JP2019187695A - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP2019187695A
JP2019187695A JP2018082398A JP2018082398A JP2019187695A JP 2019187695 A JP2019187695 A JP 2019187695A JP 2018082398 A JP2018082398 A JP 2018082398A JP 2018082398 A JP2018082398 A JP 2018082398A JP 2019187695 A JP2019187695 A JP 2019187695A
Authority
JP
Japan
Prior art keywords
image
transmission
reception
unevenness
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018082398A
Other languages
English (en)
Other versions
JP7179483B2 (ja
Inventor
智也 鶴山
Tomoya Tsuruyama
智也 鶴山
修平 新田
Shuhei Nitta
修平 新田
智行 武口
Satoyuki Takeguchi
智行 武口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2018082398A priority Critical patent/JP7179483B2/ja
Priority to US16/386,754 priority patent/US10775469B2/en
Publication of JP2019187695A publication Critical patent/JP2019187695A/ja
Application granted granted Critical
Publication of JP7179483B2 publication Critical patent/JP7179483B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/5659Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the RF magnetic field, e.g. spatial inhomogeneities of the RF magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/246Spatial mapping of the RF magnetic field B1
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5607Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reducing the NMR signal of a particular spin species, e.g. of a chemical species for fat suppression, or of a moving spin species for black-blood imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material

Abstract

【課題】効率的かつ高精度にシェーディングを補正する磁気共鳴イメージング装置を提供する。【解決手段】磁気共鳴イメージング装置は、推定部と、画像生成部と、補正部とを含む。推定部は、全身コイルで受信した第1受信信号に基づく第1画像から、送信RF磁場に生じる送信ムラを推定し、第1画像と表面コイルで受信した第2受信信号に基づく第2画像とから、受信RF磁場に生じる受信ムラを推定する。画像生成部は、表面コイルで受信した第3受信信号に基づいて、第1画像および第2画像よりも解像度が高い第3画像を生成する。補正部は、推定した送信ムラおよび推定した受信ムラを用いて、前記第3画像を補正する。【選択図】図1

Description

本発明の実施形態は、磁気共鳴イメージング装置に関する。
磁気共鳴イメージング(Magnetic Resonance Imaging:以下、MRIとも呼ぶ)装置で用いられる信号を励起するためのRF送信パルスは、生体内での減衰などの影響により不均一なRF磁場(B)を作り出す。よって、得られる磁気共鳴信号は不均一な磁場Bの影響を受けるため、最終的な磁気共鳴画像(MR画像)に部分的な輝度のムラ、すなわちシェーディングが生じてしまう。
このシェーディングを補正するため、撮像したMR画像に対し背景抽出処理およびフィルタ処理などにより得られた画像をシェーディングとして扱うことでシェーディングを推定し、原画像を補正する手法がある。
しかし、撮像画像を元にシェーディングを直接推定する場合、画像のコントラストが高く、輝度のムラのみを抽出することは困難である。さらに、画像内に病変が含まれる場合、当該病変をシェーディングとみなして補正してしまう可能性がある。また、撮像画像の解像度が高いため、計算コストも高くなってしまう。また、腰椎といった、コイルから得られる信号の強い部分と弱い部分とが混在する画像の場合、受信信号が弱い箇所を過度に補正してしまい、補正後の画像の視認性が著しく低下する問題がある。
さらに上述の手法では、同じ患者に対してT1強調画像およびT2強調画像を撮像するなど複数の画像を撮像する場合、得られた画像全てでシェーディングを推定する必要があるため、処理時間が長くなる。
特許第3689509号公報
本発明が解決しようとする課題は、効率的かつ高精度にシェーディングを補正することである。
本実施形態に係る磁気共鳴イメージング装置は、推定部と、画像生成部と、補正部とを含む。推定部は、全身コイルで受信した第1受信信号に基づく第1画像から、送信RF磁場に生じる送信ムラを推定し、前記第1画像と表面コイルで受信した第2受信信号に基づく第2画像とから、受信RF磁場に生じる受信ムラを推定する。画像生成部は、前記表面コイルで受信した第3受信信号に基づいて、前記第1画像および前記第2画像よりも解像度が高い第3画像を生成する。補正部は、推定した送信ムラおよび推定した受信ムラを用いて、前記第3画像を補正する。
図1は、第1の実施形態に係る磁気共鳴イメージング装置の構成を示す図である。 図2は、第1の実施形態において実行される検査プロトコルの一例を示すフローチャートである。 図3は、マスク画像生成処理の一例を示すフローチャートである。 図4は、補正処理の一例を示すフローチャートである。
以下、添付図面を用いて、実施形態に係る磁気共鳴イメージング装置を説明する。なお、以下の説明において、略同一の機能および構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
(第1の実施形態)
図1を用いて、本実施形態における磁気共鳴イメージング装置100の全体構成について説明する。図1は、本実施形態における磁気共鳴イメージング装置100の構成を示す図である。図1に示すように、磁気共鳴イメージング装置100は、静磁場磁石101と、傾斜磁場コイル103と、傾斜磁場電源105と、寝台107と、寝台制御回路109と、送信コイル113と、送信回路115と、受信コイル117と、受信回路119と、シーケンス制御回路121と、バス123と、インタフェース125と、ディスプレイ127と、記憶装置129と、処理回路131とを備える。なお、磁気共鳴イメージング装置100は、静磁場磁石101と傾斜磁場コイル103との間において中空の円筒形状のシムコイルを有していてもよい。
静磁場磁石101は、中空の略円筒形状に形成された磁石である。なお、静磁場磁石101は、略円筒形状に限らず、開放型の形状で構成されてもよい。静磁場磁石101は、内部の空間に一様な静磁場を発生する。静磁場磁石101としては、例えば、超伝導磁石等が使用される。
傾斜磁場コイル103は、中空の円筒形状に形成されたコイルである。傾斜磁場コイル103は、静磁場磁石101の内側に配置される。傾斜磁場コイル103は、互いに直交するX、Y、Zの各軸に対応する3つのコイルが組み合わされて形成される。Z軸方向は、静磁場の方向と同方向であるとする。また、Y軸方向は、鉛直方向とし、X軸方向は、Z軸およびY軸に垂直な方向とする。傾斜磁場コイル103における3つのコイルは、傾斜磁場電源105から個別に電流供給を受けて、X、Y、Zの各軸に沿って磁場強度が変化する傾斜磁場を発生させる。
傾斜磁場コイル103によって発生するX、Y、Z各軸の傾斜磁場は、例えば、周波数エンコード用傾斜磁場(リードアウト傾斜磁場ともいう)位相エンコード用傾斜磁場およびスライス選択用傾斜磁場を形成する。スライス選択用傾斜磁場は、撮像断面を決めるために利用される。位相エンコード用傾斜磁場は、空間的位置に応じて磁気共鳴(Magnetic Resonance:以下、MRと呼ぶ)信号の位相を変化させるために利用される。周波数エンコード用傾斜磁場は、空間的位置に応じてMR信号の周波数を変化させるために利用される。
傾斜磁場電源105は、シーケンス制御回路121の制御により、傾斜磁場コイル103に電流を供給する電源装置である。
寝台107は、被検体Pが載置される天板1071を備えた装置である。寝台107は、寝台制御回路109による制御のもと、被検体Pが載置された天板1071を、ボア111内へ挿入する。寝台107は、例えば、長手方向が静磁場磁石101の中心軸と平行になるように、本磁気共鳴イメージング装置100が設置された検査室内に設置される。
寝台制御回路109は、寝台107を制御する回路であり、インタフェース125を介した操作者の指示により寝台107を駆動することで、天板1071を長手方向および上下方向へ移動させる。
送信コイル113は、傾斜磁場コイル103の内側に配置されたRFコイルである。送信コイル113は、送信回路115からRF(Radio Frequency)パルスの供給を受けて、高周波磁場に相当する送信RF波を発生する。送信コイル113は、例えば、全身コイル(以下、WBC(whole body coil)という)である。WBCは、送受信コイルとして使用されてもよい。WBコイルと傾斜磁場コイル103との間には、これらのコイルを磁気的に分離するための円筒状のRFシールドが設置される。
送信回路115は、シーケンス制御回路121の制御により、ラーモア周波数等に対応するRFパルス)を送信コイル113に供給する。
受信コイル117は、傾斜磁場コイル103の内側に配置されたRFコイルである。受信コイル117は、高周波磁場によって被検体Pから放射されるMR信号を受信する。受信コイル117は、受信されたMR信号を受信回路119へ出力する。受信コイル117は、例えば、1以上、典型的には複数のコイルエレメントを有するコイルアレイである。受信コイル117は、例えば、フェーズドアレイコイル(以下、PAC(Phased Array Coil)ともいう)である。
受信回路119は、シーケンス制御回路121の制御により、受信コイル117から出力されたMR信号に基づいて、デジタル化された複素数データであるデジタルのMR信号を生成する。具体的には、受信回路119は、受信コイル117から出力されたMR信号に対して各種信号処理を施した後、各種信号処理が施されたデータに対してアナログ/デジタル(A/D(Analog to Digital))変換を実行する。受信回路119は、A/D変換されたデータを標本化(サンプリング)する。これにより、受信回路119は、デジタルのMR信号(以下、MRデータと呼ぶ)を生成する。受信回路119は、生成されたMRデータを、シーケンス制御回路121に出力する。
シーケンス制御回路121は、処理回路131から出力された検査プロトコルに従って、傾斜磁場電源105、送信回路115および受信回路119等を制御し、被検体Pに対する撮像を行う。検査プロトコルは、検査に応じた各種パルスシーケンスを有する。検査プロトコルには、傾斜磁場電源105により傾斜磁場コイル103に供給される電流の大きさ、傾斜磁場電源105により電流が傾斜磁場コイル103に供給されるタイミング、送信回路115により送信コイル113に供給されるRFパルスの大きさ、送信回路115により送信コイル113にRFパルスが供給されるタイミング、受信コイル117によりMR信号が受信されるタイミング等が定義されている。
バス123は、インタフェース125と、ディスプレイ127と、記憶装置129と、処理回路131との間でデータを伝送させる伝送路である。バス123には、ネットワーク等を介して、各種生体信号計測器、外部記憶装置、各種モダリティなどが適宜接続されてもよい。例えば、生体信号計測器として、不図示の心電計がバスに接続される。
インタフェース125は、操作者からの各種指示や情報入力を受け付ける回路を有する。インタフェース125は、例えば、マウス等のポインティングデバイス、あるいはキーボード等の入力デバイスに関する回路を有する。なお、インタフェース125が有する回路は、マウス、キーボードなどの物理的な操作部品に関する回路に限定されない。例えば、インタフェース125は、本磁気共鳴イメージング装置100とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、受け取った電気信号を種々の回路へ出力するような電気信号の処理回路を有していてもよい。
ディスプレイ127は、処理回路131におけるシステム制御機能1311による制御のもとで、画像生成機能により生成された各種MR画像、撮像および画像処理に関する各種情報などを表示する。ディスプレイ127は、例えば、CRTディスプレイや液晶ディスプレイ、有機ELディスプレイ、LEDディスプレイ、プラズマディスプレイ、又は当技術分野で知られている他の任意のディスプレイ、モニタ等の表示デバイスである。
記憶装置129は、画像生成機能1313を介してk空間に配列されたMRデータ、画像生成機能1313により生成された画像データ等を記憶する。記憶装置129は、各種検査プロトコル、検査プロトコルを規定する複数の撮像パラメータを含む撮像条件等を記憶する。記憶装置129は、処理回路131で実行される各種機能に対応するプログラムを記憶する。記憶装置129は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスクドライブ(hard disk drive)、ソリッドステートドライブ(solid state drive)、光ディスク等である。また、記憶装置129は、CD−ROMドライブやDVDドライブ、フラッシュメモリ等の可搬性記憶媒体との間で種々の情報を読み書きする駆動装置等であってもよい。
処理回路131は、ハードウェア資源として図示していないプロセッサ、ROM(Read−Only Memory)やRAM等のメモリ等を有し、本磁気共鳴イメージング装置100を統括的に制御する。処理回路131は、システム制御機能1311と、画像生成機能1313と、マスク生成機能1315と、ムラ推定機能1317と、補正機能1319とを有する。システム制御機能1311、画像生成機能1313にて行われる各種機能は、コンピュータによって実行可能なプログラムの形態で記憶装置129へ記憶されている。処理回路131は、これら各種機能に対応するプログラムを記憶装置129から読み出し、実行することで各プログラムに対応する機能を実現するプロセッサである。換言すると、各プログラムを読みだした状態の処理回路131は、図1の処理回路131内に示された複数の機能等を有することになる。
なお、図1においては単一の処理回路131にてこれら各種機能が実現されるものとして説明したが、複数の独立したプロセッサを組み合わせて処理回路131を構成し、各プロセッサがプログラムを実行することにより機能を実現するものとしても構わない。換言すると、上述のそれぞれの機能がプログラムとして構成され、1つの処理回路が各プログラムを実行する場合であってもよいし、特定の機能が専用の独立したプログラム実行回路に実装される場合であってもよい。
上記説明において用いた「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、およびフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。
プロセッサは、記憶装置129に保存されたプログラムを読み出し実行することで各種機能を実現する。なお、記憶装置129にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。なお、寝台制御回路109、送信回路115、受信回路119、シーケンス制御回路121等も同様に、上記プロセッサなどの電子回路により構成される。
処理回路131は、システム制御機能1311により、磁気共鳴イメージング装置100を制御する。具体的には、処理回路131は、記憶装置129に記憶されているシステム制御プログラムを読み出してメモリ上に展開し、展開されたシステム制御プログラムに従って本磁気共鳴イメージング装置100の各回路を制御する。例えば、処理回路131は、システム制御機能1311により、インタフェース125を介して操作者から入力される撮像条件に基づいて、検査プロトコルを記憶装置129から読み出す。なお、処理回路131は、撮像条件に基づいて、検査プロトコルを生成してもよい。処理回路131は、検査プロトコルをシーケンス制御回路121に送信し、被検体Pに対する撮像を制御する。
処理回路131は、画像生成機能1313により、リードアウト傾斜磁場の強度に従って、k空間のリードアウト方向に沿ってMRデータを充填する。処理回路131は、k空間に充填されたMRデータに対してフーリエ変換を行うことにより、MR画像を生成する。例えば、処理回路131は、複素のMRデータから絶対値(Magnitude)画像を生成することが可能である。また、処理回路131は、複素のMRデータにおける実部データと虚部データとを用いて位相画像を生成することが可能である。処理回路131は、絶対値画像および位相画像などのMR画像を、ディスプレイ127や記憶装置129に出力する。
次に、本実施形態において実行される検査プロトコルの一例について、図2のフローチャートを参照して説明する。
ステップS201では、システム制御機能1311を実行することで処理回路131が、検査オーダーなどから被検体Pに関する撮像条件(被検体ID、撮像部位など)を取得する。
ステップS202では、撮像条件に従って位置決めスキャン(ロケータスキャン)が実行され、被検体Pに対する撮像視野(FOV:Field of View)が決定される。具体的に、位置決めスキャンでは、天板1071に被検体Pが載置され、PACが被検体P上に配置される。寝台制御回路109により、被検体Pがガントリ内の撮像空間に位置するように、天板1071が移動する。その後、位置決めスキャンが実行されることで得られる位置決め画像に基づいて、FOVが決定される。なお、位置決めスキャンについては、一般的な処理を用いればよく、ここでの詳細な説明は省略する。
ステップS203では、キャリブレーションスキャンが実行される。キャリブレーションスキャンでは、例えば、静磁場分布(B)の補正、中心周波数(CF)の補正、RFコイルの送受信における空間感度分布を示す感度マップの生成が行われる。キャリブレーションスキャンを実行することで、画像生成機能1313を実行することで処理回路131は、キャリブレーション画像を生成する。画像生成機能1313を実行することで処理回路131は、キャリブレーション画像に基づき、感度マップを生成する。キャリブレーションスキャンでは、複数のスライスが撮像されてもよいし(マルチスライス撮像)、1つのスライスが撮像されてもよい。
また、キャリブレーション画像は、本スキャンにより撮像されるMR画像のような高解像度は要求されず、キャリブレーションのために必要な解像度であればよい。本実施形態で想定するキャリブレーション画像は、例えば64×64画素程度の解像度を有する。
本実施形態では、キャリブレーション画像として2つの画像が生成されることを想定する。1つは、WBCでMR信号を受信することで得られた受信信号に基づくWBCマップ(第1画像ともいう)である。WBCマップは、WBコイルを用いて得られた生データに対してフーリエ変換を実行することで生成される。
もう1つは、PACでMR信号を受信することで得られた受信信号に基づくPACマップ(第2画像ともいう)である。複数のPACごとに得られた生データに対してそれぞれフーリエ変換を実行することで、PACごとの画像データを得る。各画像データの2乗和の平方根(SOS:Sum of Square)を算出したSOS画像が、本実施形態に係るPACマップである。
ここでは、WBCマップおよびPACマップは、同じ分解能を有する画像であることを想定するが、互いに異なる解像度であってもよい。また、WBCマップおよびPACマップは、例えば、プロトン密度強調画像(PDWI:Proton Densitiy Weighted Image)である。
ステップS204では、検査プロトコルに従って、例えばシステム制御機能1311を実行することで処理回路131が、本スキャンの撮像シーケンスを実行し、診断画像であり補正対象画像となるMR画像が撮像される。MR画像は、診断に用いられる画像であるため、例えば512×512画素程度の解像度を有し、キャリブレーション画像よりも解像度が高い。MR画像は、例えば、T1強調画像、T2強調画像、FLAIR(Fluid−attenuated inversion recovery)画像である。
ステップS205では、マスク生成機能1315およびムラ推定機能1317を実行することで処理回路131が、WBCマップおよびPACマップに基づいて送信ムラ推定画像および受信ムラ推定画像を生成する。その後、ムラ推定機能1317を実行することで処理回路131が、ムラ推定画像を生成する。送信ムラ推定画像は、送信RF磁場に生じる送信ムラを示す画像である。受信ムラ推定画像は、受信RF磁場に生じる受信ムラを示す画像である。
ステップS206では、補正機能1319を実行することで処理回路131が、補正対象画像に対し補正処理を実行して補正画像を生成する。生成された補正画像は、例えばディスプレイ127に表示されることで、ユーザに補正画像が提示される。
なお、図2のフローチャートでは、キャリブレーションスキャンが本スキャン前に実行される例を示す。これに限らず、キャリブレーションスキャンは、ステップS202の位置決めスキャンの前に行われてもよいし、ステップS204の本スキャン後に行われてもよい。また、ステップS205に示すムラ推定画像の生成処理についても、ステップS204の本スキャンの前に行われてもよいし、ステップS204の本スキャンと並行して行われてもよい。
次に、ステップS205のムラ推定画像の生成処理について、図3のフローチャートを参照して説明する。まず、マスク生成機能1315を実行することで処理回路131が、マスク生成処理を行う。
ステップS301では、マスク生成機能1315により処理回路131が、WBCマップの輝度ヒストグラムの分布割合が閾値に達する輝度値の範囲を算出する。これは、WBCマップのうち、被検体Pの生体組織領域と被検体P以外の背景領域(空気領域)とを分離するためである。具体的には、例えば輝度ヒストグラムのうち全体の99パーセントを占める輝度値の範囲を算出する。なお、輝度値の最大値に対して数パーセント以下なら空気とする処理により輝度値の範囲を算出してもよいし、累積確率の略99パーセントとなる輝度値の範囲を算出してもよい。
ステップS302では、マスク生成機能1315により処理回路131が、ステップS301で算出した輝度値の範囲のうち、上位Nパーセント以上(Nは正数であり、ここでは10)の輝度値の領域および上位Nパーセント以下の輝度値の領域をそれぞれ抽出する。本実施形態に係るNの値は、WBCマップのS/N比(SNR:Signal to Noise Ratio)、画像SD(Standard Deviation)などを考慮して適宜決定されればよい。マスク生成機能1315により処理回路131が、上位Nパーセント以上の輝度値の領域に対して「1」、それ以外を「0(ゼロ)」とする2値化処理を行い、第1の2値化画像を生成する。なお、「1」「0」に限らず、2種の値に設定されればよい。
一方、上位Nパーセント以下の輝度値の領域に対して「1」、それ以外を「0(ゼロ)」とする2値化処理を行い、第2の2値化画像を生成する。第2の2値化画像は、空気と生体組織との境界部、換言すれば、被検体Pの皮膚領域に対応する。なお、第2の2値化画像として、第1の2値化画像を反転させた画像を用いてもよい。
ステップS303では、マスク生成機能1315により処理回路131が、第1の2値化画像に対して膨張処理を行う。具体的には、膨張処理は、第1の2値化画像の画素値「1」の各ボクセルを、例えば半径1ボクセルで膨張させるモルフォロジ演算を行えばよい。なお、本実施形態に係る膨張処理は、一般的な画像処理で用いられる処理を適用すればよいため、詳細な説明は省略する。
ステップS304では、マスク生成機能1315により処理回路131が、ステップS303の処理により膨張させた2値化画像に対してぼかし処理を行い、WBCマップから抽出された背景領域に基づくエアマスク(第1マスク画像ともいう)を生成する。具体的には、ぼかし処理は、例えばガウシアンフィルタといった平滑化フィルタを適用して半径1ボクセルで境界をぼかす処理である。なお、本実施形態に係るぼかし処理についても、一般的な画像処理で用いられる処理を適用すればよいため、詳細な説明は省略する。
ステップS305では、マスク生成機能1315により処理回路131が、第2の2値化画像に対して膨張処理を行い、WBCマップにおける空気と生体組織との境界に関するスキンマスク(第2マスク画像ともいう)を生成する。具体的に膨張処理は、第2の2値化画像の皮膚領域の各ボクセルを、例えば半径2ボクセルで膨張させる。
以上でマスク画像生成処理を終了する。なお、エアマスクに関するステップS303およびステップS304の処理と、スキンマスクに関するステップS305の処理との順序は問わず、どちらのマスクが先に生成されてもよいし、エアマスクとスキンマスクとに関する処理が並行してもよい。
次に、ムラ推定機能1317を実行することで処理回路131が、ムラ推定処理を行う。
ステップS306では、ムラ推定機能1317により処理回路131が、WBCマップおよびPACマップそれぞれに対し、クロージング処理を行う。具体的には、WBCマップおよびPACマップそれぞれに対し、例えば半径20mmに対応するボクセルに対してクロージング処理を行う。なお、クロージング処理を行うサイズは、被検体Pの撮像部位に応じて決定されればよい。例えば、撮像部位とクロージング処理サイズとを関連づけた対応テーブルを用意しておき、処理回路131が、クロージング処理の際に当該対応テーブルを参照し、クロージング処理サイズを決定すればよい。
ステップS307では、ムラ推定機能1317により処理回路131が、クロージング処理が行われたWBCマップおよびPACマップのそれぞれについて、マスク内膨張処理を行う。具体的には、WBCマップに対してステップS305で生成したスキンマスクを適用(重畳)し、スキンマスク内のボクセルについて、半径2ボクセルの膨張処理を行う。同様に、PACマップにもスキンマスクを適用(重畳)し、スキンマスク内のボクセルについて、半径2ボクセルの膨張処理を行う。スキンマスクをWBCマップおよびPACマップの両方に適用することで、生体組織と生体組織外の背景(空気)との境界にまたがるボクセルにおけるパーシャルボリューム効果を低減することができる。
ステップS308では、ムラ推定機能1317により処理回路131が、マスク内膨張処理を行ったWBCマップおよびPACマップそれぞれについて、ぼかし処理を行う。ぼかし処理は、具体的には、半径1ボクセルのぼかし処理を行う。当該ぼかし処理を実行したWBCマップに基づく画像を送信ムラ推定画像と呼ぶ。送信ムラ推定画像は、ステップS306からステップS308までの処理により、組織コントラストが抑制され、送信ムラが反映されている。
一方、ぼかし処理を実行したPACマップに基づく画像を送受信ムラ推定画像と呼ぶ。送受信ムラ推定画像は、送信ムラおよび受信ムラの両方が反映されている。
ステップS309では、ムラ推定機能1317により処理回路131が、送受信ムラ推定画像から送信ムラの成分を除去し、受信ムラ推定画像を生成する。送受信ムラ推定マップは、PACで受信する際に送信ムラを含む状態であるため、PACマップに基づく送受信ムラ推定画像をWBCマップに基づく送信ムラ推定画像で除算することにより、送信ムラの成分が除去される。受信ムラ推定画像についても、ステップS306からステップS308までの処理により、組織コントラストが抑制され、受信ムラが反映されている。
なお、WBCに基づく送信ムラ推定画像とPACに基づく送受信ムラ推定画像との生成処理は、上述のクロージング処理、ぼかし処理などに限定されない。つまり、組織コントラストを抑制しつつ感度ムラが表現されるような画像処理であればよい。例えば、フィルタ処理(線形フィルタ、バンドパスフィルタおよびモルフォロジフィルタなど)、関数へのフィッティング処理、および、ディープニューラルネットワーク(DNN)などに代表されるニューラルネットワークの機械学習の少なくとも1つがWBCマップおよびPACマップに適用されることで、送信ムラ推定画像および送受信ムラ推定画像がそれぞれ生成されてもよい。
また、受信ムラ推定画像を生成する際に平均化フィルタなど線形な処理が適用される場合は、先にPACマップをWBCマップで除算してから、上述の処理を実行してもよい。但し、受信ムラ推定画像を生成する際にモルフォロジフィルタなど非線形な処理を適用する場合は、先にPACマップをWBCマップで除算し画像処理を行う場合と、図3に示すフローチャートのような画像処理の後に送受信ムラ推定画像を送信ムラ推定画像で除算する場合とで、結果が異なる点に留意する。
ステップS310では、ムラ推定機能1317により処理回路131が、全体的な感度ムラの推定結果として、ムラ推定画像を生成する。具体的には、送信ムラ推定画像をTxM、受信ムラ推定画像をRxMとすると、全体的にムラを推定したムラ推定画像は、以下の式(1)のように記述できる。
ムラ推定画像=TxMβ×RxM・・・(1)
ここで、TxMの上付き「β」の値は、送信ムラ推定画像と受信ムラ推定画像とが同じ割合となるように「1」と決定されてもよいが、撮像シーケンスによって定まる実数として決定されてもよい。つまり、撮像シーケンスに基づいて送信ムラ推定画像の重み付けを決定し、重み付けした送信ムラ推定画像と受信ムラ推定画像とを乗算することで、ムラ推定画像を得る。
βの値は、撮像シーケンスに応じて経験的に決定されてもよいし、撮像パラメータ(フリップアングルなど)の組合せに応じて与えられるテーブルを参照して決定してもよい。また、ディープラーニングなどのニューラルネットワークにより、撮像シーケンスに対して送信ムラ推定画像をどの程度寄与させるかを機械学習させ、機械学習結果を用いて、βの値を決定してもよい。
以上で、ムラ推定処理が終了し、ステップS205に示すムラ推定画像の生成処理が終了する。
次に、ステップS206に示す補正処理について図4のフローチャートを参照して説明する。
ステップS401では、補正機能1319により処理回路131が、ムラ推定画像の輝度ヒストグラムのうち、全体のNパーセント以上の輝度値の領域を抽出する。例えば、ステップS301と同様に、輝度ヒストグラムのうち全体の99パーセントを占める輝度値の範囲を算出すればよい。
ステップS402では、補正機能1319により処理回路131が、補正対象画像の座標および解像度にあわせて、ムラ推定画像およびエアマスクのリスライス処理を行う。
キャリブレーション画像を撮像する断面と補正対象画像を得る本スキャンにおける断面とは異なることがほとんどであるため、補正対象画像の座標系へムラ推定画像およびエアマスクの座標系を変換する行列(変換行列)を計算する。変換行列により、例えば、撮像対象画像の座標位置(x,y)の画素に対応するムラ推定画像の座標位置(x’,y’)の画素の輝度値が得られればよい。なお、変換行列の算出方法については、一般的な画像処理による算出方法を適用すればよいため、ここでの詳細な説明は省略する。
また、補正対象画像にあわせてムラ推定画像およびエアマスクの解像度を増加させるために、線形補間などの補間処理を行えばよい。なお、解像度の増加方法についても、一般的な画像処理による補間方法を適用すればよいため、ここでの詳細な説明は省略する。
ステップS403では、補正機能1319により処理回路131が、補正ファクタの計算を行う。補正ファクタは、以下の式(2)により算出する。
すなわち、ムラ推定画像に対して制限付きの逆数変換を行う。式(2)に示す「Max(ムラ推定画像の画素値,Y×γ)」の逆数は、ムラ推定画像の輝度ヒストグラムの輝度分布のうちの閾値Y以上の領域は、単純に逆数を取り、閾値Y未満の領域は一定値を取るように設定することを示す。つまり、背景などの暗部が、逆数にした場合に過度に輝度値が持ち上がらないようにするためである。なお、γの値は、例えば「0.2」とするが、上述のβの値と同様に、撮像部位または撮像シーケンスに応じて変更される、テーブルを参照して決定されるなど適宜決定されればよい。
また、補正ファクタの一成分としてエアマスクを含むことで、背景における輝度を低くすることができ、背景ノイズを抑制することができる。
ステップS404では、補正機能1319により処理回路131が、補正対象画像を補正する。具体的には、補正対象画像に補正ファクタを乗算することで、最終的にコイルの感度ムラが補正された補正画像を生成できる。以上で補正処理を終了する。
以上に示した本実施形態によれば、WBCマップおよびPACマップに対して上述のマスク処理、クロージング処理、膨張処理およびぼかし処理などの画像処理を行うことで、組織コントラストを抑制しつつ、送信ムラおよび受信ムラをそれぞれ個別に高精度に推定できる。個別に推定された送信ムラおよび受信ムラに基づいてムラ推定画像を生成することで、PACマップから推定される送受信ムラ推定画像のみを用いるよりも高精度に、RFパルスの送受信に係る磁場の不均一性を推定できる。
また、送信ムラ推定画像および受信ムラ推定画像を個別に生成し、撮像シーケンスに適した重み付けにより乗算することで、シーケンスに応じて高精度に送受信ムラが推定されたムラ推定画像を生成できる。
よって、当該ムラ推定画像を用いて補正することで、高効率かつ高精度に画像のシェーディングを補正することができる。
なお、本実施形態で推定したムラ推定画像に基づいて、送信磁場を制御するBシミングを実行してもよい。例えば、ムラ推定画像から不均一な磁場分布の特性が分かるので、当該磁場分布の逆特性となるようなRFパルスの振幅および位相を設計して、RFパルスの送信を制御すればよい。これによって、均一なB分布を得ることができる。
例えば、RFパルスを印加する際、k空間上のトラジェクトリに沿って複数のサブパルスを印加するSpoke技術を用いて、RFパルスのパラメータ(k空間上の位置、振幅および位相)を設計すればよい。これにより、不均一な磁場分布の逆特性を比較的容易に作り出すことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
100…磁気共鳴イメージング装置
101…静磁場磁石
103…傾斜磁場コイル
105…傾斜磁場電源
107…寝台
109…寝台制御回路
111…ボア
113…送信コイル
115…送信回路
117…受信コイル
119…受信回路
121…シーケンス制御回路
123…バス
125…インタフェース
127…ディスプレイ
129…記憶装置
131…処理回路
1071…天板
1311…システム制御機能
1313…画像生成機能
1315…マスク生成機能
1317…ムラ推定機能
1319…補正機能。

Claims (10)

  1. 全身コイルで受信した第1受信信号に基づく第1画像から、送信RF磁場に生じる送信ムラを推定し、前記第1画像と表面コイルで受信した第2受信信号に基づく第2画像とから、受信RF磁場に生じる受信ムラを推定する推定部と、
    前記表面コイルで受信した第3受信信号に基づいて、前記第1画像および前記第2画像よりも解像度が高い第3画像を生成する画像生成部と、
    推定した送信ムラおよび推定した受信ムラを用いて、前記第3画像を補正する補正部と、
    を具備する磁気共鳴イメージング装置。
  2. 前記第1画像は、キャリブレーションスキャンにより得られる全身コイルの感度分布を示す感度マップであり、前記第2画像は、前記キャリブレーションスキャンにより得られるフェーズドアレイコイルの感度分布を示す感度マップであり、前記第3画像は、本スキャンにより得られる診断画像である請求項1に記載の磁気共鳴イメージング装置。
  3. 前記推定部は、撮像シーケンスに基づいて重み付けされた前記送信ムラに基づく送信ムラ推定画像と前記受信ムラに基づく受信ムラ推定画像とを用いて、ムラ推定画像を生成する請求項1または請求項2に記載の磁気共鳴イメージング装置。
  4. 前記第1画像から抽出された背景領域に基づく第1マスク画像を生成するマスク生成部をさらに具備し、
    前記補正部は、前記ムラ推定画像および前記第1マスク画像を用いて、前記第3画像を補正するための補正ファクタを生成する請求項3に記載の磁気共鳴イメージング装置。
  5. 前記マスク生成部は、前記第1画像を用いて空気と生体組織との境界に関する第2マスク画像を生成し、
    前記推定部は、前記第1画像および前記第2画像に対し、前記第2マスク画像を適用する請求項4に記載の磁気共鳴イメージング装置。
  6. 前記第1画像および前記第2画像は、キャリブレーションスキャンで得られる同一の分解能を有する画像である請求項1から請求項5のいずれか1項に記載の磁気共鳴イメージング装置。
  7. 前記第1画像および前記第2画像は、プロトン密度強調画像である請求項1から請求項6のいずれか1項に記載の磁気共鳴イメージング装置。
  8. 前記推定部は、前記第1画像に対し、フィルタ処理、フィッティング処理およびニューラルネットワークに基づく機械学習の少なくともいずれか1つを適用することで、送信ムラ推定画像を生成する請求項1から請求項7のいずれか1項に記載の磁気共鳴イメージング装置。
  9. 前記推定部は、前記第2画像に対し、フィルタ処理、フィッティング処理およびニューラルネットワークに基づく機械学習の少なくともいずれか1つを適用することで、送受信ムラ推定画像を生成する請求項8に記載の磁気共鳴イメージング装置。
  10. 前記推定部は、前記送受信ムラ推定画像から前記送信ムラ推定画像に関する成分を除去することで、受信ムラ推定画像を生成する請求項9に記載の磁気共鳴イメージング装置。
JP2018082398A 2018-04-23 2018-04-23 磁気共鳴イメージング装置 Active JP7179483B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018082398A JP7179483B2 (ja) 2018-04-23 2018-04-23 磁気共鳴イメージング装置
US16/386,754 US10775469B2 (en) 2018-04-23 2019-04-17 Magnetic resonance imaging apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018082398A JP7179483B2 (ja) 2018-04-23 2018-04-23 磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2019187695A true JP2019187695A (ja) 2019-10-31
JP7179483B2 JP7179483B2 (ja) 2022-11-29

Family

ID=68237660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082398A Active JP7179483B2 (ja) 2018-04-23 2018-04-23 磁気共鳴イメージング装置

Country Status (2)

Country Link
US (1) US10775469B2 (ja)
JP (1) JP7179483B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175367B2 (en) * 2018-08-10 2021-11-16 General Electric Company Methods and systems for estimating transmit attenuation for a magnetic resonance imaging scan
US11009578B2 (en) * 2019-07-17 2021-05-18 GE Precision Healthcare LLC Systems and methods for predicting B1+ maps from magnetic resonance calibration images

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856928A (ja) * 1994-08-03 1996-03-05 Philips Electron Nv 表面コイル配設により核磁化分布を決定するmr法
JP2008005899A (ja) * 2006-06-27 2008-01-17 Ge Medical Systems Global Technology Co Llc イメージング装置およびイメージング方法
JP2010233907A (ja) * 2009-03-31 2010-10-21 Hitachi Medical Corp 磁気共鳴イメージング装置及び感度補正方法
JP2015019813A (ja) * 2013-07-18 2015-02-02 株式会社日立メディコ 磁気共鳴イメージング装置及び補正用b1マップを計算する方法
JP2016086991A (ja) * 2014-10-31 2016-05-23 株式会社東芝 磁気共鳴イメージング装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4723814Y1 (ja) 1967-11-04 1972-07-29
NL8602821A (nl) * 1986-11-07 1988-06-01 Philips Nv Werkwijze en inrichting voor het bepalen van gecorrigeerd mri oppervlaktespoelbeeld.
JP3689509B2 (ja) 1996-11-21 2005-08-31 株式会社日立メディコ 画像補正処理方法
JP4723814B2 (ja) 2004-02-26 2011-07-13 株式会社東芝 磁気共鳴イメージング装置
WO2005088328A2 (en) * 2004-03-01 2005-09-22 Koninklijke Philips Electronics N.V. All in one plan scan imaging for optimization of acquisition parameters
JP5443695B2 (ja) 2008-03-05 2014-03-19 株式会社東芝 磁気共鳴イメージング装置
DE102014223734B4 (de) * 2014-11-20 2018-08-09 Siemens Healthcare Gmbh Korrektur von bildgebenden Verfahren in einer Magnetresonanzvorrichtung
DE102014226034B4 (de) * 2014-12-16 2017-01-19 Siemens Healthcare Gmbh Bildkorrektur bei der MR-Bildgebung unter Berücksichtigung des Empfangsprofils
US10054658B2 (en) * 2014-12-29 2018-08-21 General Electric Company Method and apparatus for using B1 map to correct intensity of magnetic resonance images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856928A (ja) * 1994-08-03 1996-03-05 Philips Electron Nv 表面コイル配設により核磁化分布を決定するmr法
JP2008005899A (ja) * 2006-06-27 2008-01-17 Ge Medical Systems Global Technology Co Llc イメージング装置およびイメージング方法
JP2010233907A (ja) * 2009-03-31 2010-10-21 Hitachi Medical Corp 磁気共鳴イメージング装置及び感度補正方法
JP2015019813A (ja) * 2013-07-18 2015-02-02 株式会社日立メディコ 磁気共鳴イメージング装置及び補正用b1マップを計算する方法
JP2016086991A (ja) * 2014-10-31 2016-05-23 株式会社東芝 磁気共鳴イメージング装置

Also Published As

Publication number Publication date
US10775469B2 (en) 2020-09-15
JP7179483B2 (ja) 2022-11-29
US20190324106A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
EP2730935B1 (en) Motional error correction in functional magnetic resonance imaging
US9760991B2 (en) System and method for image intensity bias estimation and tissue segmentation
JP4785566B2 (ja) 磁気共鳴イメージング装置と磁気共鳴イメージング方法
US20160245882A1 (en) Method and magnetic resonance apparatus for determining absolute receive sensitivity maps for reception coils
US20090219021A1 (en) Method and apparatus for removing artifacts during magnetic resonance imaging
US20230260088A1 (en) Medical information processing apparatus and medical information processing method
US10845445B2 (en) Magnetic resonance imaging apparatus and medical image processing apparatus
US10698060B2 (en) Magnetic resonance imaging apparatus and medical image processing apparatus
KR20010113535A (ko) 이미지 처리 장치 및 그 방법, 촬상 장치 및 기록 매체
US10705172B2 (en) Magnetic resonance apparatus and method for dynamic adjustment thereof with multiple adjustment parameters
JP7455508B2 (ja) 磁気共鳴イメージング装置および医用複素数画像処理装置
JP2019195588A (ja) 磁気共鳴イメージング装置およびマルチスライス撮像方法
US11085987B2 (en) Magnetic resonance imaging device, Nyquist ghost correction method, and Nyquist ghost correction program
JP6647836B2 (ja) 磁気共鳴イメージング装置、画像処理装置及び画像処理方法
JP7179483B2 (ja) 磁気共鳴イメージング装置
JP7353735B2 (ja) 磁気共鳴イメージング装置
JP7187206B2 (ja) 磁気共鳴イメージング装置
JP7419145B2 (ja) 医用情報処理装置及び医用情報処理方法
US10955510B2 (en) Magnetic resonance imaging apparatus
JP4901420B2 (ja) 磁気共鳴イメージング装置,磁気共鳴イメージング方法
JP2022002762A (ja) 磁気共鳴イメージングで得た画像の処理方法、画像処理プロブラム、及び、計算機
JP2008136630A (ja) 画像処理装置及びプログラム
US20230284995A1 (en) Apparatus and methods for improved denoising in magnetic resonance imaging based on metal artifact reduction
EP4273568A1 (en) Selection of frequency offset for an mri scan
JP6855239B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221116

R150 Certificate of patent or registration of utility model

Ref document number: 7179483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150