JP2019184219A - Reflow heat pipe with liquid bullet pipe conduit - Google Patents

Reflow heat pipe with liquid bullet pipe conduit Download PDF

Info

Publication number
JP2019184219A
JP2019184219A JP2018107709A JP2018107709A JP2019184219A JP 2019184219 A JP2019184219 A JP 2019184219A JP 2018107709 A JP2018107709 A JP 2018107709A JP 2018107709 A JP2018107709 A JP 2018107709A JP 2019184219 A JP2019184219 A JP 2019184219A
Authority
JP
Japan
Prior art keywords
liquid
pipe
reflux
gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018107709A
Other languages
Japanese (ja)
Inventor
曾惓祺
Quan Qi Ceng
莊岳龍
Yue Long Zhuang
呉小龍
xiao long Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tai Sol Electronics Co Ltd
Original Assignee
Tai Sol Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tai Sol Electronics Co Ltd filed Critical Tai Sol Electronics Co Ltd
Publication of JP2019184219A publication Critical patent/JP2019184219A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide a reflow heat pipe having liquid bullet pipe conduit.SOLUTION: A reflow heat pipe with liquid bullet pipe conduit comprises an evaporation chamber, a reflow pipe and working fluid. The evaporation chamber has a housing and a capillary tube material arranged in the housing. The reflow pipe has both ends separately connected to the housing. The working fluid is poured into the evaporation chamber. In the reflow pipe, a part having a predetermined length becomes a cooling location, a part ranging from the cooling location to a gas end becomes a gas location and a part ranging from the cooling location to a liquid end becomes a liquid location. The liquid location of the reflow pipe is divided by at least one inner spacer into two or more liquid bullet pipe conduits. The two or more liquid bullet pipe conduits are not connected to each other, but connected to the cooling location and a housing inner side, respectively, and their bore diameters are smaller than a bore diameter of the reflow pipe.SELECTED DRAWING: Figure 2

Description

本発明は、還流ヒートパイプに関し、詳しくは液体弾管路を有する還流ヒートパイプに関するものである。   The present invention relates to a reflux heat pipe, and more particularly to a reflux heat pipe having a liquid bullet path.

特許文献1により掲示された還流ヒートパイプは外側ケースおよび内側ケースからなるハウジングを備え、内側ケースの熱伝導開口部に配置された毛細管部材および外部の循環管路から構成され、外側ケースの熱伝導率が内側ケースの熱伝導率より大きい。
特許文献1において、液体管路は液体を容易に流動させるように設計されていないため、液体が流動してもハウジングにスムーズに還流することは難しい。
The reflux heat pipe posted by patent document 1 is equipped with the housing which consists of an outer case and an inner case, and is comprised from the capillary member arrange | positioned in the heat conduction opening part of an inner case, and the external circulation conduit, and heat conduction of an outer case The rate is greater than the thermal conductivity of the inner case.
In Patent Document 1, since the liquid conduit is not designed to easily flow the liquid, it is difficult to smoothly return to the housing even if the liquid flows.

特許文献2により掲示された還流ヒートパイプは液体管路内に配置された可撓性のメッシュ状脈管によって液体をスムーズに還流させるものである。しかしながら、該案の特許技術は可撓性のメッシュ状脈管を液体管路および冷却部に連結する作業が必要であるため、製造工程において、組み立て作業が増加する。
また、燒結作業が必要であるため、製造コストが増加するだけでなく、組み立て作業または燒結作業の不良が原因で歩留まりが低下する。
The reflux heat pipe posted by patent document 2 is what recirculate | circulates a liquid smoothly by the flexible mesh-like vessel arrange | positioned in the liquid conduit. However, the patented technology of the proposal requires an operation of connecting the flexible mesh-like vascular vessel to the liquid conduit and the cooling unit, so that the assembly operation increases in the manufacturing process.
Further, since a sintering operation is necessary, not only the manufacturing cost increases, but also the yield decreases due to a defect in the assembly operation or the sintering operation.

台湾特許I604173号公報Taiwan Patent No. I604173 台湾特許I304467号公報Taiwan Patent No. I304467

本発明は、液体弾管路を有する還流ヒートパイプは還流管の液体部位の内部が分割されて形成した小口径の管路によって液体作動液に液体弾を生成させるため、液体作動液は毛管力がない状態で還流管内部の圧力差によって液体弾を前進させることによって蒸発チャンバーにスムーズに還流できる、液体弾管路を有する還流ヒートパイプを提供することを主な目的とする。   According to the present invention, a reflux heat pipe having a liquid bullet path generates a liquid bullet in the liquid hydraulic fluid by a small-diameter pipe formed by dividing the inside of the liquid portion of the reflux pipe. The main object of the present invention is to provide a reflux heat pipe having a liquid bullet path that can smoothly flow back to the evaporation chamber by advancing the liquid bullet due to the pressure difference inside the reflux pipe in the absence of the liquid.

本発明は、液体弾管路を有する還流ヒートパイプは還流管の液体部位にメッシュ状脈管または毛細管材などを配置する工程がないため、製造コストを削減し、歩留まりを向上させることができる、液体弾管路を有する還流ヒートパイプを提供することをもう一つの目的とする。   In the present invention, since the reflux heat pipe having a liquid bullet path does not have a step of arranging a mesh-like vascular tube or a capillary material in the liquid portion of the reflux tube, the manufacturing cost can be reduced and the yield can be improved. It is another object to provide a reflux heat pipe having a liquid bullet channel.

上述した課題を解決するための、液体弾管路を有する還流ヒートパイプは蒸発チャンバー、還流管および作動液を備える。
蒸発チャンバーはハウジングおよびハウジング内に配置された毛細管材を有する。毛細管材はハウジングに充満せず、ハウジングとの間に蒸気空間を形成する。還流管は一端が気体端となり、別の一端が液体端となる。還流管の気体端はハウジングに接続され、その空間に繋がる。還流管の液体端はハウジングに接続され、ハウジングの内部に繋がる。作動液は蒸発チャンバーに注入される。還流管は長さが所定の部位が冷却部位となり、冷却部位から気体端までの部分が気体部位となり、冷却部位から液体端までの部分が液体部位となる。放熱部材は冷却部位の表面に配置される。還流管の液体部位は内部の少なくとも一つのスペーサーによって二つ以上の液体弾管路に分割される。二つ以上の液体弾管路は相互に繋がらず、それぞれ冷却部位およびハウジング内部に繋がり、口径が還流管の口径より小さい。
In order to solve the above-described problems, a reflux heat pipe having a liquid bullet path includes an evaporation chamber, a reflux pipe, and a working fluid.
The evaporation chamber has a housing and a capillary material disposed within the housing. The capillary material does not fill the housing, and forms a vapor space with the housing. One end of the reflux tube is a gas end, and the other end is a liquid end. The gas end of the reflux tube is connected to the housing and connected to the space. The liquid end of the reflux pipe is connected to the housing and is connected to the inside of the housing. The working fluid is injected into the evaporation chamber. In the reflux pipe, a part having a predetermined length is a cooling part, a part from the cooling part to the gas end is a gas part, and a part from the cooling part to the liquid end is a liquid part. The heat radiating member is disposed on the surface of the cooling site. The liquid portion of the reflux pipe is divided into two or more liquid bullet paths by at least one spacer inside. Two or more liquid bullet paths are not connected to each other, but are connected to the cooling portion and the inside of the housing, respectively, and the diameter is smaller than the diameter of the reflux pipe.

上述したとおり、本発明は還流管の液体部位の内部を小口径の管路に分割することによって液体作動液に液体弾を生成させる効果を生じるため、液体作動液は毛管力がない状態で還流管内部の圧力差によって液体弾を前進させる形で蒸発チャンバーまで還流することができる。
本発明は還流管の液体部位にメッシュ状脈管または毛細管材などを配置する工程がないため、製造コストを削減し、歩留まりを向上させることができる。
As described above, the present invention produces the effect of generating liquid bullets in the liquid working fluid by dividing the inside of the liquid portion of the reflux tube into small-diameter pipes, so that the liquid working fluid is refluxed in the absence of capillary force. The liquid bullet can be recirculated to the evaporation chamber in the form of advancing by the pressure difference inside the tube.
In the present invention, since there is no step of arranging a mesh-like vessel or capillary material in the liquid portion of the reflux tube, the manufacturing cost can be reduced and the yield can be improved.

本発明の第1実施形態を示す斜視図である。1 is a perspective view showing a first embodiment of the present invention. 本発明の第1実施形態を示す横断面図である。It is a cross-sectional view which shows 1st Embodiment of this invention. 本発明の第1実施形態に掲示された還流管およびスペーサーを示す断面図である。It is sectional drawing which shows the reflux tube and spacer posted in 1st Embodiment of this invention. 本発明の第1実施形態に掲示された別のスペーサーを示す断面図である。It is sectional drawing which shows another spacer posted by 1st Embodiment of this invention. 本発明の第1実施形態に掲示された別のスペーサーを示す断面図である。It is sectional drawing which shows another spacer posted by 1st Embodiment of this invention. 本発明の第1実施形態に掲示された別のスペーサーを示す断面図である。It is sectional drawing which shows another spacer posted by 1st Embodiment of this invention. 本発明の第2実施形態を示す横断面図である。It is a cross-sectional view showing a second embodiment of the present invention. 本発明の第3実施形態を示す横断面図である。It is a cross-sectional view showing a third embodiment of the present invention. 本発明の第4実施形態を示す横断面図である。It is a cross-sectional view showing a fourth embodiment of the present invention. 本発明の第5実施形態を示す横断面図である。It is a cross-sectional view showing a fifth embodiment of the present invention.

以下、本発明による液体弾管路を有する還流ヒートパイプを図面に基づいて説明する。   Hereinafter, a reflux heat pipe having a liquid bullet path according to the present invention will be described with reference to the drawings.

(第1実施形態)
図1から図6に示すように、本発明の第1実施形態による液体弾管路を有する還流ヒートパイプ10は、蒸発チャンバー11、還流管21および作動液31から構成される。
(First embodiment)
As shown in FIGS. 1 to 6, the reflux heat pipe 10 having the liquid bullet path according to the first embodiment of the present invention includes an evaporation chamber 11, a reflux pipe 21, and a working fluid 31.

蒸発チャンバー11は、ハウジング12およびハウジング12内に配置された毛細管材14を有する。毛細管材14はハウジング12に充満せず、ハウジング12との間に蒸気空間16を形成する。
蒸気空間16は共有室161および複数のサイドスペース162を有する。複数のサイドスペース162は毛細管材14によって相互に距離を保つ。複数のサイドスペース162はそれぞれ共有室161に繋がり、それ以外の部位において相互に繋がらない。本実施形態において、毛細管材14は銅粉末の焼結によって成形される。
The evaporation chamber 11 has a housing 12 and a capillary material 14 disposed in the housing 12. The capillary 14 does not fill the housing 12, and forms a vapor space 16 with the housing 12.
The vapor space 16 has a shared chamber 161 and a plurality of side spaces 162. The plurality of side spaces 162 are kept at a distance from each other by the capillary 14. The plurality of side spaces 162 are each connected to the shared room 161 and are not connected to each other at other portions. In the present embodiment, the capillary material 14 is formed by sintering copper powder.

還流管21は、一端が気体端214となり、別の一端が液体端216となる。還流管21の気体端214はハウジング12に接続され、その空間に繋がる。還流管21の液体端216はハウジング12に接続され、ハウジング12の内部に繋がる。   One end of the reflux tube 21 is a gas end 214 and the other end is a liquid end 216. The gas end 214 of the reflux pipe 21 is connected to the housing 12 and connected to the space. The liquid end 216 of the reflux pipe 21 is connected to the housing 12 and is connected to the inside of the housing 12.

作動液31は、蒸発チャンバー11に注入される。本実施形態において、作動液は純水からなり、毛細管材14に吸着し、かつ還流管21の一部分に存在する。   The working fluid 31 is injected into the evaporation chamber 11. In the present embodiment, the hydraulic fluid is made of pure water, adsorbs on the capillary material 14, and exists in a part of the reflux pipe 21.

還流管21は長さが所定の部位が冷却部位22となり、冷却部位22から気体端214までの部分が気体部位24となり、冷却部位22から液体端216までの部分が液体部位26となる。放熱部材100は冷却部位22の表面に配置され、複数のフィンから構成されてもよい。
還流管21の液体部位26は内部に一つのスペーサー28を有することによって分割され、二つの小管路すなわち液体弾管路29を形成する。還流管21の液体部位26において、二つの液体弾管路29は相互に繋がらず、それぞれ冷却部位22およびハウジング12内部に繋がり、口径が還流管21の口径より小さい。実際に製作する際、スペーサー28は還流管21と一体成型される板体であってもよい。作動液31は還流管21の液体部位26内に位置する。
In the reflux pipe 21, a portion having a predetermined length becomes a cooling portion 22, a portion from the cooling portion 22 to the gas end 214 becomes a gas portion 24, and a portion from the cooling portion 22 to the liquid end 216 becomes a liquid portion 26. The heat dissipating member 100 may be disposed on the surface of the cooling portion 22 and may be composed of a plurality of fins.
The liquid portion 26 of the reflux pipe 21 is divided by having one spacer 28 inside, thereby forming two small pipes, that is, a liquid bullet pipe 29. In the liquid part 26 of the reflux pipe 21, the two liquid bullet paths 29 are not connected to each other, but are connected to the cooling part 22 and the inside of the housing 12, respectively, and the diameter is smaller than the diameter of the reflux pipe 21. When actually manufacturing, the spacer 28 may be a plate integrally molded with the reflux pipe 21. The working fluid 31 is located in the liquid portion 26 of the reflux pipe 21.

本実施形態において、スペーサー28は液体部位26に配置されるだけでなく、気体部位24に届かず冷却部位22の全体まで延長され、延長距離は冷却部位22全体の長さまでである。
冷却部位22は気体作動液が冷却して液体作動液に変化する部位である。スペーサー28の延長距離が冷却部位22の長さと一致すれば、液体弾管路29が冷却部位22の全体に形成される。液体弾管路29は還流管21の口径より小さい管路であり、液体作動液に液体弾311を生成させる効果を生じるため、液体作動液は毛管力がない状態で還流管21内部の圧力差によって液体弾311を前進させる形で蒸発チャンバー11内にスムーズに還流し、毛細管材14に吸着することができる。
In this embodiment, the spacer 28 is not only disposed in the liquid part 26 but also reaches the entire cooling part 22 without reaching the gas part 24, and the extension distance is up to the entire length of the cooling part 22.
The cooling part 22 is a part where the gas hydraulic fluid cools and changes to a liquid hydraulic fluid. If the extended distance of the spacer 28 matches the length of the cooling part 22, the liquid bullet path 29 is formed in the entire cooling part 22. The liquid bullet line 29 is a pipe line smaller than the diameter of the reflux pipe 21 and produces an effect of generating the liquid bullet 311 in the liquid hydraulic fluid. Therefore, the liquid hydraulic fluid has a pressure difference inside the reflux pipe 21 in a state where there is no capillary force. Thus, the liquid bullet 311 can be smoothly recirculated into the evaporation chamber 11 in the form of advancing, and can be adsorbed on the capillary material 14.

本実施形態において、気体部位24および液体部位26は口径が同じである。液体弾管路29の口径は還流管21の気体部位24の口径より小さい。以上により、液体弾管路29と還流管21の関係、即ち口径の大きさが判明した。つまり、液体弾管路29は口径が比較的小さいため、液体弾を生じさせることが容易である。   In the present embodiment, the gas part 24 and the liquid part 26 have the same diameter. The diameter of the liquid bullet channel 29 is smaller than the diameter of the gas portion 24 of the reflux pipe 21. From the above, the relationship between the liquid bullet channel 29 and the reflux tube 21, that is, the size of the aperture was found. That is, since the liquid bullet channel 29 has a relatively small diameter, it is easy to generate a liquid bullet.

図4に示すように、板体のスペーサー28’は断面形状が直線状に限らず、円弧状であってもよい。図5に示すように、スペーサー28”の数は一つに限らず、三つでもよい。これによって、還流管21”は三つの液体弾管路29”に分割される。図6に示すように、スペーサー28’’’の形は板状に限らず、柱体に形成された中空管体の管壁であってもよい。   As shown in FIG. 4, the cross-sectional shape of the plate spacer 28 'is not limited to a straight line, but may be an arc. As shown in FIG. 5, the number of spacers 28 "is not limited to one, but may be three. Thereby, the reflux pipe 21" is divided into three liquid bullet paths 29 ". As shown in FIG. In addition, the shape of the spacer 28 '' 'is not limited to a plate shape, and may be a tube wall of a hollow tube formed in a column.

以上は本発明の第1実施形態の構造についての説明である。続いて本発明の第1実施形態の作動状態について説明を進める。   The above is the description of the structure of the first embodiment of the present invention. Subsequently, description will be given on the operating state of the first embodiment of the present invention.

図1および図2に示すように、液体弾管路を有する還流ヒートパイプ10が作動する前に、コンピューターの中央処理装置(CPU)などの発熱源に蒸発チャンバー11を付着させ、還流管21の冷却部位22に放熱部材100を配置する。本実施形態において、放熱部材100は複数のフィンから構成される。   As shown in FIG. 1 and FIG. 2, before the reflux heat pipe 10 having a liquid bullet channel is operated, the evaporation chamber 11 is attached to a heat source such as a central processing unit (CPU) of a computer, and the reflux pipe 21 The heat radiating member 100 is disposed in the cooling portion 22. In the present embodiment, the heat dissipation member 100 is composed of a plurality of fins.

液体弾管路を有する還流ヒートパイプ10を起動すると、発熱源の熱エネルギーは蒸発チャンバー11に伝導する。続いて蒸発チャンバー11内の毛細管材14に吸着した作動液は蒸発し、気体作動液に変わって蒸気空間16内に拡散する。
蒸気空間16内の気体作動液は複数のサイドスペース162によって十分に拡散し、共有室161を通って還流管21の気体部位24に流入し、冷却部位22に到達する。このとき冷却部位22に位置する放熱部材100は空気によって熱エネルギーを拡散させ、冷却部位22の内部温度を蒸発チャンバー11の温度以下に降下させるため、冷却部位22内の気体作動液は冷却および凝結し、水滴状の液体作動液に変わって冷却部位22内の液体弾管路29の管壁に付着する。
冷却して凝集した液体作動液が多ければ水滴状の液体作動液が大きくなり、液体弾管路29の断面に充満する液体弾311を生成する。続いて、液体弾管路29は口径が還流管21より小さいため、液体作動液に液体弾311を生成させる効果を有する。気体作動液は気体部位24から冷却部位22に持続的に流れ込み、圧力差を生じる。液体弾311は気体作動液の生じた圧力差によって冷却部位22から液体弾管路29へ前進し、そののち蒸発チャンバー11に流れ込み、再び毛細管材14に吸着する。
このような循環作用により発熱源の熱エネルギーを持続的に誘導し、良好な放熱効果を達成することができる。
When the reflux heat pipe 10 having a liquid bullet path is activated, the heat energy of the heat source is conducted to the evaporation chamber 11. Subsequently, the working fluid adsorbed on the capillary material 14 in the evaporation chamber 11 evaporates and diffuses into the vapor space 16 instead of the gas working fluid.
The gas hydraulic fluid in the vapor space 16 is sufficiently diffused by the plurality of side spaces 162, flows into the gas portion 24 of the reflux pipe 21 through the shared chamber 161, and reaches the cooling portion 22. At this time, the heat radiating member 100 located in the cooling part 22 diffuses heat energy by air and lowers the internal temperature of the cooling part 22 to be equal to or lower than the temperature of the evaporation chamber 11, so that the gas hydraulic fluid in the cooling part 22 is cooled and condensed. Then, the liquid hydraulic fluid is changed to a water droplet-like liquid and adheres to the tube wall of the liquid bullet channel 29 in the cooling region 22.
If there are many liquid hydraulic fluids that have cooled and aggregated, the liquid hydraulic fluid in the form of droplets becomes larger, and liquid bullets 311 that fill the cross section of the liquid bullet channel 29 are generated. Subsequently, since the diameter of the liquid bullet channel 29 is smaller than that of the reflux pipe 21, the liquid bullet line 29 has an effect of generating the liquid bullet 311 in the liquid hydraulic fluid. The gas hydraulic fluid continuously flows from the gas part 24 to the cooling part 22 to generate a pressure difference. The liquid bullet 311 advances from the cooling site 22 to the liquid bullet path 29 due to the pressure difference generated by the gas hydraulic fluid, and then flows into the evaporation chamber 11 and is adsorbed on the capillary 14 again.
By such a circulation action, the heat energy of the heat source can be continuously induced, and a good heat radiation effect can be achieved.

上述したとおり、本発明において、還流管21の液体部位26は内部が分割されて形成した小口径の液体弾管路29によって液体作動液に液体弾311を生成させる効果を生じるため、液体作動液は毛管力がない状態で還流管21内部の圧力差によって液体弾311を前進させる形で蒸発チャンバー11内にスムーズに還流することができる。一方、還流管21の液体部位26にはメッシュ状脈管または毛細管材などが配置されないため、従来の技術と比べて、本発明は製造コストを削減し、歩留まりを向上させることができる。   As described above, in the present invention, the liquid portion 26 of the reflux pipe 21 has an effect of generating the liquid bullet 311 in the liquid hydraulic fluid by the small-diameter liquid bullet passage 29 formed by dividing the inside thereof. Can smoothly recirculate into the evaporation chamber 11 by advancing the liquid bullet 311 by the pressure difference inside the reflux tube 21 in the absence of capillary force. On the other hand, since the mesh-like vascular or capillary material is not disposed in the liquid portion 26 of the reflux tube 21, the present invention can reduce the manufacturing cost and improve the yield compared with the conventional technique.

(第2実施形態)
図7は本発明の第2実施形態による液体弾管路を有する還流ヒートパイプ40を示す横断面図である。第1実施形態との違いは次のとおりである。
(Second Embodiment)
FIG. 7 is a cross-sectional view showing a reflux heat pipe 40 having a liquid bullet path according to the second embodiment of the present invention. Differences from the first embodiment are as follows.

第2実施形態において、毛細管材44はハウジング42との間に形成された貯水空間47を有する。貯水空間47は蒸気空間46に繋がらず、還流管の液体端に繋がる。管貯水空間47は作動液の調節に用いられ、かつ従来の還流ヒートパイプに液体作動液を還流させる液体部位が必要であるために設計される。
蒸発チャンバー内の作動液の大部分が還流管の気体部位、冷却部位および液体部位に留まり、蒸発チャンバーに還流してこない場合、蒸発チャンバーは内部の水量が少な過ぎるため効果的に作動できない状態、即ち空焼きを発生させる。それに対し、貯水空間47は作動液の水量を調節する効果を有するため、蒸発チャンバー11内の作動液49の量を一定にし、空焼きを防止することができる。
In the second embodiment, the capillary material 44 has a water storage space 47 formed between it and the housing 42. The water storage space 47 is not connected to the vapor space 46 but is connected to the liquid end of the reflux pipe. The pipe water storage space 47 is used for adjusting the working fluid, and is designed because the conventional reflux heat pipe needs a liquid portion for refluxing the liquid working fluid.
If most of the working fluid in the evaporation chamber stays in the gas part, cooling part and liquid part of the reflux pipe and does not return to the evaporation chamber, the evaporation chamber is in an inoperable state due to too little water inside, That is, empty baking is generated. On the other hand, since the water storage space 47 has an effect of adjusting the amount of the hydraulic fluid, the amount of the hydraulic fluid 49 in the evaporation chamber 11 can be made constant to prevent empty baking.

第2実施形態において、スペーサー58は冷却部位52まで延長されないため、冷却部位52内の液体作動液は直接液体弾管路59に流入できなくても、ある程度の量が貯まると液体弾管路59に流入できる。第2実施形態は液体弾を生成する効果が第1実施形態ほどではないが、液体部位56の液体弾管路59によって液体作動液に液体弾を生成させる効果を発揮できるため、液体作動液は蒸発チャンバー41に容易に還流できる。   In the second embodiment, since the spacer 58 is not extended to the cooling portion 52, even if the liquid hydraulic fluid in the cooling portion 52 cannot directly flow into the liquid bullet passage 59, if a certain amount is accumulated, the liquid bullet passage 59 is accumulated. Can flow into. In the second embodiment, the effect of generating a liquid bullet is not as great as that of the first embodiment, but since the liquid bullet can be generated in the liquid hydraulic fluid by the liquid bullet channel 59 of the liquid portion 56, the liquid hydraulic fluid is It can be easily refluxed to the evaporation chamber 41.

第2実施形態に対し、スペーサー58を液体部位56から冷却部位52の長さの半分まで伸ばせば液体弾管路59が冷却部位52の長さの半分まで伸びる。このような構造によって液体弾を生成する効果は第1実施形態ほどではないが、第2実施形態に優れる。   In contrast to the second embodiment, when the spacer 58 is extended from the liquid portion 56 to half the length of the cooling portion 52, the liquid bullet path 59 extends to half the length of the cooling portion 52. The effect of generating liquid bullets by such a structure is not as good as that of the first embodiment, but is superior to the second embodiment.

第2実施形態のほかの構造および達成できる効果は第1実施形態と同じであるため、説明を省略する。   Since the other structures and effects that can be achieved in the second embodiment are the same as those in the first embodiment, description thereof is omitted.

(第3実施形態)
図8は本発明の第3実施形態による液体弾管路を有する還流ヒートパイプ60を示す横断面図である。第1実施形態との違いは次のとおりである。
(Third embodiment)
FIG. 8 is a cross-sectional view showing a reflux heat pipe 60 having a liquid bullet path according to a third embodiment of the present invention. Differences from the first embodiment are as follows.

第3実施形態において、スペーサー68は冷却部位62および気体部位64の気体端614まで伸びるように配置される。   In the third embodiment, the spacer 68 is arranged to extend to the cooling end 62 and the gas end 614 of the gas portion 64.

上述した構造により、気体作動液は気体部位64から直接小口径の液体弾管路69に流入し、冷却部位62に到達する前に小さい水滴を凝集させる。凝集した小さい水滴は少量であるため、液体弾にならない。言い換えれば、上述した構造は全体の作動効率に影響を与えることがなく、液体弾管路69が還流管61の内部全体に形成されるため、直接丸々一本のパイプを組み合わせるのみでできる。
つまり、還流管61の一部分にスペーサーを配置しない別の製造工程も、第1実施形態のようにスペーサー68を冷却部位62まで正確に延長する製造工程も必要ではない。従って、第3実施形態は第1実施形態より製造コストを削減できる。
With the above-described structure, the gas hydraulic fluid flows directly from the gas portion 64 into the small diameter liquid bullet channel 69 and aggregates small water droplets before reaching the cooling portion 62. Since the small water droplets that have aggregated are small, they do not become liquid bullets. In other words, the above-described structure does not affect the overall operation efficiency, and the liquid bullet channel 69 is formed in the entire interior of the reflux pipe 61, so that it is possible to directly combine a single pipe.
That is, another manufacturing process in which the spacer is not disposed in a part of the reflux pipe 61 and a manufacturing process for accurately extending the spacer 68 to the cooling portion 62 as in the first embodiment are not required. Therefore, the third embodiment can reduce the manufacturing cost compared to the first embodiment.

第3実施形態のほかの構造および達成できる効果は第1実施形態と同じであるため、説明を省略する。   Since the other structures and effects that can be achieved in the third embodiment are the same as those in the first embodiment, description thereof is omitted.

(第4実施形態)
図9は本発明の第4実施形態による液体弾管路を有する還流ヒートパイプ70を示す横断面図である。第1実施形態との違いは次のとおりである。
(Fourth embodiment)
FIG. 9 is a cross-sectional view showing a reflux heat pipe 70 having a liquid bullet path according to a fourth embodiment of the present invention. Differences from the first embodiment are as follows.

第4実施形態において、還流管71は二つの管体71a、71bを有する。液体部位76および冷却部位72は管体71bから形成される。気体部位74は管体71aから形成される。気体部位74の口径は液体部位76および冷却部位72の口径より小さい。液体部位76および冷却部位72になる管体71bは気体部位74になる管体71aの外部の一部分に嵌まり、管体71b、管体71aの内部空間を相互に連絡させる。
上述した構造により、二つの管体71a、71bを連結して還流管71を形成する連結関係が明確化した。気体部位74になる管体71aの内部にはスペーサーを配置せず、液体部位76および冷却部位72になる管体71bの内部にスペーサーを配置すればよい。
In the fourth embodiment, the reflux pipe 71 has two pipe bodies 71a and 71b. The liquid part 76 and the cooling part 72 are formed from the pipe body 71b. The gas portion 74 is formed from the tube body 71a. The diameter of the gas part 74 is smaller than the diameters of the liquid part 76 and the cooling part 72. The pipe body 71b that becomes the liquid part 76 and the cooling part 72 fits in a part of the outside of the pipe body 71a that becomes the gas part 74, and connects the pipe body 71b and the internal space of the pipe body 71a to each other.
With the structure described above, the connection relationship in which the two pipe bodies 71a and 71b are connected to form the reflux pipe 71 is clarified. A spacer may be disposed inside the tube 71 b that becomes the liquid portion 76 and the cooling portion 72 without arranging the spacer inside the tube 71 a that becomes the gas portion 74.

つまり、第4実施形態の構築は二つの異なる管体を連結して還流管71を形成することが特徴である。   That is, the construction of the fourth embodiment is characterized in that the reflux pipe 71 is formed by connecting two different pipe bodies.

第4実施形態のほかの構造および達成できる効果は第1実施形態と同じであるため、説明を省略する。   Since the other structures and effects that can be achieved in the fourth embodiment are the same as those in the first embodiment, description thereof is omitted.

(第5実施形態)
図10は本発明の第5実施形態による液体弾管路を有する還流ヒートパイプ80を示す横断面図である。第4実施形態との違いは次のとおりである。
(Fifth embodiment)
FIG. 10 is a cross-sectional view showing a reflux heat pipe 80 having a liquid bullet path according to a fifth embodiment of the present invention. Differences from the fourth embodiment are as follows.

第5実施形態において、還流管81は二つの管体81a、81bを有する。液体部位86および冷却部位82は管体81bから形成される。気体部位84は管体81aから形成される。
気体部位84になる管体81aは管体81bの外部の一部分に嵌り、管体81aと管体81bの内部空間とを相互に連絡させる。気体部位84になる管体81aの口径が管体81bの口径より小さいため、製造する際には、気体部位84になる管体81aの末端部を拡張し、口径を大きくした後、管体81bに管体81aを嵌める。
In the fifth embodiment, the reflux pipe 81 has two pipe bodies 81a and 81b. The liquid part 86 and the cooling part 82 are formed from the tubular body 81b. The gas part 84 is formed from the tubular body 81a.
The tubular body 81a that becomes the gas portion 84 is fitted to a part of the exterior of the tubular body 81b, and connects the tubular body 81a and the internal space of the tubular body 81b to each other. Since the diameter of the tube 81a that becomes the gas portion 84 is smaller than the diameter of the tube 81b, when manufacturing, the end portion of the tube 81a that becomes the gas portion 84 is expanded to increase the diameter, and then the tube 81b. The tubular body 81a is fitted into.

第5実施形態の構築は上述に限らず、気体部位84になる管体81aの口径が管体81bより小さくても、小口径の管体で大口径の管体を連結してもよい。   The construction of the fifth embodiment is not limited to the above, and the pipe body 81a serving as the gas portion 84 may be smaller in diameter than the pipe body 81b, or a large-diameter pipe body may be connected with a small-diameter pipe body.

第5実施形態のほかの構造および達成できる効果は第4実施形態と同じであるため、説明を省略する。   Since the other structures and effects that can be achieved in the fifth embodiment are the same as those in the fourth embodiment, description thereof is omitted.

10、40、60、70、80 液体弾管路を有する還流ヒートパイプ
11、41 蒸発チャンバー
12、42 ハウジング
14、44 毛細管材
16、46 蒸気空間
161 共有室
162 サイドスペース
21、21”、21’’’、61、71、81 還流管
214、614 気体端
216 液体端
22、52、62、72、82 冷却部位
24、64、74、84 気体部位
26、56、76、86 液体部位
28、28’、28”、28’’’、58、68 スペーサー
29、29”、59、69 液体弾管路
31、49 作動液
311 液体弾
47 貯水空間
71a、71b、81a、81b 管体
100 放熱部材
10, 40, 60, 70, 80 Reflux heat pipe having liquid bullet passage 11, 41 Evaporation chamber 12, 42 Housing 14, 44 Capillary material 16, 46 Vapor space 161 Shared chamber 162 Side space 21, 21 ", 21 ''', 61, 71, 81 Reflux tube 214, 614 Gas end 216 Liquid end 22, 52, 62, 72, 82 Cooling part 24, 64, 74, 84 Gas part 26, 56, 76, 86 Liquid part 28, 28 ', 28 ", 28'", 58, 68 Spacer 29, 29 ", 59, 69 Liquid bullet channel 31, 49 Hydraulic fluid 311 Liquid bullet 47 Water storage space 71a, 71b, 81a, 81b Tube body 100 Heat dissipation member

Claims (12)

蒸発チャンバー、還流管および作動液を備え、
前記蒸発チャンバーは、ハウジングおよび前記ハウジング内に配置された毛細管材を有し、前記毛細管材は前記ハウジングに充満せず、前記ハウジングとの間に蒸気空間を形成し、
前記還流管は、一端が気体端となり、別の一端が液体端となり、前記還流管の前記気体端は前記ハウジングに接続され、その空間に繋がり、前記還流管の前記液体端は前記ハウジングに接続され、前記ハウジングの内部に繋がり、
前記作動液は、前記蒸発チャンバーに注入され、
前記還流管は長さが所定の部位が冷却部位となり、前記冷却部位から前記気体端までの部分が気体部位となり、前記冷却部位から前記液体端までの部分が液体部位となり、放熱部材は前記冷却部位の表面に配置され、
前記還流管の前記液体部位は内部の少なくとも一つのスペーサーによって二つ以上の液体弾管路に分割され、二つ以上の前記液体弾管路は相互に繋がらず、それぞれ前記冷却部位および前記ハウジング内部に繋がり、口径が前記還流管の口径より小さいことを特徴とする、
液体弾管路を有する還流ヒートパイプ。
Equipped with an evaporation chamber, reflux tube and hydraulic fluid,
The evaporation chamber has a housing and a capillary material disposed in the housing, the capillary material does not fill the housing, and forms a vapor space between the housing,
The reflux pipe has one end serving as a gas end and the other end serving as a liquid end. The gas end of the reflux pipe is connected to the housing and connected to the space. The liquid end of the reflux pipe is connected to the housing. Connected to the inside of the housing,
The hydraulic fluid is injected into the evaporation chamber;
In the reflux pipe, a portion having a predetermined length becomes a cooling portion, a portion from the cooling portion to the gas end becomes a gas portion, a portion from the cooling portion to the liquid end becomes a liquid portion, and the heat radiating member is the cooling portion. Placed on the surface of the site,
The liquid portion of the reflux pipe is divided into two or more liquid bullet paths by at least one spacer inside, and the two or more liquid bullet paths are not connected to each other. Characterized in that the diameter is smaller than the diameter of the reflux pipe,
A reflux heat pipe with a liquid bullet channel.
少なくとも一つの前記スペーサーは、前記還流管の前記液体部位から前記冷却部位まで延長されることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   The reflux heat pipe having a liquid bullet line according to claim 1, wherein at least one of the spacers extends from the liquid portion of the reflux pipe to the cooling portion. 少なくとも一つの前記スペーサーは、延長距離が前記冷却部位全体の長さまでであることを特徴とする請求項2に記載の液体弾管路を有する還流ヒートパイプ。   The reflux heat pipe having a liquid bullet path according to claim 2, wherein at least one of the spacers has an extended distance up to the entire length of the cooling portion. 少なくとも一つの前記スペーサーは、前記還流管の前記液体部位から前記冷却部位、前記気体部位の前記気体端まで延長されることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   The reflux heat pipe having a liquid bullet path according to claim 1, wherein at least one of the spacers extends from the liquid part of the reflux pipe to the cooling part and the gas end of the gas part. . 前記還流管は、二つの管体を有し、前記液体部位および前記冷却部位は一つの前記管体から形成され、前記気体部位は別の一つの前記管体から形成され、前記気体部位になる前記管体の口径は前記液体部位および前記冷却部位になる前記管体の口径より小さく、前記液体部位および前記冷却部位になる前記管体は前記気体部位になる前記管体の外部の一部分に嵌まり、二つの前記管体の内部空間を相互に連絡させることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   The reflux pipe has two pipes, the liquid part and the cooling part are formed from one of the pipes, and the gas part is formed of another one of the pipes to become the gas part. The diameter of the tubular body is smaller than the diameter of the tubular body that becomes the liquid part and the cooling part, and the tubular part that becomes the liquid part and the cooling part fits in a part of the outside of the tubular body that becomes the gas part. The return heat pipe having a liquid bullet channel according to claim 1, wherein the internal spaces of the two tubular bodies are connected to each other. 前記還流管は、二つの管体を有し、前記液体部位および前記冷却部位は一つの前記管体から形成され、前記気体部位は別の一つの前記管体から形成され、前記気体部位になる一つの前記管体は別の一つの前記管体の外部の一部分に嵌まり、二つの前記管体の内部空間を相互に連絡させることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   The reflux pipe has two pipes, the liquid part and the cooling part are formed from one of the pipes, and the gas part is formed of another one of the pipes to become the gas part. 2. The liquid bullet channel according to claim 1, wherein one tubular body is fitted into a part of the outside of another one tubular body, and the internal spaces of the two tubular bodies are connected to each other. Having a reflux heat pipe. 前記スペーサーは数が複数であり、前記還流管の前記液体部位は複数の前記スペーサーによって複数の前記液体弾管路に分割されることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   2. The liquid bullet path according to claim 1, wherein the spacer has a plurality of numbers, and the liquid portion of the reflux pipe is divided into the plurality of liquid bullet paths by the plurality of spacers. Reflux heat pipe. 前記毛細管材は、前記ハウジングとの間に形成された貯水空間を有し、前記貯水空間は前記蒸気空間に繋がらず、前記還流管の前記液体端に繋がることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   The said capillary material has a water storage space formed between the said housings, The said water storage space is not connected with the said vapor | steam space, but is connected with the said liquid end of the said reflux pipe. Reflux heat pipe with a liquid bullet channel. 前記蒸気空間は、共有室および複数のサイドスペースを有し、複数の前記サイドスペースは相互に距離を保ち、それぞれ前記共有室に繋がることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   2. The liquid bullet path according to claim 1, wherein the vapor space has a shared chamber and a plurality of side spaces, and the plurality of side spaces keep distance from each other and are connected to the shared chamber, respectively. Having a reflux heat pipe. 前記毛細管材は銅粉末の焼結によって成形されることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   The reflux heat pipe having a liquid bullet path according to claim 1, wherein the capillary material is formed by sintering copper powder. 前記液体弾管路の口径は前記還流管の前記気体部位の口径より小さいことを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   The reflux heat pipe having a liquid bullet path according to claim 1, wherein the diameter of the liquid bullet path is smaller than the diameter of the gas portion of the reflux pipe. 少なくとも一つの前記スペーサーおよび前記還流管は一体成型であることを特徴とする請求項1に記載の液体弾管路を有する還流ヒートパイプ。   The reflux heat pipe having a liquid bullet path according to claim 1, wherein at least one of the spacer and the reflux pipe are integrally formed.
JP2018107709A 2018-04-16 2018-06-05 Reflow heat pipe with liquid bullet pipe conduit Pending JP2019184219A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107112908A TWI660149B (en) 2018-04-16 2018-04-16 Loop heat pipe with liquid bomb tube
TW107112908 2018-04-16

Publications (1)

Publication Number Publication Date
JP2019184219A true JP2019184219A (en) 2019-10-24

Family

ID=67349060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018107709A Pending JP2019184219A (en) 2018-04-16 2018-06-05 Reflow heat pipe with liquid bullet pipe conduit

Country Status (3)

Country Link
US (1) US20190316848A1 (en)
JP (1) JP2019184219A (en)
TW (1) TWI660149B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106762A1 (en) * 2017-11-29 2019-06-06 富士通株式会社 Loop heat pipe and electronic device
JP7028659B2 (en) * 2018-01-30 2022-03-02 新光電気工業株式会社 Manufacturing method of loop type heat pipe and loop type heat pipe
JP7153515B2 (en) * 2018-09-25 2022-10-14 新光電気工業株式会社 loop heat pipe
CN109168306A (en) * 2018-10-26 2019-01-08 英业达科技有限公司 cooling device
US10760855B2 (en) * 2018-11-30 2020-09-01 Furukawa Electric Co., Ltd. Heat sink
US10677535B1 (en) * 2018-11-30 2020-06-09 Furukawa Electric Co., Ltd. Heat sink
JP7210379B2 (en) * 2019-05-31 2023-01-23 新光電気工業株式会社 loop heat pipe
CN218417125U (en) * 2022-02-18 2023-01-31 安徽维鸿电子科技有限公司 Heat sink device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218575U (en) * 1985-07-15 1987-02-04
US4883116A (en) * 1989-01-31 1989-11-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ceramic heat pipe wick
US7184265B2 (en) * 2003-05-29 2007-02-27 Lg Electronics Inc. Cooling system for a portable computer
US20080078530A1 (en) * 2006-10-02 2008-04-03 Foxconn Technology Co., Ltd. Loop heat pipe with flexible artery mesh
US20120043060A1 (en) * 2010-08-20 2012-02-23 Foxconn Technology Co., Ltd. Loop heat pipe
US8550150B2 (en) * 2009-10-16 2013-10-08 Foxconn Technology Co., Ltd. Loop heat pipe
WO2015087451A1 (en) * 2013-12-13 2015-06-18 富士通株式会社 Loop-type heat pipe, method for manufacturing same, and electronic equipment
WO2017037921A1 (en) * 2015-09-03 2017-03-09 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5741354B2 (en) * 2011-09-29 2015-07-01 富士通株式会社 Loop heat pipe and electronic equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218575U (en) * 1985-07-15 1987-02-04
US4883116A (en) * 1989-01-31 1989-11-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ceramic heat pipe wick
US7184265B2 (en) * 2003-05-29 2007-02-27 Lg Electronics Inc. Cooling system for a portable computer
US20080078530A1 (en) * 2006-10-02 2008-04-03 Foxconn Technology Co., Ltd. Loop heat pipe with flexible artery mesh
US8550150B2 (en) * 2009-10-16 2013-10-08 Foxconn Technology Co., Ltd. Loop heat pipe
US20120043060A1 (en) * 2010-08-20 2012-02-23 Foxconn Technology Co., Ltd. Loop heat pipe
WO2015087451A1 (en) * 2013-12-13 2015-06-18 富士通株式会社 Loop-type heat pipe, method for manufacturing same, and electronic equipment
WO2017037921A1 (en) * 2015-09-03 2017-03-09 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic device

Also Published As

Publication number Publication date
TWI660149B (en) 2019-05-21
TW201944019A (en) 2019-11-16
US20190316848A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP2019184219A (en) Reflow heat pipe with liquid bullet pipe conduit
US20120227934A1 (en) Heat pipe having a composite wick structure and method for making the same
US10107557B2 (en) Integrated heat dissipation device
US20080078530A1 (en) Loop heat pipe with flexible artery mesh
US20120227935A1 (en) Interconnected heat pipe assembly and method for manufacturing the same
US20170343297A1 (en) Heat dissipation device
CN1703142A (en) Highly effective flat-type loop heat-pipe apparatus
US20060283575A1 (en) Heat pipe
JPWO2011122332A1 (en) Phase change cooler and electronic device equipped with the same
US10145619B2 (en) Heat pipe
TWI776497B (en) Three-dimensional heat dissipating device
JP5447070B2 (en) Loop heat pipe and electronic equipment
CN103200803A (en) Loop heat pipe cooling device with pool boiling function
US20130105131A1 (en) Flattened heat pipe
TWM517315U (en) Heat dissipating unit
JP2006284020A (en) Heat pipe
US20130037241A1 (en) Heat pipe with unequal cross-sections
TWI680274B (en) Heat pipe with composite structure
KR20100132212A (en) Heat pipe with double pipe structure
JP6678235B2 (en) Heat exchanger
US20190154352A1 (en) Loop heat pipe structure
JP2019190812A (en) Recirculation heat pipe in which same pipe line is partitioned into air current passage and fluid current passage
TWI700471B (en) Heat dissipation unit with axial capillary structure
US20120037344A1 (en) Flat heat pipe having swirl core
TWI530655B (en) Plate type heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204