WO2016117342A1 - Cooling device and electronic device in which same is installed - Google Patents

Cooling device and electronic device in which same is installed Download PDF

Info

Publication number
WO2016117342A1
WO2016117342A1 PCT/JP2016/000298 JP2016000298W WO2016117342A1 WO 2016117342 A1 WO2016117342 A1 WO 2016117342A1 JP 2016000298 W JP2016000298 W JP 2016000298W WO 2016117342 A1 WO2016117342 A1 WO 2016117342A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat receiving
heat
cooling device
refrigerant
internal path
Prior art date
Application number
PCT/JP2016/000298
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 誠
辰乙 郁
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015013845A external-priority patent/JP2016138706A/en
Priority claimed from JP2015146703A external-priority patent/JP2016138740A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016117342A1 publication Critical patent/WO2016117342A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooling device for an electronic device in which electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate bipolar transistor (IGBT), and a diode are mounted, and an electronic device in which the electronic device is mounted. It is.
  • CPU central processing unit
  • LSI large scale integrated circuit
  • IGBT insulated gate bipolar transistor
  • this type of cooling device has the following configuration.
  • the conduit portion 130 of the casing 112 is adjacent to the evaporator portion 132 where the refrigerant boils due to the heat of the inverter 108 that is a heating element, and the evaporator portion 132 in the conduit portion 130.
  • a circulation part 134 through which the refrigerant circulates directly from the inlet 114 toward the outlet 116.
  • the evaporator part 132 is provided with a plurality of fins 140 that protrude from the bottom wall part 120 toward the circulation part 134, and the refrigerant flows through the gaps between the plurality of fins 140 (for example, Patent Document 1).
  • the inverter 108 which is a heating element is installed horizontally, the bottom wall portion 120 of the housing 112 is filled with the liquid phase refrigerant, and is directed from the bottom wall portion 120 toward the circulation portion 134.
  • the refrigerant flows through the gaps between the protruding plurality of fins 140.
  • the heat of the heating element is cooled by the latent heat of vaporization when the liquid-phase refrigerant evaporates, so it is necessary to spread the liquid-phase refrigerant over the entire surface of the fin 140. is there.
  • most of the refrigerant (gas phase refrigerant) evaporated on the surface of the fin 140 passes through the circulation part 134, and the liquid phase refrigerant is formed on the surface of the fin 140 located far from the inlet 114 by the flow of the gas phase refrigerant. The action of supplying is reduced.
  • the surface of the fin 140 is covered with a thick liquid phase refrigerant layer.
  • the thick liquid phase refrigerant layer becomes a thermal resistance, and an ideal state in which the thin liquid phase refrigerant layer covers the fin 140 can be created. Therefore, the cooling performance is lowered.
  • the pressure near the outlet 116 is low due to the action of a radiator (not shown).
  • the liquid-phase refrigerant that has flowed into the housing 112 (heat receiving portion) from the inflow port 114 receives the heat generated from the inverter 108, becomes a two-phase refrigerant of a gas phase and a liquid phase, and is in a high pressure state. This is because the volume expands when the refrigerant changes from the liquid phase to the gas phase.
  • the two-phase refrigerant having a high pressure flows into the outlet 116 having a low pressure.
  • the flow of the gas-phase refrigerant generated when the liquid-phase refrigerant changes to the gas phase involves the liquid-phase refrigerant located in the vicinity of the liquid-phase refrigerant and the liquid-phase refrigerant located downstream of the flow.
  • the liquid-phase refrigerant is supplied to the fin 140 surface on the outlet 116 side located downstream of the refrigerant flow.
  • the refrigerant flow passes through a path having a small flow resistance, the refrigerant flow in the housing 112 is unevenly distributed, and in the gap between the fins 140, the refrigerant is more likely to flow in the gap located at the center portion, and is located at the end.
  • the fin 140 located in the region where the refrigerant does not easily flow is in a so-called dry-out state in which the refrigerant is not supplied and cannot be cooled, and the temperature of the inverter 108 increases. Further, in order to suppress dryout, an excessive amount of liquid phase refrigerant is required, and as a result, a thick liquid phase refrigerant layer becomes a thermal resistance, and an ideal state in which the thin liquid phase refrigerant layer covers the fin 140 is created. Cannot be performed and cooling performance is lowered.
  • the present invention prevents the local dryout in the heat receiving part by supplying the liquid refrigerant uniformly to a region far from the side surface where the outlet is formed, and there is no need to fill the heat receiving part with an excessive amount of liquid phase refrigerant.
  • a cooling device with high cooling performance capable of forming a thin liquid phase refrigerant layer in a heat receiving part is provided.
  • the heat receiving part in the cooling device that cools by the phase change of the refrigerant, the heat receiving part, the heat radiating path, the heat radiating part, and the return path are sequentially connected to form a refrigerant circulation path.
  • the heat receiving part has a rectangular parallelepiped shape with a maximum front and rear surface, a heat receiving plate in which a heating element is installed on at least one of the front and rear surfaces, a heat dissipation internal path provided in the upper part of the heat receiving part, and a lower part of the heat receiving part. And a return internal path.
  • the heat receiving part includes a fin portion provided between the heat dissipation internal path and the return internal path, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the return path and the return internal path.
  • the fin portion is provided with a plurality of flat fins projecting inward from the heat receiving plate so that the refrigerant flow path constituted by the gaps between the fins communicates the return internal path and the heat dissipation internal path, and returns
  • the internal path includes a partition plate between the inflow port and the fin portion.
  • the present invention uniformly supplies liquid phase refrigerant to a region far from the side surface where the inflow port is formed, thereby preventing local dryout in the heat receiving part and receiving heat with an excessive amount of liquid phase refrigerant. It is not necessary to fill the inside of the unit, and a thin liquid phase refrigerant layer can be formed in the heat receiving unit, so that a cooling device with high cooling performance can be provided.
  • the partition plate provided between the return internal path and the fin portion blocks the flow of the liquid refrigerant flowing into the return internal path from the inlet to the fin portion. Therefore, a part of the liquid-phase refrigerant flows out to the fin portion after reaching the end of the partition plate on the side far from the side surface where the inlet is formed.
  • the refrigerant vaporized in the vicinity of the inflow port rises in the vicinity of the side surface where the inflow port is formed and flows into the outflow port, so-called shortcut state. Hard to become.
  • the flow where the refrigerant rises to the fin portion is blocked by the partition plate to the side far from the side where the inlet is formed, that is, the region near the other side opposite to the side where the inlet is formed. After reaching the end of the plate, it will flow out into the fins.
  • the refrigerant that has flowed out to the fin portion receives heat from the fin, becomes a two-phase refrigerant of a gas phase and a liquid phase, and flows into an outlet having a low pressure.
  • the heat receiving part in the cooling device that cools by the phase change of the refrigerant, the heat receiving part, the heat radiating path, the heat radiating part, and the return path are sequentially connected to form a refrigerant circulation path.
  • the heat receiving part has a rectangular parallelepiped shape with a maximum front and rear surface, a heat receiving plate in which a heating element is installed on at least one of the front and rear surfaces, a heat dissipation internal path provided in the upper part of the heat receiving part, and a lower part of the heat receiving part. And a return internal path.
  • the heat receiving part includes a fin portion provided between the heat dissipation internal path and the return internal path, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the return path and the return internal path.
  • the fin portion is provided with a plurality of flat fins projecting inward from the heat receiving plate so that the refrigerant flow path constituted by the gaps between the fins communicates the return internal path and the heat dissipation internal path, and returns
  • the internal path includes a pipe line that is open at both ends connected to the inflow port.
  • the present invention uniformly supplies liquid phase refrigerant to a region far from the side surface where the inflow port is formed, thereby preventing local dryout in the heat receiving part and receiving heat with an excessive amount of liquid phase refrigerant. It is not necessary to fill the inside of the unit, and a thin liquid phase refrigerant layer can be formed in the heat receiving unit, so that a cooling device with high cooling performance can be provided.
  • the flow of the liquid phase refrigerant flowing into the return internal path from the flow inlet to the fin portion is blocked by the pipe line open at both ends connected to the flow inlet provided in the return internal path. Therefore, a part of the liquid-phase refrigerant flows out to the fin portion after reaching the end of the pipeline on the side far from the side surface where the inlet is formed.
  • the refrigerant vaporized in the vicinity of the inflow port rises in the vicinity of the side surface where the outflow port is formed and flows into the outflow port in a so-called shortcut state. Hard to become.
  • the flow where the refrigerant rises to the fin portion is blocked by the pipe line to the side far from the side where the inlet is formed, that is, the region near the other side opposite to the side where the inlet is formed. After reaching the end of the road, it will flow out to the fins.
  • the refrigerant that has flowed out to the fin portion receives heat from the fin, becomes a two-phase refrigerant of a gas phase and a liquid phase, and flows into an outlet having a low pressure.
  • FIG. 1 is a schematic diagram of an electronic apparatus equipped with a cooling device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the appearance of the heat receiving portion of the cooling device according to the first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of the heat receiving portion of the cooling device according to the first embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of the heat receiving portion of the cooling device according to the first embodiment of the present invention.
  • FIG. 5 is a view showing a 5-5 cross section of FIG. 6A is a cross-sectional view taken along the line 6A-6A in FIG.
  • FIG. 6B is an enlarged view of region 6B of FIG. 6A.
  • FIG. 7 is an exploded perspective view of the heat receiving portion of the cooling device according to the second embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of the heat receiving portion of the cooling device according to the second embodiment of the present invention.
  • FIG. 9 is a view showing a cross section of the heat receiving portion of the cooling device according to the second embodiment of the present invention.
  • FIG. 10 is a diagram showing the appearance of the heat receiving portion of the cooling device according to the third embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of the heat receiving portion of the cooling device according to the third embodiment of the present invention.
  • FIG. 12 is an exploded perspective view of the heat receiving portion of the cooling device according to the third embodiment of the present invention.
  • FIG. 13 is a view showing a 13-13 cross section of FIG.
  • FIG. 14A is a cross-sectional view taken along the line 14A-14A of FIG.
  • FIG. 14B is an enlarged view of region 14B of FIG. 14A.
  • FIG. 15 is an exploded perspective view of the heat receiving portion of the cooling device according to the fourth embodiment of the present invention.
  • FIG. 16 is an exploded perspective view of the heat receiving portion of the cooling device according to the fourth embodiment of the present invention.
  • FIG. 17 is a diagram showing a cross section of the heat receiving portion of the cooling device according to the fourth embodiment of the present invention.
  • FIG. 18 is an exploded perspective view of the heat receiving portion of the cooling device according to the fifth embodiment of the present invention.
  • FIG. 19 is an exploded perspective view of the heat receiving portion of the cooling device according to the sixth embodiment of the present invention.
  • FIG. 20 is a schematic view showing a conventional cooling device.
  • FIG. 1 is a schematic view of an electronic apparatus equipped with the cooling device according to the first embodiment of the present invention.
  • the electronic device 50 is provided with a first heating element 28, a second heating element 29, and a cooling device 1, which are power semiconductor elements, in a case 51.
  • the cooling device 1 includes a heat receiving part 3 for cooling the first heat generating element 28 and the second heat generating element 29 and a heat radiating part 4.
  • the heat receiving part 3 and the heat radiating part 4 are constituted by the heat radiating path 5 and the feedback path 6. Are connected. With this configuration, the inside of the cooling device 1 becomes a sealed space, and although not shown in FIG. 1, the inside of the cooling device 1 is sealed after the refrigerant is depressurized.
  • the refrigerant chlorofluorocarbons, fluorinated solvents and the like are used, but are not limited thereto.
  • Aluminum is suitable for the material of the heat receiving part 3, the heat radiating part 4, and the first fin 22 and the second fin 23, which will be described later, but is not limited thereto.
  • the return path 6 includes a backflow prevention unit 8 that prevents backflow of the refrigerant.
  • the backflow prevention unit 8 has a valve structure for preventing backflow
  • the return path 6 is a pipe that is thinner than the heat dissipation path 5, and the return path 6 itself serves as the backflow prevention unit 8. It may be. Furthermore, if it is designed so that the gas-phase refrigerant does not flow backward from the heat receiving section 3 to the return path 6 during stable operation, the same effect and action are obtained.
  • the cooling device 1 also includes a cooling fan 7 for cooling the heat transported to the heat radiating section 4 by the refrigerant.
  • a cooling fan 7 for cooling the heat transported to the heat radiating section 4 by the refrigerant.
  • the air cooling system using the cooling fan 7 is used, but a water cooling system or other systems may be used.
  • the cooling device 1 is one in which the inside is decompressed and then a refrigerant is enclosed, and the inside of the cooling device 1 becomes the saturation pressure of the refrigerant according to the external temperature due to the action of the refrigerant.
  • the heat of the first heating element 28 and the second heating element 29 is transferred to the refrigerant through the heat receiving portion 3, and the refrigerant changes from the liquid phase to the gas phase, so that the first heating element 28 and the second heating element 29 are changed.
  • the refrigerant vaporized in the heat receiving unit 3 becomes a gas-liquid two-phase mixed flow with an unboiling liquid phase refrigerant, moves from the heat receiving unit 3 to the heat radiating unit 4 through the heat radiating path 5, and is a cooling fan. 7 is cooled again and liquefied again to become a liquid-phase refrigerant, and returns to the heat receiving unit 3 through the return path 6 and the backflow prevention unit 8.
  • the backflow prevention unit 8 is provided in the return path 6 and has a greater flow resistance of the refrigerant than the heat dissipation path 5, the refrigerant vaporized in the heat receiving unit 3 is returned to the return path 6. To prevent backflow. Therefore, the refrigerant is vaporized in the heat receiving part 3, the vaporized refrigerant passes through the heat radiation path 5 and is liquefied in the heat radiation part 4, and the liquefied refrigerant passes through the return path 6 and is supplied again into the heat receiving part 3.
  • the first heating element 28 and the second heating element 29 are cooled by repeating the cycle.
  • FIG. 2 is a diagram illustrating an appearance of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.
  • 3 and 4 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 according to the present embodiment.
  • FIG. 5 is a diagram showing a cross section of the heat receiving unit 3 of the cooling device 1 according to the present embodiment, taken along line 5-5 in FIG.
  • the heat receiving portion 3 has a rectangular parallelepiped shape with the front and rear surfaces having a maximum area. Further, as shown in the figure, the heat receiving portion 3 is installed so that the front surface and the rear surface are in the vertical direction. A heat receiving plate 15 on which the first heating element 28 is installed is provided on the front surface, and a heat receiving plate 16 on which the second heating element 29 is installed on the rear surface.
  • the heat receiving plate 15 provided with the first heat generating element 28 is provided on the front surface of the heat receiving unit 3, and the heat receiving plate 16 provided with the second heat generating element 29 is provided on the rear surface of the heat receiving unit 3. Further, a heat receiving plate in which a heating element is installed on either the front surface or the rear surface of the heat receiving unit 3 may be provided.
  • the first heating element 28 is in contact with the heat receiving plate 15 and thermally connected
  • the second heating element 29 is in contact with the heat receiving plate 16 and thermally connected.
  • the heat receiving plates 15 and 16 are appropriately provided with fixing screw holes 19 for fixing the first heating element 28 and the second heating element 29, and the first heating element 28 is fixed to the heat receiving plate 15 with screws.
  • the second heating element 29 is fixed to the heat receiving plate 16 with screws.
  • the heat receiving unit 3 is installed in the vertical direction so as to be sandwiched between the first heating element 28 and the second heating element 29.
  • a space is provided as a heat dissipation internal path 24 in the upper part of the heat receiving part 3 having a rectangular parallelepiped shape, and a space for providing a return internal path 25 is provided in the lower part of the heat receiving part 3. Furthermore, the center part between the heat radiation internal path 24 and the return internal path 25 of the heat receiving part 3 is defined as the fin part 2.
  • an outlet 20 that connects the heat dissipation path 5 and the heat dissipation internal path 24 and an inlet 21 that connects the return path 6 and the return internal path 25 are formed.
  • the outlet 20 and the inlet 21 are provided on the same side surface of the heat receiving unit 3.
  • the side surface on which the outflow port 20 and the inflow port 21 are provided is a side surface that connects the front surface and the rear surface on which the heat receiving plates 15 and 16 are provided.
  • a plurality of flat fins 22 projecting from the heat receiving plate 15 to the inside of the heat receiving unit 3 are arranged in parallel, and a plurality of flat fins 23 protruding from the heat receiving plate 16 to the inside of the heat receiving unit 3 are arranged in parallel.
  • the fins 22 and the fins 23 are arranged so that the refrigerant flow path between the fins is in the vertical direction. That is, it arrange
  • a partition plate 30 is provided between the return internal path 25 and the fin portion 2 in parallel with the bottom surface of the heat receiving portion 3.
  • the partition plate 30 protrudes from the side surface of the heat receiving part 3 in which the inlet 21 and the outlet 20 are installed, and extends toward the other side facing the side. In the present embodiment, it extends from the intermediate point between the side surface of the heat receiving part 3 where the partition plate 30 is installed and the other side surface facing this side surface to a position far from the side surface where the inlet 21 and the outlet 20 are installed. Has been.
  • the liquid-phase refrigerant that has flowed out of the inlet 21 into the return internal path 25 is provided with the inlet 21 by the partition plate 30 provided between the inlet 21 and the fin portion 2 in the return internal path 25.
  • the partition plate 30 protrudes from the side surface on which the inflow port 21 and the outflow port 20 are formed, and is farther from the side surface on which the inflow port 21 and the outflow port 20 are formed than an intermediate point between this side surface and the other side surface facing this side surface. It extends to the position.
  • the refrigerant flows out to the return internal path 25 after reaching the open end of the partition plate 30 on the side far from the side surface on which the inflow port 21 and the outflow port 20 are formed, and then flows out to the fin portion 2.
  • all of the liquid-phase refrigerant flowing out from the return path 6 into the heat receiving unit 3 flows into the heat receiving unit 3 from the side surface where the inlet 21 and the outlet 20 are formed. It is difficult for the liquid-phase refrigerant to be supplied to the other side surface opposite to.
  • the fin portion located on the other side surface facing this side surface It becomes easy to generate a so-called shortcut state in which the liquid-phase refrigerant cannot be supplied at 2.
  • the return internal path 25 close to the side far from the side where the inlet 21 and the outlet 20 are formed, that is, the other side opposite to the side where the inlet 21 and the outlet 20 are formed. Is supplied with a liquid-phase refrigerant.
  • the liquid-phase refrigerant that has flowed out to the return internal path 25 is partially vaporized by the heat of the first heating element 28 and the second heating element 29, and is diffused into the return internal path 25.
  • the liquid-phase refrigerant that has diffused into the return internal path 25 only receives heat from the fin 22 and the fin 23 in the entire area of the fin portion 2 by the two-phase refrigerant that has flowed out into the fin portion 2.
  • Sufficient liquid phase refrigerant is supplied, and finally flows into the outlet 20 having a low pressure. Further, since the pressure on the side surface where the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 (see FIG.
  • the cooling device 1 with high cooling performance can be provided as in the present embodiment.
  • the partition plate 30 is provided so as to be in contact with the side surface of the heat receiving unit 3 provided with the outlet 20 and the inlet 21 and the front and rear surfaces of the heat receiving unit 3. This is to prevent the refrigerant from flowing out from the gap between the partition plate 30 and these wall surfaces.
  • the partition plate 30 may be configured to have a plurality of openings 31.
  • the partition plate 30 provided between the inlet 21 and the fin portion 2 in the return internal path 25 forms the side far from the side surface on which the inlet 21 and the outlet 20 are formed, that is, the inlet 21 and the outlet 20.
  • the liquid-phase refrigerant is supplied to the return internal path 25 close to the other side surface facing the side surface. A part of the liquid-phase refrigerant that has flowed out into the return internal path 25 is vaporized by the heat of the first heat generating element 28 and the second heat generating element 29, and is diffused into the return internal path 25 by its diffusion action.
  • the liquid-phase refrigerant diffused in the return internal path 25 is sufficient to receive heat from the fins 22 and 23 throughout the fin portion 2 for the two-phase refrigerant of the gas phase and the liquid phase flowing out to the fin portion 2.
  • the liquid refrigerant is supplied, and the heat-received refrigerant finally flows into the outlet 20 having a low pressure.
  • the fin portion 2 is located in a region far from the side surface where the inflow port 21 and the outflow port 20 are formed. Since the refrigerant that has flowed out easily flows to the side surface on which the inlet 21 and the outlet 20 are formed, the refrigerant is supplied to the entire fin portion 2.
  • the intervals at which the plurality of openings 31 are provided may be shortened as the distance from the side surface on which the inflow port 21 and the outflow port 20 are formed. Since the pressure on the side surface on which the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 following the outflow port 20, the refrigerant flows to the outflow port 20 closer to the side surface on which the inflow port 21 and the outflow port 20 are formed. It becomes easy, and it becomes difficult for a refrigerant
  • the area close to the side surface on which the inflow port 21 and the outflow port 20 are formed has fewer openings 31. And the flow of the refrigerant
  • the area of the plurality of openings 31 may be configured to increase as the distance from the side surface on which the inflow port 21 and the outflow port 20 are formed. Since the pressure on the side surface on which the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 following the outflow port 20, the refrigerant flows to the outflow port 20 closer to the side surface on which the inflow port 21 and the outflow port 20 are formed. It becomes easy, and it becomes difficult for a refrigerant
  • the area near the side surface on which the inlet 21 and the outlet 20 are formed decreases the area of the opening 31.
  • coolant which flows out into the fin part 2 is suppressed.
  • region far from the side surface in which the inflow port 21 and the outflow port 20 were formed enlarges the area of the opening part 31, and promotes the flow of the refrigerant
  • the diameter of the outlet 20 may be larger than the diameter of the inlet 21.
  • a liquid-phase refrigerant flows through the inflow port 21, and a liquid-phase and gas-phase refrigerant flows through the outflow port 20, but the liquid-phase refrigerant that has flowed into the heat receiving unit 3 from the inflow port 21.
  • the refrigerant receives heat from the fins 22 or 23 and changes from a liquid phase to a gas phase refrigerant, the volume of the refrigerant expands. Therefore, by increasing the diameter of the outlet 20 and the subsequent heat dissipation path 5, the pressure loss can be reduced and the two-phase refrigerant can easily flow into the outlet 20 and the subsequent heat dissipation path 5. As a result, the flow resistance when the refrigerant circulates is reduced, and the cooling performance of the cooling device 1 can be improved.
  • FIG. 6A is a cross-sectional view of the heat receiving portion of the cooling device in the present embodiment, and is a cross-sectional view of 6A-6A in FIG.
  • FIG. 6B is an enlarged view of the heat receiving portion of the cooling device in the present embodiment, and is an enlarged view of region 6B in FIG. 6A.
  • the fins 22 are adjacent to each other.
  • the fins of the fins 23 may be arranged so as to protrude in the gaps of the fins leaving a slight gap around the fins. That is, the fin 23 is inserted into the gap between the fins adjacent to the fin 22 until the tip of the fin leaves a slight gap from the surface of the heat receiving plate 15. A slight gap is left between both surfaces of the fins 23 and the fins 22 of the fins 22.
  • the gap between the fins of the fin 22 is slightly larger than the thickness of the fin 23 and the short side of the fin is slightly smaller than the distance between the heat receiving plate 15 and the heat receiving plate 16. This slight gap becomes a refrigerant flow path.
  • the fins 23 are arranged so as to protrude in the gaps between the fins 23 and the adjacent fins, leaving a slight gap around the fins 22. That is, the fins of the fins 22 are inserted into the gaps between the fins adjacent to the fins 23 until the tips of the fins leave a slight gap from the surface of the heat receiving plate 16. A slight gap is left between both surfaces of the fins 22 and the fins 23 of the fins 23.
  • the gap between the fins of the fin 23 is slightly larger than the thickness of the fin 22 and the short side of the fin is slightly smaller than the distance between the heat receiving plate 15 and the heat receiving plate 16. This slight gap becomes a refrigerant flow path.
  • the gap between the fins that is, the flow path cross-sectional area of the refrigerant can be reduced.
  • Fins are made by extruding or cutting an aluminum material.
  • the distance between the fins is limited to some extent due to the strength of the extrusion mold (for example, if the fin height is about 10 mm, the fin interval is about 4 mm). I have to open it.
  • the cutting process it is possible to reduce the fin interval to about 1 mm.
  • the heat receiving plate 15 provided with the fins 22 and the heat receiving plate 16 provided with the fins 23 face each other with the fins 22 and 23 facing each other, and the other fin is inserted into the gap between the fins, leaving a slight gap between the fins.
  • the gap between the fins 22 and the fins 23 that are engaged with each other becomes smaller than the gap between the fins of the fin 22 and the gap between the fins of the fin 23.
  • the gap between the fin 22 and the fin 23 serves as a refrigerant flow path.
  • the flow rate of the refrigerant flowing through the flow path is increased as compared with the case where the flow path cross-sectional area is large. Since the refrigerant circulates from below to above, this upward force is applied to the circulating liquid-phase refrigerant, so that the liquid-phase refrigerant is unlikely to fall downward. Further, the cooling device 1 of the present embodiment keeps the entire surfaces of the fins 22 and the fins 23 wet with the liquid-phase refrigerant, the liquid-phase refrigerant flows at a higher speed, and the thickness of the liquid-phase refrigerant is reduced. Can be thinned.
  • the cooling device 1 with high cooling performance can be provided by the action of latent heat of vaporization.
  • the heat receiving part 3 has a flat rectangular parallelepiped shape with the largest front and rear surfaces, and the front and rear surfaces are installed in the vertical direction.
  • the material of the parts of these heat receiving parts 3 is aluminum.
  • the side surface of the heat receiving part 3 is composed of two surfaces connecting the front surface, the rear surface, and the front surface and the rear surface.
  • the front surface and the rear surface are a heat receiving plate 15 having a contact surface 9 on the outer surface and a heat receiving plate 16 having a contact surface 10 on the outer surface, and two surfaces connecting the front surface and the rear surface to either the heat receiving plate 15 or the heat receiving plate 16;
  • the top surface and the bottom surface are integrally molded.
  • the heat receiving plate 16 is formed by integrally cutting the two surfaces connecting the front surface and the rear surface, the top surface, and the bottom surface. Then, a circular opening is formed as an outflow port 20 in the upper part of one of the two surfaces connecting the front surface and the rear surface, and as an inflow port 21 in the lower part. The diameter of the outlet 20 is larger than the diameter of the inlet 21.
  • the heat receiving plate 15 is formed with a plurality of plate-like fins 22 arranged in parallel with one surface, and the contact surface 9 is integrally provided on the other surface.
  • the heat receiving plate 15 is formed by extruding aluminum and then cutting.
  • the fin 22 is provided from the upper end to the lower end of the heat receiving plate 15 only by extrusion molding, and there is no space for the heat dissipation internal path 24 and the return internal path 25. This is because it is extrusion molding, so that the shape is continuously the same from upstream to downstream and the fins 22 cannot be provided only at the center.
  • the upper and lower portions of the heat receiving plate 15 are provided in order to provide a space to be the heat dissipation internal path 24 in the upper part of the heat receiving plate 15 and to provide a space to be the return internal path 25 in the lower part.
  • the fin 22 is cut. The depth of cutting is further deepened from the base of the fin 22 while leaving the thickness of the contact surface 9 serving as the outline.
  • the heat receiving plate 16 is formed by cutting a rectangular parallelepiped aluminum having a maximum area on the front and rear surfaces.
  • the heat receiving plate 16 has a plurality of plate-like fins 23 and a partition plate 30 arranged in parallel on one surface, leaving two surfaces connecting the front surface and the rear surface, a top surface, and a bottom surface, and a contact surface 10 on the other surface. Is provided by cutting.
  • a circular opening is cut and provided as an inflow port 20 at the upper part of one of the surfaces connecting the main surfaces provided in the heat receiving plate 16 and as an inflow port 21 at the lower part of the same surface.
  • a plurality of fixing screw holes 19 are also cut and provided in the upper and lower portions of the heat receiving plate 15 and the heat receiving plate 16, respectively.
  • the heat receiving plate 15 and the heat receiving plate 16 are opposed so that the fins of the fins 22 and the fins 23 are engaged, and the heat receiving plate 15 and the heat receiving plate 16 are joined by brazing.
  • the piping of the heat dissipation path 5 is brazed to the outlet 20 of the heat receiving plate 16 via the heat dissipation path connecting member 11, and the piping of the return path 6 is connected to the inlet 21 via the return path connecting member 12. Join with brazing.
  • said manufacturing method is an example and is not restricted to this.
  • FIG. 7 and 8 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing a cross section of the heat receiving portion 3 of the cooling device 1 in the present embodiment.
  • the return internal path 25 is provided with a pipe line 32 connected to the inlet 21 and having both ends opened.
  • the pipe line 32 extends from the intermediate point between the side surface on which the inflow port 21 and the outflow port 20 are formed and the other side surface facing the side surface to a side far from the side surface on which the inflow port 21 and the outflow port 20 are formed. You may make it the structure which has. Thereby, by supplying the refrigerant to a region far from the side surface where the inlet 21 and the outlet 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
  • the return internal path 25 includes the pipe line 32 that is connected to the inlet 21 and is open at both ends, the liquid refrigerant of the return path 6 passes through the pipe line 32 from the inlet 21. , Flows out into the return internal path 25.
  • the pipe 32 protrudes from the side surface on which the inflow port 21 and the outflow port 20 are formed, and extends to a position far from the side surface on which the inflow port 21 and the outflow port 20 are formed from an intermediate point between the side surface and the other side surface facing the side surface. Has been.
  • the refrigerant flows out to the return internal path 25 after reaching the open end of the pipe line 32 on the side far from the side surface on which the inflow port 21 and the outflow port 20 are formed, and then flows out to the fin portion 2.
  • all of the liquid-phase refrigerant flowing out from the return path 6 into the heat receiving unit 3 flows into the heat receiving unit 3 from the side surface on which the inlet 21 and the outlet 20 are formed. It is difficult for the liquid-phase refrigerant to be supplied to the other side surface opposite to.
  • the fin portion located on the other side surface facing this side surface The so-called dry-out state in which the liquid phase refrigerant cannot be supplied in 2 is likely to occur.
  • the return internal path 25 close to the side far from the side where the inlet 21 and the outlet 20 are formed, that is, the other side opposite to the side where the inlet 21 and the outlet 20 are formed. Is supplied with a liquid-phase refrigerant.
  • the liquid-phase refrigerant that has flowed out to the return internal path 25 is partially vaporized by the heat of the first heating element 28 and the second heating element 29, and is diffused into the return internal path 25.
  • the liquid-phase refrigerant that has diffused into the return internal path 25 only receives heat from the fin 22 and the fin 23 in the entire area of the fin portion 2 by the two-phase refrigerant that has flowed out into the fin portion 2.
  • Sufficient liquid phase refrigerant is supplied, and finally flows into the outlet 20 having a low pressure. Further, since the pressure on the side surface where the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 (see FIG.
  • the refrigerant that has flowed into the heat receiving portion 3 from the inlet port 21 flows into the inlet 21 and the flow path through the pipe line 32.
  • the refrigerant is supplied to a region far from the side surface where the outlet 20 is installed. Therefore, the cooling device 1 with high cooling performance can be provided as in the present embodiment.
  • the pipe line 32 may be configured to have a plurality of openings 33.
  • the pipe line 32 provided in the return internal path 25 it is close to the side far from the side where the inlet 21 and the outlet 20 are formed, that is, the other side opposite to the side where the inlet 21 and the outlet 20 are formed.
  • Liquid phase refrigerant is supplied to the return internal path 25.
  • a part of the liquid-phase refrigerant that has flowed out into the return internal path 25 is vaporized by the heat of the first heat generating element 28 and the second heat generating element 29, and is diffused into the return internal path 25 by its diffusion action.
  • the liquid-phase refrigerant diffused in the return internal path 25 is sufficient to receive heat from the fins 22 and 23 throughout the fin portion 2 for the two-phase refrigerant of the gas phase and the liquid phase flowing out to the fin portion 2.
  • the liquid refrigerant is supplied, and the heat-received refrigerant finally flows into the outlet 20 having a low pressure.
  • the fin portion 2 is located in a region far from the side surface where the inflow port 21 and the outflow port 20 are formed. Since the refrigerant that has flowed out easily flows to the side surface on which the inlet 21 and the outlet 20 are formed, the refrigerant is supplied to the entire fin portion 2.
  • the schematic configuration of the cooling device in the present embodiment is the same as that of the cooling device 1 in the first embodiment shown in FIG. 1, and in the following description, the same configuration as that of the cooling device 1 in the first embodiment is used. Elements are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 10 is a diagram illustrating an appearance of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.
  • 11 and 12 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 of the present embodiment.
  • FIG. 13 is a cross-sectional view of the heat receiving section 3 of the cooling device 1 of the present embodiment, and is a cross-sectional view taken along line 13-13 of FIG.
  • the heat receiving portion 3 has a rectangular parallelepiped shape with the front and rear surfaces having the maximum area.
  • the heat receiving unit 3 is installed so that the front surface and the rear surface are in the vertical direction.
  • a heat receiving plate 15 on which the first heating element 28 is installed is provided on the front surface, and a heat receiving plate 16 on which the second heating element 29 is installed on the rear surface.
  • the heat receiving plate 15 provided with the first heat generating element 28 is provided on the front surface of the heat receiving unit 3, and the heat receiving plate 16 provided with the second heat generating element 29 is provided on the rear surface of the heat receiving unit 3. Further, a heat receiving plate in which a heating element is installed on either the front surface or the rear surface of the heat receiving unit 3 may be provided.
  • the first heating element 28 is in contact with the heat receiving plate 15 and thermally connected
  • the second heating element 29 is in contact with the heat receiving plate 16 and thermally connected.
  • the heat receiving plate 15 and the heat receiving plate 16 are appropriately provided with fixing screw holes 19 for fixing the first heating element 28 and the second heating element 29, and the first heating element 28 is fixed to the heat receiving plate 15 with screws.
  • the second heating element 29 is fixed to the heat receiving plate 16 with screws.
  • the heat receiving unit 3 is installed in the vertical direction so as to be sandwiched between the first heating element 28 and the second heating element 29.
  • a space is provided as a heat dissipation internal path 24 in the upper part of the heat receiving part 3 having a rectangular parallelepiped shape, and a space for providing a return internal path 25 is provided in the lower part of the heat receiving part 3. Furthermore, the center part between the heat radiation internal path 24 and the return internal path 25 of the heat receiving part 3 is defined as the fin part 2.
  • an outlet 20 that connects the heat dissipation path 5 and the heat dissipation internal path 24 and an inlet 21 that connects the return path 6 and the return internal path 25 are formed.
  • the inflow port 21 is formed in one side surface of the heat receiving part 3, and the outflow port 20 is provided in the other side surface facing this side surface.
  • the side surface on which the outflow port 20 is provided and the side surface on which the inflow port 21 is provided are two opposing side surfaces that connect the front surface and the rear surface on which the heat receiving plates 15 and 16 are provided.
  • a plurality of flat fins 22 projecting from the heat receiving plate 15 to the inside of the heat receiving unit 3 are arranged in parallel, and a plurality of flat fins 23 protruding from the heat receiving plate 16 to the inside of the heat receiving unit 3 are arranged in parallel.
  • the fins 22 and the fins 23 are arranged so that the refrigerant flow path between the fins is in the vertical direction. That is, it arrange
  • a partition plate 30 is provided between the inlet 21 and the fin portion 2 and is arranged substantially parallel to the bottom surface of the heat receiving portion 3.
  • the partition plate 30 has at least one opening 31.
  • the thin liquid phase refrigerant layer can be formed in the heat receiving portion 3 and the cooling device 1 with high cooling performance can be provided.
  • the partition plate 30 provided between the inflow port 21 and the fin portion 2 blocks the flow of the liquid refrigerant flowing into the return internal path 25 from the inflow port 21 directly to the fin portion 2. Since the partition plate 30 has at least one opening 31, the liquid refrigerant flowing into the return internal path 25 from the inlet 21 flows out from the opening 31 to the fin portion 2. Since the opening 31 is configured to supply the liquid-phase refrigerant substantially uniformly into the space between the partition plate 30 and the fin portion 2, the liquid-phase refrigerant that has flowed out to the return internal path 25 is opened. It will be supplied to the whole fin part 2 from 31.
  • the liquid-phase refrigerant that has flowed into the return internal path 25 from the inlet 21 is partially vaporized by the heat of the first heating element 28 and the second heating element 29, The diffusion action diffuses into the return internal path 25.
  • excess liquid phase refrigerant is supplied in the fin portion 2 region in the vicinity of the side surface where the inflow port is formed.
  • the further away from the side surface on which the inflow port 21 is formed the smaller the supply amount of the liquid-phase refrigerant, and the more likely the so-called local dryout state occurs.
  • the liquid phase refrigerant that has flowed out from the inlet 21 to the return internal path 25 is allowed to flow into the fin portion near the inlet by the partition plate 30 provided between the inlet 21 and the fin portion 2. It is possible to suppress an increase in the excessive liquid phase refrigerant. Therefore, a part of the liquid-phase refrigerant that has flowed out to the return internal path 25 is vaporized by the heat of the heating element, and is diffused to the return internal path 25 by its diffusion action.
  • the opening 31 provided in the partition plate 30 is configured to supply the liquid-phase refrigerant substantially uniformly into the space between the partition plate 30 and the fin portion 2, so that the liquid diffused in the return internal path 25
  • the phase refrigerant is supplied from the opening 31 to the entire fin portion 2 in a well-balanced manner.
  • the two-phase refrigerant of the gas phase and the liquid phase that has flowed out to the fin portion 2 is supplied with sufficient liquid-phase refrigerant to receive heat from the fin in the entire area of the fin portion 2, and finally the low-pressure flow
  • the refrigerant flows into the outlet 20 and is supplied to the entire fin portion 2.
  • the heat receiving part 3 has a plurality of openings 31, and the interval at which the plurality of openings 31 are provided may be configured to be shorter as the distance from the side surface where the outlet 20 is formed.
  • the refrigerant Since the pressure on the side surface on which the outflow port 20 is formed is low due to the action of the heat radiating unit 4 following the outflow port, the refrigerant is more likely to flow through the outflow port 20 closer to the side surface on which the outflow port 20 is formed. As the distance from the outlet increases, the refrigerant hardly flows to the outlet 20. By shortening the interval at which the plurality of openings 31 are provided away from the side surface on which the outflow port 20 is formed, the area close to the side surface on which the outflow port 20 is formed reduces the number of openings 31 and Suppresses the flow of refrigerant flowing out.
  • the liquid-phase refrigerant that has flowed into the return internal path 25 from the inlet 21 is partially vaporized by the heat of the heating element, and the diffusion thereof. Due to the action, it diffuses into the return internal path 25.
  • the liquid phase refrigerant is supplied in the fin portion 2 region in the vicinity of the side surface on which the inflow port 21 is formed.
  • the further away from the side surface on which the inflow port 21 is formed the smaller the supply amount of the liquid-phase refrigerant, and the more likely the so-called local dryout state occurs.
  • the partition plate 30, in the return internal path 25 the liquid-phase refrigerant is supplied almost evenly from the side surface side where the inflow port 21 is formed to the side surface side where the outflow port 20 is formed. That is, due to the effect of the partition plate 30, excessive liquid phase refrigerant is supplied in the fin portion 2 region near the inlet 21, and local supply due to an insufficient supply amount of liquid phase refrigerant in the fin portion 2 region near the outlet 20. Dryout can be suppressed.
  • the refrigerant is likely to flow through the fin part 2 area near the outlet 20, and the fin part 2 area near the inlet 21 that is less susceptible to the pressure reducing effect due to the action of the heat radiating part 4 It becomes difficult for the refrigerant to flow. Therefore, the interval at which the plurality of openings 31 are provided is shortened as the distance from the side surface on which the outlet 20 is formed. That is, by reducing the number of openings 31 in the region close to the side surface on which the outlet 20 is formed, the balance of the amount of refrigerant in the liquid phase flowing out from the openings 31 into the space between the partition plate 30 and the fins 2 is achieved.
  • the outlet 20 side is small and the inlet 21 side is large.
  • the outflowed liquid-phase refrigerant flows from the inlet 21 side to the outlet 20 side in the space between the partition plate 30 and the fin portion 2, and as a result, substantially uniform on the upstream side of the fin portion 2.
  • the amount of liquid-phase refrigerant becomes so that a substantially uniform liquid-phase refrigerant is supplied to the entire fin portion 2.
  • the heat receiving part 3 has a plurality of openings 31, and the area of the plurality of openings 31 may be configured to increase as the distance from the side surface on which the outlet 20 is formed.
  • region far from the side surface in which the outflow port 20 was formed enlarges the area of the opening part 31, and promotes the flow of the refrigerant
  • FIG. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.
  • the liquid-phase refrigerant that has flowed into the return internal path 25 from the inlet 21 is partially vaporized by the heat of the heating element, and the diffusion thereof. Due to the action, it diffuses into the return internal path 25 but directly flows into the fin portion 2 in the vicinity of the inflow port 21, so that excess liquid phase refrigerant is present in the fin portion 2 region near the side surface where the inflow port 21 is formed. Supplied.
  • the further away from the side surface on which the inflow port 21 is formed the smaller the supply amount of the liquid-phase refrigerant, and the more likely the so-called local dryout state occurs.
  • the partition plate 30, in the return internal path 25 the liquid-phase refrigerant is supplied almost evenly from the side surface side where the inflow port 21 is formed to the side surface side where the outflow port 20 is formed. That is, due to the effect of the partition plate 30, excessive liquid phase refrigerant is supplied in the fin portion 2 region near the inlet 21, and local supply due to an insufficient supply amount of liquid phase refrigerant in the fin portion 2 region near the outlet 20. Dryout can be suppressed.
  • the refrigerant is likely to flow through the fin part 2 area near the outlet 20, and the fin part 2 area near the inlet 21 that is less susceptible to the pressure reducing effect due to the action of the heat radiating part 4 It becomes difficult for the refrigerant to flow. Therefore, the area where the plurality of openings 31 are provided is increased as the distance from the side surface where the outlet 20 is formed, that is, the area close to the side surface where the outlet 20 is formed is reduced by reducing the area of the opening 31.
  • the balance of the amount of refrigerant in the liquid phase flowing out from the opening 31 can be reduced so that the outflow port 20 side is small and the inflow port 21 side is large. Since the phase refrigerant flows from the inlet 21 side to the outlet 20 side in the space between the partition plate 30 and the fin portion 2, as a result, the liquid phase refrigerant amount is substantially uniform on the upstream side of the fin portion 2. Thus, a substantially uniform liquid-phase refrigerant is supplied to the entire fin portion 2.
  • FIG. 14A is a cross-sectional view of the heat receiving portion of the cooling device according to the present embodiment, and is a cross-sectional view of 14A-14A in FIG.
  • FIG. 14B is an enlarged view of the heat receiving portion of the cooling device in the present embodiment, and is an enlarged view of region 14B in FIG. 14A.
  • the first heating element 28, the second heating element 29, the heat receiving plate 15, and the heat receiving plate 16 shown in FIGS. 14A and 14B are the same as the first heating element 28 and the second heating element 28 shown in FIGS. 6A and 6B in the first embodiment.
  • the configuration is the same as that of the heating element 29, the heat receiving plate 15, and the heat receiving plate 16, and the description is omitted.
  • the electronic device carrying the cooling device 1 in this Embodiment.
  • 15 and 16 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 according to the present embodiment.
  • FIG. 17 is a diagram showing a cross section of the heat receiving portion 3 of the cooling device 1 in the present embodiment.
  • the return internal path 25 includes a pipe 32 connected to the inflow port 21 in the return internal path 25.
  • the pipe line 32 may be configured to have at least one opening 33.
  • the return internal path 25 includes a pipe line 32 connected to the inflow port 21. Since the pipe line 32 has at least one opening 33, the liquid refrigerant in the return path flows into the pipe line 32 from the inlet and flows out into the return internal path 25 from the opening 33 provided in the pipe line 32. . Since the opening 33 is configured to supply the liquid-phase refrigerant to the return internal path 25 substantially uniformly, the liquid-phase refrigerant that has flowed out to the return internal path 25 is supplied to the entire fin portion 2. .
  • the liquid-phase refrigerant flowing into the return internal passage 25 from the inlet 21 is partially vaporized by the heat of the first heating element 28 and the second heating element 29, The diffusion action diffuses into the return internal path 25.
  • excessive liquid phase refrigerant is supplied in the fin portion 2 region in the vicinity of the side surface on which the inflow port 21 is formed.
  • the further away from the side surface on which the inflow port 21 is formed the smaller the supply amount of the liquid-phase refrigerant, and the more likely the so-called local dryout state occurs in the fin portion 2 region located near the outflow port 20.
  • the liquid phase refrigerant flowing out from the inlet 21 to the return internal path 25 is excessive in the fin portion 2 in the vicinity of the inlet 21 due to the pipe line 32 connected to the inlet 21.
  • the pipe line 32 connected to the inlet 21 As a result, it is possible to suppress an increase in the liquid phase refrigerant, and a part of the liquid phase refrigerant that has flowed out to the return internal path 25 is vaporized by the heat of the heating element.
  • the diffusion action diffuses into the return internal path 25.
  • the opening 33 provided in the pipe line 32 is configured to supply the liquid refrigerant substantially uniformly to the return internal path 25, so that the liquid phase refrigerant diffused in the return internal path 25 is finned.
  • the two-layer refrigerant of the gas phase and the liquid phase that has flowed out to the fin portion 2 is supplied with sufficient liquid-phase refrigerant to receive heat from the fin portion 2 over the entire fin portion 2, and finally the pressure is reduced.
  • the refrigerant flows into the low outlet 20 and the refrigerant is supplied to the entire fin portion 2.
  • the heat receiving part 3 has a plurality of openings 33, and the interval at which the plurality of openings 33 are provided may be shortened as the distance from the side surface on which the outlet 20 is formed.
  • the refrigerant Since the pressure on the side surface on which the outflow port 20 is formed is low due to the action of the heat radiating unit 4 following the outflow port, the refrigerant is more likely to flow through the outflow port 20 closer to the side surface on which the outflow port 20 is formed. As the distance from the outlet increases, the refrigerant hardly flows to the outlet 20. By shortening the interval at which the plurality of openings 33 are provided away from the side surface on which the outflow port 20 is formed, the area close to the side surface on which the outflow port 20 is formed is reduced in the number of openings 33 and Suppresses the flow of refrigerant flowing out.
  • the heat receiving unit 3 may have a plurality of openings 33, and the area of the plurality of openings 33 may be configured to increase as the distance from the side surface on which the outlet 20 is formed.
  • the refrigerant Since the pressure on the side surface on which the outflow port 20 is formed is low due to the action of the heat radiating unit 4 following the outflow port, the refrigerant is more likely to flow through the outflow port 20 closer to the side surface on which the outflow port 20 is formed. As the distance from the outlet increases, the refrigerant hardly flows to the outlet 20. By shortening the interval at which the plurality of openings 33 are provided away from the side surface on which the outlet 20 is formed, the area close to the side surface on which the outlet 20 is formed reduces the area of the opening 33, Suppresses the flow of refrigerant flowing out.
  • the schematic configuration of the cooling device in the present embodiment is the same as that of the cooling device 1 in the first embodiment shown in FIG. 1, and in the following description, the same configuration as that of the cooling device 1 in the first embodiment is used. Elements are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 18 is an exploded perspective view of the heat receiving unit 3 of the cooling device 1 according to the fifth embodiment of the present invention.
  • a plurality of partition walls 34 are provided in parallel to the fins 22 and the fins 23 between the front surface and the rear surface of the heat receiving unit 3, that is, between the heat receiving plate 15 and the heat receiving plate 16.
  • two partition walls 34 are provided, but one partition wall 34 may be provided.
  • the partition wall 34 is arrange
  • the partition wall 34 is formed with a heat dissipation internal path opening 35 that penetrates the heat dissipation internal path 24 above the heat receiving portion 3 and a feedback internal path opening 36 that penetrates the feedback internal path 25 below.
  • the heat dissipation internal path opening 35 and the return internal path opening 36 have a structure in which the partition wall 34 is provided avoiding the heat dissipation internal path 24 and the return internal path 25 even if the opening is actually formed in the partition wall 34. It may be a thing.
  • the refrigerant flowing out into the fin part 2 in the heat receiving part 3 has a lower pressure. And it is easy to flow to the side surface where the outlet 20 is formed.
  • the lateral width of the heat receiving unit 3 may be increased. In such a case, the distance between the side surface on which the inflow port 21 and the outflow port 20 are formed and the opposite side surface becomes longer.
  • the refrigerant supplied into the partitioned space flows through the fins 22 and 23 in the space and radiates heat after exchanging heat with the fins 22 and 23. It flows to the heat radiation path 5 side through the heat radiation internal path opening 35 provided in the internal path 24 and the partition wall 34. Therefore, even when the lateral width of the heat receiving portion 3 is large, dryout in a region far from the side surface on which the inflow port 21 and the outflow port 20 are formed can be suppressed.
  • FIG. 19 is an exploded perspective view of the heat receiving portion 3 of the cooling device 1 according to the sixth embodiment of the present invention.
  • the present embodiment is provided with a partition wall 34 as in the fifth embodiment.
  • the function and effect of the partition wall 34 are the same as in the fifth embodiment.
  • a plurality of partition walls 34 are provided in parallel to the fins 22 and the fins 23 between the front surface and the rear surface of the heat receiving unit 3, that is, between the heat receiving plate 15 and the heat receiving plate 16.
  • two partition walls 34 are provided, but one partition wall 34 may be provided.
  • the partition wall 34 is arrange
  • the partition wall 34 is formed with a heat radiation internal path opening 35 that penetrates the heat radiation internal path 24 at the top of the heat receiving portion 3 and a pipe opening 37 that penetrates the pipe 32 at the bottom.
  • the heat radiation internal path opening 35 may be a structure in which an opening is actually formed in the partition wall 34, or a structure in which the partition wall 34 is provided avoiding the heat radiation internal path 24.
  • the refrigerant flowing out into the fin part 2 in the heat receiving part 3 has a lower pressure. And it is easy to flow to the side surface where the outlet 20 is formed.
  • the lateral width of the heat receiving unit 3 may be increased. In such a case, the distance between the side surface on which the inflow port 21 and the outflow port 20 are formed and the opposite side surface becomes longer.
  • the refrigerant supplied into the partitioned space flows through the fins 22 and 23 in the space and radiates heat after exchanging heat with the fins 22 and 23. It flows to the heat radiation path 5 side through the heat radiation internal path opening 35 provided in the internal path 24 and the partition wall 34. Therefore, even when the lateral width of the heat receiving portion 3 is large, dryout in a region far from the side surface on which the inflow port 21 and the outflow port 20 are formed can be suppressed.
  • the cooling device since the cooling device according to the present invention has high cooling performance, electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate bipolar transistor (IGBT), and a diode are mounted. It is useful as a cooling device for electronic equipment.
  • CPU central processing unit
  • LSI large scale integrated circuit
  • IGBT insulated gate bipolar transistor

Abstract

A cooling device that performs cooling via the changing of phase of a coolant, wherein a heat-receiving part (3) is provided with a heat-receiving plate (9) in which a heat-emitting element is disposed on the front surface and/or the rear surface. The heat-receiving part (3) is provided with a heat radiation interior passage (24) in an upper part, and a return interior passage (25) in a lower part. A fin part (2) is provided between the heat radiation interior passage (24) and the return interior passage (25). The fin part (2) is provided with a plurality of planar fins (22) that protrude from the heat-receiving plate (9) toward the interior so that the heat radiation interior passage (24) and the return interior passage (25) communicate via coolant channels between the fins (22, 23). An outlet (20) and an inlet (21) are provided on the same side surface of the heat-receiving part (3), and a partition plate (30) is provided between the inlet (21) and the fin part (2).

Description

冷却装置およびこれを搭載した電子機器COOLING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
 本発明は、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)、ダイオード等の電子部品を搭載した電子機器の冷却装置およびこれを搭載した電子機器に関するものである。 The present invention relates to a cooling device for an electronic device in which electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate bipolar transistor (IGBT), and a diode are mounted, and an electronic device in which the electronic device is mounted. It is.
 従来、この種の冷却装置は、以下のような構成となっていた。 Conventionally, this type of cooling device has the following configuration.
 すなわち、図20に示すように、筐体112の管路部130に、発熱体であるインバータ108の熱によって冷媒が沸騰する蒸発器部132と、管路部130において蒸発器部132に隣接して設けられ、冷媒が流入口114から直接流出口116に向かって流通する流通部134とを備える。蒸発器部132には、底壁部120から流通部134の側に向かって突出する複数のフィン140が設けられ、複数のフィン140の間の隙間を冷媒が流通する構成となっている(例えば特許文献1参照)。 That is, as shown in FIG. 20, the conduit portion 130 of the casing 112 is adjacent to the evaporator portion 132 where the refrigerant boils due to the heat of the inverter 108 that is a heating element, and the evaporator portion 132 in the conduit portion 130. And a circulation part 134 through which the refrigerant circulates directly from the inlet 114 toward the outlet 116. The evaporator part 132 is provided with a plurality of fins 140 that protrude from the bottom wall part 120 toward the circulation part 134, and the refrigerant flows through the gaps between the plurality of fins 140 (for example, Patent Document 1).
特開2013-016589号公報JP 2013-016589 A
 従来の冷却装置は、発熱体であるインバータ108が水平に設置されているため、筐体112の底壁部120は液相冷媒で満たされ、底壁部120から流通部134の側に向かって突出した複数のフィン140の間の隙間を冷媒が流通する。 In the conventional cooling device, since the inverter 108 which is a heating element is installed horizontally, the bottom wall portion 120 of the housing 112 is filled with the liquid phase refrigerant, and is directed from the bottom wall portion 120 toward the circulation portion 134. The refrigerant flows through the gaps between the protruding plurality of fins 140.
 このような構成の筐体112(受熱部)において、発熱体の熱は液相冷媒が蒸発する際の蒸発潜熱によって冷却されることとなるため、フィン140全面に液相冷媒を行き渡らせる必要がある。しかしながら、フィン140表面にて蒸発した冷媒(気相冷媒)の大部分は流通部134を通過することとなり、気相冷媒の流れによって流入口114から遠方に位置するフィン140の表面に液相冷媒を供給する作用が小さくなる。すなわち、このような構成にてフィン140全面に液相冷媒を供給するためには、筐体112の底壁部120を液相冷媒で満たすだけの過剰な液相冷媒量を必要とする。そのため、フィン140の表面は厚い液相冷媒の層に覆われることとなり、結果として厚い液相冷媒層が熱抵抗となり、フィン140を薄い液相冷媒層が覆う理想的な状態を作り出すことができず、冷却性能が低くなる。 In the housing 112 (heat receiving portion) having such a configuration, the heat of the heating element is cooled by the latent heat of vaporization when the liquid-phase refrigerant evaporates, so it is necessary to spread the liquid-phase refrigerant over the entire surface of the fin 140. is there. However, most of the refrigerant (gas phase refrigerant) evaporated on the surface of the fin 140 passes through the circulation part 134, and the liquid phase refrigerant is formed on the surface of the fin 140 located far from the inlet 114 by the flow of the gas phase refrigerant. The action of supplying is reduced. That is, in order to supply the liquid phase refrigerant to the entire surface of the fin 140 with such a configuration, an excessive amount of the liquid phase refrigerant enough to fill the bottom wall portion 120 of the housing 112 with the liquid phase refrigerant is required. Therefore, the surface of the fin 140 is covered with a thick liquid phase refrigerant layer. As a result, the thick liquid phase refrigerant layer becomes a thermal resistance, and an ideal state in which the thin liquid phase refrigerant layer covers the fin 140 can be created. Therefore, the cooling performance is lowered.
 また、このような構成の筐体112(受熱部)を垂直に設置した場合、すなわち発熱体であるインバータ108が垂直に設置され、筐体112(受熱部)が、流入口114を下方に流出口116を上方にしてフィン140を垂直方向に設置した場合について説明する。 Further, when the casing 112 (heat receiving section) having such a configuration is installed vertically, that is, the inverter 108 as a heating element is installed vertically, and the casing 112 (heat receiving section) flows down the inlet 114 downward. A case where the fins 140 are installed in the vertical direction with the outlet 116 facing upward will be described.
 この種の冷却装置においては、流出口116近傍は放熱器(図示せず)の作用により圧力が低い状態となる。流入口114から筐体112(受熱部)内に流入した液相の冷媒は、インバータ108から発生した熱を受熱して気相と液相の二相の冷媒となり、圧力が高い状態となる。冷媒が液相から気相に変化するときに体積が膨張するためである。この圧力の高い二相の冷媒は、圧力の低い流出口116に流れ込む。この現象を詳しく説明すると、液相冷媒が気相に変化した際に発生する気相冷媒の流れが、その近傍に位置する液相冷媒と流れの下流に位置する液相冷媒を巻き込んで気相と液相の二相の冷媒流となり、冷媒流の下流に位置する流出口116側のフィン140表面に液相冷媒を供給することとなる。しかしながら、冷媒流は流路抵抗が小さい経路を通過するため、筐体112内の冷媒流は偏流し、フィン140間の隙間においては、中央部に位置する隙間ほど冷媒が流れやすく、端に位置する隙間ほど冷媒が流れにくくなる。また、フィン140間の隙間よりも、流路抵抗が小さくなる流通部134に冷媒の多くが流れることとなる。よって、冷媒が流れにくい領域に位置するフィン140は、冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となり、インバータ108の温度が上昇してしまう。また、ドライアウトを抑制するためには、過剰な液相冷媒量を必要とし、結果として厚い液相冷媒層が熱抵抗となり、フィン140を薄い液相冷媒層が覆う理想的な状態を作り出すことができず、冷却性能が低くなる。 In this type of cooling device, the pressure near the outlet 116 is low due to the action of a radiator (not shown). The liquid-phase refrigerant that has flowed into the housing 112 (heat receiving portion) from the inflow port 114 receives the heat generated from the inverter 108, becomes a two-phase refrigerant of a gas phase and a liquid phase, and is in a high pressure state. This is because the volume expands when the refrigerant changes from the liquid phase to the gas phase. The two-phase refrigerant having a high pressure flows into the outlet 116 having a low pressure. Explaining this phenomenon in detail, the flow of the gas-phase refrigerant generated when the liquid-phase refrigerant changes to the gas phase involves the liquid-phase refrigerant located in the vicinity of the liquid-phase refrigerant and the liquid-phase refrigerant located downstream of the flow. The liquid-phase refrigerant is supplied to the fin 140 surface on the outlet 116 side located downstream of the refrigerant flow. However, since the refrigerant flow passes through a path having a small flow resistance, the refrigerant flow in the housing 112 is unevenly distributed, and in the gap between the fins 140, the refrigerant is more likely to flow in the gap located at the center portion, and is located at the end. The more the gap is, the more difficult it is for the refrigerant to flow. In addition, much of the refrigerant flows through the flow part 134 where the flow resistance becomes smaller than the gap between the fins 140. Therefore, the fin 140 located in the region where the refrigerant does not easily flow is in a so-called dry-out state in which the refrigerant is not supplied and cannot be cooled, and the temperature of the inverter 108 increases. Further, in order to suppress dryout, an excessive amount of liquid phase refrigerant is required, and as a result, a thick liquid phase refrigerant layer becomes a thermal resistance, and an ideal state in which the thin liquid phase refrigerant layer covers the fin 140 is created. Cannot be performed and cooling performance is lowered.
 そこで本発明は、流出口を形成した側面から遠い領域まで均一に液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供する。 Therefore, the present invention prevents the local dryout in the heat receiving part by supplying the liquid refrigerant uniformly to a region far from the side surface where the outlet is formed, and there is no need to fill the heat receiving part with an excessive amount of liquid phase refrigerant. A cooling device with high cooling performance capable of forming a thin liquid phase refrigerant layer in a heat receiving part is provided.
 そこで、本発明は、冷媒の相変化によって冷却する冷却装置において、受熱部、放熱経路、放熱部、帰還経路を順に連結して冷媒の循環経路を形成する。また、受熱部は、前面および後面が最大面積の直方体形状で、前面または後面の少なくとも一方に発熱体を設置する受熱板と、受熱部の上部に設ける放熱内部経路と、受熱部の下部に設ける帰還内部経路とを備える。また、受熱部は、放熱内部経路と帰還内部経路との間に設けるフィン部と、放熱経路と放熱内部経路とを接続する流出口と、帰還経路と帰還内部経路とを接続する流入口とを備える。また、フィン部では受熱板から内部に突出する複数の平板状のフィンを、フィン間の隙間により構成される冷媒の流路が帰還内部経路と放熱内部経路とを連通するように設けるとともに、帰還内部経路には、流入口とフィン部との間に仕切板を備える。 Therefore, according to the present invention, in the cooling device that cools by the phase change of the refrigerant, the heat receiving part, the heat radiating path, the heat radiating part, and the return path are sequentially connected to form a refrigerant circulation path. The heat receiving part has a rectangular parallelepiped shape with a maximum front and rear surface, a heat receiving plate in which a heating element is installed on at least one of the front and rear surfaces, a heat dissipation internal path provided in the upper part of the heat receiving part, and a lower part of the heat receiving part. And a return internal path. The heat receiving part includes a fin portion provided between the heat dissipation internal path and the return internal path, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the return path and the return internal path. Prepare. In addition, the fin portion is provided with a plurality of flat fins projecting inward from the heat receiving plate so that the refrigerant flow path constituted by the gaps between the fins communicates the return internal path and the heat dissipation internal path, and returns The internal path includes a partition plate between the inflow port and the fin portion.
 以上のような構成により、本発明は、流入口を形成した側面から遠い領域まで均一に液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができるので、冷却性能の高い冷却装置を提供することができる。 With the configuration as described above, the present invention uniformly supplies liquid phase refrigerant to a region far from the side surface where the inflow port is formed, thereby preventing local dryout in the heat receiving part and receiving heat with an excessive amount of liquid phase refrigerant. It is not necessary to fill the inside of the unit, and a thin liquid phase refrigerant layer can be formed in the heat receiving unit, so that a cooling device with high cooling performance can be provided.
 すなわち、帰還内部経路とフィン部の間に設けた仕切板により、流入口から帰還内部経路に流入した液相の冷媒がフィン部に上昇する流れを遮られる。そのため、液相の冷媒の一部は、流入口を形成した側面から遠い側にある仕切板の端部まで到達した後にフィン部に流出する。仕切板がない場合と比較すると、仕切板を設けた本発明の構成では、流入口付近において気化した冷媒が流入口を形成した側面の近傍を上昇して流出口に流れ込む、いわゆるショートカットの状態になりにくい。流入口を形成した側面から遠い側、すなわち、流入口を形成した側面と対向するもう一方の側面に近い領域まで、冷媒がフィン部に上昇する流れを仕切板により遮られ、その後、冷媒は仕切板の端部まで到達した後にフィン部に流出することとなる。フィン部に流出した冷媒は、フィンから受熱して気相と液相の二相の冷媒となり、圧力の低い流出口に流れ込む。流出口を形成した側面側は流出口に続く放熱部の作用により圧力が低いので、仕切板の作用により流出口を形成した側面から遠い領域でフィン部に流出した冷媒は、流出口を形成した側面側に流れやすくなるため、フィン部全体に冷媒が供給されることとなる。 That is, the partition plate provided between the return internal path and the fin portion blocks the flow of the liquid refrigerant flowing into the return internal path from the inlet to the fin portion. Therefore, a part of the liquid-phase refrigerant flows out to the fin portion after reaching the end of the partition plate on the side far from the side surface where the inlet is formed. Compared with the case where there is no partition plate, in the configuration of the present invention provided with the partition plate, the refrigerant vaporized in the vicinity of the inflow port rises in the vicinity of the side surface where the inflow port is formed and flows into the outflow port, so-called shortcut state. Hard to become. The flow where the refrigerant rises to the fin portion is blocked by the partition plate to the side far from the side where the inlet is formed, that is, the region near the other side opposite to the side where the inlet is formed. After reaching the end of the plate, it will flow out into the fins. The refrigerant that has flowed out to the fin portion receives heat from the fin, becomes a two-phase refrigerant of a gas phase and a liquid phase, and flows into an outlet having a low pressure. Since the pressure on the side surface side where the outflow port is formed is low due to the action of the heat radiating part following the outflow port, the refrigerant that has flowed out to the fin portion in the region far from the side surface where the outflow port is formed due to the action of the partition plate formed the outflow port. Since it is easy to flow to the side surface side, the refrigerant is supplied to the entire fin portion.
 これにより、流入口を形成した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口を形成した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができるので、冷却性能の高い冷却装置を提供することができる。 Thus, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet is formed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet is formed, local dryout in the heat receiving unit is prevented, and it is not necessary to fill the heat receiving unit with an excessive amount of liquid phase refrigerant. Since a layer can be formed in a heat receiving part, a cooling device with high cooling performance can be provided.
 また、本発明は、冷媒の相変化によって冷却する冷却装置において、受熱部、放熱経路、放熱部、帰還経路を順に連結して冷媒の循環経路を形成する。また、受熱部は、前面および後面が最大面積の直方体形状で、前面または後面の少なくとも一方に発熱体を設置する受熱板と、受熱部の上部に設ける放熱内部経路と、受熱部の下部に設ける帰還内部経路とを備える。また、受熱部は、放熱内部経路と帰還内部経路との間に設けるフィン部と、放熱経路と放熱内部経路とを接続する流出口と、帰還経路と帰還内部経路とを接続する流入口とを備える。また、フィン部では受熱板から内部に突出する複数の平板状のフィンを、フィン間の隙間により構成される冷媒の流路が帰還内部経路と放熱内部経路とを連通するように設けるとともに、帰還内部経路には、流入口に接続された両端が開放された管路を備える。 Further, according to the present invention, in the cooling device that cools by the phase change of the refrigerant, the heat receiving part, the heat radiating path, the heat radiating part, and the return path are sequentially connected to form a refrigerant circulation path. The heat receiving part has a rectangular parallelepiped shape with a maximum front and rear surface, a heat receiving plate in which a heating element is installed on at least one of the front and rear surfaces, a heat dissipation internal path provided in the upper part of the heat receiving part, and a lower part of the heat receiving part. And a return internal path. The heat receiving part includes a fin portion provided between the heat dissipation internal path and the return internal path, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the return path and the return internal path. Prepare. In addition, the fin portion is provided with a plurality of flat fins projecting inward from the heat receiving plate so that the refrigerant flow path constituted by the gaps between the fins communicates the return internal path and the heat dissipation internal path, and returns The internal path includes a pipe line that is open at both ends connected to the inflow port.
 以上のような構成により、本発明は、流入口を形成した側面から遠い領域まで均一に液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができるので、冷却性能の高い冷却装置を提供することができる。 With the configuration as described above, the present invention uniformly supplies liquid phase refrigerant to a region far from the side surface where the inflow port is formed, thereby preventing local dryout in the heat receiving part and receiving heat with an excessive amount of liquid phase refrigerant. It is not necessary to fill the inside of the unit, and a thin liquid phase refrigerant layer can be formed in the heat receiving unit, so that a cooling device with high cooling performance can be provided.
 すなわち、帰還内部経路に設けた流入口に接続された両端が開放された管路により、流入口から帰還内部経路に流入した液相の冷媒がフィン部に上昇する流れを遮られる。そのため、液相の冷媒の一部は、流入口を形成した側面から遠い側にある管路の端部まで到達した後にフィン部に流出する。管路がない場合と比較すると、管路を設けた本発明の構成では、流入口付近において気化した冷媒が流出口を形成した側面の近傍を上昇して流出口に流れ込む、いわゆるショートカットの状態になりにくい。流入口を形成した側面から遠い側、すなわち、流入口を形成した側面と対向するもう一方の側面に近い領域まで、冷媒がフィン部に上昇する流れを管路により遮られ、その後、冷媒は管路の端部まで到達した後にフィン部に流出することとなる。フィン部に流出した冷媒は、フィンから受熱して気相と液相の二相の冷媒となり、圧力の低い流出口に流れ込む。流出口を形成した側面側は流出口に続く放熱部の作用により圧力が低いので、管路の作用により流出口を形成した側面から遠い領域でフィン部に流出した冷媒は、流出口を形成した側面側に流れやすくなるため、フィン部全体に冷媒が供給されることとなる。 That is, the flow of the liquid phase refrigerant flowing into the return internal path from the flow inlet to the fin portion is blocked by the pipe line open at both ends connected to the flow inlet provided in the return internal path. Therefore, a part of the liquid-phase refrigerant flows out to the fin portion after reaching the end of the pipeline on the side far from the side surface where the inlet is formed. Compared with the case where there is no pipeline, in the configuration of the present invention in which the pipeline is provided, the refrigerant vaporized in the vicinity of the inflow port rises in the vicinity of the side surface where the outflow port is formed and flows into the outflow port in a so-called shortcut state. Hard to become. The flow where the refrigerant rises to the fin portion is blocked by the pipe line to the side far from the side where the inlet is formed, that is, the region near the other side opposite to the side where the inlet is formed. After reaching the end of the road, it will flow out to the fins. The refrigerant that has flowed out to the fin portion receives heat from the fin, becomes a two-phase refrigerant of a gas phase and a liquid phase, and flows into an outlet having a low pressure. Since the pressure on the side surface side where the outflow port is formed is low due to the action of the heat radiating part following the outflow port, the refrigerant that has flowed out to the fin part in the region far from the side surface where the outflow port is formed due to the action of the pipe line formed the outflow port. Since it is easy to flow to the side surface side, the refrigerant is supplied to the entire fin portion.
 これにより、流入口を形成した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口を形成した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができるので、冷却性能の高い冷却装置を提供することができる。 Thus, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet is formed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inlet is formed, local dryout in the heat receiving unit is prevented, and it is not necessary to fill the heat receiving unit with an excessive amount of liquid phase refrigerant. Since a layer can be formed in a heat receiving part, a cooling device with high cooling performance can be provided.
図1は、本発明の第1の実施の形態における冷却装置を搭載した電子機器の概略図である。FIG. 1 is a schematic diagram of an electronic apparatus equipped with a cooling device according to a first embodiment of the present invention. 図2は、本発明の第1の実施の形態における冷却装置の受熱部の外観を示す図である。FIG. 2 is a diagram showing the appearance of the heat receiving portion of the cooling device according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 3 is an exploded perspective view of the heat receiving portion of the cooling device according to the first embodiment of the present invention. 図4は、本発明の第1の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 4 is an exploded perspective view of the heat receiving portion of the cooling device according to the first embodiment of the present invention. 図5は、図2の5-5断面を示す図である。FIG. 5 is a view showing a 5-5 cross section of FIG. 図6Aは、図2の6A-6A断面図である。6A is a cross-sectional view taken along the line 6A-6A in FIG. 図6Bは、図6Aの領域6Bの拡大図である。FIG. 6B is an enlarged view of region 6B of FIG. 6A. 図7は、本発明の第2の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 7 is an exploded perspective view of the heat receiving portion of the cooling device according to the second embodiment of the present invention. 図8は、本発明の第2の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 8 is an exploded perspective view of the heat receiving portion of the cooling device according to the second embodiment of the present invention. 図9は、本発明の第2の実施の形態における冷却装置の受熱部の断面を示す図である。FIG. 9 is a view showing a cross section of the heat receiving portion of the cooling device according to the second embodiment of the present invention. 図10は、本発明の第3の実施の形態における冷却装置の受熱部の外観を示す図である。FIG. 10 is a diagram showing the appearance of the heat receiving portion of the cooling device according to the third embodiment of the present invention. 図11は、本発明の第3の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 11 is an exploded perspective view of the heat receiving portion of the cooling device according to the third embodiment of the present invention. 図12は、本発明の第3の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 12 is an exploded perspective view of the heat receiving portion of the cooling device according to the third embodiment of the present invention. 図13は、図10の13-13断面を示す図である。FIG. 13 is a view showing a 13-13 cross section of FIG. 図14Aは、図10の14A-14A断面図である。14A is a cross-sectional view taken along the line 14A-14A of FIG. 図14Bは、図14Aの領域14B拡大図である。FIG. 14B is an enlarged view of region 14B of FIG. 14A. 図15は、本発明の第4の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 15 is an exploded perspective view of the heat receiving portion of the cooling device according to the fourth embodiment of the present invention. 図16は、本発明の第4の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 16 is an exploded perspective view of the heat receiving portion of the cooling device according to the fourth embodiment of the present invention. 図17は、本発明の第4の実施の形態における冷却装置の受熱部の断面を示す図である。FIG. 17 is a diagram showing a cross section of the heat receiving portion of the cooling device according to the fourth embodiment of the present invention. 図18は、本発明の第5の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 18 is an exploded perspective view of the heat receiving portion of the cooling device according to the fifth embodiment of the present invention. 図19は、本発明の第6の実施の形態における冷却装置の受熱部の分解斜視図である。FIG. 19 is an exploded perspective view of the heat receiving portion of the cooling device according to the sixth embodiment of the present invention. 図20は、従来の冷却装置を示す概略図である。FIG. 20 is a schematic view showing a conventional cooling device.
 (第1の実施の形態)
 以下、本発明の第1の実施の形態について、図面を参照しながら説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施の形態の冷却装置を搭載した電子機器の概略図である。 FIG. 1 is a schematic view of an electronic apparatus equipped with the cooling device according to the first embodiment of the present invention.
 図1に示すように、電子機器50は、ケース51内に電力用半導体素子である第1発熱体28、第2発熱体29と冷却装置1とが備えられている。 As shown in FIG. 1, the electronic device 50 is provided with a first heating element 28, a second heating element 29, and a cooling device 1, which are power semiconductor elements, in a case 51.
 冷却装置1は、第1発熱体28、第2発熱体29を冷却するための受熱部3と、放熱部4を備えており、放熱経路5と帰還経路6とにより受熱部3と放熱部4が連結されている。この構成により、冷却装置1は内部が密閉空間となり、図1では図示していないが、冷却装置1内は、冷媒が減圧した上で封入されている。冷媒としては、フロン類、フッ素系溶剤類などが用いられるが、これらに限られない。受熱部3、放熱部4および後述するフィンである第1フィン22、第2フィン23の材質は、アルミニウムが適しているが、これらに限られない。 The cooling device 1 includes a heat receiving part 3 for cooling the first heat generating element 28 and the second heat generating element 29 and a heat radiating part 4. The heat receiving part 3 and the heat radiating part 4 are constituted by the heat radiating path 5 and the feedback path 6. Are connected. With this configuration, the inside of the cooling device 1 becomes a sealed space, and although not shown in FIG. 1, the inside of the cooling device 1 is sealed after the refrigerant is depressurized. As the refrigerant, chlorofluorocarbons, fluorinated solvents and the like are used, but are not limited thereto. Aluminum is suitable for the material of the heat receiving part 3, the heat radiating part 4, and the first fin 22 and the second fin 23, which will be described later, but is not limited thereto.
 帰還経路6には、冷媒の逆流を防止する逆流防止部8を備えている。ここで、逆流防止部8は、逆流を防止するための弁構造を備えたものでも、帰還経路6が放熱経路5よりも細い配管であり帰還経路6自体が逆流防止部8の役割を果たすものであっても良い。更には、安定稼動時に帰還経路6に受熱部3から気相の冷媒が逆流しないように設計されたものであれば同様の効果と作用を有するものとなる。 The return path 6 includes a backflow prevention unit 8 that prevents backflow of the refrigerant. Here, even if the backflow prevention unit 8 has a valve structure for preventing backflow, the return path 6 is a pipe that is thinner than the heat dissipation path 5, and the return path 6 itself serves as the backflow prevention unit 8. It may be. Furthermore, if it is designed so that the gas-phase refrigerant does not flow backward from the heat receiving section 3 to the return path 6 during stable operation, the same effect and action are obtained.
 また、冷却装置1は、放熱部4に冷媒により輸送した熱を冷却するための冷却ファン7を備えている。本実施の形態では、冷却ファン7による空冷式としたが、水冷式、その他の方式であってもよい。 The cooling device 1 also includes a cooling fan 7 for cooling the heat transported to the heat radiating section 4 by the refrigerant. In the present embodiment, the air cooling system using the cooling fan 7 is used, but a water cooling system or other systems may be used.
 次に、冷却装置1の基本的な仕組みについて説明する。 Next, the basic mechanism of the cooling device 1 will be described.
 冷却装置1は、内部を減圧した後に冷媒を封入したものであり、冷却装置1内は、冷媒の作用により外部温度に応じた冷媒の飽和圧力となる。第1発熱体28、第2発熱体29の熱は受熱部3を介して冷媒に伝わり、冷媒が液相から気相へと変化することで、第1発熱体28、第2発熱体29が冷却される。受熱部3内にて気化した冷媒は、未沸騰の液相の冷媒との気液二相の混相流となって、受熱部3から放熱経路5を通り放熱部4へと移動し、冷却ファン7により冷やされ再び液化し液相の冷媒となり帰還経路6および逆流防止部8を経て受熱部3に戻る。 The cooling device 1 is one in which the inside is decompressed and then a refrigerant is enclosed, and the inside of the cooling device 1 becomes the saturation pressure of the refrigerant according to the external temperature due to the action of the refrigerant. The heat of the first heating element 28 and the second heating element 29 is transferred to the refrigerant through the heat receiving portion 3, and the refrigerant changes from the liquid phase to the gas phase, so that the first heating element 28 and the second heating element 29 are changed. To be cooled. The refrigerant vaporized in the heat receiving unit 3 becomes a gas-liquid two-phase mixed flow with an unboiling liquid phase refrigerant, moves from the heat receiving unit 3 to the heat radiating unit 4 through the heat radiating path 5, and is a cooling fan. 7 is cooled again and liquefied again to become a liquid-phase refrigerant, and returns to the heat receiving unit 3 through the return path 6 and the backflow prevention unit 8.
 逆流防止部8は、帰還経路6中に設けられたものであって、放熱経路5よりも冷媒の流通抵抗を増大させたものであるため、受熱部3内にて気化した冷媒が帰還経路6へ逆流することを防止する。よって、受熱部3内にて冷媒が気化し、気化した冷媒が放熱経路5を通過し放熱部4にて液化し、液化した冷媒が帰還経路6を通過し再び受熱部3内に供給されるサイクルが繰り返されることで、第1発熱体28、第2発熱体29を冷却している。 Since the backflow prevention unit 8 is provided in the return path 6 and has a greater flow resistance of the refrigerant than the heat dissipation path 5, the refrigerant vaporized in the heat receiving unit 3 is returned to the return path 6. To prevent backflow. Therefore, the refrigerant is vaporized in the heat receiving part 3, the vaporized refrigerant passes through the heat radiation path 5 and is liquefied in the heat radiation part 4, and the liquefied refrigerant passes through the return path 6 and is supplied again into the heat receiving part 3. The first heating element 28 and the second heating element 29 are cooled by repeating the cycle.
 次に、本実施の形態における特徴的な構成について説明する。図2は、本実施の形態の冷却装置1の受熱部3の外観を示す図である。図3および図4は、本実施の形態の冷却装置1の受熱部3の分解斜視図である。図5は、本実施の形態の冷却装置1の受熱部3の断面を示す、図2の5-5断面を示す図である。 Next, a characteristic configuration in the present embodiment will be described. FIG. 2 is a diagram illustrating an appearance of the heat receiving unit 3 of the cooling device 1 according to the present embodiment. 3 and 4 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 according to the present embodiment. FIG. 5 is a diagram showing a cross section of the heat receiving unit 3 of the cooling device 1 according to the present embodiment, taken along line 5-5 in FIG.
 図2~図5に示すように、受熱部3は、前面および後面が最大面積の直方体形状とする。また、図に示すように受熱部3は、前面および後面が垂直方向となるように設置する。そして、前面には、第1発熱体28を設置する受熱板15を設け、後面には、第2発熱体29を設置する受熱板16を設ける。 As shown in FIGS. 2 to 5, the heat receiving portion 3 has a rectangular parallelepiped shape with the front and rear surfaces having a maximum area. Further, as shown in the figure, the heat receiving portion 3 is installed so that the front surface and the rear surface are in the vertical direction. A heat receiving plate 15 on which the first heating element 28 is installed is provided on the front surface, and a heat receiving plate 16 on which the second heating element 29 is installed on the rear surface.
 また、本実施の形態では、受熱部3の前面に第1発熱体28を設置した受熱板15を設け、受熱部3の後面に第2発熱体29を設置した受熱板16を設けているが、受熱部3の前面または後面のいずれか一方に発熱体を設置した受熱板を設ける構成としてもよい。 In the present embodiment, the heat receiving plate 15 provided with the first heat generating element 28 is provided on the front surface of the heat receiving unit 3, and the heat receiving plate 16 provided with the second heat generating element 29 is provided on the rear surface of the heat receiving unit 3. Further, a heat receiving plate in which a heating element is installed on either the front surface or the rear surface of the heat receiving unit 3 may be provided.
 第1発熱体28は受熱板15と接触して熱的に接続され、第2発熱体29は受熱板16と接触して熱的に接続されている。受熱板15、16には、第1発熱体28、第2発熱体29を固定するための固定用ネジ孔19が適宜設けてあり、第1発熱体28を受熱板15にネジで固定し、第2発熱体29を受熱板16にネジで固定する。受熱部3は、第1発熱体28と第2発熱体29との間に挟まれるように垂直方向に設置する。 The first heating element 28 is in contact with the heat receiving plate 15 and thermally connected, and the second heating element 29 is in contact with the heat receiving plate 16 and thermally connected. The heat receiving plates 15 and 16 are appropriately provided with fixing screw holes 19 for fixing the first heating element 28 and the second heating element 29, and the first heating element 28 is fixed to the heat receiving plate 15 with screws. The second heating element 29 is fixed to the heat receiving plate 16 with screws. The heat receiving unit 3 is installed in the vertical direction so as to be sandwiched between the first heating element 28 and the second heating element 29.
 直方体形状である受熱部3内部の上部には放熱内部経路24として空間を設け、受熱部3内部の下部には帰還内部経路25を設けるための空間を設ける。さらに、受熱部3の放熱内部経路24と帰還内部経路25との間の中央部をフィン部2とする。 A space is provided as a heat dissipation internal path 24 in the upper part of the heat receiving part 3 having a rectangular parallelepiped shape, and a space for providing a return internal path 25 is provided in the lower part of the heat receiving part 3. Furthermore, the center part between the heat radiation internal path 24 and the return internal path 25 of the heat receiving part 3 is defined as the fin part 2.
 受熱部3には、放熱経路5と放熱内部経路24とを接続する流出口20と、帰還経路6と帰還内部経路25とを接続する流入口21を形成する。流出口20と流入口21とは、受熱部3の同一の側面に設ける。流出口20と流入口21とを設ける側面は、受熱板15、16を設ける前面、後面をつなぐ側面である。 In the heat receiving part 3, an outlet 20 that connects the heat dissipation path 5 and the heat dissipation internal path 24 and an inlet 21 that connects the return path 6 and the return internal path 25 are formed. The outlet 20 and the inlet 21 are provided on the same side surface of the heat receiving unit 3. The side surface on which the outflow port 20 and the inflow port 21 are provided is a side surface that connects the front surface and the rear surface on which the heat receiving plates 15 and 16 are provided.
 受熱板15から、受熱部3の内部に突出する複数の平板状のフィン22を平行に並べて設け、受熱板16から、受熱部3の内部に突出する複数の平板状のフィン23を平行に並べて設ける。フィン間の冷媒の流路が垂直方向となるようにフィン22およびフィン23を配置する。すなわち、フィン22およびフィン23の各々のフィン間の隙間が上下方向となるように配置する。 A plurality of flat fins 22 projecting from the heat receiving plate 15 to the inside of the heat receiving unit 3 are arranged in parallel, and a plurality of flat fins 23 protruding from the heat receiving plate 16 to the inside of the heat receiving unit 3 are arranged in parallel. Provide. The fins 22 and the fins 23 are arranged so that the refrigerant flow path between the fins is in the vertical direction. That is, it arrange | positions so that the clearance gap between each fin 22 and the fin 23 may become an up-down direction.
 帰還内部経路25とフィン部2の間には仕切板30を受熱部3の底面と平行に設ける。仕切板30は、流入口21および流出口20を設置した受熱部3の側面から突出し、この側面と対向するもう一方の側面に向かって延設されている。本実施の形態では、仕切板30が設置した受熱部3の側面と、この側面と対向するもう一方の側面との中間点より流入口21および流出口20を設置した側面から遠い位置まで延設されている。これにより、流入口21および流出口20を設置した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 A partition plate 30 is provided between the return internal path 25 and the fin portion 2 in parallel with the bottom surface of the heat receiving portion 3. The partition plate 30 protrudes from the side surface of the heat receiving part 3 in which the inlet 21 and the outlet 20 are installed, and extends toward the other side facing the side. In the present embodiment, it extends from the intermediate point between the side surface of the heat receiving part 3 where the partition plate 30 is installed and the other side surface facing this side surface to a position far from the side surface where the inlet 21 and the outlet 20 are installed. Has been. Thus, by supplying the refrigerant to a region far from the side surface where the inlet 21 and the outlet 20 are installed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 すなわち、流入口21から帰還内部経路25に流出した液相の冷媒は、帰還内部経路25内の流入口21とフィン部2との間に設けた仕切板30により、流入口21が設けられた側面側において帰還内部経路25に流入した液相の冷媒が直接フィン部2に上昇する流れを遮られる。仕切板30は、流入口21および流出口20を形成した側面から突出し、この側面と、この側面と対向するもう一方の側面との中間点より流入口21および流出口20を形成した側面から遠い位置まで延設されている。そのため、冷媒は、流入口21および流出口20を形成した側面から遠い側にある仕切板30の開放された端部まで到達した後に帰還内部経路25に流出し、その後フィン部2に流出する。仕切板30がない場合では、帰還経路6から受熱部3内部に流出する液相の冷媒は、全てが流入口21および流出口20を形成した側面側から受熱部3内に流れ込むため、この側面と対向するもう一方の側面側に液相の冷媒が供給され難くなる。そのため、流入口21付近において気化した冷媒が流入口21および流出口20を形成した側面の近傍を上昇して流出口20に流れ込むため、この側面と対向するもう一方の側面側に位置するフィン部2にて液相の冷媒が供給できなくなる、いわゆるショートカットの状態が発生しやすくなる。しかし、本発明の構成においては、流入口21および流出口20を形成した側面から遠い側、すなわち、流入口21および流出口20を形成した側面と対向するもう一方の側面に近い帰還内部経路25に液相の冷媒が供給される。そして、帰還内部経路25に流出した液相の冷媒は、第1発熱体28および第2発熱体29の熱により一部の液相の冷媒が気化し、その拡散作用により、帰還内部経路25に拡散する。よって、帰還内部経路25に拡散した液相の冷媒により、フィン部2に流出した気相と液相の二層の冷媒には、フィン部2の全域においてフィン22およびフィン23から受熱するだけの十分な液相の冷媒が供給されることとなり、最終的に圧力の低い流出口20に流れ込む。また、流入口21および流出口20を形成した側面側は流出口20に続く放熱部4(図1参照)の作用により圧力が低いので、流入口21および流出口20を形成した側面から遠い領域でフィン部2に流出した冷媒は、流入口21および流出口20を形成した側面側に流れやすくなる。そのため、フィン部2全体に冷媒が供給される。 That is, the liquid-phase refrigerant that has flowed out of the inlet 21 into the return internal path 25 is provided with the inlet 21 by the partition plate 30 provided between the inlet 21 and the fin portion 2 in the return internal path 25. On the side surface side, the liquid phase refrigerant that has flowed into the return internal path 25 is blocked from the flow that rises directly to the fin portion 2. The partition plate 30 protrudes from the side surface on which the inflow port 21 and the outflow port 20 are formed, and is farther from the side surface on which the inflow port 21 and the outflow port 20 are formed than an intermediate point between this side surface and the other side surface facing this side surface. It extends to the position. Therefore, the refrigerant flows out to the return internal path 25 after reaching the open end of the partition plate 30 on the side far from the side surface on which the inflow port 21 and the outflow port 20 are formed, and then flows out to the fin portion 2. In the case where there is no partition plate 30, all of the liquid-phase refrigerant flowing out from the return path 6 into the heat receiving unit 3 flows into the heat receiving unit 3 from the side surface where the inlet 21 and the outlet 20 are formed. It is difficult for the liquid-phase refrigerant to be supplied to the other side surface opposite to. Therefore, since the refrigerant vaporized in the vicinity of the inflow port 21 rises in the vicinity of the side surface on which the inflow port 21 and the outflow port 20 are formed and flows into the outflow port 20, the fin portion located on the other side surface facing this side surface It becomes easy to generate a so-called shortcut state in which the liquid-phase refrigerant cannot be supplied at 2. However, in the configuration of the present invention, the return internal path 25 close to the side far from the side where the inlet 21 and the outlet 20 are formed, that is, the other side opposite to the side where the inlet 21 and the outlet 20 are formed. Is supplied with a liquid-phase refrigerant. The liquid-phase refrigerant that has flowed out to the return internal path 25 is partially vaporized by the heat of the first heating element 28 and the second heating element 29, and is diffused into the return internal path 25. Spread. Therefore, the liquid-phase refrigerant that has diffused into the return internal path 25 only receives heat from the fin 22 and the fin 23 in the entire area of the fin portion 2 by the two-phase refrigerant that has flowed out into the fin portion 2. Sufficient liquid phase refrigerant is supplied, and finally flows into the outlet 20 having a low pressure. Further, since the pressure on the side surface where the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 (see FIG. 1) following the outflow port 20, the region far from the side surface where the inflow port 21 and the outflow port 20 are formed. Thus, the refrigerant that has flowed out into the fin portion 2 easily flows to the side surface on which the inflow port 21 and the outflow port 20 are formed. Therefore, the refrigerant is supplied to the entire fin portion 2.
 これにより、流入口21および流出口20を形成した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口21および流出口20を形成した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 Thereby, it is possible to suppress a so-called dry-out state in which the liquid phase refrigerant is not supplied to the region far from the side surface where the inlet 21 and the outlet 20 are formed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inflow port 21 and the outflow port 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 なお、仕切板30が本実施の形態で示した仕切板30の長さに満たない場合であっても、流入口21から受熱部3内に流入した冷媒は仕切板30によって流入口21および流出口20を設置した側面から遠い領域まで冷媒が供給される。そのため、本実施の形態と同様に、冷却性能の高い冷却装置1を提供することができる。 Even when the partition plate 30 is less than the length of the partition plate 30 shown in the present embodiment, the refrigerant that has flowed into the heat receiving unit 3 from the inlet 21 is separated by the partition plate 30 from the inlet 21 and the flow. The refrigerant is supplied to a region far from the side surface where the outlet 20 is installed. Therefore, the cooling device 1 with high cooling performance can be provided as in the present embodiment.
 仕切板30は、流出口20および流入口21を設けた受熱部3の側面と、受熱部3の前面および後面に接するように設ける。これは、仕切板30とこれらの壁面との隙間から冷媒が流出しないようにするためである。 The partition plate 30 is provided so as to be in contact with the side surface of the heat receiving unit 3 provided with the outlet 20 and the inlet 21 and the front and rear surfaces of the heat receiving unit 3. This is to prevent the refrigerant from flowing out from the gap between the partition plate 30 and these wall surfaces.
 また、仕切板30は、複数の開口部31を有する構成にしてもよい。帰還内部経路25内の流入口21とフィン部2との間に設けた仕切板30により、流入口21および流出口20を形成した側面から遠い側、すなわち、流入口21および流出口20を形成した側面と対向するもう一方の側面に近い帰還内部経路25に液相の冷媒が供給される。帰還内部経路25に流出した液相の冷媒は、第1発熱体28および第2発熱体29の熱により一部の液相の冷媒が気化し、その拡散作用により、帰還内部経路25に拡散するとともに、仕切板30に設けた複数の開口部31から仕切板30とフィン部2との間に、流入口21から流出した液相の冷媒の一部が流出する。よって、帰還内部経路25に拡散した液相の冷媒により、フィン部2に流出した気相と液相の二層の冷媒には、フィン部2全域においてフィン22およびフィン23から受熱するだけの十分な液相の冷媒が供給されることとなり、受熱した冷媒は最終的に圧力の低い流出口20に流れ込む。また、流入口21および流出口20を形成した側面側は流出口20に続く放熱部4の作用により圧力が低いので、流入口21および流出口20を形成した側面から遠い領域でフィン部2に流出した冷媒は、流入口21および流出口20を形成した側面側に流れやすくなるため、フィン部2全体に冷媒が供給されることとなる。 Further, the partition plate 30 may be configured to have a plurality of openings 31. The partition plate 30 provided between the inlet 21 and the fin portion 2 in the return internal path 25 forms the side far from the side surface on which the inlet 21 and the outlet 20 are formed, that is, the inlet 21 and the outlet 20. The liquid-phase refrigerant is supplied to the return internal path 25 close to the other side surface facing the side surface. A part of the liquid-phase refrigerant that has flowed out into the return internal path 25 is vaporized by the heat of the first heat generating element 28 and the second heat generating element 29, and is diffused into the return internal path 25 by its diffusion action. At the same time, a part of the liquid-phase refrigerant that has flowed out from the inflow port 21 flows out from the plurality of openings 31 provided in the partition plate 30 between the partition plate 30 and the fin portion 2. Therefore, the liquid-phase refrigerant diffused in the return internal path 25 is sufficient to receive heat from the fins 22 and 23 throughout the fin portion 2 for the two-phase refrigerant of the gas phase and the liquid phase flowing out to the fin portion 2. The liquid refrigerant is supplied, and the heat-received refrigerant finally flows into the outlet 20 having a low pressure. Further, since the pressure on the side surface where the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 following the outflow port 20, the fin portion 2 is located in a region far from the side surface where the inflow port 21 and the outflow port 20 are formed. Since the refrigerant that has flowed out easily flows to the side surface on which the inlet 21 and the outlet 20 are formed, the refrigerant is supplied to the entire fin portion 2.
 これにより、流入口21および流出口20を形成した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口21および流出口20を形成した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができるものである。 Thereby, it is possible to suppress a so-called dry-out state in which the liquid phase refrigerant is not supplied to the region far from the side surface where the inlet 21 and the outlet 20 are formed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inflow port 21 and the outflow port 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 また、複数の開口部31を設ける間隔は、流入口21および流出口20を形成した側面から遠ざかるほど短くする構成にしてもよい。流入口21および流出口20を形成した側面側は流出口20に続く放熱部4の作用により圧力が低いので、流入口21および流出口20を形成した側面に近いほど流出口20に冷媒が流れやすく、流入口21および流出口20を形成した側面から遠いほど流出口20に冷媒が流れ難くなる。複数の開口部31を設ける間隔を流入口21および流出口20を形成した側面から遠ざかるほど短くすることにより、流入口21および流出口20を形成した側面に近い領域は開口部31の数を少なくして、フィン部2に流出する冷媒の流れを抑制する。そして、流入口21および流出口20を形成した側面から遠い領域は開口部31の数を多くして、フィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。 Further, the intervals at which the plurality of openings 31 are provided may be shortened as the distance from the side surface on which the inflow port 21 and the outflow port 20 are formed. Since the pressure on the side surface on which the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 following the outflow port 20, the refrigerant flows to the outflow port 20 closer to the side surface on which the inflow port 21 and the outflow port 20 are formed. It becomes easy, and it becomes difficult for a refrigerant | coolant to flow into the outflow port 20, so that it is far from the side surface in which the inflow port 21 and the outflow port 20 were formed. By reducing the interval at which the plurality of openings 31 are provided away from the side surface on which the inflow port 21 and the outflow port 20 are formed, the area close to the side surface on which the inflow port 21 and the outflow port 20 are formed has fewer openings 31. And the flow of the refrigerant | coolant which flows out into the fin part 2 is suppressed. And the area | region far from the side surface in which the inflow port 21 and the outflow port 20 were formed increases the number of the opening parts 31, and promotes the flow of the refrigerant | coolant which flows out into the fin part 2. FIG. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.
 これにより、流入口21および流出口20を形成した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口21および流出口20を形成した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 Thereby, it is possible to suppress a so-called dry-out state in which the liquid phase refrigerant is not supplied to the region far from the side surface where the inlet 21 and the outlet 20 are formed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inflow port 21 and the outflow port 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 また、複数の開口部31の面積は、流入口21および流出口20を形成した側面から遠ざかるほど大きくする構成にしてもよい。流入口21および流出口20を形成した側面側は流出口20に続く放熱部4の作用により圧力が低いので、流入口21および流出口20を形成した側面に近いほど流出口20に冷媒が流れやすく、流入口21および流出口20を形成した側面から遠いほど流出口20に冷媒が流れ難くなる。複数の開口部31の面積は、流入口21および流出口20を形成した側面から遠ざかるほど大きくすることにより、流入口21および流出口20を形成した側面に近い領域は開口部31の面積を小さくして、フィン部2に流出する冷媒の流れを抑制する。そして、流入口21および流出口20を形成した側面から遠い領域は開口部31の面積を大きくして、フィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。 Further, the area of the plurality of openings 31 may be configured to increase as the distance from the side surface on which the inflow port 21 and the outflow port 20 are formed. Since the pressure on the side surface on which the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 following the outflow port 20, the refrigerant flows to the outflow port 20 closer to the side surface on which the inflow port 21 and the outflow port 20 are formed. It becomes easy, and it becomes difficult for a refrigerant | coolant to flow into the outflow port 20, so that it is far from the side surface in which the inflow port 21 and the outflow port 20 were formed. By increasing the area of the plurality of openings 31 away from the side surface on which the inlet 21 and the outlet 20 are formed, the area near the side surface on which the inlet 21 and the outlet 20 are formed decreases the area of the opening 31. And the flow of the refrigerant | coolant which flows out into the fin part 2 is suppressed. And the area | region far from the side surface in which the inflow port 21 and the outflow port 20 were formed enlarges the area of the opening part 31, and promotes the flow of the refrigerant | coolant which flows out into the fin part 2. FIG. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.
 これにより、流入口21および流出口20を形成した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口21および流出口20を形成した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。 Thereby, it is possible to suppress a so-called dry-out state in which the liquid phase refrigerant is not supplied to the region far from the side surface where the inlet 21 and the outlet 20 are formed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inflow port 21 and the outflow port 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and it is possible to provide a cooling device 1 with high cooling performance that can form a thin liquid-phase refrigerant layer in the heat receiving section 3.
 また、流出口20の径は、流入口21の径より大きい構成にしてもよい。流入口21には液相の冷媒が流通し、流出口20には、液相と気相の二相の冷媒が流通することとなるが、流入口21から受熱部3に流入した液相の冷媒が、フィン22またはフィン23から受熱して、液相から気相の冷媒に変化するとき、冷媒の体積が膨張する。従って、流出口20およびこれに続く放熱経路5の径を大きくすることにより、圧損を下げて二相の冷媒が流出口20およびこれに続く放熱経路5に流入しやすくすることができる。その結果、冷媒が循環する際の流路抵抗が小さくなり、冷却装置1の冷却性能を向上することができる。 Further, the diameter of the outlet 20 may be larger than the diameter of the inlet 21. A liquid-phase refrigerant flows through the inflow port 21, and a liquid-phase and gas-phase refrigerant flows through the outflow port 20, but the liquid-phase refrigerant that has flowed into the heat receiving unit 3 from the inflow port 21. When the refrigerant receives heat from the fins 22 or 23 and changes from a liquid phase to a gas phase refrigerant, the volume of the refrigerant expands. Therefore, by increasing the diameter of the outlet 20 and the subsequent heat dissipation path 5, the pressure loss can be reduced and the two-phase refrigerant can easily flow into the outlet 20 and the subsequent heat dissipation path 5. As a result, the flow resistance when the refrigerant circulates is reduced, and the cooling performance of the cooling device 1 can be improved.
 図6Aは、本実施の形態における冷却装置の受熱部の断面図であり、図2の6A-6A断面図である。図6Bは、本実施の形態における冷却装置の受熱部の拡大図であり、図6Aの領域6Bの拡大図である。 FIG. 6A is a cross-sectional view of the heat receiving portion of the cooling device in the present embodiment, and is a cross-sectional view of 6A-6A in FIG. FIG. 6B is an enlarged view of the heat receiving portion of the cooling device in the present embodiment, and is an enlarged view of region 6B in FIG. 6A.
 第1発熱体28、第2発熱体29と受熱板15、受熱板16とを受熱部3の前面および後面の両方に設ける場合においては、図6A、図6Bに示すように、フィン22の隣接するフィンの隙間に、フィン23のフィンを周囲にわずかな隙間を残して突出して配置してもよい。すなわち、フィン22の隣接するフィンとフィンの隙間に、フィン23のフィンをフィンの先端が受熱板15の表面とわずかな隙間を残す位置まで挿入する。フィン23のフィンの両方の表面とフィン22のフィンとフィンとの間にわずかな隙間を残す。 In the case where the first heating element 28, the second heating element 29, the heat receiving plate 15, and the heat receiving plate 16 are provided on both the front surface and the rear surface of the heat receiving portion 3, as shown in FIGS. 6A and 6B, the fins 22 are adjacent to each other. The fins of the fins 23 may be arranged so as to protrude in the gaps of the fins leaving a slight gap around the fins. That is, the fin 23 is inserted into the gap between the fins adjacent to the fin 22 until the tip of the fin leaves a slight gap from the surface of the heat receiving plate 15. A slight gap is left between both surfaces of the fins 23 and the fins 22 of the fins 22.
 フィン22のフィンとフィンとの間隔は、フィン23のフィンの厚さよりわずかに大きく、フィンの短辺は、受熱板15と受熱板16の距離よりわずかに小さい。このわずかな隙間が冷媒の流路となる。 The gap between the fins of the fin 22 is slightly larger than the thickness of the fin 23 and the short side of the fin is slightly smaller than the distance between the heat receiving plate 15 and the heat receiving plate 16. This slight gap becomes a refrigerant flow path.
 フィン23も同様に、フィン23と隣接するフィンの隙間に、フィン22のフィンを周囲にわずかな隙間を残して突出して配置する。すなわち、フィン23の隣接するフィンとフィンの隙間に、フィン22のフィンをフィンの先端が受熱板16の表面とわずかな隙間を残す位置まで挿入する。フィン22のフィンの両方の表面とフィン23のフィンとフィンとの間にわずかな隙間を残す。 Similarly, the fins 23 are arranged so as to protrude in the gaps between the fins 23 and the adjacent fins, leaving a slight gap around the fins 22. That is, the fins of the fins 22 are inserted into the gaps between the fins adjacent to the fins 23 until the tips of the fins leave a slight gap from the surface of the heat receiving plate 16. A slight gap is left between both surfaces of the fins 22 and the fins 23 of the fins 23.
 フィン23のフィンとフィンとの間隔は、フィン22のフィンの厚さよりわずかに大きく、フィンの短辺は、受熱板15と受熱板16の距離よりわずかに小さい。このわずかな隙間が冷媒の流路となる。 The gap between the fins of the fin 23 is slightly larger than the thickness of the fin 22 and the short side of the fin is slightly smaller than the distance between the heat receiving plate 15 and the heat receiving plate 16. This slight gap becomes a refrigerant flow path.
 これにより、フィン22またはフィン23のいずれか一方のみを有する場合と比較して、フィン間の隙間、すなわち、冷媒の流路断面積を小さくすることができる。 Thereby, compared with the case where only one of the fins 22 and the fins 23 is provided, the gap between the fins, that is, the flow path cross-sectional area of the refrigerant can be reduced.
 その理由を説明する。フィンはアルミニウム材を押出し成型または切削することにより作成するが、押出し成型では、押し出す型の強度の制約からフィンとフィンの間隔をある程度(例えばフィン高さが10mm程度であればフィン間隔は4mm程度以上)開けなければならない。また、切削加工においてはフィン間隔を1mm程度と小さくすることは可能であるが、産業上の量産工法としては、フィン間隔を小さくするとコストが極めて高くなり、フィン間隔を小さくすることが困難である。フィン22を設けた受熱板15とフィン23を設けた受熱板16とをフィン22とフィン23とを向かい合わせ、一方のフィンの隙間に他方のフィンを挿入してフィンどうしをわずかな隙間を残してかみ合わせることにより、かみ合わせたフィン22とフィン23の隙間は、フィン22のフィン間の隙間、およびフィン23のフィン間の隙間より小さくなる。このフィン22とフィン23の隙間が冷媒の流路となる。 Explain why. Fins are made by extruding or cutting an aluminum material. In extrusion molding, the distance between the fins is limited to some extent due to the strength of the extrusion mold (for example, if the fin height is about 10 mm, the fin interval is about 4 mm). I have to open it. In the cutting process, it is possible to reduce the fin interval to about 1 mm. However, as an industrial mass production method, if the fin interval is reduced, the cost becomes extremely high, and it is difficult to reduce the fin interval. . The heat receiving plate 15 provided with the fins 22 and the heat receiving plate 16 provided with the fins 23 face each other with the fins 22 and 23 facing each other, and the other fin is inserted into the gap between the fins, leaving a slight gap between the fins. By the engagement, the gap between the fins 22 and the fins 23 that are engaged with each other becomes smaller than the gap between the fins of the fin 22 and the gap between the fins of the fin 23. The gap between the fin 22 and the fin 23 serves as a refrigerant flow path.
 冷媒の流路断面積を小さくすることにより、流路断面積が大きい場合と比較して、冷媒が流路を流れる流速が上がる。冷媒は下方から上方に向かって流通しているので、流通している液相の冷媒にこの上方向の力がかかるため、液相の冷媒が下方に落下しにくくなる。また、本実施形態の冷却装置1は、フィン22とフィン23の表面全体を液相の冷媒で濡れた状態を保ち、液相の冷媒がより速い速度で流れるとともに、液相の冷媒の厚みを薄くすることができる。 By reducing the flow path cross-sectional area of the refrigerant, the flow rate of the refrigerant flowing through the flow path is increased as compared with the case where the flow path cross-sectional area is large. Since the refrigerant circulates from below to above, this upward force is applied to the circulating liquid-phase refrigerant, so that the liquid-phase refrigerant is unlikely to fall downward. Further, the cooling device 1 of the present embodiment keeps the entire surfaces of the fins 22 and the fins 23 wet with the liquid-phase refrigerant, the liquid-phase refrigerant flows at a higher speed, and the thickness of the liquid-phase refrigerant is reduced. Can be thinned.
 その結果、フィン22とフィン23の間の隙間をフィン上方まで効率よく液相の冷媒を搬送することにより、フィン22およびフィン23においてより多くの液相の冷媒が気相冷媒に変化する際の蒸発潜熱の作用により、冷却性能の高い冷却装置1を提供することができる。 As a result, by efficiently transporting the liquid-phase refrigerant through the gap between the fin 22 and the fin 23 to above the fin, the liquid-phase refrigerant in the fin 22 and the fin 23 is changed to a gas-phase refrigerant. The cooling device 1 with high cooling performance can be provided by the action of latent heat of vaporization.
 また、本実施の形態における冷却装置1を搭載した電子機器としてもよい。これにより、流入口21および流出口20を形成した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を搭載した電子機器50(図1参照)を提供することができる。 Moreover, it is good also as an electronic device carrying the cooling device 1 in this Embodiment. Thereby, by supplying the refrigerant to a region far from the side surface where the inlet 21 and the outlet 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving portion 3, and the electronic device 50 (see FIG. 1) equipped with the cooling device 1 with high cooling performance can be provided.
 次に、本実施例の特徴となる冷却装置1の受熱部3の製造方法の一例を説明する。ここでは、第1発熱体28、第2発熱体29と受熱板15、受熱板16とを受熱部3の前面および後面の両方に設ける場合で説明する。 Next, an example of a method for manufacturing the heat receiving unit 3 of the cooling device 1 that is a feature of the present embodiment will be described. Here, the case where the first heat generating element 28, the second heat generating element 29, the heat receiving plate 15, and the heat receiving plate 16 are provided on both the front surface and the rear surface of the heat receiving unit 3 will be described.
 受熱部3は、前面および後面が最大面積の扁平な直方体形状であり、前面および後面を垂直方向に設置する。これらの受熱部3のパーツの材料は、アルミニウムである。 The heat receiving part 3 has a flat rectangular parallelepiped shape with the largest front and rear surfaces, and the front and rear surfaces are installed in the vertical direction. The material of the parts of these heat receiving parts 3 is aluminum.
 受熱部3の側面は、前面、後面と、前面と後面をつなぐ2つの面で成り立っている。前面と後面は、外郭に接触面9を有する受熱板15と外郭に接触面10を有する受熱板16であり、受熱板15または受熱板16のいずれか一方に前面と後面をつなぐ2つの面、天面、および底面が一体成型されている。 The side surface of the heat receiving part 3 is composed of two surfaces connecting the front surface, the rear surface, and the front surface and the rear surface. The front surface and the rear surface are a heat receiving plate 15 having a contact surface 9 on the outer surface and a heat receiving plate 16 having a contact surface 10 on the outer surface, and two surfaces connecting the front surface and the rear surface to either the heat receiving plate 15 or the heat receiving plate 16; The top surface and the bottom surface are integrally molded.
 本実施例では、受熱板16に前面と後面をつなぐ2つの面、天面、および底面を一体に切削して作成することとする。そして、この前面と後面をつなぐ2つの面のいずれか一方の上部に、流出口20、下部に流入口21として円形の開口部を形成する。流出口20の径は、流入口21の径より大きい。 In the present embodiment, the heat receiving plate 16 is formed by integrally cutting the two surfaces connecting the front surface and the rear surface, the top surface, and the bottom surface. Then, a circular opening is formed as an outflow port 20 in the upper part of one of the two surfaces connecting the front surface and the rear surface, and as an inflow port 21 in the lower part. The diameter of the outlet 20 is larger than the diameter of the inlet 21.
 受熱板15には、一方の面に平行に並ぶ複数の板状のフィン22を形成し、他方の面に接触面9を一体で設ける。 The heat receiving plate 15 is formed with a plurality of plate-like fins 22 arranged in parallel with one surface, and the contact surface 9 is integrally provided on the other surface.
 受熱板15は、アルミニウムを押出し成型し、その後切削して作成する。 The heat receiving plate 15 is formed by extruding aluminum and then cutting.
 押出し成型をしただけでは、フィン22は、受熱板15の上端から下端まで設けられていて、放熱内部経路24と帰還内部経路25となる空間はない状態である。押出し成型であるので、押出す上流から下流まで連続的に同じ形状となり、中央部にのみフィン22を設けることはできないからである。 The fin 22 is provided from the upper end to the lower end of the heat receiving plate 15 only by extrusion molding, and there is no space for the heat dissipation internal path 24 and the return internal path 25. This is because it is extrusion molding, so that the shape is continuously the same from upstream to downstream and the fins 22 cannot be provided only at the center.
 受熱板15を押出し成型した後で、受熱板15の上部に放熱内部経路24となる空間を設けるため、また下部に帰還内部経路25となる空間を設けるために、受熱板15の上部と下部のフィン22を切削する。切削する深さは、フィン22の根元よりさらに深くまで、外郭となる接触面9の厚みを残して削る。 After extruding the heat receiving plate 15, the upper and lower portions of the heat receiving plate 15 are provided in order to provide a space to be the heat dissipation internal path 24 in the upper part of the heat receiving plate 15 and to provide a space to be the return internal path 25 in the lower part. The fin 22 is cut. The depth of cutting is further deepened from the base of the fin 22 while leaving the thickness of the contact surface 9 serving as the outline.
 受熱板16は、前面および後面が最大面積の直方体形状のアルミニウムを切削して作成する。 The heat receiving plate 16 is formed by cutting a rectangular parallelepiped aluminum having a maximum area on the front and rear surfaces.
 受熱板16は、前面と後面をつなぐ2つの面、天面、および底面を残して、一方の面に並列に並ぶ複数の板状のフィン23および仕切板30を、他方の面に接触面10を切削して設ける。 The heat receiving plate 16 has a plurality of plate-like fins 23 and a partition plate 30 arranged in parallel on one surface, leaving two surfaces connecting the front surface and the rear surface, a top surface, and a bottom surface, and a contact surface 10 on the other surface. Is provided by cutting.
 さらに、受熱板16に設けた主面をつなぐ面のいずれか一方の上部に、流出口20、同一の面の下部に流入口21として円形の開口部を切削して設ける。また、受熱板15と、受熱板16の上部、下部に各々複数の固定用ネジ孔19も切削して設ける。 Further, a circular opening is cut and provided as an inflow port 20 at the upper part of one of the surfaces connecting the main surfaces provided in the heat receiving plate 16 and as an inflow port 21 at the lower part of the same surface. Further, a plurality of fixing screw holes 19 are also cut and provided in the upper and lower portions of the heat receiving plate 15 and the heat receiving plate 16, respectively.
 そして、切削した後に、受熱板15と受熱板16をフィン22とフィン23のフィンがかみ合うように対向させ、受熱板15と受熱板16をロウづけで接合する。 Then, after cutting, the heat receiving plate 15 and the heat receiving plate 16 are opposed so that the fins of the fins 22 and the fins 23 are engaged, and the heat receiving plate 15 and the heat receiving plate 16 are joined by brazing.
 受熱板16の流出口20には、放熱経路接続部材11を介して放熱経路5の配管をロウづけで接合し、流入口21には、帰還経路接続部材12を介して帰還経路6の配管をロウづけで接合する。 The piping of the heat dissipation path 5 is brazed to the outlet 20 of the heat receiving plate 16 via the heat dissipation path connecting member 11, and the piping of the return path 6 is connected to the inlet 21 via the return path connecting member 12. Join with brazing.
 なお、上記の製造方法は一例であり、これに限られるものではない。 In addition, said manufacturing method is an example and is not restricted to this.
 (第2の実施の形態)
 以下、本発明の第2の実施の形態における冷却装置について説明する。
(Second Embodiment)
Hereinafter, the cooling device in the 2nd Embodiment of this invention is demonstrated.
 図7および図8は、本発明の第2の実施の形態における冷却装置1の受熱部3の分解斜視図である。 7 and 8 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 according to the second embodiment of the present invention.
 図9は、本実施の形態における冷却装置1の受熱部3の断面を示す図である。 FIG. 9 is a diagram showing a cross section of the heat receiving portion 3 of the cooling device 1 in the present embodiment.
 第1の実施の形態と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。 The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図7~図9に示すように、帰還内部経路25は、流入口21に接続された両端が開放された管路32を備えている。管路32は、流入口21および流出口20を形成した側面と、その側面と対向するもう一方の側面との中間点より流入口21および流出口20を形成した側面から遠い側まで延設されている構成にしてもよい。これにより、流入口21および流出口20を形成した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 As shown in FIGS. 7 to 9, the return internal path 25 is provided with a pipe line 32 connected to the inlet 21 and having both ends opened. The pipe line 32 extends from the intermediate point between the side surface on which the inflow port 21 and the outflow port 20 are formed and the other side surface facing the side surface to a side far from the side surface on which the inflow port 21 and the outflow port 20 are formed. You may make it the structure which has. Thereby, by supplying the refrigerant to a region far from the side surface where the inlet 21 and the outlet 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 すなわち、帰還内部経路25は、流入口21に接続された両端が開放された管路32を備えたものであるので、帰還経路6の液相冷媒は、流入口21から管路32を通過し、帰還内部経路25内に流出する。管路32は、流入口21および流出口20を形成した側面から突出し、その側面と対向するもう一方の側面との中間点より流入口21および流出口20を形成した側面から遠い位置まで延設されている。そのため、冷媒は、流入口21および流出口20を形成した側面から遠い側にある管路32の開放された端部まで到達した後に帰還内部経路25に流出し、その後フィン部2に流出する。管路32がない場合では、帰還経路6から受熱部3内部に流出する液相の冷媒は、全てが流入口21および流出口20を形成した側面側から受熱部3内に流れ込むため、この側面と対向するもう一方の側面側に液相の冷媒が供給され難くなる。そのため、流入口21付近において気化した冷媒が流入口21および流出口20を形成した側面の近傍を上昇して流出口20に流れ込むため、この側面と対向するもう一方の側面側に位置するフィン部2にて液相の冷媒が供給できなくなる、いわゆるドライアウトの状態が発生しやすくなる。しかし、本発明の構成においては、流入口21および流出口20を形成した側面から遠い側、すなわち、流入口21および流出口20を形成した側面と対向するもう一方の側面に近い帰還内部経路25に液相の冷媒が供給される。そして、帰還内部経路25に流出した液相の冷媒は、第1発熱体28および第2発熱体29の熱により一部の液相の冷媒が気化し、その拡散作用により、帰還内部経路25に拡散する。よって、帰還内部経路25に拡散した液相の冷媒により、フィン部2に流出した気相と液相の二層の冷媒には、フィン部2の全域においてフィン22およびフィン23から受熱するだけの十分な液相の冷媒が供給されることとなり、最終的に圧力の低い流出口20に流れ込む。また、流入口21および流出口20を形成した側面側は流出口20に続く放熱部4(図1参照)の作用により圧力が低いので、流入口21および流出口20を形成した側面から遠い領域でフィン部2に流出した冷媒は、流入口21および流出口20を形成した側面側に流れやすくなる。そのため、フィン部2全体に液相の冷媒が供給される。 That is, since the return internal path 25 includes the pipe line 32 that is connected to the inlet 21 and is open at both ends, the liquid refrigerant of the return path 6 passes through the pipe line 32 from the inlet 21. , Flows out into the return internal path 25. The pipe 32 protrudes from the side surface on which the inflow port 21 and the outflow port 20 are formed, and extends to a position far from the side surface on which the inflow port 21 and the outflow port 20 are formed from an intermediate point between the side surface and the other side surface facing the side surface. Has been. Therefore, the refrigerant flows out to the return internal path 25 after reaching the open end of the pipe line 32 on the side far from the side surface on which the inflow port 21 and the outflow port 20 are formed, and then flows out to the fin portion 2. In the case where there is no pipe line 32, all of the liquid-phase refrigerant flowing out from the return path 6 into the heat receiving unit 3 flows into the heat receiving unit 3 from the side surface on which the inlet 21 and the outlet 20 are formed. It is difficult for the liquid-phase refrigerant to be supplied to the other side surface opposite to. Therefore, since the refrigerant vaporized in the vicinity of the inflow port 21 rises in the vicinity of the side surface on which the inflow port 21 and the outflow port 20 are formed and flows into the outflow port 20, the fin portion located on the other side surface facing this side surface The so-called dry-out state in which the liquid phase refrigerant cannot be supplied in 2 is likely to occur. However, in the configuration of the present invention, the return internal path 25 close to the side far from the side where the inlet 21 and the outlet 20 are formed, that is, the other side opposite to the side where the inlet 21 and the outlet 20 are formed. Is supplied with a liquid-phase refrigerant. The liquid-phase refrigerant that has flowed out to the return internal path 25 is partially vaporized by the heat of the first heating element 28 and the second heating element 29, and is diffused into the return internal path 25. Spread. Therefore, the liquid-phase refrigerant that has diffused into the return internal path 25 only receives heat from the fin 22 and the fin 23 in the entire area of the fin portion 2 by the two-phase refrigerant that has flowed out into the fin portion 2. Sufficient liquid phase refrigerant is supplied, and finally flows into the outlet 20 having a low pressure. Further, since the pressure on the side surface where the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 (see FIG. 1) following the outflow port 20, the region far from the side surface where the inflow port 21 and the outflow port 20 are formed. Thus, the refrigerant that has flowed out into the fin portion 2 easily flows to the side surface on which the inflow port 21 and the outflow port 20 are formed. Therefore, the liquid phase refrigerant is supplied to the entire fin portion 2.
 これにより、流入口21および流出口20を形成した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口21および流出口20を形成した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 Thereby, it is possible to suppress a so-called dry-out state in which the liquid phase refrigerant is not supplied to the region far from the side surface where the inlet 21 and the outlet 20 are formed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inflow port 21 and the outflow port 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 なお、管路32が本実施の形態で示した管路32の長さに満たない場合であっても、流入口21から受熱部3内に流入した冷媒は管路32によって流入口21および流出口20を設置した側面から遠い領域まで冷媒が供給される。そのため、本実施の形態と同様に、冷却性能の高い冷却装置1を提供することができる。 Even when the pipe line 32 is less than the length of the pipe line 32 shown in the present embodiment, the refrigerant that has flowed into the heat receiving portion 3 from the inlet port 21 flows into the inlet 21 and the flow path through the pipe line 32. The refrigerant is supplied to a region far from the side surface where the outlet 20 is installed. Therefore, the cooling device 1 with high cooling performance can be provided as in the present embodiment.
 また、管路32は、複数の開口部33を有する構成にしてもよい。帰還内部経路25内に設けた管路32により、流入口21および流出口20を形成した側面から遠い側、すなわち、流入口21および流出口20を形成した側面と対向するもう一方の側面に近い帰還内部経路25に液相の冷媒が供給される。帰還内部経路25に流出した液相の冷媒は、第1発熱体28および第2発熱体29の熱により一部の液相の冷媒が気化し、その拡散作用により、帰還内部経路25に拡散するとともに、流入口21から管路32に流入した液相冷媒の一部が管路32に設けた複数の開口部33から帰還内部経路25に拡散する。よって、帰還内部経路25に拡散した液相の冷媒により、フィン部2に流出した気相と液相の二層の冷媒には、フィン部2全域においてフィン22およびフィン23から受熱するだけの十分な液相の冷媒が供給されることとなり、受熱した冷媒は最終的に圧力の低い流出口20に流れ込む。また、流入口21および流出口20を形成した側面側は流出口20に続く放熱部4の作用により圧力が低いので、流入口21および流出口20を形成した側面から遠い領域でフィン部2に流出した冷媒は、流入口21および流出口20を形成した側面側に流れやすくなるため、フィン部2全体に冷媒が供給されることとなる。 Further, the pipe line 32 may be configured to have a plurality of openings 33. By the pipe line 32 provided in the return internal path 25, it is close to the side far from the side where the inlet 21 and the outlet 20 are formed, that is, the other side opposite to the side where the inlet 21 and the outlet 20 are formed. Liquid phase refrigerant is supplied to the return internal path 25. A part of the liquid-phase refrigerant that has flowed out into the return internal path 25 is vaporized by the heat of the first heat generating element 28 and the second heat generating element 29, and is diffused into the return internal path 25 by its diffusion action. At the same time, a part of the liquid refrigerant flowing into the pipe line 32 from the inlet 21 diffuses into the return internal path 25 from a plurality of openings 33 provided in the pipe line 32. Therefore, the liquid-phase refrigerant diffused in the return internal path 25 is sufficient to receive heat from the fins 22 and 23 throughout the fin portion 2 for the two-phase refrigerant of the gas phase and the liquid phase flowing out to the fin portion 2. The liquid refrigerant is supplied, and the heat-received refrigerant finally flows into the outlet 20 having a low pressure. Further, since the pressure on the side surface where the inflow port 21 and the outflow port 20 are formed is low due to the action of the heat radiating portion 4 following the outflow port 20, the fin portion 2 is located in a region far from the side surface where the inflow port 21 and the outflow port 20 are formed. Since the refrigerant that has flowed out easily flows to the side surface on which the inlet 21 and the outlet 20 are formed, the refrigerant is supplied to the entire fin portion 2.
 これにより、流入口21および流出口20を形成した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口21および流出口20を形成した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができるものである。 Thereby, it is possible to suppress a so-called dry-out state in which the liquid phase refrigerant is not supplied to the region far from the side surface where the inlet 21 and the outlet 20 are formed and cannot be cooled. As a result, by supplying the refrigerant to a region far from the side surface where the inflow port 21 and the outflow port 20 are formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 (第3の実施の形態)
 以下、本発明の第3の実施の形態における冷却装置について、図面を参照しながら説明する。
(Third embodiment)
Hereinafter, a cooling device according to a third embodiment of the present invention will be described with reference to the drawings.
 なお、本実施の形態における冷却装置の概略構成は、図1に示す第1の実施の形態における冷却装置1と同様であり、以下の説明では第1の実施の形態における冷却装置1と同じ構成要素については同じ符号を付して説明を省略する。 The schematic configuration of the cooling device in the present embodiment is the same as that of the cooling device 1 in the first embodiment shown in FIG. 1, and in the following description, the same configuration as that of the cooling device 1 in the first embodiment is used. Elements are denoted by the same reference numerals and description thereof is omitted.
 図10は、本実施の形態の冷却装置1の受熱部3の外観を示す図である。 FIG. 10 is a diagram illustrating an appearance of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.
 図11および図12は、本実施の形態の冷却装置1の受熱部3の分解斜視図である。 11 and 12 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 of the present embodiment.
 図13は、本実施の形態の冷却装置1の受熱部3の断面図であり、図10の13-13断面図である。 FIG. 13 is a cross-sectional view of the heat receiving section 3 of the cooling device 1 of the present embodiment, and is a cross-sectional view taken along line 13-13 of FIG.
 図10~図13に示すように、受熱部3は、前面および後面が最大面積の直方体形状とする。受熱部3は、前面および後面が垂直方向となるように設置する。前面には、第1発熱体28を設置する受熱板15を設け、後面には、第2発熱体29を設置する受熱板16を設ける。 As shown in FIGS. 10 to 13, the heat receiving portion 3 has a rectangular parallelepiped shape with the front and rear surfaces having the maximum area. The heat receiving unit 3 is installed so that the front surface and the rear surface are in the vertical direction. A heat receiving plate 15 on which the first heating element 28 is installed is provided on the front surface, and a heat receiving plate 16 on which the second heating element 29 is installed on the rear surface.
 また、本実施の形態では、受熱部3の前面に第1発熱体28を設置した受熱板15を設け、受熱部3の後面に第2発熱体29を設置した受熱板16を設けているが、受熱部3の前面または後面のいずれか一方に発熱体を設置した受熱板を設ける構成としてもよい。 In the present embodiment, the heat receiving plate 15 provided with the first heat generating element 28 is provided on the front surface of the heat receiving unit 3, and the heat receiving plate 16 provided with the second heat generating element 29 is provided on the rear surface of the heat receiving unit 3. Further, a heat receiving plate in which a heating element is installed on either the front surface or the rear surface of the heat receiving unit 3 may be provided.
 第1発熱体28は受熱板15と接触して熱的に接続され、第2発熱体29は受熱板16と接触して熱的に接続されている。受熱板15と受熱板16には、第1発熱体28、第2発熱体29を固定するための固定用ネジ孔19が適宜設けてあり、第1発熱体28を受熱板15にネジで固定し、第2発熱体29を受熱板16にネジで固定する。受熱部3は、第1発熱体28と第2発熱体29との間に挟まれるように垂直方向に設置する。 The first heating element 28 is in contact with the heat receiving plate 15 and thermally connected, and the second heating element 29 is in contact with the heat receiving plate 16 and thermally connected. The heat receiving plate 15 and the heat receiving plate 16 are appropriately provided with fixing screw holes 19 for fixing the first heating element 28 and the second heating element 29, and the first heating element 28 is fixed to the heat receiving plate 15 with screws. Then, the second heating element 29 is fixed to the heat receiving plate 16 with screws. The heat receiving unit 3 is installed in the vertical direction so as to be sandwiched between the first heating element 28 and the second heating element 29.
 直方体形状である受熱部3内部の上部には放熱内部経路24として空間を設け、受熱部3内部の下部には帰還内部経路25を設けるための空間を設ける。さらに、受熱部3の放熱内部経路24と帰還内部経路25との間の中央部をフィン部2とする。 A space is provided as a heat dissipation internal path 24 in the upper part of the heat receiving part 3 having a rectangular parallelepiped shape, and a space for providing a return internal path 25 is provided in the lower part of the heat receiving part 3. Furthermore, the center part between the heat radiation internal path 24 and the return internal path 25 of the heat receiving part 3 is defined as the fin part 2.
 受熱部3には、放熱経路5と放熱内部経路24とを接続する流出口20と、帰還経路6と帰還内部経路25とを接続する流入口21を形成する。そして、受熱部3の一方の側面に流入口21を形成し、この側面と対向するもう一方の側面に流出口20を設ける。流出口20を設ける側面および流入口21を設ける側面は、受熱板15、16を設ける前面、後面をつなぐ2つの対向する側面である。 In the heat receiving part 3, an outlet 20 that connects the heat dissipation path 5 and the heat dissipation internal path 24 and an inlet 21 that connects the return path 6 and the return internal path 25 are formed. And the inflow port 21 is formed in one side surface of the heat receiving part 3, and the outflow port 20 is provided in the other side surface facing this side surface. The side surface on which the outflow port 20 is provided and the side surface on which the inflow port 21 is provided are two opposing side surfaces that connect the front surface and the rear surface on which the heat receiving plates 15 and 16 are provided.
 受熱板15から、受熱部3の内部に突出する複数の平板状のフィン22を平行に並べて設け、受熱板16から、受熱部3の内部に突出する複数の平板状のフィン23を平行に並べて設ける。フィン間の冷媒の流路が垂直方向となるようにフィン22およびフィン23を配置する。すなわち、フィン22およびフィン23の各々のフィン間の隙間が上下方向となるように配置する。 A plurality of flat fins 22 projecting from the heat receiving plate 15 to the inside of the heat receiving unit 3 are arranged in parallel, and a plurality of flat fins 23 protruding from the heat receiving plate 16 to the inside of the heat receiving unit 3 are arranged in parallel. Provide. The fins 22 and the fins 23 are arranged so that the refrigerant flow path between the fins is in the vertical direction. That is, it arrange | positions so that the clearance gap between each fin 22 and the fin 23 may become an up-down direction.
 さらに、流入口21とフィン部2との間には受熱部3の底面とほぼ平行に配置された仕切板30を備える。仕切板30は、少なくとも一つの開口部31を有する。 Furthermore, a partition plate 30 is provided between the inlet 21 and the fin portion 2 and is arranged substantially parallel to the bottom surface of the heat receiving portion 3. The partition plate 30 has at least one opening 31.
 これにより、流入口21を形成した側面側から遠い領域まで均一に液相の冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 Thereby, by supplying the liquid-phase refrigerant uniformly to the region far from the side surface where the inflow port 21 is formed, the local dry-out in the heat-receiving unit 3 is prevented, and the heat-receiving unit 3 has an excessive amount of liquid-phase refrigerant. The thin liquid phase refrigerant layer can be formed in the heat receiving portion 3 and the cooling device 1 with high cooling performance can be provided.
 すなわち、流入口21とフィン部2との間に設けた仕切板30により、流入口21から帰還内部経路25に流入した液相の冷媒が直接フィン部2に上昇する流れを遮られる。仕切板30は、少なくとも一つの開口部31を有するので、流入口21から帰還内部経路25に流入した液相の冷媒が開口部31よりフィン部2に流出する。開口部31は、仕切板30とフィン部2との間の空間に、略均一に液相の冷媒を供給するように構成となるため、帰還内部経路25に流出した液相の冷媒が開口部31からフィン部2全域に供給されることとなる。仕切板30がない場合では、流入口21から帰還内部経路25に流入した液相の冷媒は、第1発熱体28および第2発熱体29の熱により一部の液相の冷媒が気化し、その拡散作用により、帰還内部経路25に拡散する。しかし、流入口近傍において直接フィン部2にも流れ込むため、流入口を形成した側面側の近傍のフィン部2領域において、過剰な液相の冷媒が供給される。一方、流入口21を形成した側面側から遠ざかるほど、液相の冷媒の供給量が少なくなり、いわゆる局所ドライアウトの状態が発生しやすくなる。しかし、本発明の構成においては、流入口21とフィン部2との間に設けた仕切板30により、流入口21から帰還内部経路25に流出した液相の冷媒が、流入口近傍のフィン部にて過剰な液相の冷媒が上昇することを抑制することができる。そのため、帰還内部経路25に流出した一部の液相の冷媒が発熱体の熱により気化し、その拡散作用により、帰還内部経路25に拡散する。また、仕切板30に設けた開口部31は、仕切板30とフィン部2との間の空間に、略均一に液相の冷媒を供給する構成となるため、帰還内部経路25に拡散した液相の冷媒が開口部31からフィン部2全域にバランスよく供給される。フィン部2に流出した気相と液相の二層の冷媒には、フィン部2全域においてフィンから受熱するだけの十分な液相の冷媒が供給されることとなり、最終的に圧力の低い流出口20に流れ込み、フィン部2全体に冷媒が供給されることとなる。 That is, the partition plate 30 provided between the inflow port 21 and the fin portion 2 blocks the flow of the liquid refrigerant flowing into the return internal path 25 from the inflow port 21 directly to the fin portion 2. Since the partition plate 30 has at least one opening 31, the liquid refrigerant flowing into the return internal path 25 from the inlet 21 flows out from the opening 31 to the fin portion 2. Since the opening 31 is configured to supply the liquid-phase refrigerant substantially uniformly into the space between the partition plate 30 and the fin portion 2, the liquid-phase refrigerant that has flowed out to the return internal path 25 is opened. It will be supplied to the whole fin part 2 from 31. In the case where there is no partition plate 30, the liquid-phase refrigerant that has flowed into the return internal path 25 from the inlet 21 is partially vaporized by the heat of the first heating element 28 and the second heating element 29, The diffusion action diffuses into the return internal path 25. However, since it also flows directly into the fin portion 2 in the vicinity of the inflow port, excess liquid phase refrigerant is supplied in the fin portion 2 region in the vicinity of the side surface where the inflow port is formed. On the other hand, the further away from the side surface on which the inflow port 21 is formed, the smaller the supply amount of the liquid-phase refrigerant, and the more likely the so-called local dryout state occurs. However, in the configuration of the present invention, the liquid phase refrigerant that has flowed out from the inlet 21 to the return internal path 25 is allowed to flow into the fin portion near the inlet by the partition plate 30 provided between the inlet 21 and the fin portion 2. It is possible to suppress an increase in the excessive liquid phase refrigerant. Therefore, a part of the liquid-phase refrigerant that has flowed out to the return internal path 25 is vaporized by the heat of the heating element, and is diffused to the return internal path 25 by its diffusion action. Further, the opening 31 provided in the partition plate 30 is configured to supply the liquid-phase refrigerant substantially uniformly into the space between the partition plate 30 and the fin portion 2, so that the liquid diffused in the return internal path 25 The phase refrigerant is supplied from the opening 31 to the entire fin portion 2 in a well-balanced manner. The two-phase refrigerant of the gas phase and the liquid phase that has flowed out to the fin portion 2 is supplied with sufficient liquid-phase refrigerant to receive heat from the fin in the entire area of the fin portion 2, and finally the low-pressure flow The refrigerant flows into the outlet 20 and is supplied to the entire fin portion 2.
 これにより、流入口21を形成した側面側から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口21を形成した側面側から遠い領域まで均一に液相冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 Thereby, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet 21 is formed and cannot be cooled. As a result, by supplying the liquid refrigerant uniformly to the region far from the side surface where the inlet 21 is formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need to fill, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 また、受熱部3は、開口部31を複数有したものであって、複数の開口部31を設ける間隔は、流出口20を形成した側面から遠ざかるほど短くする構成にしてもよい。 Moreover, the heat receiving part 3 has a plurality of openings 31, and the interval at which the plurality of openings 31 are provided may be configured to be shorter as the distance from the side surface where the outlet 20 is formed.
 流出口20を形成した側面側は流出口に続く放熱部4の作用により圧力が低いので、流出口20を形成した側面に近いほど流出口20に冷媒が流れやすく、流出口20を形成した側面から遠いほど流出口20に冷媒が流れ難くなる。複数の開口部31を設ける間隔を、流出口20を形成した側面から遠ざかるほど短くすることにより、流出口20を形成した側面に近い領域は開口部31の数を少なくして、フィン部2に流出する冷媒の流れを抑制する。そして、流出口20を形成した側面から遠い領域は開口部31の数を多くして、フィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。 Since the pressure on the side surface on which the outflow port 20 is formed is low due to the action of the heat radiating unit 4 following the outflow port, the refrigerant is more likely to flow through the outflow port 20 closer to the side surface on which the outflow port 20 is formed. As the distance from the outlet increases, the refrigerant hardly flows to the outlet 20. By shortening the interval at which the plurality of openings 31 are provided away from the side surface on which the outflow port 20 is formed, the area close to the side surface on which the outflow port 20 is formed reduces the number of openings 31 and Suppresses the flow of refrigerant flowing out. And the area | region far from the side surface which formed the outflow port 20 increases the number of the opening parts 31, and promotes the flow of the refrigerant | coolant which flows out into the fin part 2. FIG. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.
 ここで、詳しく説明すると、仕切板30がない場合では、流入口21から帰還内部経路25に流入した液相の冷媒は、発熱体の熱により一部の液相の冷媒が気化し、その拡散作用により、帰還内部経路25に拡散する。しかし、流入口21近傍において直接フィン部2にも流れ込むため、流入口21を形成した側面側の近傍のフィン部2領域において、過剰な液相の冷媒が供給される。一方、流入口21を形成した側面側から遠ざかるほど、液相の冷媒の供給量が少なくなり、いわゆる局所ドライアウトの状態が発生しやすくなる。 More specifically, in the case where the partition plate 30 is not provided, the liquid-phase refrigerant that has flowed into the return internal path 25 from the inlet 21 is partially vaporized by the heat of the heating element, and the diffusion thereof. Due to the action, it diffuses into the return internal path 25. However, since it also flows directly into the fin portion 2 in the vicinity of the inflow port 21, excessive liquid phase refrigerant is supplied in the fin portion 2 region in the vicinity of the side surface on which the inflow port 21 is formed. On the other hand, the further away from the side surface on which the inflow port 21 is formed, the smaller the supply amount of the liquid-phase refrigerant, and the more likely the so-called local dryout state occurs.
 しかしながら、仕切板30を設けることにより、帰還内部経路25において、流入口21を形成した側面側から流出口20を形成した側面側まで、ほぼ均等に液相の冷媒が供給される。すなわち、仕切板30の効果で、流入口21近傍のフィン部2領域における過剰な液相冷媒が供給されることと、流出口20近傍のフィン部2領域における液相冷媒の供給量不足による局所ドライアウトを抑制することができる。一方、放熱部4の作用による減圧効果の影響により、流出口20近傍のフィン部2領域は冷媒が流れやすく、放熱部4の作用による減圧効果を受け難い流入口21近傍のフィン部2領域は冷媒が流れ難くなる。よって、複数の開口部31を設ける間隔を、流出口20を形成した側面から遠ざかるほど短くする。すなわち、流出口20を形成した側面に近い領域は開口部31の数を少なくすることで、仕切板30とフィン部2との間の空間に開口部31から流出する液相の冷媒量のバランスを、流出口20側が少なく、流入口21側が多くなるようにすることができる。その流出した液相冷媒は、仕切板30とフィン部2との間の空間内にて流入口21側から流出口20側に流れるため、結果として、フィン部2の上流側にてほぼ均一の液相冷媒量となり、フィン部2全体にほぼ均一の液相の冷媒が供給されることとなる。 However, by providing the partition plate 30, in the return internal path 25, the liquid-phase refrigerant is supplied almost evenly from the side surface side where the inflow port 21 is formed to the side surface side where the outflow port 20 is formed. That is, due to the effect of the partition plate 30, excessive liquid phase refrigerant is supplied in the fin portion 2 region near the inlet 21, and local supply due to an insufficient supply amount of liquid phase refrigerant in the fin portion 2 region near the outlet 20. Dryout can be suppressed. On the other hand, due to the effect of the pressure reducing effect due to the action of the heat radiating part 4, the refrigerant is likely to flow through the fin part 2 area near the outlet 20, and the fin part 2 area near the inlet 21 that is less susceptible to the pressure reducing effect due to the action of the heat radiating part 4 It becomes difficult for the refrigerant to flow. Therefore, the interval at which the plurality of openings 31 are provided is shortened as the distance from the side surface on which the outlet 20 is formed. That is, by reducing the number of openings 31 in the region close to the side surface on which the outlet 20 is formed, the balance of the amount of refrigerant in the liquid phase flowing out from the openings 31 into the space between the partition plate 30 and the fins 2 is achieved. The outlet 20 side is small and the inlet 21 side is large. The outflowed liquid-phase refrigerant flows from the inlet 21 side to the outlet 20 side in the space between the partition plate 30 and the fin portion 2, and as a result, substantially uniform on the upstream side of the fin portion 2. The amount of liquid-phase refrigerant becomes so that a substantially uniform liquid-phase refrigerant is supplied to the entire fin portion 2.
 これにより、液相冷媒の供給不足による局所ドライアウトを抑制することができる。結果として、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができるものである。 This can suppress local dryout due to insufficient supply of liquid phase refrigerant. As a result, there is no need to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant, and a thin liquid phase refrigerant layer can be formed in the heat receiving unit 3 to provide the cooling device 1 with high cooling performance. It is something that can be done.
 また、受熱部3は、開口部31を複数有したものであって、複数の開口部31の面積は、流出口20を形成した側面から遠ざかるほど大きくする構成にしてもよい。 Moreover, the heat receiving part 3 has a plurality of openings 31, and the area of the plurality of openings 31 may be configured to increase as the distance from the side surface on which the outlet 20 is formed.
 流出口20を形成した側面側は流出口20に続く放熱部4(図1参照)の作用により圧力が低いので、流出口20を形成した側面に近いほど流出口20に冷媒が流れやすく、流出口20を形成した側面から遠いほど流出口20に冷媒が流れ難くなる。仕切板30に形成した複数の開口部31の面積は、流出口20を形成した側面から遠ざかるほど大きくすることにより、流出口20を形成した側面に近い領域は開口部31の面積を小さくして、フィン部2に流出する冷媒の流れを抑制する。そして、流出口20を形成した側面から遠い領域は開口部31の面積を大きくして、フィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。 Since the pressure on the side surface where the outflow port 20 is formed is lower due to the action of the heat radiating section 4 (see FIG. 1) following the outflow port 20, the closer the side surface where the outflow port 20 is formed, the easier the refrigerant flows into the outflow port 20. The further away from the side surface on which the outlet 20 is formed, the more difficult the refrigerant flows to the outlet 20. By increasing the area of the plurality of openings 31 formed in the partition plate 30 away from the side surface where the outlet 20 is formed, the area near the side surface where the outlet 20 is formed decreases the area of the opening 31. The flow of the refrigerant flowing out to the fin portion 2 is suppressed. And the area | region far from the side surface in which the outflow port 20 was formed enlarges the area of the opening part 31, and promotes the flow of the refrigerant | coolant which flows out into the fin part 2. FIG. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.
 ここで、詳しく説明すると、仕切板30がない場合では、流入口21から帰還内部経路25に流入した液相の冷媒は、発熱体の熱により一部の液相の冷媒が気化し、その拡散作用により、帰還内部経路25に拡散するが、流入口21近傍において直接フィン部2にも流れ込むため、流入口21を形成した側面側の近傍のフィン部2領域において、過剰な液相の冷媒が供給される。一方、流入口21を形成した側面側から遠ざかるほど、液相の冷媒の供給量が少なくなり、いわゆる局所ドライアウトの状態が発生しやすくなる。 More specifically, in the case where the partition plate 30 is not provided, the liquid-phase refrigerant that has flowed into the return internal path 25 from the inlet 21 is partially vaporized by the heat of the heating element, and the diffusion thereof. Due to the action, it diffuses into the return internal path 25 but directly flows into the fin portion 2 in the vicinity of the inflow port 21, so that excess liquid phase refrigerant is present in the fin portion 2 region near the side surface where the inflow port 21 is formed. Supplied. On the other hand, the further away from the side surface on which the inflow port 21 is formed, the smaller the supply amount of the liquid-phase refrigerant, and the more likely the so-called local dryout state occurs.
 しかしながら、仕切板30を設けることにより、帰還内部経路25において、流入口21を形成した側面側から流出口20を形成した側面側まで、ほぼ均等に液相の冷媒が供給される。すなわち、仕切板30の効果で、流入口21近傍のフィン部2領域における過剰な液相冷媒が供給されることと、流出口20近傍のフィン部2領域における液相冷媒の供給量不足による局所ドライアウトを抑制することができる。一方、放熱部4の作用による減圧効果の影響により、流出口20近傍のフィン部2領域は冷媒が流れやすく、放熱部4の作用による減圧効果を受け難い流入口21近傍のフィン部2領域は冷媒が流れ難くなる。よって、複数の開口部31を設ける面積を、流出口20を形成した側面から遠ざかるほど大きくする、すなわち、流出口20を形成した側面に近い領域は開口部31の面積を小さくすることで、仕切板30とフィン部2との間の空間に開口部31から流出する液相の冷媒量のバランスを、流出口20側が少なく、流入口21側が多くなるようにすることができ、その流出した液相冷媒は、仕切板30とフィン部2との間の空間内にて流入口21側から流出口20側に流れるため、結果として、フィン部2の上流側にてほぼ均一の液相冷媒量となり、フィン部2全体にほぼ均一の液相の冷媒が供給されることとなる。 However, by providing the partition plate 30, in the return internal path 25, the liquid-phase refrigerant is supplied almost evenly from the side surface side where the inflow port 21 is formed to the side surface side where the outflow port 20 is formed. That is, due to the effect of the partition plate 30, excessive liquid phase refrigerant is supplied in the fin portion 2 region near the inlet 21, and local supply due to an insufficient supply amount of liquid phase refrigerant in the fin portion 2 region near the outlet 20. Dryout can be suppressed. On the other hand, due to the effect of the pressure reducing effect due to the action of the heat radiating part 4, the refrigerant is likely to flow through the fin part 2 area near the outlet 20, and the fin part 2 area near the inlet 21 that is less susceptible to the pressure reducing effect due to the action of the heat radiating part 4 It becomes difficult for the refrigerant to flow. Therefore, the area where the plurality of openings 31 are provided is increased as the distance from the side surface where the outlet 20 is formed, that is, the area close to the side surface where the outlet 20 is formed is reduced by reducing the area of the opening 31. In the space between the plate 30 and the fin portion 2, the balance of the amount of refrigerant in the liquid phase flowing out from the opening 31 can be reduced so that the outflow port 20 side is small and the inflow port 21 side is large. Since the phase refrigerant flows from the inlet 21 side to the outlet 20 side in the space between the partition plate 30 and the fin portion 2, as a result, the liquid phase refrigerant amount is substantially uniform on the upstream side of the fin portion 2. Thus, a substantially uniform liquid-phase refrigerant is supplied to the entire fin portion 2.
 これにより、液相冷媒の供給不足による局所ドライアウトを抑制することができる。結果として、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができるものである。 This can suppress local dryout due to insufficient supply of liquid phase refrigerant. As a result, there is no need to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant, and a thin liquid phase refrigerant layer can be formed in the heat receiving unit 3 to provide the cooling device 1 with high cooling performance. It is something that can be done.
 図14Aは、本実施の形態における冷却装置の受熱部の断面図であり、図10の14A-14A断面図である。図14Bは、本実施の形態における冷却装置の受熱部の拡大図であり、図14Aの領域14Bの拡大図である。 FIG. 14A is a cross-sectional view of the heat receiving portion of the cooling device according to the present embodiment, and is a cross-sectional view of 14A-14A in FIG. FIG. 14B is an enlarged view of the heat receiving portion of the cooling device in the present embodiment, and is an enlarged view of region 14B in FIG. 14A.
 図14A、図14Bに示す第1発熱体28、第2発熱体29と受熱板15、受熱板16は、第1の実施の形態における図6A、図6Bに示す第1発熱体28、第2発熱体29と受熱板15、受熱板16と同様の構成であり、説明を省略する。 The first heating element 28, the second heating element 29, the heat receiving plate 15, and the heat receiving plate 16 shown in FIGS. 14A and 14B are the same as the first heating element 28 and the second heating element 28 shown in FIGS. 6A and 6B in the first embodiment. The configuration is the same as that of the heating element 29, the heat receiving plate 15, and the heat receiving plate 16, and the description is omitted.
 なお、本実施の形態における冷却装置1を搭載した電子機器にしてもよい。これにより、流入口21を形成した側面側から遠い領域まで均一に液相冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を搭載した電子機器50(図1参照)を提供することができる。 In addition, you may make it the electronic device carrying the cooling device 1 in this Embodiment. Thereby, by supplying the liquid refrigerant uniformly to a region far from the side surface where the inlet 21 is formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need to fill it, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and an electronic device 50 (see FIG. 1) equipped with the cooling device 1 with high cooling performance can be provided.
 なお、本実施の形態における冷却装置1の受熱部3の製造方法は、第1の実施の形態における冷却装置1の受熱部3の製造方法と基本的に変わらないので、説明を省略する。 In addition, since the manufacturing method of the heat receiving part 3 of the cooling device 1 in this Embodiment is not fundamentally different from the manufacturing method of the heat receiving part 3 of the cooling device 1 in 1st Embodiment, description is abbreviate | omitted.
 (第4の実施の形態)
 次に本発明の第4の実施の形態における冷却装置について説明する。
(Fourth embodiment)
Next, the cooling device in the 4th Embodiment of this invention is demonstrated.
 図15および図16は、本実施の形態における冷却装置1の受熱部3の分解斜視図である。 15 and 16 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 according to the present embodiment.
 図17は、本実施の形態における冷却装置1の受熱部3の断面を示す図である。 FIG. 17 is a diagram showing a cross section of the heat receiving portion 3 of the cooling device 1 in the present embodiment.
 第3の実施の形態における冷却装置の受熱部と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。 Components similar to those of the heat receiving portion of the cooling device in the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図15~図17に示すように、帰還内部経路25は、帰還内部経路25に流入口21に接続された管路32を備えている。管路32は、少なくとも一つの開口部33を有する構成にしてもよい。これにより、流入口21を形成した側面側から遠い領域まで均一に液相冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 As shown in FIGS. 15 to 17, the return internal path 25 includes a pipe 32 connected to the inflow port 21 in the return internal path 25. The pipe line 32 may be configured to have at least one opening 33. Thereby, by supplying the liquid refrigerant uniformly to a region far from the side surface where the inlet 21 is formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need to fill, and a thin liquid-phase refrigerant layer can be formed in the heat receiving part 3, and the cooling device 1 with high cooling performance can be provided.
 すなわち、帰還内部経路25は、流入口21に接続された管路32を備えたものである。管路32は、少なくとも一つの開口部33を有するので、帰還経路の液相冷媒は、流入口から管路32に流入し、管路32に設けた開口部33より帰還内部経路25に流出する。開口部33は、帰還内部経路25に略均一に液相の冷媒を供給するように構成されるため、帰還内部経路25に流出した液相の冷媒がフィン部2全域に供給されることとなる。管路32がない場合では、流入口21から帰還内部経路25に流入した液相の冷媒は、第1発熱体28および第2発熱体29の熱により一部の液相の冷媒が気化し、その拡散作用により、帰還内部経路25に拡散する。しかし、流入口21近傍において直接フィン部2にも流れ込むため、流入口21を形成した側面側の近傍のフィン部2領域において、過剰な液相の冷媒が供給される。一方、流入口21を形成した側面側から遠ざかるほど、液相の冷媒の供給量が少なくなり、流出口20近傍に位置するフィン部2領域においていわゆる局所ドライアウトの状態が発生しやすくなる。しかしながら、本実施の形態の構成においては、流入口21に接続された管路32により、流入口21から帰還内部経路25に流出した液相の冷媒が流入口21近傍のフィン部2にて過剰な液相の冷媒が上昇することを抑制することができ、帰還内部経路25に流出した一部の液相の冷媒が発熱体の熱により気化する。そして、その拡散作用により、帰還内部経路25に拡散する。また、管路32に設けた開口部33は、帰還内部経路25に、略均一に液相の冷媒を供給するように構成されるため、帰還内部経路25に拡散した液相の冷媒がフィン部2全域にバランスよく供給される。フィン部2に流出した気相と液相の二層の冷媒には、フィン部2全域においてフィン部2から受熱するだけの十分な液相の冷媒が供給されることとなり、最終的に圧力の低い流出口20に流れ込み、フィン部2全体に冷媒が供給されることとなる。 That is, the return internal path 25 includes a pipe line 32 connected to the inflow port 21. Since the pipe line 32 has at least one opening 33, the liquid refrigerant in the return path flows into the pipe line 32 from the inlet and flows out into the return internal path 25 from the opening 33 provided in the pipe line 32. . Since the opening 33 is configured to supply the liquid-phase refrigerant to the return internal path 25 substantially uniformly, the liquid-phase refrigerant that has flowed out to the return internal path 25 is supplied to the entire fin portion 2. . In the case where the pipe line 32 is not provided, the liquid-phase refrigerant flowing into the return internal passage 25 from the inlet 21 is partially vaporized by the heat of the first heating element 28 and the second heating element 29, The diffusion action diffuses into the return internal path 25. However, since it also flows directly into the fin portion 2 in the vicinity of the inflow port 21, excessive liquid phase refrigerant is supplied in the fin portion 2 region in the vicinity of the side surface on which the inflow port 21 is formed. On the other hand, the further away from the side surface on which the inflow port 21 is formed, the smaller the supply amount of the liquid-phase refrigerant, and the more likely the so-called local dryout state occurs in the fin portion 2 region located near the outflow port 20. However, in the configuration of the present embodiment, the liquid phase refrigerant flowing out from the inlet 21 to the return internal path 25 is excessive in the fin portion 2 in the vicinity of the inlet 21 due to the pipe line 32 connected to the inlet 21. As a result, it is possible to suppress an increase in the liquid phase refrigerant, and a part of the liquid phase refrigerant that has flowed out to the return internal path 25 is vaporized by the heat of the heating element. The diffusion action diffuses into the return internal path 25. Further, the opening 33 provided in the pipe line 32 is configured to supply the liquid refrigerant substantially uniformly to the return internal path 25, so that the liquid phase refrigerant diffused in the return internal path 25 is finned. 2 is supplied in a well-balanced manner. The two-layer refrigerant of the gas phase and the liquid phase that has flowed out to the fin portion 2 is supplied with sufficient liquid-phase refrigerant to receive heat from the fin portion 2 over the entire fin portion 2, and finally the pressure is reduced. The refrigerant flows into the low outlet 20 and the refrigerant is supplied to the entire fin portion 2.
 これにより、流入口21を形成した側面側から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口21を形成した側面側から遠い領域まで均一に液相冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置を提供することができる。 Thereby, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet 21 is formed and cannot be cooled. As a result, by supplying the liquid refrigerant uniformly to the region far from the side surface where the inlet 21 is formed, local dryout in the heat receiving unit 3 is prevented, and the heat receiving unit 3 is filled with an excessive amount of liquid phase refrigerant. There is no need to fill, a thin liquid phase refrigerant layer can be formed in the heat receiving part 3, and a cooling device with high cooling performance can be provided.
 また、受熱部3は、開口部33を複数有したものであって、複数の開口部33を設ける間隔は、流出口20を形成した側面から遠ざかるほど短くする構成にしてもよい。 Further, the heat receiving part 3 has a plurality of openings 33, and the interval at which the plurality of openings 33 are provided may be shortened as the distance from the side surface on which the outlet 20 is formed.
 流出口20を形成した側面側は流出口に続く放熱部4の作用により圧力が低いので、流出口20を形成した側面に近いほど流出口20に冷媒が流れやすく、流出口20を形成した側面から遠いほど流出口20に冷媒が流れ難くなる。複数の開口部33を設ける間隔を、流出口20を形成した側面から遠ざかるほど短くすることにより、流出口20を形成した側面に近い領域は開口部33の数を少なくして、フィン部2に流出する冷媒の流れを抑制する。そして、流出口20を形成した側面から遠い領域は開口部33の数を多くして、フィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。 Since the pressure on the side surface on which the outflow port 20 is formed is low due to the action of the heat radiating unit 4 following the outflow port, the refrigerant is more likely to flow through the outflow port 20 closer to the side surface on which the outflow port 20 is formed. As the distance from the outlet increases, the refrigerant hardly flows to the outlet 20. By shortening the interval at which the plurality of openings 33 are provided away from the side surface on which the outflow port 20 is formed, the area close to the side surface on which the outflow port 20 is formed is reduced in the number of openings 33 and Suppresses the flow of refrigerant flowing out. And the area | region far from the side surface in which the outflow port 20 was formed increases the number of the opening parts 33, and accelerates | stimulates the flow of the refrigerant | coolant which flows out into the fin part 2. FIG. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.
 これにより、液相冷媒の供給不足による局所ドライアウトを抑制することができる。結果として、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。 This can suppress local dryout due to insufficient supply of liquid phase refrigerant. As a result, it is not necessary to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant, and to provide a cooling device 1 with high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving unit 3. It can be done.
 また、受熱部3は、開口部33を複数有したものであって、複数の開口部33の面積は、流出口20を形成した側面から遠ざかるほど大きくする構成にしてもよい。 Further, the heat receiving unit 3 may have a plurality of openings 33, and the area of the plurality of openings 33 may be configured to increase as the distance from the side surface on which the outlet 20 is formed.
 流出口20を形成した側面側は流出口に続く放熱部4の作用により圧力が低いので、流出口20を形成した側面に近いほど流出口20に冷媒が流れやすく、流出口20を形成した側面から遠いほど流出口20に冷媒が流れ難くなる。複数の開口部33を設ける間隔を、流出口20を形成した側面から遠ざかるほど短くすることにより、流出口20を形成した側面に近い領域は開口部33の面積を小さくして、フィン部2に流出する冷媒の流れを抑制する。そして、流出口20を形成した側面から遠い領域は開口部33の数を多くして、フィン部2に流出する冷媒の流れを促進する。その結果、フィン部2全体に液相の冷媒が供給されることとなる。 Since the pressure on the side surface on which the outflow port 20 is formed is low due to the action of the heat radiating unit 4 following the outflow port, the refrigerant is more likely to flow through the outflow port 20 closer to the side surface on which the outflow port 20 is formed. As the distance from the outlet increases, the refrigerant hardly flows to the outlet 20. By shortening the interval at which the plurality of openings 33 are provided away from the side surface on which the outlet 20 is formed, the area close to the side surface on which the outlet 20 is formed reduces the area of the opening 33, Suppresses the flow of refrigerant flowing out. And the area | region far from the side surface in which the outflow port 20 was formed increases the number of the opening parts 33, and accelerates | stimulates the flow of the refrigerant | coolant which flows out into the fin part 2. FIG. As a result, the liquid phase refrigerant is supplied to the entire fin portion 2.
 これにより、液相冷媒の供給不足による局所ドライアウトを抑制することができる。結果として、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。 This can suppress local dryout due to insufficient supply of liquid phase refrigerant. As a result, it is not necessary to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant, and to provide a cooling device 1 with high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving unit 3. It can be done.
 (第5の実施の形態)
 以下、本発明の第5の実施の形態について、図面を参照しながら説明する。
(Fifth embodiment)
Hereinafter, a fifth embodiment of the present invention will be described with reference to the drawings.
 なお、本実施の形態における冷却装置の概略構成は、図1に示す第1の実施の形態における冷却装置1と同様であり、以下の説明では第1の実施の形態における冷却装置1と同じ構成要素については同じ符号を付して説明を省略する。 The schematic configuration of the cooling device in the present embodiment is the same as that of the cooling device 1 in the first embodiment shown in FIG. 1, and in the following description, the same configuration as that of the cooling device 1 in the first embodiment is used. Elements are denoted by the same reference numerals and description thereof is omitted.
 図18は、本発明の第5の実施の形態における冷却装置1の受熱部3の分解斜視図である。 FIG. 18 is an exploded perspective view of the heat receiving unit 3 of the cooling device 1 according to the fifth embodiment of the present invention.
 第1の実施の形態と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。 The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図18に示すように、受熱部3の前面と後面、すなわち、受熱板15と受熱板16との間に、フィン22およびフィン23と平行方向に複数の仕切壁34を設ける。本実施の形態では、仕切壁34を2つ設けているが、1つであってもよい。仕切壁34は、受熱部3の長手方向を略等分に区切るように配置する。仕切壁34には、受熱部3の上部にある放熱内部経路24を貫通させる放熱内部経路開口35と、下部にある帰還内部経路25を貫通させる帰還内部経路開口36を形成する。放熱内部経路開口35および帰還内部経路開口36は、仕切壁34に開口部を実際に形成したものであっても、放熱内部経路24および帰還内部経路25を避けて仕切壁34を設ける構造としたものであってもよい。 18, a plurality of partition walls 34 are provided in parallel to the fins 22 and the fins 23 between the front surface and the rear surface of the heat receiving unit 3, that is, between the heat receiving plate 15 and the heat receiving plate 16. In the present embodiment, two partition walls 34 are provided, but one partition wall 34 may be provided. The partition wall 34 is arrange | positioned so that the longitudinal direction of the heat receiving part 3 may be divided | segmented into substantially equal parts. The partition wall 34 is formed with a heat dissipation internal path opening 35 that penetrates the heat dissipation internal path 24 above the heat receiving portion 3 and a feedback internal path opening 36 that penetrates the feedback internal path 25 below. The heat dissipation internal path opening 35 and the return internal path opening 36 have a structure in which the partition wall 34 is provided avoiding the heat dissipation internal path 24 and the return internal path 25 even if the opening is actually formed in the partition wall 34. It may be a thing.
 流入口21および流出口20を形成した側面側は流出口20に続く放熱部4の作用により圧力が低くなるため、受熱部3内においてフィン部2に流出した冷媒は、圧力が低い流入口21および流出口20を形成した側面側に流れやすい。発熱体が大きい場合、または、1つの受熱板に複数の発熱体を設ける場合など、受熱部3の横幅を大きくする場合がある。このような場合、流入口21および流出口20を形成した側面と、その対向する側面まのでの距離が長くなる。すると、受熱部3の横幅が小さい場合と比較して、流入口21および流出口20を形成した側面から遠い領域が多くなり、ドライアウトしやすい領域が多くなってしまう。そこで、受熱部3内を仕切壁34により仕切ることにより、仕切られた空間内に供給された冷媒は、その空間内のフィン22、フィン23を流れ、フィン22、フィン23と熱交換した後に放熱内部経路24および仕切壁34に設けた放熱内部経路開口35を通って放熱経路5側に流れることとなる。従って、受熱部3の横幅が大きい場合であっても、流入口21および流出口20を形成した側面から遠い領域のドライアウトを抑制することができる。結果として、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 Since the pressure on the side surface side where the inlet 21 and the outlet 20 are formed is reduced by the action of the heat radiating part 4 following the outlet 20, the refrigerant flowing out into the fin part 2 in the heat receiving part 3 has a lower pressure. And it is easy to flow to the side surface where the outlet 20 is formed. When the heat generating body is large, or when a plurality of heat generating bodies are provided on one heat receiving plate, the lateral width of the heat receiving unit 3 may be increased. In such a case, the distance between the side surface on which the inflow port 21 and the outflow port 20 are formed and the opposite side surface becomes longer. Then, compared with the case where the horizontal width of the heat receiving part 3 is small, the area far from the side surface on which the inflow port 21 and the outflow port 20 are formed increases, and the area that is easily dried out increases. Therefore, by partitioning the inside of the heat receiving portion 3 with the partition wall 34, the refrigerant supplied into the partitioned space flows through the fins 22 and 23 in the space and radiates heat after exchanging heat with the fins 22 and 23. It flows to the heat radiation path 5 side through the heat radiation internal path opening 35 provided in the internal path 24 and the partition wall 34. Therefore, even when the lateral width of the heat receiving portion 3 is large, dryout in a region far from the side surface on which the inflow port 21 and the outflow port 20 are formed can be suppressed. As a result, local dryout in the heat receiving unit 3 can be prevented, and there is no need to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant, and a thin liquid phase refrigerant layer can be formed in the heat receiving unit 3, The cooling device 1 with high cooling performance can be provided.
 (第6の実施の形態)
 図19は、本発明の第6の実施の形態における冷却装置1の受熱部3の分解斜視図である。
(Sixth embodiment)
FIG. 19 is an exploded perspective view of the heat receiving portion 3 of the cooling device 1 according to the sixth embodiment of the present invention.
 第2の実施の形態と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。 Components similar to those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図19に示すように、本実施の形態は、第5の実施の形態と同様に仕切壁34を設けたものである。仕切壁34の作用、効果は、第5の実施の形態と同様である。 As shown in FIG. 19, the present embodiment is provided with a partition wall 34 as in the fifth embodiment. The function and effect of the partition wall 34 are the same as in the fifth embodiment.
 図19に示すように、受熱部3の前面と後面、すなわち、受熱板15と受熱板16との間に、フィン22およびフィン23と平行方向に複数の仕切壁34を設ける。本実施の形態では、仕切壁34を2つ設けているが、1つであってもよい。仕切壁34は、受熱部3の長手方向を略等分に区切るように配置する。仕切壁34には、受熱部3の上部にある放熱内部経路24を貫通させる放熱内部経路開口35と、下部にある管路32を貫通させる管路開口37を形成する。放熱内部経路開口35は、仕切壁34に開口部を実際に形成したものであっても、放熱内部経路24を避けて仕切壁34を設ける構造としたものであってもよい。 19, a plurality of partition walls 34 are provided in parallel to the fins 22 and the fins 23 between the front surface and the rear surface of the heat receiving unit 3, that is, between the heat receiving plate 15 and the heat receiving plate 16. In the present embodiment, two partition walls 34 are provided, but one partition wall 34 may be provided. The partition wall 34 is arrange | positioned so that the longitudinal direction of the heat receiving part 3 may be divided | segmented into substantially equal parts. The partition wall 34 is formed with a heat radiation internal path opening 35 that penetrates the heat radiation internal path 24 at the top of the heat receiving portion 3 and a pipe opening 37 that penetrates the pipe 32 at the bottom. The heat radiation internal path opening 35 may be a structure in which an opening is actually formed in the partition wall 34, or a structure in which the partition wall 34 is provided avoiding the heat radiation internal path 24.
 流入口21および流出口20を形成した側面側は流出口20に続く放熱部4の作用により圧力が低くなるため、受熱部3内においてフィン部2に流出した冷媒は、圧力が低い流入口21および流出口20を形成した側面側に流れやすい。発熱体が大きい場合、または、1つの受熱板に複数の発熱体を設ける場合など、受熱部3の横幅を大きくする場合がある。このような場合、流入口21および流出口20を形成した側面と、その対向する側面まのでの距離が長くなる。すると、受熱部3の横幅が小さい場合と比較して、流入口21および流出口20を形成した側面から遠い領域が多くなり、ドライアウトしやすい領域が多くなってしまう。そこで、受熱部3内を仕切壁34により仕切ることにより、仕切られた空間内に供給された冷媒は、その空間内のフィン22、フィン23を流れ、フィン22、フィン23と熱交換した後に放熱内部経路24および仕切壁34に設けた放熱内部経路開口35を通って放熱経路5側に流れることとなる。従って、受熱部3の横幅が大きい場合であっても、流入口21および流出口20を形成した側面から遠い領域のドライアウトを抑制することができる。結果として、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができ、冷却性能の高い冷却装置1を提供することができる。 Since the pressure on the side surface side where the inlet 21 and the outlet 20 are formed is reduced by the action of the heat radiating part 4 following the outlet 20, the refrigerant flowing out into the fin part 2 in the heat receiving part 3 has a lower pressure. And it is easy to flow to the side surface where the outlet 20 is formed. When the heat generating body is large, or when a plurality of heat generating bodies are provided on one heat receiving plate, the lateral width of the heat receiving unit 3 may be increased. In such a case, the distance between the side surface on which the inflow port 21 and the outflow port 20 are formed and the opposite side surface becomes longer. Then, compared with the case where the horizontal width of the heat receiving part 3 is small, the area far from the side surface on which the inflow port 21 and the outflow port 20 are formed increases, and the area that is easily dried out increases. Therefore, by partitioning the inside of the heat receiving part 3 with the partition wall 34, the refrigerant supplied into the partitioned space flows through the fins 22 and 23 in the space and radiates heat after exchanging heat with the fins 22 and 23. It flows to the heat radiation path 5 side through the heat radiation internal path opening 35 provided in the internal path 24 and the partition wall 34. Therefore, even when the lateral width of the heat receiving portion 3 is large, dryout in a region far from the side surface on which the inflow port 21 and the outflow port 20 are formed can be suppressed. As a result, local dryout in the heat receiving unit 3 can be prevented, and there is no need to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant, and a thin liquid phase refrigerant layer can be formed in the heat receiving unit 3, The cooling device 1 with high cooling performance can be provided.
 以上のように本発明にかかる冷却装置は、冷却性能が高いので、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)、ダイオード等の電子部品を搭載した電子機器等の冷却装置として有用である。 As described above, since the cooling device according to the present invention has high cooling performance, electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate bipolar transistor (IGBT), and a diode are mounted. It is useful as a cooling device for electronic equipment.
 1 冷却装置
 2 フィン部
 3 受熱部
 4 放熱部
 5 放熱経路
 6 帰還経路
 7 冷却ファン
 8 逆流防止部
 9,10 接触面
 11 放熱経路接続部材
 12 帰還経路接続部材
 15,16 受熱板
 19 固定用ネジ孔
 20,116 流出口
 21,114 流入口
 22,23,140 フィン
 24 放熱内部経路
 25 帰還内部経路
 28 第1発熱体
 29 第2発熱体
 30 仕切板
 31 開口部
 32 管路
 33 開口部
 34 仕切壁
 35 放熱内部経路開口
 36 帰還内部経路開口
 37 管路開口
 50 電子機器
 51 ケース
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Fin part 3 Heat receiving part 4 Heat radiating part 5 Heat radiating path 6 Returning path 7 Cooling fan 8 Backflow prevention part 9, 10 Contact surface 11 Heat radiating path connecting member 12 Return path connecting member 15, 16 Heat receiving plate 19 Screw hole for fixing 20,116 Outlet 21,114 Inlet 22,23,140 Fin 24 Radiation internal path 25 Return internal path 28 First heating element 29 Second heating element 30 Partition plate 31 Opening part 32 Pipe line 33 Opening part 34 Partition wall 35 Heat dissipation internal path opening 36 Return internal path opening 37 Pipeline opening 50 Electronic device 51 Case

Claims (18)

  1. 冷媒の相変化によって冷却する冷却装置において、
    受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、
    前記受熱部は、
    前面および後面が最大面積の直方体形状で、
    前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、
    前記受熱部の上部に設ける放熱内部経路と、前記受熱部の下部に設ける帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間に設けるフィン部と、
    前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口とを有し、
    前記フィン部では前記受熱板から内部に突出する複数の平板状のフィンを、フィン間の隙間により構成される冷媒の流路が前記帰還内部経路と前記放熱内部経路とを連通するように設け、
    前記帰還内部経路には、前記流入口と前記フィン部との間に仕切板を備えたことを特徴とする冷却装置。
    In the cooling device that cools by phase change of the refrigerant,
    A heat receiving part, a heat radiation path, a heat radiation part, a return path are connected in order to form a circulation path for the refrigerant,
    The heat receiving part is
    The front and back have a rectangular parallelepiped shape with the largest area.
    A heat receiving plate for installing a heating element on at least one of the front surface or the rear surface;
    A heat dissipating internal path provided above the heat receiving part, a feedback internal path provided below the heat receiving part, a fin part provided between the heat dissipating internal path and the feedback internal path,
    An outlet that connects the heat dissipation path and the heat dissipation internal path, and an inlet that connects the feedback path and the feedback internal path,
    In the fin portion, a plurality of plate-like fins protruding inward from the heat receiving plate are provided such that a refrigerant flow path constituted by a gap between the fins communicates the return internal path and the heat dissipation internal path.
    The cooling device according to claim 1, wherein a partition plate is provided between the inlet and the fin portion in the return internal path.
  2. 前記流入口と前記流出口とは、前記受熱部の同一の側面に設けられ、
    前記仕切板は、前記流入口および前記流出口を形成した側面から内部に突出し、前記側面と、前記側面と対向するもう一方の側面との中間点より前記流入口および前記流出口を形成した側面から遠い位置まで延設されていることを特徴とする請求項1に記載の冷却装置。
    The inflow port and the outflow port are provided on the same side surface of the heat receiving unit,
    The partition plate projects inward from the side surface on which the inflow port and the outflow port are formed, and the side surface on which the inflow port and the outflow port are formed from an intermediate point between the side surface and the other side surface facing the side surface. The cooling device according to claim 1, wherein the cooling device is extended to a position far from the cooling device.
  3. 前記受熱部の側面に前記流入口を設け、前記側面と対向するもう一方の側面に前記流出口を設けたことを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the inflow port is provided on a side surface of the heat receiving unit, and the outflow port is provided on the other side surface facing the side surface.
  4. 前記仕切板は、複数の開口部を有することを特徴とする請求項1~3のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 1 to 3, wherein the partition plate has a plurality of openings.
  5. 前記受熱部の前記前面と前記後面との間に、前記フィンと平行方向に仕切壁を設け、
    前記仕切壁は、前記放熱内部経路を貫通させる放熱内部経路開口と、前記帰還内部経路を貫通させる帰還内部経路開口を形成したことを特徴とする請求項4に記載の冷却装置。
    Between the front surface and the rear surface of the heat receiving portion, a partition wall is provided in a direction parallel to the fins,
    The cooling device according to claim 4, wherein the partition wall includes a heat dissipation internal path opening that penetrates the heat dissipation internal path and a feedback internal path opening that penetrates the feedback internal path.
  6. 前記複数の開口部を設ける間隔は、前記流出口を形成した側面から遠ざかるほど短くすることを特徴とする請求項4または5のいずれか一つに記載の冷却装置。 6. The cooling device according to claim 4, wherein an interval at which the plurality of openings are provided is shortened as the distance from the side surface on which the outflow port is formed is increased.
  7. 前記複数の開口部の面積は、前記流出口を形成した側面から遠ざかるほど大きくすることを特徴とする請求項4または5のいずれか一つに記載の冷却装置。 6. The cooling device according to claim 4, wherein an area of each of the plurality of openings is increased as the distance from the side surface on which the outflow port is formed is increased.
  8. 前記流出口の径は、前記流入口の径より大きいことを特徴とする請求項1~7のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 1 to 7, wherein a diameter of the outlet is larger than a diameter of the inlet.
  9. 請求項1~8のいずれか一つに記載の冷却装置を搭載した電子機器。 An electronic device equipped with the cooling device according to any one of claims 1 to 8.
  10. 冷媒の相変化によって冷却する冷却装置において、
    受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、
    前記受熱部は、
    前面および後面が最大面積の直方体形状で、
    前記前面または前記後面の少なくとも一方に発熱体を形成する受熱板と、
    前記受熱部の上部に設ける放熱内部経路と、前記受熱部の下部に設ける帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間に設けるフィン部と、
    前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口とを有し、
    前記フィン部では前記受熱板から内部に突出する複数の平板状のフィンを、フィン間の隙間により構成される冷媒の流路が前記帰還内部経路と前記放熱内部経路とを連通するように設け、
    前記帰還内部経路には、前記流入口に接続された両端が開放された管路を備えていることを特徴とする冷却装置。
    In the cooling device that cools by phase change of the refrigerant,
    A heat receiving part, a heat radiation path, a heat radiation part, a return path are connected in order to form a circulation path for the refrigerant,
    The heat receiving part is
    The front and back have a rectangular parallelepiped shape with the largest area.
    A heat receiving plate forming a heating element on at least one of the front surface or the rear surface;
    A heat dissipating internal path provided in the upper part of the heat receiving part; a feedback internal path provided in the lower part of the heat receiving part; a fin part provided between the heat dissipating internal path and the feedback internal path;
    An outlet that connects the heat dissipation path and the heat dissipation internal path, and an inlet that connects the feedback path and the feedback internal path,
    In the fin portion, a plurality of plate-like fins protruding inward from the heat receiving plate are provided such that a refrigerant flow path constituted by a gap between the fins communicates the return internal path and the heat dissipation internal path.
    The cooling device according to claim 1, wherein the return internal path includes a pipe line open at both ends connected to the inflow port.
  11. 前記流入口と前記流出口とは、前記受熱部の同一の側面に設けられ、
    前記管路は、前記流入口および流出口を形成した側面と、前記側面と対向するもう一方の側面との中間点より前記流入口および前記流出口を形成した側面から遠い位置まで延設されていることを特徴とする請求項10に記載の冷却装置。
    The inflow port and the outflow port are provided on the same side surface of the heat receiving unit,
    The pipe line is extended to a position far from the side surface where the inlet and the outlet are formed from an intermediate point between the side surface where the inlet and the outlet are formed and the other side surface facing the side surface. The cooling device according to claim 10.
  12. 前記受熱部の側面に前記流入口を設け、前記側面と対向するもう一方の側面に前記流出口を設けたことを特徴とする請求項10に記載の冷却装置。 The cooling device according to claim 10, wherein the inflow port is provided on a side surface of the heat receiving portion, and the outflow port is provided on the other side surface facing the side surface.
  13. 前記管路は、複数の開口部を有することを特徴とする請求項10~12のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 10 to 12, wherein the pipe line has a plurality of openings.
  14. 前記受熱部の前記前面と前記後面との間に、前記フィンと平行方向に仕切壁を設け、
    前記仕切壁は、前記放熱内部経路を貫通させる放熱内部経路開口と、前記管路を貫通させる管路開口を設けたことを特徴とする請求項13に記載の冷却装置。
    Between the front surface and the rear surface of the heat receiving portion, a partition wall is provided in a direction parallel to the fins,
    The cooling device according to claim 13, wherein the partition wall includes a heat dissipation internal path opening that passes through the heat dissipation internal path and a pipe opening that passes through the pipe.
  15. 前記複数の開口部を設ける間隔は、前記流出口を形成した側面から遠ざかるほど短くすることを特徴とする請求項13または14のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 13 and 14, wherein an interval at which the plurality of openings are provided is shortened as the distance from the side surface on which the outflow port is formed.
  16. 前記複数の開口部の面積は、前記流出口を形成した側面から遠ざかるほど大きくすることを特徴とする請求項13~15のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 13 to 15, wherein an area of each of the plurality of openings is increased as the distance from the side surface on which the outlet is formed is increased.
  17. 前記流出口の径は、前記流入口の径より大きいことを特徴とする請求項10~16のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 10 to 16, wherein a diameter of the outlet is larger than a diameter of the inlet.
  18. 請求項10~17のいずれか一つに記載の冷却装置を搭載した電子機器。 An electronic device equipped with the cooling device according to any one of claims 10 to 17.
PCT/JP2016/000298 2015-01-21 2016-01-21 Cooling device and electronic device in which same is installed WO2016117342A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015009847 2015-01-21
JP2015-009847 2015-01-21
JP2015013845A JP2016138706A (en) 2015-01-28 2015-01-28 Cooling apparatus and electronic equipment
JP2015-013845 2015-01-28
JP2015-146703 2015-07-24
JP2015146703A JP2016138740A (en) 2015-01-21 2015-07-24 Cooling apparatus and electronic equipment

Publications (1)

Publication Number Publication Date
WO2016117342A1 true WO2016117342A1 (en) 2016-07-28

Family

ID=56416893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000298 WO2016117342A1 (en) 2015-01-21 2016-01-21 Cooling device and electronic device in which same is installed

Country Status (1)

Country Link
WO (1) WO2016117342A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017150415A1 (en) * 2016-03-04 2019-01-10 日本電気株式会社 COOLING SYSTEM, COOLER, AND COOLING METHOD
US10326186B2 (en) * 2016-10-24 2019-06-18 Hyundai Motor Company Apparatus for cooling battery
CN111447805A (en) * 2020-05-11 2020-07-24 珠海格力电器股份有限公司 Radiating assembly with high radiating efficiency, electric appliance box and air conditioner
WO2020174593A1 (en) * 2019-02-26 2020-09-03 住友精密工業株式会社 Cooling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300384A (en) * 1997-04-24 1998-11-13 Daikin Ind Ltd Plate type heat-exchanger
US5953930A (en) * 1998-03-31 1999-09-21 International Business Machines Corporation Evaporator for use in an extended air cooling system for electronic components
JP2007335588A (en) * 2006-06-14 2007-12-27 Toyota Motor Corp Heat sink and condenser
JP2010212402A (en) * 2009-03-10 2010-09-24 Toyota Motor Corp Ebullient cooling device
JP2013057426A (en) * 2011-09-07 2013-03-28 Hitachi Appliances Inc Plate-type heat exchanger and freezing cycle device with the same
US20130192808A1 (en) * 2010-09-13 2013-08-01 Danfoss A/S Refrigerant guiding pipe and heat exchanger having refrigerant guiding pipe
JP2014029232A (en) * 2012-07-31 2014-02-13 Nippon Soken Inc Cooling device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300384A (en) * 1997-04-24 1998-11-13 Daikin Ind Ltd Plate type heat-exchanger
US5953930A (en) * 1998-03-31 1999-09-21 International Business Machines Corporation Evaporator for use in an extended air cooling system for electronic components
JP2007335588A (en) * 2006-06-14 2007-12-27 Toyota Motor Corp Heat sink and condenser
JP2010212402A (en) * 2009-03-10 2010-09-24 Toyota Motor Corp Ebullient cooling device
US20130192808A1 (en) * 2010-09-13 2013-08-01 Danfoss A/S Refrigerant guiding pipe and heat exchanger having refrigerant guiding pipe
JP2013057426A (en) * 2011-09-07 2013-03-28 Hitachi Appliances Inc Plate-type heat exchanger and freezing cycle device with the same
JP2014029232A (en) * 2012-07-31 2014-02-13 Nippon Soken Inc Cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017150415A1 (en) * 2016-03-04 2019-01-10 日本電気株式会社 COOLING SYSTEM, COOLER, AND COOLING METHOD
US10326186B2 (en) * 2016-10-24 2019-06-18 Hyundai Motor Company Apparatus for cooling battery
WO2020174593A1 (en) * 2019-02-26 2020-09-03 住友精密工業株式会社 Cooling device
JPWO2020174593A1 (en) * 2019-02-26 2021-12-16 住友精密工業株式会社 Cooling system
JP7119200B2 (en) 2019-02-26 2022-08-16 住友精密工業株式会社 Cooling system
CN111447805A (en) * 2020-05-11 2020-07-24 珠海格力电器股份有限公司 Radiating assembly with high radiating efficiency, electric appliance box and air conditioner

Similar Documents

Publication Publication Date Title
JP4675283B2 (en) Heat sink and cooler
JP4978401B2 (en) Cooling system
TWI438388B (en) Liquid cooling device
WO2016117342A1 (en) Cooling device and electronic device in which same is installed
US20100296249A1 (en) Micro passage cold plate device for a liquid cooling radiator
TW201447215A (en) Cooling apparatus
JP6918218B2 (en) Semiconductor device
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
JP2013254787A (en) Heat exchanger and manufacturing method of the same
JP5287922B2 (en) Cooling system
CN114383453A (en) Heat sink device
JP2017083050A (en) Cooling device and electronic equipment mounting the same
JP5689511B2 (en) Cold plate
WO2010104080A1 (en) Ebullient cooling device
JP2016138740A (en) Cooling apparatus and electronic equipment
WO2022190960A1 (en) Heat sink
CN216385225U (en) Loop heat pipe
JP6825615B2 (en) Cooling system and cooler and cooling method
JP2015163831A (en) Heat receiver, cooling device using the same, and electronic apparatus using the same
JP2017166710A (en) Cooling device and electronic equipment mounted with the same
US20080308257A1 (en) Heat dissipating assembly
JP2016138706A (en) Cooling apparatus and electronic equipment
WO2017046986A1 (en) Cooling device and electronic device equipped with same
WO2016208180A1 (en) Cooling device and electronic apparatus having same mounted thereon
JP2007081375A (en) Cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16739951

Country of ref document: EP

Kind code of ref document: A1