870A1 (en) Heat dissipating structure and water-cooling heat dissipating apparatus including the structure
JP6477276B2 (en) Cooling plate and information processing apparatus provided with cooling plate
KR102202435B1 (en) Heat dissipation module
TWM526264U (en) Liquid-cooled heat dissipation device and heat dissipation structure thereof
TW201947180A (en) Loop vapor chamber conducive to separation of liquid and gas
JP2019194512A (en) Integrated vapor chamber module allowing communication between multiple vapor chambers with extended capillary layer
KR101317092B1 (en) Cooling device
CN114383453A (en) Heat sink device
CN209930821U (en) Liquid-cooled heat conduction block and water-cooled radiator
CN107306486B (en) Integrated heat dissipation device
JP2013007501A (en) Cooling device
TWI726806B (en) Water-cooling heat dissipation device and manufacturing method thereof
WO2016117342A1 (en) Cooling device and electronic device in which same is installed
US4805691A (en) Cooling technique for compact electronics inverter
JPWO2013005622A1 (en) Cooling device and manufacturing method thereof
JP7386469B2 (en) heat pipe
JP2006313038A (en) Manufacturing method of heat pipe circuit board and heat pipe circuit board
JPH05304384A (en) Heat pipe type heat sink
CN107801351B (en) Evaporator and manufacturing method thereof
JP2003083688A (en) Plate heat-pipe integrated with fin and its manufacturing method
JP2003197839A (en) Boiler/cooler for heater element
JP2007115940A (en) Thermal dissipation plate
JP2019194515A (en) Reflux vapor chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303