JP2017166710A - Cooling device and electronic equipment mounted with the same - Google Patents

Cooling device and electronic equipment mounted with the same Download PDF

Info

Publication number
JP2017166710A
JP2017166710A JP2016049302A JP2016049302A JP2017166710A JP 2017166710 A JP2017166710 A JP 2017166710A JP 2016049302 A JP2016049302 A JP 2016049302A JP 2016049302 A JP2016049302 A JP 2016049302A JP 2017166710 A JP2017166710 A JP 2017166710A
Authority
JP
Japan
Prior art keywords
heat receiving
heat
path
refrigerant
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016049302A
Other languages
Japanese (ja)
Inventor
正人 本多
Masato Honda
正人 本多
杉山 誠
Makoto Sugiyama
誠 杉山
辰乙 郁
Shinitsu Iku
辰乙 郁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016049302A priority Critical patent/JP2017166710A/en
Publication of JP2017166710A publication Critical patent/JP2017166710A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device with high cooling performance.SOLUTION: In a cooling device 1 configured to cool with phase change of refrigerant, a heat reception part 3 includes a heat reception plate mounted with a heating body on at least one of a front face and a rear face, and includes a heat radiation internal passage 24 at its an upper part, a return internal passage 25 at its lower part, and a fin 2 provided therebetween. In the fin part 2, a plurality of fins projecting from the heat reception plate to the inside is provided on a flat plate so that flow passages for refrigerant between the fins are provided vertically. An inflow port 21 and an outflow port 20 are provided on a side surface of the heat reception part 3. A bottom surface 30 of the return internal passage is inclined downwardly toward one side surface opposite to the side surface where the inflow port 21 is installed.SELECTED DRAWING: Figure 3

Description

本発明は、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)、ダイオードなどの電子部品を搭載した電子機器の冷却装置およびこれを搭載した電子機器に関するものである。   The present invention relates to a cooling device for an electronic device in which electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate bipolar transistor (IGBT), and a diode are mounted, and an electronic device in which the electronic device is mounted. It is.

従来、この種の冷却装置は、以下のような構成となっていた。   Conventionally, this type of cooling device has the following configuration.

すなわち、図10に示すように、筐体112の管路部130に、発熱体であるインバータ108の熱によって冷媒が 沸騰する蒸発器部132と、管路部130において蒸発部132に隣接して設けられ、冷媒が流入口114から直接流出口116に向かって流通する流通部134とを備える。蒸発器部132には、筐体底面120から流通部134の側に向かって突出する複数のフィン140が設けられ、複数のフィン140の間の隙間を冷媒が流通する構成となっていた(例えば特許文献1参照)。   That is, as shown in FIG. 10, an evaporator section 132 in which the refrigerant boils due to heat of the inverter 108 that is a heating element is disposed in the duct section 130 of the housing 112, and the evaporator section 132 is adjacent to the duct section 130. And a circulation part 134 through which the refrigerant circulates directly from the inlet 114 toward the outlet 116. The evaporator section 132 is provided with a plurality of fins 140 protruding from the housing bottom surface 120 toward the flow section 134, and the refrigerant flows through the gaps between the plurality of fins 140 (for example, Patent Document 1).

特開2013−016589号公報JP2013-016589A

特許文献1に示された冷却装置は、発熱体であるインバータ108が水平に設置されているため、筐体112の底壁部120は液相冷媒で満たされ、底壁部120から流通部134の側に向かって突出した複数のフィン140の間の隙間を冷媒が流通する。   In the cooling device disclosed in Patent Document 1, since the inverter 108 that is a heating element is installed horizontally, the bottom wall portion 120 of the housing 112 is filled with a liquid-phase refrigerant, and the circulation portion 134 extends from the bottom wall portion 120. The refrigerant circulates through the gaps between the plurality of fins 140 protruding toward the side.

このような構成の筐体112(受熱部)において、発熱体の熱は液相冷媒が蒸発する際の蒸発潜熱によって冷却されることとなるため、フィン140全面に液相冷媒を行き渡らせる必要がある。しかしながら、フィン140表面にて蒸発した冷媒(気相冷媒)の大部分は流通部134を通過することとなり、気相冷媒の流れによって流入口114から遠方に位置するフィン140の表面に液相冷媒を供給する作用が小さくなる。すなわち、このような構成においてフィン140全面に液相冷媒を供給するためには、筐体112の底壁部120を液相冷媒で満たすだけの過剰な液相冷媒量を必要とする。そのため、フィン140の表面は厚い液相冷媒の層に覆われることとなり、結果として厚い液相冷媒層が熱抵抗となり、フィン140を薄い液相冷媒層が覆う理想的な状態を作り出すことができず、冷却性能が低くなる。   In the housing 112 (heat receiving portion) having such a configuration, the heat of the heating element is cooled by the latent heat of vaporization when the liquid-phase refrigerant evaporates, so it is necessary to spread the liquid-phase refrigerant over the entire surface of the fin 140. is there. However, most of the refrigerant (gas phase refrigerant) evaporated on the surface of the fin 140 passes through the circulation part 134, and the liquid phase refrigerant is formed on the surface of the fin 140 located far from the inlet 114 by the flow of the gas phase refrigerant. The action of supplying is reduced. That is, in order to supply the liquid refrigerant to the entire surface of the fin 140 in such a configuration, an amount of liquid refrigerant that is excessive enough to fill the bottom wall portion 120 of the housing 112 with the liquid refrigerant is required. Therefore, the surface of the fin 140 is covered with a thick liquid phase refrigerant layer. As a result, the thick liquid phase refrigerant layer becomes a thermal resistance, and an ideal state in which the thin liquid phase refrigerant layer covers the fin 140 can be created. Therefore, the cooling performance is lowered.

また、このような構成の筐体112(受熱部)を垂直に設置した場合、すなわち発熱体であるインバータ108が垂直に設置され、筐体112(受熱部)が、流入口114を下方に流出口116を上方にしてフィン140を垂直方向に設置した場合について説明する。   Further, when the casing 112 (heat receiving section) having such a configuration is installed vertically, that is, the inverter 108 as a heating element is installed vertically, and the casing 112 (heat receiving section) flows down the inlet 114 downward. A case where the fins 140 are installed in the vertical direction with the outlet 116 facing upward will be described.

この種の冷却装置においては、流出口116近傍は放熱器(図示なし)の作用により圧力が低い状態となる。流入口114から筐体112(受熱部)内に流入した液相の冷媒は、インバータ108から発生した熱を受熱して気相と液相の二相の冷媒となり、圧力が高い状態となる。冷媒が液相から気相に変化するときに体積が膨張するためである。この圧力の高い二相の冷媒は、圧力の低い流出口116に流れ込む。この現象を詳しく説明すると、液相冷媒が気相に変化した際に発生する気相冷媒の流れが、その近傍に位置する液相冷媒と流れの下流に位置する液相冷媒を巻き込んで気相と液相の二相の冷媒流となり、冷媒流の下流に位置する流出口116側のフィン140表面に液相冷媒を供給することとなる。しかしながら、冷媒流は流路抵抗が小さい経路を通過するため、筐体112内の冷媒流は偏流し、フィン140間の隙間においては、中央部に位置する隙間ほど冷媒が流れやすく、端に位置する隙間ほど冷媒が流れにくくなる。また、フィン140間の隙間よりも、流路抵抗が小さくなる流通部134に冷媒の多くが流れることとなる。よって、冷媒が流れにくい領域に位置するフィン140は、冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となり、インバータ108の温度が上昇してしまう。また、ドライアウトを抑制するためには、過剰な液相冷媒量を必要とし、結果として厚い液相冷媒層が熱抵抗となり、フィン140を薄い液相冷媒層が覆う理想的な状態を作り出すことができず、冷却性能が低くなる。   In this type of cooling device, the pressure in the vicinity of the outlet 116 is low due to the action of a radiator (not shown). The liquid-phase refrigerant that has flowed into the housing 112 (heat receiving portion) from the inflow port 114 receives the heat generated from the inverter 108, becomes a two-phase refrigerant of a gas phase and a liquid phase, and is in a high pressure state. This is because the volume expands when the refrigerant changes from the liquid phase to the gas phase. The two-phase refrigerant having a high pressure flows into the outlet 116 having a low pressure. Explaining this phenomenon in detail, the flow of the gas-phase refrigerant generated when the liquid-phase refrigerant changes to the gas phase involves the liquid-phase refrigerant located in the vicinity of the liquid-phase refrigerant and the liquid-phase refrigerant located downstream of the flow. The liquid-phase refrigerant is supplied to the fin 140 surface on the outlet 116 side located downstream of the refrigerant flow. However, since the refrigerant flow passes through a path having a small flow resistance, the refrigerant flow in the housing 112 is unevenly distributed, and in the gap between the fins 140, the refrigerant is more likely to flow in the gap located at the center portion, and is located at the end. The more the gap is, the more difficult it is for the refrigerant to flow. In addition, much of the refrigerant flows through the flow part 134 where the flow resistance becomes smaller than the gap between the fins 140. Therefore, the fin 140 located in the region where the refrigerant does not easily flow is in a so-called dry-out state in which the refrigerant is not supplied and cannot be cooled, and the temperature of the inverter 108 increases. Further, in order to suppress dryout, an excessive amount of liquid phase refrigerant is required, and as a result, a thick liquid phase refrigerant layer becomes a thermal resistance, and an ideal state in which the thin liquid phase refrigerant layer covers the fin 140 is created. Cannot be performed and cooling performance is lowered.

そこで本発明は、流入口を設置した側面から遠い領域まで液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することを目的とする。   Therefore, the present invention prevents the local dryout in the heat receiving part by supplying the liquid phase refrigerant to a region far from the side surface where the inlet is installed, and it is not necessary to fill the heat receiving part with an excessive amount of liquid phase refrigerant. It is an object of the present invention to provide a cooling device with high cooling performance capable of forming a liquid refrigerant layer in a heat receiving part.

そして、この目的を達成するために、本発明は冷媒の相変化によって冷却する冷却装置において、受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、前記受熱部は、前面および後面を備え、前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、前記受熱部の上部に放熱内部経路と、前記受熱部の下部に帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間にフィン部と、前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口とを有し、前記流入口と前記流出口とを、各々前記受熱部の側面に設け、前記フィン部は、前記受熱板から内部に突出する複数の平板上のフィンを、フィン間の隙間により構成される冷媒の流路が上下方向となるように設け、前記帰還内部経路の底面は、前記流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜としたことを特徴とする冷却装置であり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention provides a cooling device that cools by phase change of the refrigerant to form a circulation path for the refrigerant by sequentially connecting a heat receiving part, a heat radiation path, a heat radiation part, and a return path, The heat receiving unit includes a front surface and a rear surface, a heat receiving plate for installing a heating element on at least one of the front surface or the rear surface, a heat dissipation internal path above the heat receiving unit, a return internal path below the heat receiving unit, Between the heat dissipation internal path and the feedback internal path, there are a fin portion, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the feedback path and the feedback internal path. The inflow port and the outflow port are each provided on a side surface of the heat receiving portion, and the fin portion includes fins on a plurality of flat plates protruding inward from the heat receiving plate by gaps between the fins. Refrigerant flow path is above And a bottom surface of the return internal path is inclined downward toward the other side surface opposite to the side surface on which the inflow port is installed. The purpose of the period is achieved.

以上のように本発明は、冷媒の相変化によって冷却する冷却装置において、受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、前記受熱部は、前面および後面を備え、前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、前記受熱部の上部に放熱内部経路と、前記受熱部の下部に帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間にフィン部と、前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口とを有し、前記流入口と前記流出口とを、各々前記受熱部の側面に設け、前記フィン部は、前記受熱板から内部に突出する複数の平板上のフィンを、フィン間の隙間により構成される冷媒の流路が上下方向となるように設け、前記帰還内部経路の底面は、前記流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜としたことを特徴とする冷却装置であり、流入口を設置した側面から遠い領域まで液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   As described above, in the cooling device that cools by phase change of the refrigerant, the present invention forms the circulation path of the refrigerant by sequentially connecting the heat receiving portion, the heat radiating path, the heat radiating portion, and the return path. A heat receiving plate provided with a heating element on at least one of the front surface or the rear surface, a heat dissipating internal path above the heat receiving part, a return internal path below the heat receiving part, and the heat dissipating internal path A fin portion between the return internal path, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the return path and the return internal path; And the outlet are respectively provided on side surfaces of the heat receiving portion, and the fin portion includes fins on a plurality of flat plates protruding inward from the heat receiving plate, and a refrigerant flow path constituted by gaps between the fins. Set up vertically The bottom surface of the return internal path is a cooling device characterized in that it is inclined downward toward the other side surface opposite to the side surface on which the inlet is installed, and is a region far from the side surface on which the inlet is installed By supplying the liquid refrigerant to the heat receiving portion, local dryout in the heat receiving portion is prevented, and it is not necessary to fill the heat receiving portion with an excessive amount of liquid phase refrigerant, and a thin liquid phase refrigerant layer can be formed in the heat receiving portion. A cooling device with high cooling performance can be provided.

すなわち、本発明によれば、帰還内部経路の底面が、流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜となることで、流入口から帰還内部経路に流出した液相の冷媒は、重力により下り傾斜に沿って、流入口が設置された側面からもう一方の面まで液相冷媒が移動しやすくすることにより、流入口を設置した側面から遠い領域まで液相冷媒を供給し易くなり、結果として、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   That is, according to the present invention, the bottom surface of the return internal path is inclined downward toward the other side surface opposite to the side surface on which the inflow port is installed, so that the liquid phase that has flowed out from the inflow port to the return internal path This refrigerant makes it easier for the liquid-phase refrigerant to move from the side surface where the inlet is installed to the other side along the downward slope due to gravity. Cooling performance that makes it easy to supply and, as a result, prevents local dryout in the heat receiving part, and does not need to fill the heat receiving part with an excessive amount of liquid phase refrigerant, and can form a thin liquid phase refrigerant layer in the heat receiving part It is possible to provide a high cooling device.

更に、受熱部を設置する際に、設置精度の影響により、受熱部の底面は流入口が設置された側面と対向するもう一方の側面に向かって上り勾配となるように受熱部が傾く場合であっても、帰還内部経路の底面は、流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜となることで、帰還内部経路の底面と逆方向に傾いている受熱部の底面の上り勾配の影響を軽減し、設置精度の影響を小さくする。帰還内部経路の底面が下り傾斜を有していない場合と比較すると、流入口が設置された側面と対向する側面に向かって、帰還内部経路の底面は上り傾斜となり、流入口を設置した側面から遠い領域のフィンの一部まで液相冷媒が供給されず冷却することができない、いわゆるドライアウト状態となりにくい。したがって、受熱部本体が傾いて設置された場合であっても、帰還内部経路の底面は、流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜となることで、流入口を設置した側面から遠い領域のフィン部まで液相冷媒を供給しやすくなる。   Furthermore, when installing the heat receiving part, due to the influence of installation accuracy, the bottom surface of the heat receiving part is inclined when the heat receiving part is inclined so as to rise upward toward the other side opposite to the side where the inflow port is installed. Even so, the bottom surface of the return internal path is inclined downward toward the other side surface opposite to the side surface where the inflow port is installed, so that the heat receiving portion is inclined in the direction opposite to the bottom surface of the return internal path. Reduce the influence of the upward slope of the bottom and reduce the influence of installation accuracy. Compared with the case where the bottom surface of the return internal path does not have a downward slope, the bottom surface of the return internal path becomes an upward slope toward the side surface opposite to the side surface where the inflow port is installed. It is difficult to enter a so-called dry-out state in which the liquid refrigerant is not supplied to a part of the fins in the far region and cannot be cooled. Therefore, even when the heat receiving unit main body is inclined and installed, the bottom surface of the return internal path is inclined downward toward the other side surface opposite to the side surface where the inflow port is installed. It becomes easy to supply the liquid-phase refrigerant to the fin portion in the region far from the side surface where the is installed.

これにより、流入口および流出口を設置した側面から遠い領域に液相の冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となることを抑制することができる。結果として、流入口を設置した側面から遠い領域まで液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   Accordingly, it is possible to suppress a so-called dry-out state in which the liquid-phase refrigerant is not supplied to the region far from the side surface where the inlet and the outlet are installed and cannot be cooled. As a result, by supplying the liquid-phase refrigerant to a region far from the side where the inlet is installed, local dry-out in the heat-receiving unit is prevented, and there is no need to fill the heat-receiving unit with an excessive amount of liquid-phase refrigerant. It is possible to provide a cooling device with high cooling performance capable of forming a refrigerant layer in the heat receiving portion.

本発明の実施の形態1の冷却装置を搭載した電子機器の概略図Schematic of an electronic device equipped with the cooling device of Embodiment 1 of the present invention 同冷却装置の受熱部の外観を示す図The figure which shows the external appearance of the heat receiving part of the cooling device 同冷却装置の受熱部の分解斜視図An exploded perspective view of the heat receiving part of the cooling device 同冷却装置の受熱部の分解斜視図An exploded perspective view of the heat receiving part of the cooling device 同冷却装置の受熱部のX−X´断面を示す図The figure which shows the XX 'cross section of the heat receiving part of the cooling device 本発明の実施の形態2の冷却装置の受熱部の分解斜視図The disassembled perspective view of the heat receiving part of the cooling device of Embodiment 2 of this invention. 同冷却装置の受熱部の分解斜視図An exploded perspective view of the heat receiving part of the cooling device 同冷却装置の受熱部の分解斜視図An exploded perspective view of the heat receiving part of the cooling device 同冷却装置の受熱部のX−X´断面を示す図The figure which shows the XX 'cross section of the heat receiving part of the cooling device 従来の冷却装置を示す概略図Schematic showing a conventional cooling device

本発明の一実施形態に係る冷却装置は、冷媒の相変化によって冷却する冷却装置において、受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、
前記受熱部は、前面および後面を備え、前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、前記受熱部の上部に放熱内部経路と、前記受熱部の下部に帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間にフィン部と、前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口とを有し、前記流入口と前記流出口とを、各々前記受熱部の側面に設け、前記フィン部は、前記受熱板から内部に突出する複数の平板上のフィンを、フィン間の隙間により構成される冷媒の流路が上下方向となるように設け、前記受熱部の底面に対して、前記帰還内部経路の底面は、前記流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜を有することを特徴とする冷却装置とすることにより、流入口を設置した側面から遠い領域まで液相冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。
A cooling device according to an embodiment of the present invention is a cooling device that cools by a phase change of the refrigerant, and forms a circulation path of the refrigerant by sequentially connecting a heat receiving part, a heat radiation path, a heat radiation part, and a return path,
The heat receiving unit includes a front surface and a rear surface, a heat receiving plate in which a heating element is installed on at least one of the front surface or the rear surface, a heat dissipation internal path above the heat receiving part, and a return internal path below the heat receiving part. A fin portion between the heat dissipation internal path and the feedback internal path, an outlet connecting the heat dissipation path and the heat dissipation internal path, and an inlet connecting the feedback path and the feedback internal path. The inlet and the outlet are respectively provided on side surfaces of the heat receiving portion, and the fin portion includes fins on a plurality of flat plates protruding inward from the heat receiving plate by gaps between the fins. The flow path of the refrigerant is arranged in the vertical direction, and the bottom surface of the return internal path is lowered toward the other side surface opposite to the side surface on which the inflow port is installed, with respect to the bottom surface of the heat receiving part. Characterized by having an inclination By supplying liquid-phase refrigerant to a region far from the side where the inlet is installed, it is necessary to prevent local dryout in the heat-receiving unit and fill the heat-receiving unit with an excessive amount of liquid-phase refrigerant. Therefore, it is possible to provide a cooling device with high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving portion.

すなわち、本発明によれば、帰還内部経路の底面が、流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜となることで、流入口から帰還内部経路に流出した液相の冷媒は、重力により下り傾斜に沿って、流入口が設置された側面からもう一方の面まで液相冷媒が移動しやすくすることにより、流入口を設置した側面から遠い領域まで液相冷媒を供給し易くなり、結果として、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができるものである。   That is, according to the present invention, the bottom surface of the return internal path is inclined downward toward the other side surface opposite to the side surface on which the inflow port is installed, so that the liquid phase that has flowed out from the inflow port to the return internal path This refrigerant makes it easier for the liquid-phase refrigerant to move from the side surface where the inlet is installed to the other side along the downward slope due to gravity. Cooling performance that makes it easy to supply and, as a result, prevents local dryout in the heat receiving part, and does not need to fill the heat receiving part with an excessive amount of liquid phase refrigerant, and can form a thin liquid phase refrigerant layer in the heat receiving part It is possible to provide a high cooling device.

更に、受熱部を設置する際に、設置精度の影響により、受熱部の底面は流入口が設置された側面と対向するもう一方の側面に向かって上り勾配となるように受熱部が傾く場合であっても、帰還内部経路の底面は、流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜となることで、帰還内部経路の底面と逆方向に傾いている受熱部の底面の上り勾配の影響を軽減し、設置精度の影響を小さくする。帰還内部経路の底面が下り傾斜を有していない場合と比較すると、流入口が設置された側面と対向する側面に向かって、帰還内部経路の底面は上り傾斜となり、流入口を設置した側面から遠い領域のフィンの一部まで液相冷媒が供給されず冷却することができない、いわゆるドライアウト状態となりにくい。したがって、受熱部本体が傾いて設置された場合であっても、帰還内部経路の底面は、流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜となることで、流入口を設置した側面から遠い領域のフィン部まで液相冷媒を供給しやすくなる。   Furthermore, when installing the heat receiving part, due to the influence of installation accuracy, the bottom surface of the heat receiving part is inclined when the heat receiving part is inclined so as to rise upward toward the other side opposite to the side where the inflow port is installed. Even so, the bottom surface of the return internal path is inclined downward toward the other side surface opposite to the side surface where the inflow port is installed, so that the heat receiving portion is inclined in the direction opposite to the bottom surface of the return internal path. Reduce the influence of the upward slope of the bottom and reduce the influence of installation accuracy. Compared with the case where the bottom surface of the return internal path does not have a downward slope, the bottom surface of the return internal path becomes an upward slope toward the side surface opposite to the side surface where the inflow port is installed. It is difficult to enter a so-called dry-out state in which the liquid refrigerant is not supplied to a part of the fins in the far region and cannot be cooled. Therefore, even when the heat receiving unit main body is inclined and installed, the bottom surface of the return internal path is inclined downward toward the other side surface opposite to the side surface where the inflow port is installed. It becomes easy to supply the liquid-phase refrigerant to the fin portion in the region far from the side surface where the is installed.

これにより、流入口を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができる。   As a result, by supplying the refrigerant to a region far from the side surface where the inlet is installed, local dryout in the heat receiving unit is prevented, and it is not necessary to fill the heat receiving unit with an excessive amount of liquid phase refrigerant. A cooling device with high cooling performance that can form a layer in the heat receiving part can be provided.

また、前記流入口と前記流出口とを前記受熱部の同一の側面に設ける構成にしてもよい。これにより、流入口を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができる。   Moreover, you may make it the structure which provides the said inflow port and the said outflow port in the same side surface of the said heat receiving part. As a result, by supplying the refrigerant to a region far from the side surface where the inlet is installed, local dryout in the heat receiving unit is prevented, and it is not necessary to fill the heat receiving unit with an excessive amount of liquid phase refrigerant. A cooling device with high cooling performance that can form a layer in the heat receiving part can be provided.

また、前記流入口が設置された側面と対向するもう一方の側面に前記流出口を設ける構成にしてもよい。これにより、流入口を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を提供することができる。   Moreover, you may make it the structure which provides the said outflow port in the other side surface facing the side surface in which the said inflow port was installed. As a result, by supplying the refrigerant to a region far from the side surface where the inlet is installed, local dryout in the heat receiving unit is prevented, and it is not necessary to fill the heat receiving unit with an excessive amount of liquid phase refrigerant. A cooling device with high cooling performance that can form a layer in the heat receiving part can be provided.

また、本発明の冷却装置を搭載した電子機器にしてもよい。これにより、流入口を設置した側面から遠い領域まで冷媒を供給することにより、受熱部内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部内を満たす必要が無く、薄い液相冷媒の層を受熱部内に形成することができる冷却性能の高い冷却装置を搭載した電子機器を提供することができるものである。
(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら説明する。
Moreover, you may make it the electronic device carrying the cooling device of this invention. As a result, by supplying the refrigerant to a region far from the side surface where the inlet is installed, local dryout in the heat receiving unit is prevented, and it is not necessary to fill the heat receiving unit with an excessive amount of liquid phase refrigerant. It is possible to provide an electronic apparatus equipped with a cooling device with high cooling performance capable of forming a layer in a heat receiving portion.
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態1の冷却装置1を搭載した電子機器50の概略図である。   FIG. 1 is a schematic diagram of an electronic device 50 on which the cooling device 1 according to Embodiment 1 of the present invention is mounted.

図1に示すように、電子機器50は、ケース51内に発熱体である発熱体A28、発熱体B29となる2つの電力用半導体素子と冷却装置1とが備えられている。   As shown in FIG. 1, the electronic device 50 includes a case 51 in which two power semiconductor elements serving as a heating element A28 and a heating element B29 that are heating elements and the cooling device 1 are provided.

冷却装置1は、発熱体A28、発熱体B29を冷却するための受熱部3と、放熱部4を備えており、放熱経路5と帰還経路6とにより受熱部3と放熱部4が連結されている。この構成により、冷却装置1は内部が密閉空間となり、図1では図示していないが、冷却装置1内は、減圧した上で、冷媒が封入されている。冷媒としては、フロン類、フッ素系溶剤類などが用いられるが、これらに限られない。受熱部3、放熱部4および後述するフィンであるフィンA22、フィンB23の材質は、アルミニウムが適しているが、これらに限られない。   The cooling device 1 includes a heat receiving part 3 for cooling the heat generating element A 28 and the heat generating element B 29, and a heat radiating part 4. The heat receiving part 3 and the heat radiating part 4 are connected by the heat radiating path 5 and the return path 6. Yes. With this configuration, the inside of the cooling device 1 becomes a sealed space, and although not shown in FIG. 1, the inside of the cooling device 1 is decompressed and filled with a refrigerant. As the refrigerant, chlorofluorocarbons, fluorinated solvents and the like are used, but are not limited thereto. Aluminum is suitable for the material of the heat receiving part 3, the heat radiating part 4, and fins A22 and B23, which will be described later, but is not limited thereto.

冷却装置1の放熱部4は、冷媒により輸送した熱を冷却するための水冷チラー(図示なし)に接続されている。水冷チラーで冷却された冷却水を冷却水供給経路7から放熱部4に供給し、放熱部4において冷媒により輸送した熱を冷却水と熱交換することにより冷媒が冷却されて液相冷媒となる。受熱した冷却水は冷却水戻り経路8を経て水冷チラーに戻り水冷チラーにおいて冷却される。   The heat radiation unit 4 of the cooling device 1 is connected to a water-cooled chiller (not shown) for cooling the heat transported by the refrigerant. The cooling water cooled by the water-cooled chiller is supplied from the cooling water supply path 7 to the heat radiating unit 4, and the heat transported by the refrigerant in the heat radiating unit 4 is heat-exchanged with the cooling water, whereby the refrigerant is cooled and becomes a liquid phase refrigerant. . The received cooling water returns to the water cooling chiller via the cooling water return path 8 and is cooled in the water cooling chiller.

本実施の形態では、水冷チラーによる水冷式としたが、冷却ファンによる空冷式や、その他の方式であってもよい。   In the present embodiment, the water cooling type using a water cooling chiller is used, but an air cooling type using a cooling fan or other methods may be used.

次に、上記構成における冷却装置1の基本的な仕組みについて説明する。   Next, a basic mechanism of the cooling device 1 having the above configuration will be described.

冷却装置1は、内部を減圧した後に冷媒を封入したものであり、冷却装置1内は、冷媒の作用により外部温度に応じた冷媒の飽和圧力となる。発熱体A28、発熱体B29の熱は受熱部3を介して冷媒に伝わり、冷媒が液相から気相へと変化することで、発熱体A28、発熱体B29が冷却される。受熱部3内にて気化した冷媒は、未沸騰の液相の冷媒との気液二相の混相流となって、受熱部3から放熱経路5を通り放熱部4へと移動し、冷却水供給経路7より供給された冷却水により冷やされ再び液化し液相の冷媒となり帰還経路6を経て受熱部3に戻る。   The cooling device 1 is a device in which the inside is decompressed and then a refrigerant is enclosed, and the inside of the cooling device 1 becomes a saturation pressure of the refrigerant according to the external temperature by the action of the refrigerant. The heat of the heating element A28 and the heating element B29 is transmitted to the refrigerant through the heat receiving portion 3, and the refrigerant changes from the liquid phase to the gas phase, whereby the heating element A28 and the heating element B29 are cooled. The refrigerant vaporized in the heat receiving part 3 becomes a gas-liquid two-phase mixed flow with the non-boiling liquid phase refrigerant, moves from the heat receiving part 3 to the heat radiating part 4 through the heat radiating path 5, and the cooling water. It is cooled by the cooling water supplied from the supply path 7 and is liquefied again to become a liquid phase refrigerant, and returns to the heat receiving unit 3 through the return path 6.

よって、受熱部3内にて冷媒が気化し、気化した冷媒が放熱経路5を通過し放熱部4にて液化し、液化した冷媒が帰還経路6を通過し再び受熱部3内に供給されるサイクルが繰り返されることで、発熱体A28、発熱体B29を冷却している。   Therefore, the refrigerant is vaporized in the heat receiving part 3, the vaporized refrigerant passes through the heat radiation path 5 and is liquefied in the heat radiation part 4, and the liquefied refrigerant passes through the return path 6 and is supplied again into the heat receiving part 3. The heating element A28 and the heating element B29 are cooled by repeating the cycle.

なお、帰還経路6は、放熱経路5より、経路の径を小さくするものとする。これにより、帰還経路6の流路圧損が、放熱経路5の流路圧損より高くなるので、冷媒が受熱部3から帰還経路6に逆流するのを抑制することができる。   The return path 6 is assumed to have a smaller path diameter than the heat dissipation path 5. Thereby, since the flow path pressure loss of the return path 6 becomes higher than the flow path pressure loss of the heat radiation path 5, it is possible to prevent the refrigerant from flowing backward from the heat receiving portion 3 to the return path 6.

図2は、本実施の形態の冷却装置1の受熱部3の外観を示す図である。   FIG. 2 is a diagram illustrating an appearance of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.

図3および図4は、本実施の形態の冷却装置1の受熱部3の分解斜視図である。   3 and 4 are exploded perspective views of the heat receiving portion 3 of the cooling device 1 according to the present embodiment.

図5は、本実施の形態の冷却装置1の受熱部3のX−X´断面を示す図である。   FIG. 5 is a diagram showing an XX ′ cross section of the heat receiving unit 3 of the cooling device 1 of the present embodiment.

図2、図3、図4、図5に示すように、受熱部3は、前面および後面が最大面積の直方体形状とする。
受熱部3は、前面および後面が垂直方向となるように設置する。
As shown in FIGS. 2, 3, 4, and 5, the heat receiving portion 3 has a rectangular parallelepiped shape with the maximum front and rear surfaces.
The heat receiving unit 3 is installed so that the front surface and the rear surface are in the vertical direction.

前面には、発熱体A28を設置する受熱板A15を設け、後面には、発熱体B29を設置する受熱板B16を設ける。   A heat receiving plate A15 on which the heating element A28 is installed is provided on the front surface, and a heat receiving plate B16 on which the heating element B29 is installed on the rear surface.

なお、発熱体、受熱板、フィン他をそれぞれA,Bに分けているが、これは、各々が2つあることを意味し、特に記載がないかぎりA,Bに違いはない。   In addition, although a heat generating body, a heat receiving plate, a fin, etc. are each divided into A and B, this means that there are two each, and there is no difference between A and B unless otherwise specified.

また、本実施の形態では、発熱体A28、発熱体B29と受熱板A15、受熱板B16とを受熱部3の前面および後面の両方に設けているが、前面または後面のいずれか一方に発熱体A28と受熱板A15とを設ける構成としてもよい。(図示せず)
2つの発熱体A28と発熱体B29(図1に記載)を、受熱板A15に発熱体A28を、受熱板B16に発熱体B29を接触させて熱的に接続する。受熱板A15と受熱板B16には、発熱体A28、発熱体B29を固定するための固定用ネジ孔19を適宜設けて、受熱板A15に発熱体A28を、受熱板B16に発熱体B29をネジで固定する。2つの発熱体A28と発熱体B29との間に、受熱部3が挟まれるように垂直方向に設置する。
直方体形状である受熱部3の上部には放熱内部経路24として空間を設け、下部には帰還内部経路25を設けるための空間を設ける。
In the present embodiment, the heating element A28, the heating element B29, the heat receiving plate A15, and the heat receiving plate B16 are provided on both the front surface and the rear surface of the heat receiving unit 3, but the heating element is provided on either the front surface or the rear surface. A28 and a heat receiving plate A15 may be provided. (Not shown)
The two heating elements A28 and B29 (described in FIG. 1) are thermally connected by bringing the heating element A28 into contact with the heat receiving plate A15 and the heating element B29 in contact with the heat receiving plate B16. The heat receiving plate A15 and the heat receiving plate B16 are appropriately provided with fixing screw holes 19 for fixing the heat generating member A28 and the heat generating member B29. Secure with. It installs in the perpendicular direction so that the heat receiving part 3 may be pinched | interposed between two heat generating body A28 and heat generating body B29.
A space is provided in the upper part of the heat receiving part 3 having a rectangular parallelepiped shape as a heat dissipation internal path 24, and a space for providing the return internal path 25 is provided in the lower part.

受熱部3内の放熱内部経路24と帰還内部経路25との間の中央部にフィン部2を設けている。   The fin part 2 is provided in the center part between the heat radiation internal path 24 and the return internal path 25 in the heat receiving part 3.

受熱部3には、放熱経路5と放熱内部経路24とを接続する流出口20と、帰還経路6と帰還内部経路25とを接続する流入口21とを設ける。   The heat receiving section 3 is provided with an outlet 20 that connects the heat dissipation path 5 and the heat dissipation internal path 24, and an inlet 21 that connects the feedback path 6 and the feedback internal path 25.

流出口20と流入口21とを設ける側面は、受熱板A、受熱板Bを設ける前面、後面をつなぐ側面である。   The side surface on which the outlet 20 and the inlet 21 are provided is a side surface that connects the front surface and the rear surface on which the heat receiving plate A and the heat receiving plate B are provided.

フィン部2には受熱板A15から、受熱部3の内部に突出する複数の平板状のフィンA22を平行に並べて設け、受熱板B16から、受熱部3の内部に突出する複数の平板状のフィンB23を並行に並べて設ける。フィン間の冷媒の流路が垂直方向となるようにフィンA22およびフィンB23を配置する。すなわち、フィンA22の各々のフィン間の隙間が上下方向となるように配置する。フィンB23も同様に配置する。   The fin portion 2 is provided with a plurality of plate-like fins A22 that protrude from the heat receiving plate A15 into the heat receiving portion 3 in parallel, and a plurality of plate fins that protrude from the heat receiving plate B16 into the heat receiving portion 3. B23 are arranged in parallel. The fin A22 and the fin B23 are arranged so that the flow path of the refrigerant between the fins is in the vertical direction. That is, it arrange | positions so that the clearance gap between each fin of fin A22 may become an up-down direction. The fin B23 is similarly arranged.

次に、本実施の形態における特徴的な構成について説明する。   Next, a characteristic configuration in the present embodiment will be described.

図3に示すように、帰還内部経路の底面30は、流入口21が設置された側面と対向するもう一方の側面に向かって下り傾斜を有したものである。   As shown in FIG. 3, the bottom surface 30 of the return internal path has a downward slope toward the other side surface facing the side surface on which the inflow port 21 is installed.

これにより、重力により下り傾斜に沿って、流入口21が設置された側面からもう一方の面まで液相冷媒が移動しやすくすることにより、流入口21を設置した側面から遠い領域まで液相冷媒を供給し易くなり、結果として、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   Accordingly, the liquid-phase refrigerant is easily moved from the side surface where the inflow port 21 is installed to the other side along the downward slope due to gravity, so that the liquid-phase refrigerant is distant from the side surface where the inflow port 21 is installed. As a result, local dryout in the heat receiving unit 3 is prevented, and it is not necessary to fill the heat receiving unit 3 with an excessive amount of liquid refrigerant, and a thin liquid phase refrigerant layer is formed in the heat receiving unit 3. The cooling device 1 with high cooling performance that can be formed can be provided.

なお、この帰還内部経路の底面30の下り傾斜は、受熱部3が大きくなる、すなわち、帰還内部経路の底面30が長くなるにつれ、帰還内部経路の底面30の下り傾斜の斜面勾配を大きくするほうが好ましい。受熱部3が大きくなる場合、流入口21を設置した側面と、その対向するもう一方の側面まのでの距離が長くなるため、流入口21から流入した液相冷媒が、流入口21の設置された側面と対向するもう一方の側面に到達しにくくなり、流出口20を設置した側面から遠い領域に液相冷媒が供給されず冷却することができない、いわゆるドライアウトの状態となりやすい。   Note that the downward inclination of the bottom surface 30 of the return internal path increases the slope of the downward inclination of the bottom surface 30 of the return internal path as the heat receiving portion 3 increases, that is, as the bottom surface 30 of the return internal path increases. preferable. When the heat receiving part 3 becomes large, the distance between the side surface where the inflow port 21 is installed and the other side surface facing the side surface becomes longer, so that the liquid-phase refrigerant flowing from the inflow port 21 is installed in the inflow port 21. It is difficult to reach the other side opposite to the side face, and a liquid phase refrigerant is not supplied to a region far from the side face where the outflow port 20 is installed, so that a so-called dry-out state is likely to occur.

そこで、帰還内部経路の底面30の下り傾斜の斜面勾配を大きくすることで、重力により下り傾斜に沿って、流入口21が設置された側面からもう一方の面まで液相冷媒が移動しやすくする作用を高めることにより、流入口21を設置した側面から遠い領域まで液相冷媒を供給し易くなり、結果として、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   Therefore, by increasing the downward slope of the bottom surface 30 of the return internal path, the liquid refrigerant can easily move from the side surface where the inlet 21 is installed to the other surface along the downward slope due to gravity. By enhancing the action, it becomes easier to supply the liquid-phase refrigerant to a region far from the side surface where the inlet 21 is installed. As a result, local dryout in the heat-receiving unit 3 is prevented, and the heat-receiving unit with an excessive amount of liquid-phase refrigerant. Therefore, it is possible to provide the cooling device 1 with high cooling performance that does not need to satisfy the inside 3 and can form a thin liquid phase refrigerant layer in the heat receiving portion 3.

更に、受熱部3を設置する際に、設置精度の影響により、受熱部3の底面は流入口21が設置された側面と対向するもう一方の側面に向かって上り勾配となるように受熱部3が傾く場合であっても、帰還内部経路の底面30は、流入口21が設置された側面と対向するもう一方の側面に向かって下り傾斜となることで、帰還内部経路の底面30と逆方向に傾いている受熱部3の底面の上り勾配の影響を軽減し、設置精度の影響を小さくする。帰還内部経路の底面30が下り傾斜を有していない場合と比較すると、流入口21が設置された側面と対向する側面に向かって、帰還内部経路の底面30は上り傾斜となり、流入口21を設置した側面から遠い領域のフィンの一部まで液相冷媒が供給されず冷却することができない、いわゆるドライアウト状態となりにくい。したがって、受熱部3本体が傾いて設置された場合であっても、帰還内部経路の底面30は、流入口21が設置された側面と対向するもう一方の側面に向かって下り傾斜となることで、流入口21を設置した側面から遠い領域のフィン部2まで液相冷媒を供給しやすくなる。   Furthermore, when the heat receiving unit 3 is installed, due to the influence of the installation accuracy, the bottom surface of the heat receiving unit 3 is inclined upward toward the other side opposite to the side on which the inflow port 21 is installed. The bottom surface 30 of the return internal path is inclined downward toward the other side surface opposite to the side surface on which the inflow port 21 is installed, so that the bottom direction 30 is opposite to the bottom surface 30 of the return internal path. The influence of the upward gradient of the bottom surface of the heat receiving part 3 that is inclined toward the bottom is reduced, and the influence of the installation accuracy is reduced. Compared to the case where the bottom surface 30 of the return internal path does not have a downward slope, the bottom surface 30 of the return internal path has an upward slope toward the side surface opposite to the side surface on which the inflow port 21 is installed. It is difficult to enter a so-called dry-out state in which the liquid-phase refrigerant is not supplied and cannot be cooled to a part of the fin in the region far from the installed side surface. Therefore, even when the heat receiving unit 3 main body is installed at an inclination, the bottom surface 30 of the return internal path is inclined downward toward the other side surface opposite to the side surface on which the inflow port 21 is installed. It becomes easy to supply the liquid refrigerant to the fin portion 2 in a region far from the side surface where the inlet 21 is installed.

すなわち、流入口21を設置した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   That is, by supplying the refrigerant to a region far from the side surface where the inflow port 21 is installed, local dryout in the heat receiving unit 3 is prevented, and it is not necessary to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant. It is possible to provide the cooling device 1 with high cooling performance capable of forming a liquid phase refrigerant layer in the heat receiving part 3.

また、図2、図3、図4、図5に示すように、流入口21と流出口20を受熱部3の同一の側面に設ける構成にしてもよい。これにより、流入口21を設置した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができる。   In addition, as shown in FIGS. 2, 3, 4, and 5, the inflow port 21 and the outflow port 20 may be provided on the same side surface of the heat receiving unit 3. Thereby, by supplying the refrigerant to a region far from the side surface where the inlet 21 is installed, local dryout in the heat receiving unit 3 is prevented, and it is not necessary to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant. It is possible to provide the cooling device 1 having a high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving portion 3.

また、本発明の冷却装置1を搭載した電子機器50にしてもよい。これにより、流入口21を設置した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を搭載した電子機器50を提供することができるものである。   Moreover, you may make it the electronic device 50 carrying the cooling device 1 of this invention. Thereby, by supplying the refrigerant to a region far from the side surface where the inlet 21 is installed, local dryout in the heat receiving unit 3 is prevented, and it is not necessary to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant. It is possible to provide the electronic device 50 equipped with the cooling device 1 having a high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving portion 3.

(実施の形態2)
図6は、本実施の形態の冷却装置1の受熱部3の外観を示す図である。
(Embodiment 2)
FIG. 6 is a diagram illustrating an appearance of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.

図7および図8は、本実施の形態の冷却装置1の受熱部3の分解斜視図である。   7 and 8 are exploded perspective views of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.

図9は、本実施の形態の冷却装置1の受熱部3のX−X´断面を示す図である。   FIG. 9 is a diagram illustrating an XX ′ cross section of the heat receiving unit 3 of the cooling device 1 according to the present embodiment.

実施の形態1と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。   The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施の形態1では、図2、図3、図4、図5に示すように、流入口21が設置され側面と同一の側面に流出口20を設けることを特徴とした構成であったが、本実施の形態は、図6、図7、図8、図9に示すように、流入口21が設置された側面と対向するもう一方の側面に流出口20を設ける構成である。実施の形態1の構成と比較して、本実施の形態は流出口20を設ける位置が異なるが、特徴に大きな差異はない。これにより、流入口21を設置した側面から遠い領域まで冷媒を供給することにより、受熱部3内の局所ドライアウトを防ぎ、過剰な液相冷媒量にて受熱部3内を満たす必要が無く、薄い液相冷媒の層を受熱部3内に形成することができる冷却性能の高い冷却装置1を提供することができるものである。   In Embodiment 1, as shown in FIGS. 2, 3, 4, and 5, the inflow port 21 is installed and the outflow port 20 is provided on the same side as the side surface. In the present embodiment, as shown in FIGS. 6, 7, 8, and 9, the outlet 20 is provided on the other side opposite to the side where the inlet 21 is installed. Compared with the configuration of the first embodiment, the present embodiment differs in the position where the outlet 20 is provided, but there is no significant difference in features. Thereby, by supplying the refrigerant to a region far from the side surface where the inlet 21 is installed, local dryout in the heat receiving unit 3 is prevented, and it is not necessary to fill the heat receiving unit 3 with an excessive amount of liquid phase refrigerant. It is possible to provide the cooling device 1 with high cooling performance capable of forming a thin liquid phase refrigerant layer in the heat receiving part 3.

以上のように本発明にかかる冷却装置は、冷却性能が高いので、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートポーラトランジスタ(IGBT)、ダイオード等の電子部品を搭載した電子機器などの冷却装置として有用である。   As described above, since the cooling device according to the present invention has high cooling performance, electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate polar transistor (IGBT), and a diode are mounted. It is useful as a cooling device for electronic devices.

1 冷却装置
2 フィン部
3 受熱部
4 放熱部
5 放熱経路
6 帰還経路
7 冷却水供給経路
8 冷却水戻り経路
15 受熱板A
16 受熱板B
19 固定用ネジ孔
20 流出口
21 流入口
22 フィンA
23 フィンB
24 放熱内部経路
25 帰還内部経路
28 発熱体A
29 発熱体B
30 帰還内部経路の底面
50 電子機器
51 ケース
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Fin part 3 Heat receiving part 4 Heat radiating part 5 Heat radiating path 6 Return path 7 Cooling water supply path 8 Cooling water return path 15 Heat receiving plate A
16 Heat receiving plate B
19 Fixing screw hole 20 Outlet 21 Inlet 22 Fin A
23 Fin B
24 Heat dissipation internal path 25 Return internal path 28 Heating element A
29 Heating element B
30 Bottom of return internal path 50 Electronic device 51 Case

Claims (4)

冷媒の相変化によって冷却する冷却装置において、
受熱部、放熱経路、放熱部、帰還経路を順に連結して前記冷媒の循環経路を形成し、
前記受熱部は、
前面および後面を備え、前記前面または前記後面の少なくとも一方に発熱体を設置する受熱板と、
前記受熱部の上部に放熱内部経路と、前記受熱部の下部に帰還内部経路と、前記放熱内部経路と前記帰還内部経路との間にフィン部と、前記放熱経路と前記放熱内部経路とを接続する流出口と、前記帰還経路と前記帰還内部経路とを接続する流入口とを有し、
前記流入口と前記流出口とを、各々前記受熱部の側面に設け、
前記フィン部は、前記受熱板から内部に突出する複数の平板上のフィンを、フィン間の隙間により構成される冷媒の流路が上下方向となるように設け、
前記帰還内部経路の底面は、前記流入口が設置された側面と対向するもう一方の側面に向かって下り傾斜としたことを特徴とする冷却装置。
In the cooling device that cools by phase change of the refrigerant,
A heat receiving part, a heat radiation path, a heat radiation part, a return path are connected in order to form a circulation path for the refrigerant,
The heat receiving part is
A heat receiving plate comprising a front surface and a rear surface, and a heating element installed on at least one of the front surface or the rear surface;
Connecting the heat dissipation internal path to the upper part of the heat receiving part, the feedback internal path to the lower part of the heat receiving part, and the fin part, the heat dissipation path and the heat dissipation internal path between the heat dissipation internal path and the feedback internal path And an inflow port connecting the return path and the return internal path,
The inlet and the outlet are each provided on a side surface of the heat receiving part,
The fin portion is provided with fins on a plurality of flat plates projecting inward from the heat receiving plate such that a refrigerant flow path constituted by gaps between the fins is in the vertical direction,
The cooling apparatus according to claim 1, wherein the bottom surface of the return internal path is inclined downward toward the other side surface facing the side surface on which the inflow port is installed.
前記流入口と前記流出口とを前記受熱部の同一の側面に設けることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the inflow port and the outflow port are provided on the same side surface of the heat receiving unit. 前記流入口が設置された側面と対向するもう一方の側面に前記流出口を設けることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the outlet is provided on the other side opposite to the side where the inlet is installed. 請求項1〜3のいずれか一つに記載の冷却装置を搭載した電子機器。 The electronic device carrying the cooling device as described in any one of Claims 1-3.
JP2016049302A 2016-03-14 2016-03-14 Cooling device and electronic equipment mounted with the same Pending JP2017166710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016049302A JP2017166710A (en) 2016-03-14 2016-03-14 Cooling device and electronic equipment mounted with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049302A JP2017166710A (en) 2016-03-14 2016-03-14 Cooling device and electronic equipment mounted with the same

Publications (1)

Publication Number Publication Date
JP2017166710A true JP2017166710A (en) 2017-09-21

Family

ID=59912973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049302A Pending JP2017166710A (en) 2016-03-14 2016-03-14 Cooling device and electronic equipment mounted with the same

Country Status (1)

Country Link
JP (1) JP2017166710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109890177A (en) * 2019-03-07 2019-06-14 东南大学 A kind of electronic equipment heat management micro-structure
JP2019117262A (en) * 2017-12-27 2019-07-18 セイコーエプソン株式会社 projector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117262A (en) * 2017-12-27 2019-07-18 セイコーエプソン株式会社 projector
JP7047376B2 (en) 2017-12-27 2022-04-05 セイコーエプソン株式会社 projector
CN109890177A (en) * 2019-03-07 2019-06-14 东南大学 A kind of electronic equipment heat management micro-structure

Similar Documents

Publication Publication Date Title
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US7231961B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
JP4997215B2 (en) Server device
JP6561846B2 (en) Cooling device and electronic device
US20180187978A1 (en) Fin-diffuser heat sink with high conductivity heat spreader
JP6647439B1 (en) heatsink
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
WO2013140761A1 (en) Cooling structure for electronic substrate, and electronic device using same
JP2017083050A (en) Cooling device and electronic equipment mounting the same
WO2016117342A1 (en) Cooling device and electronic device in which same is installed
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP2017166710A (en) Cooling device and electronic equipment mounted with the same
JP2010060243A (en) Heat pipe and electronic device
JP5938865B2 (en) Loop heat pipe and electronic device
JP6825615B2 (en) Cooling system and cooler and cooling method
Mohammed et al. Performance improvements of air-cooled thermal tool with advanced technologies
WO2017046986A1 (en) Cooling device and electronic device equipped with same
JP2016138740A (en) Cooling apparatus and electronic equipment
JP2017058120A (en) Cooling device and electronic apparatus mounted with the same
JP2017083078A (en) Cooling device and electronic equipment mounting the same
WO2016208180A1 (en) Cooling device and electronic apparatus having same mounted thereon
JPWO2015056288A1 (en) Boiling cooling device and electronic device using the same
JP2022137759A (en) Heat sink
JP2015060901A (en) Cooling system and electronic apparatus mounted therewith
JP2016138706A (en) Cooling apparatus and electronic equipment