JP2019182707A - Single crystal growth apparatus - Google Patents

Single crystal growth apparatus Download PDF

Info

Publication number
JP2019182707A
JP2019182707A JP2018076333A JP2018076333A JP2019182707A JP 2019182707 A JP2019182707 A JP 2019182707A JP 2018076333 A JP2018076333 A JP 2018076333A JP 2018076333 A JP2018076333 A JP 2018076333A JP 2019182707 A JP2019182707 A JP 2019182707A
Authority
JP
Japan
Prior art keywords
refractory
single crystal
crystal growth
joint
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018076333A
Other languages
Japanese (ja)
Other versions
JP6988659B2 (en
Inventor
浩 畑中
Hiroshi Hatanaka
浩 畑中
敏男 東風谷
Toshio Kochiya
敏男 東風谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018076333A priority Critical patent/JP6988659B2/en
Publication of JP2019182707A publication Critical patent/JP2019182707A/en
Application granted granted Critical
Publication of JP6988659B2 publication Critical patent/JP6988659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a single crystal growth apparatus that can suppress a temperature distribution and a temperature gradient inside the single crystal growth apparatus from varying owing to industrial repetition of growth of a single crystal as much as possible, and is low-cost and high in yield.SOLUTION: A single crystal growth apparatus that is used for a crystal growth method of growing a single crystal while lifting a seed crystal brought into contact with a surface of a raw material melt, and arranged where a crucible is covered from above, and lifts the seed crystal, and that has plate-like refractory materials 4, having holes 4H for passing a lift shaft, divided across a straight line crossing the hole for passing the lift shaft is characterized in that: one refractory material has a front end of its mating surface part positioned below a mating surface part of the other refractory material; the mating surface parts of the refractory materials have mutually opposed planes one over the other; and the planes adhere to each other in single crystal growth.SELECTED DRAWING: Figure 2

Description

本発明は、原料融液の表面に接触させた種結晶を引き上げながら単結晶を育成する結晶育成方法に用いられる、単結晶育成装置に関する。   The present invention relates to a single crystal growing apparatus used for a crystal growing method for growing a single crystal while pulling up a seed crystal brought into contact with the surface of a raw material melt.

単結晶の育成方法としては、原料を充填したルツボを加熱溶融した後に、原料融液表面に種結晶を接触させ、種結晶を引き上げながら単結晶の育成を行うチョクラルスキー法が広く普及している。   As a method for growing a single crystal, the Czochralski method, in which a seed crystal is brought into contact with the surface of the raw material melt after the melting of the crucible filled with the raw material and the seed crystal is pulled up, is widely used. Yes.

単結晶の育成では、炉内の温度分布や温度勾配が重要である。単結晶の育成過程においては、熱平衡状態から僅かに過冷却の状態を作り、原料融液(液体)から結晶(固体)に変化した際に発生する潜熱を逃がしながら単結晶を成長させる。そのため、単結晶成長中の炉内の温度分布や温度勾配を制御することが、工業的に利用可能な単結晶体を製造するために重要になる。   In growing single crystals, temperature distribution and temperature gradient in the furnace are important. In the growth process of the single crystal, the single crystal is grown while making a slight cooling state from the thermal equilibrium state and releasing the latent heat generated when the raw material melt (liquid) is changed to the crystal (solid). Therefore, it is important to control the temperature distribution and temperature gradient in the furnace during single crystal growth in order to produce industrially usable single crystals.

例えば、夫々の等温線同士の間隔が狭くなっている炉内温度分布を有し、炉内温度勾配が急峻である場合、温度制御が容易で、結晶化に伴う潜熱を十分に逃がすことが出来るため、単結晶の形状制御が容易となる。
しかし、育成する単結晶内部の温度差が大きくなり、結晶の熱膨張に起因した熱ひずみにより、結晶欠陥が導入され、多結晶化が発生し易くなる。また、多結晶化しなくても熱ひずみによる結晶の割れや、結晶内部に導入された結晶欠陥により結晶品質が低下する問題が発生する。
For example, when the furnace temperature distribution has a narrow interval between the respective isotherms, and the furnace temperature gradient is steep, temperature control is easy and latent heat associated with crystallization can be sufficiently released. Therefore, it becomes easy to control the shape of the single crystal.
However, the temperature difference inside the single crystal to be grown becomes large, and crystal defects are introduced due to thermal strain caused by thermal expansion of the crystal, so that polycrystallization tends to occur. Further, there is a problem that crystal quality is deteriorated due to crystal cracking due to thermal strain or crystal defects introduced inside the crystal without being polycrystallized.

一方、夫々の等温線同士の間隔が広くなっている炉内温度分布を有し、炉内温度勾配が緩やかな場合、育成する単結晶内部の温度差が小さくなり、結晶の熱膨張に起因した熱ひずみは低減され、熱ひずみに起因した多結晶化や割れは、発生し難くなる。
しかし、結晶成長は、原料融液の等温線分布に沿って行われるため、炉内温度勾配が緩やかで、夫々の等温線同士の間隔が広くなっている状態では、単結晶の成長制御が非常に難しくなる。
例えば、抵抗加熱用発熱体や誘導加熱コイル等、単結晶育成時における炉内の加熱手段の出力制御幅が狭くなる。また、結晶成長が、単結晶育成装置周囲の環境変化や装置内構成物の変化に伴う温度変化に敏感となる。そして、わずかな単結晶成長装置内部の温度のゆらぎが発生しても、急激な結晶成長が起こる現象や逆に結晶成長が起こらなくなる現象が発生する。このような不安定な結晶成長では、結晶内部に導入された結晶欠陥に起因した多結晶化や、急激な結晶形状の変化による応力集中部の発生による割れが問題となる。さらに、所望の単結晶形状が得られないことにより、単結晶をウエハ状に加工した際に、ウエハが得られない部分が発生し、ウエハ加工時の歩留まりが低下する。
On the other hand, when the temperature distribution in the furnace is wide and the temperature gradient in the furnace is gentle, the temperature difference inside the single crystal to be grown becomes small, resulting from the thermal expansion of the crystal. Thermal strain is reduced, and polycrystallization and cracking due to thermal strain are less likely to occur.
However, since crystal growth is performed along the isothermal distribution of the raw material melt, single crystal growth control is extremely possible when the temperature gradient in the furnace is gentle and the interval between each isotherm is wide. It becomes difficult.
For example, the output control width of the heating means in the furnace during single crystal growth, such as a resistance heating heating element and an induction heating coil, becomes narrow. In addition, crystal growth becomes sensitive to temperature changes accompanying changes in the environment around the single crystal growth apparatus and in-apparatus components. Even if a slight temperature fluctuation inside the single crystal growth apparatus occurs, a phenomenon in which rapid crystal growth occurs or a phenomenon in which crystal growth does not occur occurs. In such unstable crystal growth, there are problems of polycrystallization due to crystal defects introduced into the crystal and cracking due to the generation of stress concentration portions due to abrupt crystal shape change. Further, since the desired single crystal shape cannot be obtained, when the single crystal is processed into a wafer, a portion where the wafer cannot be obtained occurs, and the yield during wafer processing decreases.

このように、単結晶の育成においては、単結晶育成装置内部の温度分布や温度勾配の最適化が必要となる。
ところで、本発明者は、単結晶育成装置における、発熱体の周囲に配置される断熱構造体に関し、発熱体からの輻射熱が断熱材間を通って外部に漏れることを抑制して、断熱構造体の内側領域の温度分布の不均一や熱効率の低下を抑制しうる技術として、次の特許文献1に記載の断熱構造体を導出した。
Thus, in the growth of a single crystal, it is necessary to optimize the temperature distribution and temperature gradient inside the single crystal growth apparatus.
By the way, the present inventor relates to a heat insulating structure disposed around a heating element in a single crystal growing apparatus, and suppresses the radiant heat from the heating element from leaking outside through the heat insulating material. As a technique that can suppress non-uniform temperature distribution in the inner region and a decrease in thermal efficiency, a heat insulating structure described in the following Patent Document 1 was derived.

特開2016−200254号公報Japanese Patent Laid-Open No. 2016-200254

特許文献1に記載の技術は、図5(a)に示すように、発熱体(ヒータ54、55、ルツボ51、原料融液52)の周りに配置する断熱構造体53であって、高さ方向に積層された複数の断熱材53〜53を有し、図5(b)に示すように、高さ方向に隣接する一方の断熱材53と、他方の断熱材53n+1とにおいて、一方の断熱材53における他方の断熱材53n+1と対向する面には凸部53aが形成され、他方の断熱材53n+1における一方の断熱材53と対向する面には凸部53aに対応した凹部53bn+1が形成された構成となっている。なお、図5(a)中、56はチャンバ、57は種結晶、58aは種結晶保持部、58は引き上げ軸、59はルツボ支持台である。
特許文献1に記載の技術によれば、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有することで、凸部の側壁により発熱体からの輻射熱が断熱材間を通って外部に漏れることを抑制できる。
このため、本発明者らは、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いた単結晶育成装置を構成すれば、単結晶育成装置内部の温度分布や温度勾配の最適化ができると考えていた。
As shown in FIG. 5 (a), the technique described in Patent Document 1 is a heat insulating structure 53 arranged around a heating element (heaters 54 and 55, a crucible 51, a raw material melt 52), and has a height. A plurality of heat insulating materials 53 1 to 53 5 stacked in the direction, and as shown in FIG. 5B, in one heat insulating material 53 n adjacent to the height direction and the other heat insulating material 53 n + 1 , one to the other of the heat insulating material 53 n + 1 and the surface facing the heat insulator 53 n protrusion 53a n are formed, the other heat insulating material 53 n + one in 1 heat insulator 53 n opposed to the surface protrusion 53a recesses 53b n + 1 is in the formed configuration corresponding to n. In FIG. 5A, 56 is a chamber, 57 is a seed crystal, 58a is a seed crystal holding portion, 58 is a pulling shaft, and 59 is a crucible support.
According to the technique described in Patent Document 1, the heat insulating materials stacked adjacent to each other in the height direction have concave portions and convex portions, so that the radiant heat from the heating element passes between the heat insulating materials by the side walls of the convex portions. Can be prevented from leaking outside.
For this reason, the present inventors configure a single crystal growth apparatus using a technique of a heat insulating structure in which heat insulating materials stacked adjacent to each other in the height direction described in Patent Document 1 have a concave portion and a convex portion. Then, it was thought that the temperature distribution and temperature gradient inside the single crystal growing apparatus could be optimized.

しかるに、本発明者らは、更なる試行錯誤を繰り返した結果、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いた単結晶育成装置には、工業的に単結晶の育成を繰り返し行う場合において、コストを抑制しながら、単結晶育成装置内部の温度分布や温度勾配の最適化を維持し、単結晶の歩留まりを向上させるために、更なる改良すべき課題があることを見出した。   However, as a result of repeating further trial and error, the present inventors, as a result of repeating trial and error, described the technology of the heat insulating structure described in Patent Document 1 in which the heat insulating materials stacked adjacent to each other in the height direction have concave portions and convex portions. The single crystal growth equipment used is designed to maintain the optimization of the temperature distribution and temperature gradient inside the single crystal growth equipment while reducing costs in the case where industrial single crystal growth is repeated. It has been found that there is a problem to be further improved in order to improve the performance.

本発明は、上記事情に鑑み、工業的に単結晶の育成を繰り返し行うことによる、単結晶育成装置内部の温度分布や温度勾配の変化を極力抑制でき、低コストで単結晶の歩留まりが高い単結晶育成装置を提供することを目的とする。   In view of the above circumstances, the present invention can suppress changes in temperature distribution and temperature gradient inside a single crystal growth apparatus as much as possible by repeating industrial growth of a single crystal as much as possible. An object is to provide a crystal growth apparatus.

上記目的を達成するため、本発明による単結晶育成装置は、原料融液の表面に接触させた種結晶を引き上げながら単結晶を育成する結晶育成方法に用いられ、ルツボ上方を覆う位置に配設された、前記種結晶を引き上げる、引き上げ軸を通すための孔を有する板状の耐火物が、前記引き上げ軸を通すための孔を横断する直線を境界として分割されている、単結晶製造装置において、夫々の前記耐火物の合わせ目部は、一方の前記耐火物の合わせ目部の先端が他方の前記耐火物の合わせ目部の下側に位置し、互いの前記耐火物の前記合わせ目部において上側と下側とで対向する平面を有し、該平面同士が単結晶育成時に密着することを特徴とする。   In order to achieve the above object, a single crystal growing apparatus according to the present invention is used in a crystal growing method for growing a single crystal while pulling up a seed crystal brought into contact with the surface of a raw material melt, and is disposed at a position covering the upper part of the crucible. In the single crystal manufacturing apparatus, the plate-like refractory having a hole for passing the pulling shaft and pulling the seed crystal is divided with a straight line crossing the hole for passing the pulling shaft as a boundary. The joint portions of the refractories are positioned at the lower ends of the joint portions of the other refractories, and the joint portions of the refractories of each other. In FIG. 2, the upper and lower sides have opposite planes, and the planes are closely adhered to each other during single crystal growth.

また、本発明の単結晶育成装置においては、夫々の前記耐火物の合わせ目部は、凹部と凸部を有し、一方の前記耐火物の凹部と他方の前記耐火物の凸部、一方の前記耐火物の凸部と他方の前記耐火物の凹部とを突き合わせるインロー構造に形成され、夫々の前記耐火物の前記凹部及び前記凸部は、夫々、前記耐火物の厚みの略1/2の高さを有しているのが好ましい。   Further, in the single crystal growth apparatus of the present invention, each joint portion of the refractory has a concave portion and a convex portion, and the concave portion of one of the refractories and the convex portion of the other refractory, The refractory convex portion and the concave portion of the other refractory are abutted, and the concave portion and the convex portion of each of the refractories are each approximately half the thickness of the refractory. It is preferable to have a height of

また、本発明の単結晶育成装置においては、夫々の前記耐火物の合わせ目部は、傾斜面からなり、互いの前記耐火物の前記傾斜面同士を突き合わせる構造に形成され、前記耐火物の前記傾斜面は、40°以上70°未満の傾斜角度を有しているのが好ましい。   Further, in the single crystal growth apparatus of the present invention, the joint portion of each refractory is formed of an inclined surface, and is formed in a structure in which the inclined surfaces of the refractories are mutually abutted. The inclined surface preferably has an inclination angle of 40 ° or more and less than 70 °.

また、本発明の単結晶育成装置においては、前記耐火物の合わせ目部先端は、C面又はR面に形成された角部を有しているのが好ましい。   Moreover, in the single crystal growth apparatus of this invention, it is preferable that the joint part front-end | tip of the said refractory has a corner | angular part formed in C surface or R surface.

本発明によれば、工業的に単結晶の育成を繰り返し行うことによる、単結晶育成装置内部の温度分布や温度勾配の変化を極力抑制でき、低コストで単結晶の歩留まりが高い単結晶育成装置を提供することができる。   According to the present invention, a single crystal growth apparatus that can suppress changes in temperature distribution and temperature gradient inside the single crystal growth apparatus as much as possible by repeatedly growing a single crystal industrially, and has a low cost and high single crystal yield. Can be provided.

本発明の実施形態に適用され得る単結晶育成装置の一例を概略的に示す説明図である。It is explanatory drawing which shows roughly an example of the single crystal growth apparatus which can be applied to embodiment of this invention. 本発明の第1実施形態にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)に示す板状の耐火物の合わせ目部における凸部の高さ、長さと板状の耐火物の厚みとの関係を示す図、(d)は(c)に示す板状の耐火物における合わせ目部の角部の一変形例を示す図、(e)は(c)に示す板状の耐火物における合わせ目部の角部の他の変形例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the principal part structure of the single crystal growth apparatus concerning 1st Embodiment of this invention, (a) is the straight line which crosses the hole for passing a raising axis | shaft arrange | positioned in the position which covers the crucible upper part. The perspective view which shows the whole structure of the plate-shaped refractory material divided | segmented as a boundary, (b) is the perspective view which shows the joint part of one plate-shaped refractory material divided | segmented into (a), (c) (B) is a diagram showing the relationship between the height and length of the convex portion at the joint of the plate-like refractory shown in (b) and the thickness of the plate-like refractory, (d) is a plate-like refractory shown in (c) The figure which shows the modification of the corner | angular part of the joint part in a refractory, (e) is a figure which shows the other modification of the corner | angular part of the joint part in the plate-like refractory shown in (c). 図2の実施形態の変形例にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)の側面図である。It is explanatory drawing which shows the principal part structure of the single crystal growth apparatus concerning the modification of embodiment of FIG. 2, (a) is the straight line which crosses the hole for passing the raising axis | shaft arrange | positioned in the position which covers the crucible upper part. FIG. 2 is a perspective view showing the entire configuration of a plate-like refractory divided with reference to the boundary, and (b) is a side view of (a). 本発明の第2実施形態にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)に示す板状の耐火物の合わせ目部における傾斜面の傾斜角度を示す図、(d)は(c)に示す板状の耐火物における合わせ目部の角部の一変形例を示す図、(e)は(c)に示す板状の耐火物における合わせ目部の角部の他の変形例を示す図である。It is explanatory drawing which shows the principal part structure of the single crystal growth apparatus concerning 2nd Embodiment of this invention, (a) is the straight line which crosses the hole for passing the raising axis | shaft arrange | positioned in the position which covers the crucible upper part. The perspective view which shows the whole structure of the plate-shaped refractory material divided | segmented as a boundary, (b) is the perspective view which shows the joint part of one plate-shaped refractory material divided | segmented into (a), (c) Is a diagram showing the inclination angle of the inclined surface in the joint portion of the plate-like refractory shown in (b), (d) is a modification of the corner portion of the joint portion in the plate-like refractory shown in (c) (E) is a figure which shows the other modification of the corner | angular part of the joint part in the plate-like refractory shown in (c). 特許文献1に記載の断熱構造体を概略的に示す説明図で、(a)は断熱構造体を備えた単結晶育成装置の構成例を示す図、(b)は(a)の断熱構造体に含まれる断熱材の構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows schematically the heat insulation structure of patent document 1, (a) is a figure which shows the structural example of the single-crystal growth apparatus provided with the heat insulation structure, (b) is the heat insulation structure of (a). It is a figure which shows the structure of the heat insulating material contained in. 従来の単結晶育成装置におけるルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の構成を示す説明図で、(a)は全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)の側面図である。In the conventional single crystal growth apparatus, an explanatory diagram showing the configuration of a plate-like refractory material that is divided at a position that covers the crucible upper portion and that is divided with a straight line that passes through a hole for passing a pulling shaft as a boundary. a) is a perspective view showing the overall configuration, (b) is a perspective view showing a joint portion of one plate-like refractory divided as shown in (a), and (c) is a side view of (b). .

以下、図を参照して、本発明を実施するための形態の説明を行う。
図1は本発明の実施形態に適用され得る、単結晶製造方法として最も一般的なチョクラルスキー法に用いられる、単結晶育成装置の一例を概略的に示す説明図である。
チョクラルスキー法は、ある結晶方位に従って切り出された種結晶と呼ばれる単結晶を上下動可能な引上げ軸の先端部に取り付け、引き上げ軸を介して単結晶の先端を原料融液の表面に接触させ、回転しながら徐々に引上げることによって、種結晶の性質を伝播しながら大口径化して単結晶を製造する方法である。
Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view schematically showing an example of a single crystal growing apparatus used in the most general Czochralski method as a single crystal manufacturing method, which can be applied to an embodiment of the present invention.
In the Czochralski method, a single crystal called a seed crystal cut according to a certain crystal orientation is attached to the tip of a pulling shaft that can move up and down, and the tip of the single crystal is brought into contact with the surface of the raw material melt via the pulling shaft. This is a method for producing a single crystal by increasing the diameter while propagating the properties of the seed crystal by gradually pulling it up while rotating.

図1に示すように、本実施形態に適用され得る単結晶育成装置は、ルツボ1と、ルツボ1の周囲に配設された耐火物3と、ルツボ1上方を覆う位置に配設された耐火物4と、回転機構(不図示)を備えた引き上げ軸8と、ルツボ1を加熱する加熱手段5(図1の例では高周波誘導コイル)と、ルツボ1を支持する支持台を構成する耐火物9を備えている。加熱手段5を構成する高周波誘導コイルには、高周波電力を供給するための電源(不図示)が設けられている。なお、加熱手段5は、抵抗発熱体で構成されていてもよい。   As shown in FIG. 1, a single crystal growing apparatus that can be applied to the present embodiment includes a crucible 1, a refractory 3 disposed around the crucible 1, and a refractory disposed at a position covering the crucible 1. The refractory that constitutes the support 4 that supports the crucible 1, the lifting shaft 8 provided with a rotating mechanism (not shown), the heating means 5 that heats the crucible 1 (high-frequency induction coil in the example of FIG. 1), and the crucible 1. 9 is provided. The high frequency induction coil constituting the heating means 5 is provided with a power source (not shown) for supplying high frequency power. The heating means 5 may be composed of a resistance heating element.

単結晶の製造では、単結晶原料を充填したルツボ1を加熱手段5により加熱し、原料融液2を得る。その後、引上げ軸8の先端部に取り付けられた種結晶7を回転させながら原料融液2の表面に接触させ、原料融液2の表面に種結晶が接触した状態を維持したまま引き上げ軸8を徐々に引き上げながら単結晶の製造を行う。   In the production of the single crystal, the crucible 1 filled with the single crystal raw material is heated by the heating means 5 to obtain the raw material melt 2. Thereafter, the seed crystal 7 attached to the tip of the pulling shaft 8 is rotated and brought into contact with the surface of the raw material melt 2, and the pulling shaft 8 is maintained while keeping the seed crystal in contact with the surface of the raw material melt 2. A single crystal is manufactured while gradually pulling up.

しかるに、上記構成の単結晶育成装置におけるルツボ1の周囲に配設された耐火物3に関し、本発明者が導出した特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いて、高さ方向に複数に積層され、高さ方向に隣接して積層される耐火物同士が凹部と凸部を有する構成とすれば、原料融液2及びルツボ1からの輻射熱が外部に漏れることを抑制できる。   However, regarding the refractory 3 disposed around the crucible 1 in the single crystal growing apparatus having the above-described configuration, the heat insulating materials stacked adjacent to each other in the height direction described in Patent Document 1 derived by the present inventor. If the refractories stacked in a plurality in the height direction and stacked adjacent to each other in the height direction using the technology of the heat insulating structure having a recess and a projection, have a recess and a projection, It can suppress that the radiant heat from the raw material melt 2 and the crucible 1 leaks outside.

ここで、本発明者らは、原料融液2及びルツボ1からの輻射熱が外部に漏れることを抑制できれば、単結晶育成装置内部の温度分布や温度勾配を最適化した状態に維持できると考えていた、そして、ルツボ1の周囲に配設される耐火物3が、高さ方向に複数に積層され、高さ方向に隣接して積層される耐火物3同士が凹部と凸部を有する構成の単結晶育成装置を用いて、工業的に単結晶の育成を繰り返す実験を行った。   Here, the present inventors believe that if the radiation heat from the raw material melt 2 and the crucible 1 can be prevented from leaking to the outside, the temperature distribution and temperature gradient inside the single crystal growth apparatus can be maintained in an optimized state. And the refractory 3 arrange | positioned around the crucible 1 is laminated | stacked in multiple numbers in the height direction, and the refractory 3 laminated | stacked adjacent to a height direction has a recessed part and a convex part. Using a single crystal growth apparatus, an experiment was repeated to grow a single crystal industrially.

しかし、単結晶の育成を繰り返すと、ルツボ1の周囲に配設された耐火物3に、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いた、単結晶育成装置内部の温度分布や温度勾配が徐々にずれることにより、単結晶の歩留まりが低下する問題が発生することが判明した。   However, when the growth of the single crystal is repeated, the heat-insulating materials described in Patent Document 1 are stacked adjacent to each other in the height direction on the refractory 3 disposed around the crucible 1 so that the concave portions and the convex portions are formed. It has been found that there is a problem that the yield of the single crystal is lowered due to the gradual shift of the temperature distribution and temperature gradient inside the single crystal growth apparatus using the technology of the heat insulating structure possessed.

この単結晶育成装置内部の温度分布や温度勾配のずれは、単結晶育成過程における熱サイクルにより発生する炉内構成物の経時変化によるものと考えられる。単結晶育成過程では、室温で炉内のルツボに原料を入れ、耐火物を配設した状態から、原料融解及び結晶成長のために、単結晶育成装置内部の温度を上昇させる。このときに上昇させる温度としては、原料を融解するのに十分な温度が必要である。また、結晶成長終了後には、育成した単結晶を取り出すために、再び室温まで冷却をする必要がある。   The deviation of the temperature distribution and temperature gradient inside the single crystal growth apparatus is considered to be due to the change over time in the furnace components generated by the thermal cycle in the single crystal growth process. In the single crystal growth process, the temperature inside the single crystal growth apparatus is increased for raw material melting and crystal growth from a state in which a raw material is placed in a crucible in a furnace at room temperature and a refractory is disposed. The temperature raised at this time needs to be sufficient to melt the raw material. In addition, after the crystal growth is completed, it is necessary to cool to room temperature again in order to take out the grown single crystal.

単結晶育成装置内部に設置された原料を融解するまでの温度は、融液成長の場合には、原料(単結晶体)の融点である。例えば、代表的な半導体材料であるシリコンでは、融点が約1414℃である。酸化物単結晶では、タンタル酸リチウムで、融点が約1650℃、サファイアで融点が約2050℃である。このような室温から1000℃を超える融点まで温度上昇を経て、再び室温まで温度を下げる熱サイクルにより、単結晶育成装置内部の構成物が経時変化する。その経時変化する主要な構成物として、耐火物が考えられる。   In the case of melt growth, the temperature until the raw material installed in the single crystal growing apparatus is melted is the melting point of the raw material (single crystal). For example, silicon, which is a typical semiconductor material, has a melting point of about 1414 ° C. In the oxide single crystal, lithium tantalate has a melting point of about 1650 ° C. and sapphire has a melting point of about 2050 ° C. The components inside the single crystal growth apparatus change over time by such a thermal cycle in which the temperature rises from room temperature to a melting point exceeding 1000 ° C. and then the temperature is lowered again to room temperature. A refractory can be considered as a main component that changes with time.

耐火物は、使用温度、雰囲気により材質が選択される。耐火物も上述のような熱サイクルを繰り返すことにより、単結晶育成装置内部の雰囲気との反応やごく僅かながらも昇華による劣化を生じる。また、耐火物は、膨張収縮を繰り返す。しかるに、耐火物には、熱を遮蔽するために、通常は熱伝導率の小さいものが用いられる。このため、単結晶の育成における熱サイクルを経る過程において、耐火物の内部で温度差が生じていることになる。その結果、上述のような熱サイクルを繰り返すことで、耐火物の内部の温度分布や温度勾配に起因した熱ひずみが発生し、耐火物に変形が生じる。   The material of the refractory is selected depending on the operating temperature and atmosphere. The refractory also repeats the thermal cycle as described above, thereby causing a reaction with the atmosphere inside the single crystal growth apparatus and a slight deterioration due to sublimation. In addition, the refractory repeats expansion and contraction. However, in order to shield heat, a refractory usually has a low thermal conductivity. For this reason, in the process through the thermal cycle in the growth of the single crystal, a temperature difference is generated inside the refractory. As a result, by repeating the thermal cycle as described above, thermal strain is generated due to the temperature distribution and temperature gradient inside the refractory, and the refractory is deformed.

ここで、特許文献1に記載したルツボ周囲に配設する断熱構造体(耐火物)は、例えば、煉瓦状の断熱材(耐火物)を高さ方向に複数積み上げた構成であり、ルツボ上部に配設する断熱構造体(耐火物)に比べて厚みが大きい。厚みが大きい高さ方向に隣接して積層される断熱材(耐火物)同士が凹部と凸部を有する構成にすれば、凸部の側壁により発熱体からの輻射熱が断熱材(耐火物)間を通って外部に漏れることを抑制し易いと考えられる。   Here, the heat insulation structure (refractory material) arranged around the crucible described in Patent Document 1 has a configuration in which, for example, a plurality of brick-like heat insulation materials (refractory materials) are stacked in the height direction, Thickness is large compared with the heat insulation structure (refractory material) to arrange | position. If the heat insulating material (refractory) laminated adjacent to each other in the height direction with a large thickness has a concave portion and a convex portion, the radiant heat from the heating element is generated between the heat insulating materials (refractory) by the side walls of the convex portion. It is thought that it is easy to suppress leakage through the exterior.

ところで、ルツボ上部に配設する耐火物は、育成した単結晶を取り出すために、図6(a)に示すように、種結晶を引き上げる、引き上げ軸を通すための孔4Hを有するとともに、引き上げ軸を通すための孔4Hを横断する直線を境界として垂直方向(垂直な面により切断する方向)に略半円状に2分割された板状に形成されることが多い。
その理由は、ルツボ上部に配設する耐火物が、引き上げ軸を通すための孔を横断する直線を境界として分割された板状に形成されていれば、一方の板状の耐火物を取り外すことで、引き上げ軸を通すための孔の径よりも大きな径に成長した単結晶を取り出すことができるのに対し、ルツボ上部に配設する耐火物が分割されていない構成の場合、引き上げ軸を通すための孔の径よりも大きな径に成長した単結晶を取り出すことができなくなるためである。
By the way, the refractory disposed in the upper part of the crucible has a hole 4H for pulling up the seed crystal and passing the pulling shaft as shown in FIG. 6 (a) in order to take out the grown single crystal. In many cases, it is formed in a plate shape that is divided into two substantially semicircular shapes in a vertical direction (direction cut by a vertical surface) with a straight line crossing the hole 4H passing therethrough as a boundary.
The reason is that if the refractory placed at the top of the crucible is formed into a plate that is divided with a straight line across the hole for passing the lifting shaft as a boundary, remove one plate-like refractory. The single crystal grown to a diameter larger than the diameter of the hole for passing the pulling shaft can be taken out, whereas in the case where the refractory disposed at the upper part of the crucible is not divided, the pulling shaft is passed. This is because it becomes impossible to take out a single crystal grown to a diameter larger than the diameter of the hole.

しかるに、本発明者は、特許文献1に記載の技術の導出時点では、ルツボ周囲に配設する厚みの大きい断熱構造体(耐火物)における、発熱体からの輻射熱が断熱材間を通って外部に漏れることを抑制することに着目したが、ルツボ上部に配設する耐火物が、引き上げ軸を通すための孔を横断する直線を境界として垂直方向に略半円状に2分割された板状に形成されていることに伴う変形の問題、及び、工業的な単結晶の育成過程における熱サイクルを繰り返し経ることによる変形の問題は着目するには至っていなかった。   However, at the time of deriving the technique described in Patent Document 1, the present inventor has radiated heat from the heating element in the heat insulating structure (refractory) having a large thickness disposed around the crucible through the heat insulating material. Although the refractory disposed at the top of the crucible is divided into two substantially semicircular shapes in a vertical direction with a straight line crossing the hole for passing the lifting shaft as a boundary. However, the problem of deformation caused by the formation of a single crystal and the problem of deformation caused by repeated thermal cycles in the process of growing an industrial single crystal have not been noticed.

そして、原料融液の表面に接触させた種結晶を引き上げながら単結晶を育成する結晶育成方法に用いられる従来の単結晶育成装置では、特許文献1に記載の単結晶育成装置も含めて、ルツボ上部に配設する耐火物は、図6(b)に示すように、引き上げ軸を通すための孔4Hを横断する直線を境界として垂直方向に略半円状に分割し、夫々の板状の耐火物における垂直な面同士を突き合わせる構造となっていた。   In the conventional single crystal growth apparatus used for the crystal growth method for growing the single crystal while pulling up the seed crystal brought into contact with the surface of the raw material melt, the crucible including the single crystal growth apparatus described in Patent Document 1 is also included. As shown in FIG. 6 (b), the refractory disposed in the upper part is divided into a substantially semicircular shape in the vertical direction with a straight line crossing the hole 4H through which the lifting shaft is passed as a boundary. It had a structure in which the vertical surfaces of the refractory were butted together.

このような構造のルツボ上部に配設する耐火物(特に引き上げ軸を通すための孔4H近傍)に変形が生じると、耐火物同士の合わせ目部に隙間が生じ易くなる。この隙間から、雰囲気ガスの漏れが生じた場合には、対流伝熱による熱流出が起こる。また、光が漏れる場合には、輻射による熱流出が起こる。このような熱流出は、耐火物の変形により生じた隙間から、局所的に発生する。その結果、単結晶育成装置内部の温度分布や温度勾配が局所的に変化し、単結晶育成装置内部の温度分布や温度勾配の対称性が崩れ、単結晶の歩留まりが低下する。   If deformation occurs in the refractory disposed in the upper part of the crucible having such a structure (particularly in the vicinity of the hole 4H through which the lifting shaft is passed), a gap is likely to be generated at the joint portion between the refractories. If atmospheric gas leaks from this gap, heat outflow due to convective heat transfer occurs. In addition, when light leaks, heat outflow due to radiation occurs. Such a heat outflow is locally generated from a gap generated by deformation of the refractory. As a result, the temperature distribution and temperature gradient inside the single crystal growth apparatus are locally changed, the symmetry of the temperature distribution and temperature gradient inside the single crystal growth apparatus is broken, and the yield of the single crystal is lowered.

ルツボ上部に配設する耐火物は、単結晶の育成時に、引き上げ軸を通すための孔近傍より雰囲気ガスが系外に流出し、対流伝熱による熱輸送量が多く、孔部側面からも加熱されるため、孔近傍の温度が最も高く、周辺に向かうにしたがって温度が低い、引き上げ軸を通すための孔近傍を中心とした同心円状の等温線となるような点対称の温度分布や温度勾配を有している。
しかるに、上述のように、本発明者らが、工業的な単結晶の育成過程での熱サイクルを繰り返したところ、ルツボ上部に配設する耐火物は、特に、引き上げ軸を通すための孔近傍が、耐火物内の温度分布や温度勾配に起因した熱ひずみにより変形し易いことが判明した。ルツボ上部に配設する耐火物の変形により当初設計した合わせ目部に隙間が生じると、隙間から雰囲気ガスによる対流伝熱及び輻射による熱流出が生じる。
ルツボ上部に配設する耐火物の変形は、例えば、図6(a)、図6(b)に示すような、略円板状の耐火物4が、引き上げ軸を通すための孔4Hを横断する直線を境界として垂直方向に耐火物4と耐火物4とに2分割された構成の場合、耐火物4の外形形状である円形の中心部に位置する引き上げ軸を通すための孔4H近傍の合わせ目部が、ルツボ上方部中央に位置しているため高温になり易く変形が大きくなる。この部分の変形は、一般的に下方からの熱により円形の中心部に位置する引き上げ軸を通すための孔4H近傍が上側へ反る傾向にあるため、円形の中心部に位置する引き上げ軸を通すための孔4H近傍に隙間が生じる。
The refractory placed in the upper part of the crucible has a large amount of heat transported by convection heat transfer from the vicinity of the hole for passing the pulling shaft when the single crystal is grown, and is heated from the side of the hole. Therefore, the temperature distribution in the vicinity of the hole is the highest, the temperature is lower toward the periphery, and the temperature distribution and temperature gradient are symmetrical with respect to a concentric isotherm centering on the vicinity of the hole for passing the pulling shaft. have.
However, as described above, when the inventors repeated a thermal cycle in the process of growing an industrial single crystal, the refractory disposed on the upper part of the crucible is particularly near the hole for passing the lifting shaft. However, it has been found that it is easy to deform due to thermal strain caused by temperature distribution and temperature gradient in the refractory. When a gap is generated in the joint portion originally designed due to deformation of the refractory disposed at the upper part of the crucible, convective heat transfer by atmospheric gas and heat outflow by radiation are generated from the gap.
The deformation of the refractory disposed in the upper part of the crucible is, for example, as shown in FIGS. 6 (a) and 6 (b), when the substantially disk-shaped refractory 4 crosses the hole 4H for passing the lifting shaft. for straight line was divided into two and refractory 4 1 and refractory 4 2 in the vertical direction as a boundary configured to, hole 4H for passing the pulling shaft in the center of the circular is the outer shape of the refractory 4 Since the nearby seam is located in the center of the upper part of the crucible, the temperature tends to be high, and the deformation becomes large. The deformation of this part generally has a tendency that the vicinity of the hole 4H for passing the lifting shaft positioned at the center of the circle is warped upward due to heat from below, so that the lifting shaft positioned at the center of the circle is A gap is generated in the vicinity of the hole 4H for passing through.

ルツボ上部に配設する耐火物に変形が生じると、単結晶の歩留まりが低下するため、変形したルツボ上部に配設する耐火物を交換する必要が生じる。しかるに、ルツボ上部に配設する耐火物の変形が生じるまでの、工業的な単結晶の育成過程における熱サイクルを繰り返す回数が少ないと、耐火物の交換コストが高くなってしまう。   When deformation occurs in the refractory disposed on the upper part of the crucible, the yield of the single crystal is lowered, and thus it is necessary to replace the refractory disposed on the deformed upper part of the crucible. However, if the number of times of repeating the thermal cycle in the process of growing an industrial single crystal until the deformation of the refractory disposed at the upper part of the crucible occurs, the replacement cost of the refractory increases.

しかるに、本発明者が特許文献1に記載の技術を導出した時点では、上述のように、ルツボ上部に配設する耐火物が、引き上げ軸を通すための孔を横断する直線を境界として垂直方向に略半円状に2分割された板状に形成されていることに伴う変形の問題、及び、工業的な単結晶の育成過程における熱サイクルを繰り返し経ることによる変形の問題は着目するに至っていなかった。
本発明者らは、更なる試行錯誤を繰り返した結果、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いた単結晶育成装置には、工業的に単結晶の育成を繰り返し行う場合において、コストを抑制しながら、単結晶育成装置内部の温度分布や温度勾配の最適化を維持し、単結晶の歩留まりを向上させるために、更なる改良すべき課題が内在していたことを見出した。
However, when the present inventor has derived the technique described in Patent Document 1, as described above, the refractory disposed on the upper portion of the crucible is perpendicular to the straight line passing through the hole for passing the lifting shaft. The problem of deformation caused by being formed into a plate that is divided into two substantially semicircular shapes, and the problem of deformation caused by repeated thermal cycles in the process of growing industrial single crystals, have come to focus attention. It wasn't.
As a result of repeating further trial and error, the present inventors used the technique of a heat insulating structure described in Patent Document 1 in which heat insulating materials stacked adjacent to each other in the height direction have concave and convex portions. Single crystal growth equipment improves the yield of single crystals by maintaining the optimization of the temperature distribution and temperature gradient inside the single crystal growth equipment while reducing costs when industrially repeating single crystal growth. In order to make this happen, it was found that there were problems to be further improved.

そこで、本発明者らは、ルツボ上部に配設する耐火物の変形が円形の中心に位置する引き上げ軸を通すための孔近傍が上側へ反る傾向にあることから、中心に位置する引き上げ軸を通すための孔近傍が上側に反ったとしても隙間が生じないようにするための手段として、夫々の耐火物の合わせ目部を、引き上げ軸を通すための孔を横断する直線を境界として分割されている一方の耐火物の合わせ目部の先端が他方の耐火物の合わせ目部の下側に位置し、互いの耐火物の合わせ目部において上側と下側とで対向する平面を有し、平面同士が単結晶育成時に密着する構造となる、本発明の単結晶育成装置の構成を着想するに至った。   Therefore, the present inventors have found that the deformation of the refractory disposed at the upper part of the crucible tends to warp upward in the vicinity of the hole for passing the lifting shaft positioned at the center of the circle. As a means to prevent a gap from occurring even if the vicinity of the hole for passing through is warped upward, the joint portion of each refractory is divided with a straight line crossing the hole for passing the lifting shaft as a boundary The tip of the joint portion of one refractory is located below the joint portion of the other refractory, and has a plane that faces the upper and lower sides of the joint portion of the refractory. The inventors have come up with a configuration of the single crystal growth apparatus of the present invention in which the flat surfaces are in close contact with each other during single crystal growth.

第1実施形態
図2は本発明の第1実施形態にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)に示す板状の耐火物の合わせ目部における凸部の高さ、長さと板状の耐火物の厚みとの関係を示す図、(d)は(c)に示す板状の耐火物における合わせ目部の角部の一変形例を示す図、(e)は(c)に示す板状の耐火物における合わせ目部の角部の他の変形例を示す図である。図3は図2の実施形態の変形例にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)の側面図である。なお、本発明の実施形態に用いる図においては、便宜上、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術に対応する、耐火物3と耐火物4とが高さ方向に積層される部分の構成は省略してある。
First Embodiment FIG. 2 is an explanatory view showing the configuration of the main part of a single crystal growth apparatus according to the first embodiment of the present invention. (A) is for passing a pulling shaft disposed at a position covering the upper part of the crucible. The perspective view which shows the whole structure of the plate-like refractory divided by making the straight line which crosses the hole of a boundary into a boundary, (b) is the joint part of one plate-like refractory divided as shown in (a). The perspective view shown, (c) is a diagram showing the relationship between the height and length of the convex portion at the joint portion of the plate-like refractory shown in (b) and the thickness of the plate-like refractory, (d) is ( The figure which shows one modification of the corner | angular part of the joint part in the plate-like refractory shown in c), (e) is another modification of the corner part of the joint part in the plate-like refractory shown in (c) FIG. FIG. 3 is an explanatory view showing the configuration of the main part of a single crystal growth apparatus according to a modification of the embodiment of FIG. 2, and (a) shows a hole for passing a pulling shaft disposed at a position covering the upper part of the crucible. The perspective view which shows the whole structure of the plate-shaped refractory material divided | segmented on the basis of the crossing straight line, (b) is a side view of (a). In addition, in the figure used for embodiment of this invention, it corresponds to the technique of the heat insulation structure in which the heat insulating materials laminated | stacked adjacent to the height direction of patent document 1 have a recessed part and a convex part for convenience. The configuration of the portion where the refractory 3 and the refractory 4 are stacked in the height direction is omitted.

本実施形態の単結晶育成装置では、図2(a)、図2(b)に示すように、夫々の耐火物4(4)の合わせ目部は、凹部4b(4b)と凸部4a(4a)を有し、一方の耐火物4の凹部4bと他方の耐火物4の凸部4a、一方の耐火物4の凸部4aと他方の耐火物4の凹部4bとを突き合わせるインロー構造に形成されている。
夫々の耐火物4(4)の凹部4b(4b)及び凸部4a(4a)は、夫々、図2(c)に示すように、耐火物4(4)の厚み(tx)の略1/2倍の高さ(hb≒1/2tx、ha≒1/2tx)を有するとともに、耐火物4(4)の厚みの0.4倍〜0.6倍の長さ(Lb=(0.6〜0.4)tx、La=(0.4〜0.6)tx)を有している。
そして、互いの耐火物4(4)は、凹部4b(4b)及び凸部4a(4a)において上側と下側とで対向する平面を有し、この上側と下側で対向する平面同士が単結晶育成時に密着するように配設されている。
In the single crystal growth apparatus of this embodiment, as shown in FIGS. 2 (a) and 2 (b), the joint portion of each refractory 4 1 (4 2 ) is the recess 4b 1 (4b 2 ). protrusions 4a 1 has a (4a 2), one of the refractory 4 1 recess 4b 1 and the other refractory 4 2 of the convex portion 4a 2, one of the refractory 4 of the projecting portion 4a 1 and the other refractory It is formed on the spigot structure to match the recess 4b 2 of the object 4 2.
Recess 4b 1 of the refractory respective 4 1 (4 2) (4b 2) and the protrusions 4a 1 (4a 2), respectively, as shown in FIG. 2 (c), refractory 4 1 (4 2) It has a height (hb≈1 / 2tx, ha≈1 / 2tx) that is approximately ½ times the thickness (tx), and is 0.4 to 0.6 times the thickness of the refractory 4 1 (4 2 ). (Lb = (0.6 to 0.4) tx, La = (0.4 to 0.6) tx).
And each refractory 4 1 (4 2 ) has a plane which faces the upper part and the lower side in the concave part 4b 1 (4b 2 ) and the convex part 4a 1 (4a 2 ). The opposing flat surfaces are arranged so as to be in close contact during single crystal growth.

本実施形態の単結晶育成装置によれば、夫々の耐火物4(4)の合わせ目部を、一方の耐火物4の凹部4bと他方の耐火物4の凸部4a、一方の耐火物4の凸部4aと他方の耐火物4の凹部4bとを突き合わせるインロー構造に形成し、凹部4b(4b)及び凸部4a(4a)において上側と下側で対向する平面同士が単結晶育成時に密着するようにしたので、互いの耐火物の凹部4b(4b)及び凸部4a(4a)が突き合わさることによって、耐火物の中心部に位置する引き上げ軸を通すための孔4H近傍が上側に反る変形が生じても、合わせ目部の先端が下側に位置する一方の耐火物4における凸部4aの垂直方向の平面が、凸部4aの長さにわたって、合わせ目部の先端が上側に位置する他方の耐火物4における凹部4bの垂直方向の平面と密着した状態に重なるため、ガス対流を遮断し、光(輻射)の漏れを防止することが出来る。 According to single crystal growing apparatus of the present embodiment, the refractory of the respective 4 1 (4 2) the seam portion of, one of the refractory 4 1 recess 4b 1 and the other refractory 4 2 of the convex portion 4a 2 , formed in one of the refractory 4 1 spigot structure matched with the recess 4b 2 of the convex portion 4a 1 and the other refractory 4 2, in the recess 4b 1 (4b 2) and the protrusions 4a 1 (4a 2) Since the planes facing the upper side and the lower side are brought into close contact with each other during single crystal growth, the concave portion 4b 1 (4b 2 ) and the convex portion 4a 1 (4a 2 ) of the refractory are brought into contact with each other, whereby the refractory Even if the deformation in which the vicinity of the hole 4H for passing the pulling shaft located at the center of the warp is warped upward occurs, the vertical portion of the convex portion 4a 1 of the one refractory 41 located at the lower end of the joint portion direction of the plane, over the length of the convex portion 4a 1, the joint Tip for overlaps in a state of close contact with the vertical plane of the recess 4b 2 of the other refractory 4 2 positioned on the upper side, cut off the gas convection, light can be prevented leakage (radiation).

なお、本実施形態の単結晶育成装置における夫々の耐火物4(4)の合わせ目部のインロー構造をなす凹部4b(4b)及び凸部4a(4a)は、上側と下側とで対向する平面を有し、この上側と下側で対向する平面同士が単結晶育成時に密着するように配設することが重要である。この平面部分に隙間があるとガス対流を遮断し、光(輻射)の漏れを防止することができなくなる。
逆に、凸部4a(4a)の先端(凹部4b(4b)の根元)の垂直方向の合わせ目部同士は、室温において隙間を設けるのが好ましい。垂直方向の合わせ目部同士の隙間は、装置内で結晶育成を行う温度に合わせて設計され得る。室温の状態で垂直方向の合わせ目部同士に隙間が無いと、加熱時の温度上昇により耐火物が熱膨張したときに、垂直方向の合わせ目同士(特に、ルツボに近い側の合わせ目部同士)に応力がかかり過ぎることで、耐火物の位置ずれや破損の虞がある。そのため、耐火物の使用温度の熱ひずみ量を考慮して、室温では図3(a)、図3(b)に示すように垂直方向の合わせ目部同士に隙間がある構造とするのが好ましい。
なお、図3(a)、図3(b)の例では、凹部4b(4b)及び凸部4a(4a)において上側と下側で対向する平面同士は、室温において隙間を有し、加熱されたときに密着する構成となっている。
In addition, the concave portion 4b 1 (4b 2 ) and the convex portion 4a 1 (4a 2 ) forming the inlay structure of the joint portion of each refractory 4 1 (4 2 ) in the single crystal growth apparatus of the present embodiment are It is important to have a flat surface facing the lower side and to arrange the flat surfaces facing the upper side and the lower side so as to be in close contact during single crystal growth. If there is a gap in this flat portion, gas convection is blocked and light (radiation) leakage cannot be prevented.
On the contrary, it is preferable that a gap is provided between the joints in the vertical direction at the tips of the protrusions 4a 1 (4a 2 ) (the bases of the recesses 4b 1 (4b 2 )) at room temperature. The gap between the joint portions in the vertical direction can be designed according to the temperature at which the crystal is grown in the apparatus. If there is no gap between the vertical seams at room temperature, the vertical seams (especially between the seams near the crucible) when the refractory thermally expands due to the temperature rise during heating. ) Is overstressed, there is a risk of the refractory being displaced or damaged. Therefore, considering the amount of thermal strain at the working temperature of the refractory, it is preferable to have a structure with a gap between the vertical joints at room temperature as shown in FIGS. 3 (a) and 3 (b). .
In the example of FIGS. 3 (a) and 3 (b), the planes facing the upper side and the lower side of the concave portion 4b 1 (4b 2 ) and the convex portion 4a 1 (4a 2 ) have a gap at room temperature. And it becomes the structure closely_contact | adhered when heated.

また、本実施形態の単結晶育成装置によれば、夫々の耐火物4(4)の凹部4b(4b)及び凸部4a(4a)を、夫々、耐火物4(4)の厚み(tx)の略1/2倍の高さ(hb≒1/2tx、ha≒1/2tx)を有した構成とし、互いの耐火物における上側と下側とで密着する部位の厚みを略均等にしたので、一方の耐火物の合わせ目部のみに変形が激しく起きることや、凸部の割れや破損、あるいは隙間の発生を防止できる。この作用効果は、本発明者らが、互いの耐火物4a(4a)の凹部4b(4b)及び凸部4a(4a)の夫々の高さに関する試行錯誤の結果、知得するに至った。 Further, according to the single crystal growing apparatus of the present embodiment, the recess 4b 1 of the refractory respective 4 1 (4 2) (4b 2) and convex portions 4a 1 a (4a 2), respectively, refractory 4 1 ( 4 2 ) having a height (hb≈1 / 2tx, ha≈1 / 2tx) that is approximately ½ times the thickness (tx) of the two refractories, and in close contact with the upper and lower sides of each refractory Since the thickness of each of the refractories is made substantially uniform, it is possible to prevent severe deformation only at the joint portion of one refractory, cracking or breakage of the convex portion, or generation of a gap. This effect is known as a result of trial and error regarding the respective heights of the concave portions 4b 1 (4b 2 ) and the convex portions 4a 1 (4a 2 ) of the refractories 4a 1 (4a 2 ). It came to get.

夫々の耐火物の凹部及び凸部を、夫々、耐火物の厚みの略1/2の高さを有した構成としない場合、合わせ目部の先端が下側に位置する一方の耐火物と、合わせ目部の先端が上側に位置する他方の耐火物とで、上側と下側とで重なる部位の厚みが異なることになる。
しかし、上側と下側とで重なる部位の厚みが異なる場合、一方の耐火物の合わせ目部のみに変形が激しく起き、凸部の割れや破損、あるいは凹部及び凸部における平面部分の隙間の発生が起こり易くなる。
When the concave portion and the convex portion of each refractory are not configured to have a height that is approximately ½ of the thickness of the refractory, respectively, one refractory in which the tip of the joint portion is located on the lower side, The thickness of the part which overlaps by the upper side and the lower side differs with the other refractory material in which the front-end | tip of a joint part is located above.
However, when the thickness of the overlapping part is different between the upper side and the lower side, only the joint part of one refractory is deformed severely, causing cracks and breakage of the convex part, or generation of gaps in the flat part of the concave part and convex part. Is likely to occur.

また、本実施形態の単結晶育成装置によれば、夫々の耐火物4(4)の凹部4b(4b)及び凸部4a(4a)を耐火物4(4)の厚み(tx)の0.4倍〜0.6倍の長さ(Lb=(0.6〜0.4)tx、La=(0.4〜0.6)tx)を有した構成としたので、耐火物に変形が生じても、凹部及び凸部における平面部分の隙間の発生や、凸部の割れや破損を防止し易くなる。
夫々の耐火物の凹部及び凸部の長さが、耐火物の厚みの0.4倍未満であると、耐火物の変形時に凹部及び凸部における平面部分に隙間が生じ易くなる。耐火物内の温度差は、耐火物の厚みに比例し、耐火物が厚くなるにしたがって耐火物内の温度差が広がって熱応力が大きくなり耐火物の変形量が多くなる。そのため、夫々の耐火物の凹部及び凸部の長さは、耐火物の厚みの0.4倍以上必要であり、耐火物の厚みが厚くなるほど長い方が好ましい。
但し、夫々の耐火物の凹部及び凸部の長さが、耐火物の厚みの0.6倍を超えると、耐火物の変形時に、合わせ目部の先端が下側に位置する一方の耐火物における凸部が、合わせ目部の先端が上側に位置する他方の耐火物における凹部に接触した状態が拘束され過ぎて応力が大きく発生し、合わせ目部の先端が下側に位置する一方の耐火物における凸部が割れる虞がある。
そこで、本実施形態の単結晶育成装置においては、好ましくは、夫々の耐火物4(4)の凹部4b(4b)及び凸部4a(4a)の長さLb、Laは、耐火物の厚みの0.5倍の長さ(Lb=0.5tx、La=0.5tx)とするのが良い。
Further, according to the single crystal growing apparatus of the present embodiment, the recess 4b 1 of the refractory respective 4 1 (4 2) (4b 2) and the protrusions 4a 1 (4a 2) a refractory 4 1 (4 2) A structure having a length (Lb = (0.6 to 0.4) tx, La = (0.4 to 0.6) tx) that is 0.4 to 0.6 times the thickness (tx) of Therefore, even if deformation occurs in the refractory, it becomes easy to prevent the generation of gaps between the flat portions of the concave portion and the convex portion, and the cracking and breakage of the convex portion.
When the length of the concave portion and the convex portion of each refractory is less than 0.4 times the thickness of the refractory, gaps are likely to be generated in the flat portions of the concave and convex portions when the refractory is deformed. The temperature difference in the refractory is proportional to the thickness of the refractory, and as the refractory becomes thicker, the temperature difference in the refractory widens and the thermal stress increases and the amount of deformation of the refractory increases. For this reason, the length of the concave portion and the convex portion of each refractory is required to be 0.4 times or more the thickness of the refractory, and is preferably longer as the thickness of the refractory increases.
However, if the length of the concave and convex portions of each refractory exceeds 0.6 times the thickness of the refractory, when the refractory is deformed, one refractory with the tip of the joint located below One of the refractory parts where the tip of the joint part is located on the lower side is excessively restrained when the convex part of the joint is in contact with the concave part of the other refractory with the tip part of the joint part located on the upper side. There is a risk that the convex portion of the object will break.
Therefore, in the single crystal growth apparatus of the present embodiment, preferably, the lengths Lb and La of the concave portions 4b 1 (4b 2 ) and the convex portions 4a 1 (4a 2 ) of the respective refractories 4 1 (4 2 ) are The length of the refractory is preferably 0.5 times the length (Lb = 0.5 tx, La = 0.5 tx).

なお、合わせ目部を構成する凸部の先端は欠け易い。特に、合わせ目部の先端が下側に位置する一方の耐火物の凸部における、合わせ目部の先端が上側に位置する他方の耐火物の凹部の根元に近い側の角部は、耐火物の変形時に応力が集中して欠けを生じ易い。
このため、本実施形態の単結晶育成装置においては、好ましくは、耐火物の合わせ目部先端の角部(特に、合わせ目部の先端が下側に位置する一方の耐火物4の凸部4aにおける、合わせ目部の先端が上側に位置する他方の耐火物4の凹部4bの根元に近い側の角部)は、図2(d)、図2(e)に示すように、C面やR面に形成された構成とするのが望ましい。
It should be noted that the tips of the convex portions constituting the seam portion are easily chipped. In particular, in the convex portion of one refractory where the tip of the joint portion is located on the lower side, the corner portion on the side close to the root of the concave portion of the other refractory where the tip of the joint portion is located on the upper side is refractory The stress is concentrated during the deformation of the steel, and chipping is likely to occur.
For this reason, in the single crystal growth apparatus of this embodiment, Preferably, the corner | angular part of the joint part front-end | tip of a refractory (especially convex part of one refractory 41 in which the front-end | tip of a joint part is located below) in 4a 1, the corners closer to the root of the other refractory 4 second recess 4b 2 the front end of the seam section is positioned on the upper side side), as shown in FIG. 2 (d), FIG. 2 (e) It is desirable to have a configuration formed on the C and R planes.

第2実施形態
図4は本発明の第2実施形態にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)に示す板状の耐火物の合わせ目部における傾斜面の傾斜角度を示す図、(d)は(c)に示す板状の耐火物における合わせ目部の角部の一変形例を示す図、(e)は(c)に示す板状の耐火物における合わせ目部の角部の他の変形例を示す図である。
本実施形態の単結晶育成装置では、図4(a)に示すように、夫々の耐火物4(4)の合わせ目部は、傾斜面からなり、互いの耐火物4(4)の傾斜面同士を突き合わせる構造に形成されている。
耐火物の傾斜面4(4)は、図4(c)に示すように、水平面に対し40°以上70°未満の傾斜角度(30°≦αx<70°)を有している。
Second Embodiment FIG. 4 is an explanatory view showing the configuration of the main part of a single crystal growth apparatus according to a second embodiment of the present invention. FIG. 4 (a) is for passing a pulling shaft arranged at a position covering the upper part of the crucible. The perspective view which shows the whole structure of the plate-like refractory divided by making the straight line which crosses the hole of a boundary into a boundary, (b) is the joint part of one plate-like refractory divided as shown in (a). (C) is a diagram showing the inclination angle of the inclined surface in the joint portion of the plate-like refractory shown in (b), (d) is a joint portion in the plate-like refractory shown in (c) The figure which shows the one modification of this corner | angular part, (e) is a figure which shows the other modification of the corner | angular part of the joint part in the plate-like refractory shown in (c).
In the single crystal growth apparatus of the present embodiment, as shown in FIG. 4A, the joint portion of each refractory 4 1 (4 2 ) is formed of an inclined surface, and each refractory 4 1 (4 2). ) In such a structure that the inclined surfaces abut each other.
The inclined surface 4 1 (4 2 ) of the refractory has an inclination angle (30 ° ≦ αx <70 °) of 40 ° or more and less than 70 ° with respect to the horizontal plane as shown in FIG. 4 (c).

本実施形態の単結晶育成装置における夫々の耐火物4(4)の合わせ目部は、耐火物の厚みが小さく、第1実施形態のようなインロー構造が難しい場合に最適な構造である。
この合わせ目部は、側方からみたときに直角三角形を反転させて突き合わせ、斜辺同士を接触させた構造となっている。そのため、耐火物が変形しても、図4(c)に示す直角三角形の底辺の長さLcに相当する部分までであれば、互いの耐火物4(4)の傾斜面同士を密着させた状態で、ガス対流を遮断し、光(輻射)の漏れを防止することが可能となる。
The joint portion of each refractory 4 1 (4 2 ) in the single crystal growth apparatus of this embodiment is an optimum structure when the thickness of the refractory is small and the inlay structure as in the first embodiment is difficult. .
When viewed from the side, the joint portion has a structure in which a right triangle is inverted and butted and the hypotenuses are brought into contact with each other. Therefore, even if the refractory is deformed, the inclined surfaces of the refractory 4 1 (4 2 ) are in close contact with each other as long as it corresponds to the length Lc of the base of the right triangle shown in FIG. In this state, gas convection can be cut off and light (radiation) leakage can be prevented.

そして、本実施形態の単結晶育成装置によれば、夫々の耐火物4(4)の合わせ目部を構成する傾斜面の傾斜角度を、水平面に対し40°以上70°未満(30°≦αx<70°)としたので、耐火物に変形が生じても、傾斜面同士の隙間の発生や、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の先端の破損を防止し易くなる。 And according to the single-crystal growth apparatus of this embodiment, the inclination angle of the inclined surface which comprises the joint part of each refractory 4 1 (4 2 ) is 40 degrees or more and less than 70 degrees (30 degrees) with respect to a horizontal surface. Having a ≦ αx <70 °), even if variations in refractory, occurrence of a gap of the inclined faces, the seam portion tip seam portion at one refractory 4 1 located on the lower side It becomes easy to prevent breakage of the tip.

耐火物の傾斜面の傾斜角度が70°を超えると、耐火物の変形時に合わせ目部に隙間が生じる可能性が高い。
一方、耐火物の傾斜面の傾斜角度が40°未満であると、耐火物の変形時に、合わせ目部の先端が下側に位置する一方の耐火物4における傾斜面が、合わせ目部の先端が上側に位置する他方の耐火物4における傾斜面に接触した状態が拘束され過ぎて応力が大きく発生し、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の下側の先端が割れる可能性がある。
そこで、本実施形態の単結晶育成装置においては、好ましくは、耐火物の傾斜面の傾斜角度を45°とすると、合わせ目部の先端が下側に位置する一方の耐火物4における傾斜面と、合わせ目部の先端が上側に位置する一方の耐火物4における傾斜面とにかかる応力のバランスがとれて、傾斜面同士の隙間の発生や、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の先端の破損を防止し易くなる。
When the inclination angle of the inclined surface of the refractory exceeds 70 °, there is a high possibility that a gap is generated at the joint when the refractory is deformed.
On the other hand, when the inclination angle of the inclined surface of the refractory is less than 40 °, during deformation of the refractory, the inclined surface at one refractory 4 1 the front end of the seam section is positioned on the lower side, the seam portion tip stress too constrained state in contact with the inclined surface of the other refractory 4 2 positioned on the upper side is large occurs, the joint at the seam portion one refractory tip is positioned below the 4 1 There is a possibility that the lower end of the part may break.
Therefore, the single crystal growing apparatus of the present embodiment, preferably, when the inclination angle of the inclined surface of the refractory and 45 °, the inclined surface at one refractory 4 1 the front end of the seam section is positioned on the lower side If, balanced the stress on the inclined surface of the seam portion one refractory tip is positioned above the 4 2, occurrence of a gap of the inclined faces, seam section located below the tip of the It becomes easy to prevent the tip of the joint part in one refractory 41 to break.

なお、傾斜面で構成された合わせ目部の先端は鋭利となり欠け易い。特に、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の先端の角部は、耐火物の変形時に応力が集中して欠けを生じ易い。
このため、本実施形態の単結晶育成装置においては、好ましくは、耐火物の合わせ目部の先端の角部(特に、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の先端の角部)は、図4(d)、図4(e)に示すように、C面やR面に形成された構成とすることが望ましい。また、夫々の耐火物の合わせ目部の先端の角部がC面やR面に形成されていると、互いの耐火物4(4)における合わせ目部の先端近傍で隙間をもつこともでき、第1実施形態の単結晶育成装置の合わせ目部を構成するインロー構造における凸部の先端(凹部の根元)の垂直方向の合わせ目部同士の隙間と同様、加熱時の温度上昇により耐火物が熱膨張したときの、傾斜角度を有する合わせ目部同士(特に、ルツボに近い側の合わせ目部同士)に応力がかかり過ぎることによる、耐火物の位置ずれや破損を防止することができる。
In addition, the tip of the joint portion formed by the inclined surface is sharp and easily lost. In particular, the corners of the front end of the seam section in one of the refractory 4 1 the front end of the seam section is positioned on the lower side, prone to chipping stress is concentrated upon deformation of the refractory.
Therefore, in the single crystal growing apparatus of the present embodiment, preferably, the corners of the tip end of the joint portion of the refractory (especially, combined in one of the refractory 4 1 the front end of the seam section is positioned on the lower side As shown in FIGS. 4 (d) and 4 (e), it is desirable that the corners at the tips of the eyes be formed on the C and R surfaces. Moreover, when the corner | angular part of the front-end | tip part of each refractory is formed in C surface or R surface, it has a clearance gap near the front-end | tip of the joint part in each refractory 4 1 (4 2 ). As with the gap between the vertical joints at the tips of the protrusions (the bases of the recesses) in the spigot structure that forms the joints of the single crystal growth apparatus of the first embodiment, the temperature rises during heating. To prevent misalignment or breakage of the refractory due to excessive stress applied to the joints having an inclination angle (particularly, the joints close to the crucible) when the refractory is thermally expanded. it can.

以下、本発明の実施例について比較例を挙げて具体的に説明する。ここでは、一例としてタンタル酸リチウム単結晶育成方法について説明する。なお、本発明は以下の実施例に何ら限定されるものではない。   Examples of the present invention will be specifically described below with reference to comparative examples. Here, a lithium tantalate single crystal growth method will be described as an example. The present invention is not limited to the following examples.

実施例1
実施例1の単結晶育成装置は、図2、図3に示した第1実施形態の単結晶育成装置に対応した構成を備えたものとした。
タンタル酸リチウム単結晶の育成手順は次のようにして行った。室温で、イリジウム製のルツボ1に、タンタル酸リチウムの原料2を充填し、ルツボ1を銅製の高周波誘導コイル5によって加熱する。ルツボ1内のタンタル酸リチウム原料を融解し、イリジウム製の引上げ軸8を1〜20rpmで回転させながら、1〜5mm/hの速度で垂直に引き上げることによって、種結晶7から単結晶を育成する。単結晶の育成が完了後、室温まで徐々に温度を下げ、その後に育成した単結晶を取り出す。
実施例1では、このような単結晶の育成を連続的に繰り返した。
Example 1
The single crystal growth apparatus of Example 1 was provided with a configuration corresponding to the single crystal growth apparatus of the first embodiment shown in FIGS.
The procedure for growing the lithium tantalate single crystal was performed as follows. At room temperature, an iridium crucible 1 is filled with a raw material 2 of lithium tantalate, and the crucible 1 is heated by a high frequency induction coil 5 made of copper. A single crystal is grown from the seed crystal 7 by melting the lithium tantalate raw material in the crucible 1 and pulling it vertically at a speed of 1-5 mm / h while rotating the iridium pulling shaft 8 at 1-20 rpm. . After the growth of the single crystal is completed, the temperature is gradually lowered to room temperature, and then the single crystal grown is taken out.
In Example 1, such single crystal growth was continuously repeated.

実施例1の単結晶育成装置における、ルツボ上方を覆う位置に配設する耐火物はアルミナ製とした。円盤状の耐火物を2分割し、半円状の耐火物を2枚組み合わせて使用した。合わせ目部は、図2に示したのと同様、互いの耐火物4(4)の凹部4b(4b)と凸部4a(4a)とを突き合わせるインロー構造とした。インロー構造の凸部4a(4a)及び凸部4a(4a)の高さ及び長さを夫々15mm、耐火物全体の厚みは30mmとした。この耐火物は、タンタル酸リチウムの単結晶育成中に1400℃に上昇する。使用したアルミナの熱膨張率は8.0×10−6/Kである。そこで、インロー構造の隙間を0.2mmとした。
実施例1の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、100回まで単結晶の歩留まり低下は認められなかった。耐火物の変形は認められたが、合わせ目部からのガス対流や光(輻射)が漏れる隙間は認められなかった。
In the single crystal growth apparatus of Example 1, the refractory disposed at a position covering the upper part of the crucible was made of alumina. The disc-shaped refractory was divided into two, and two semicircular refractories were used in combination. As shown in FIG. 2, the joint portion has an inlay structure in which the concave portion 4b 1 (4b 2 ) and the convex portion 4a 1 (4a 2 ) of each refractory 4 1 (4 2 ) are abutted. The height and length of the convex part 4a 1 (4a 2 ) and the convex part 4a 1 (4a 2 ) of the inlay structure were each 15 mm, and the thickness of the entire refractory was 30 mm. This refractory rises to 1400 ° C. during single crystal growth of lithium tantalate. The used alumina has a coefficient of thermal expansion of 8.0 × 10 −6 / K. Therefore, the clearance of the inlay structure was set to 0.2 mm.
When single crystal growth was continuously repeated using the single crystal growth apparatus of Example 1, no single crystal yield reduction was observed up to 100 times. Although deformation of the refractory material was observed, no gas convection from the seam or gaps where light (radiation) leaked were observed.

実施例2
実施例2の単結晶育成装置は、図4に示した第2実施形態の単結晶育成装置に対応した構成を備えたものとした。
詳しくは、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を図4に示した傾斜面からなり、互いの耐火物4(4)の傾斜面同士を突き合わせる構造とした。傾斜面で構成される夫々の耐火物4(4)の合わせ目部における断面の直角三角形の底辺の長さを30mmとするとともに、傾斜面の水平面に対する傾斜角度を45°とした。また、室温における合わせ目部同士の隙間を0.2mmとした。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、実施例1と同様に単結晶の育成を連続的に繰り返した。
実施例2の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、100回まで単結晶の歩留まり低下は認められなかった。耐火物の変形は認められたが、合わせ目部からのガス対流や光(輻射)が漏れる隙間は認められなかった。
Example 2
The single crystal growth apparatus of Example 2 was provided with a configuration corresponding to the single crystal growth apparatus of the second embodiment shown in FIG.
Specifically, the joint portion of the alumina refractory disposed at a position covering the crucible is formed of the inclined surface shown in FIG. 4, and the inclined surfaces of the refractory 4 1 (4 2 ) are abutted with each other. . The length of the base of the right triangle of the cross section at the joint portion of each refractory 4 1 (4 2 ) composed of the inclined surface was 30 mm, and the inclination angle of the inclined surface with respect to the horizontal plane was 45 °. Moreover, the clearance gap between the seam parts in room temperature was 0.2 mm.
Other configurations were the same as those of the single crystal growth apparatus of Example 1, and single crystal growth was continuously repeated as in Example 1.
When the growth of the single crystal was continuously repeated using the single crystal growth apparatus of Example 2, no decrease in the yield of the single crystal was observed up to 100 times. Although deformation of the refractory material was observed, no gas convection from the seam or gaps where light (radiation) leaked were observed.

実施例3
実施例2の単結晶育成装置は、図4に示した第2実施形態の単結晶育成装置に対応した構成を備えたものとした。
詳しくは、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を図4に示した傾斜面からなり、互いの耐火物4(4)の傾斜面同士を突き合わせる構造とした。傾斜面で構成される夫々の耐火物4(4)の合わせ目部における傾斜面の水平面に対する傾斜角度を60°とするとともに、室温における合わせ目部同士の隙間を0.2mmとした。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、実施例1と同様に単結晶の育成を連続的に繰り返した。
実施例2の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、100回まで単結晶の歩留まり低下は認められなかった。耐火物の変形は認められたが、合わせ目部からのガス対流や光(輻射)が漏れる隙間は認められなかった。
Example 3
The single crystal growth apparatus of Example 2 was provided with a configuration corresponding to the single crystal growth apparatus of the second embodiment shown in FIG.
Specifically, the joint portion of the alumina refractory disposed at a position covering the crucible is formed of the inclined surface shown in FIG. 4, and the inclined surfaces of the refractory 4 1 (4 2 ) are abutted with each other. . The angle of inclination of the inclined surface with respect to the horizontal plane at each joint portion of each refractory 4 1 (4 2 ) constituted by the inclined surface was 60 °, and the gap between the joint portions at room temperature was 0.2 mm.
Other configurations were the same as those of the single crystal growth apparatus of Example 1, and single crystal growth was continuously repeated as in Example 1.
When the growth of the single crystal was continuously repeated using the single crystal growth apparatus of Example 2, no decrease in the yield of the single crystal was observed up to 100 times. Although deformation of the refractory material was observed, no gas convection from the seam or gaps where light (radiation) leaked were observed.

比較例1
比較例1の単結晶育成装置は、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を図6に示すような、夫々の板状の耐火物4(4)における垂直な面同士を突き合わせる構造とした。合わせ目部からガス対流や光(輻射)が漏れることを防止するため、室温において夫々の板状の耐火物4(4)の合わせ目部同士に隙間が無いように配設した。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、実施例1と同様に単結晶の育成を連続的に繰り返した。
比較例1の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、30回以後の単結晶の育成において単結晶の歩留まり低下が認められた。耐火物に変形が認められるとともに、合わせ目部からガス対流や光(輻射)が漏れる隙間が認められた。
Comparative Example 1
In the single crystal growth apparatus of Comparative Example 1, the joint portion of the alumina refractory disposed at a position covering the crucible upper portion is perpendicular to each plate-like refractory 4 1 (4 2 ) as shown in FIG. It was set as the structure which faces each other. In order to prevent gas convection and light (radiation) from leaking from the joints, the joints of the respective plate-like refractories 4 1 (4 2 ) were arranged so as to have no gaps at room temperature.
Other configurations were the same as those of the single crystal growth apparatus of Example 1, and single crystal growth was continuously repeated as in Example 1.
When the single crystal growth was continuously repeated using the single crystal growth apparatus of Comparative Example 1, a decrease in the yield of the single crystal was observed in the growth of the single crystal after 30 times. While deformation was observed in the refractory, gas convection and light (radiation) leaked from the joint.

比較例2
比較例2の単結晶育成装置は、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を、互いの耐火物の凹部と凸部とを突き合わせるインロー構造とし、インロー構造の凸部の高さを、合わせ目部の先端が下側に位置する一方の耐火物:5mm、合わせ目部の先端が上側に位置する他方の耐火物:25mmとした。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、実施例1と同様に単結晶の育成を連続的に繰り返した。
比較例2の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、5回以後の単結晶の育成において単結晶の歩留まり低下が認められた。合わせ目部の先端が下側に位置する一方の耐火物におけるインロー構造の凸部に割れが認められるとともに、合わせ目部からガス対流や光(輻射)が漏れる隙間が認められた。
Comparative Example 2
In the single crystal growth apparatus of Comparative Example 2, the joint portion of the alumina refractory disposed at a position covering the crucible upper portion has an inlay structure in which the concave portion and the convex portion of each refractory are abutted, and the convex portion of the inlay structure The refractory with one end of the joint located on the lower side: 5 mm, and the other refractory with the end of the joint located on the upper side: 25 mm.
Other configurations were the same as those of the single crystal growth apparatus of Example 1, and single crystal growth was continuously repeated as in Example 1.
When the growth of the single crystal was continuously repeated using the single crystal growth apparatus of Comparative Example 2, a decrease in the yield of the single crystal was observed in the growth of the single crystal after 5 times. Cracks were observed in the convex portion of the inlay structure in one refractory with the tip of the joint located below, and a gap through which gas convection and light (radiation) leaked from the joint was observed.

比較例3
比較例3の単結晶育成装置は、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を傾斜面からなり、互いの耐火物の傾斜面同士を突き合わせる構造とし、傾斜面の水平面に対する傾斜角度を10°とした。
その他の構成は、実施例1の単結晶育成装置と同様に構成した。そして、単結晶の育成を連続的に繰り返した。
比較例3の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、15回以後の単結晶の育成において単結晶の歩留まり低下が認められた。合わせ目部の先端が下側に位置する一方の耐火物における合わせ目部の先端の一部に割れが認められ、合わせ目部からガス対流や光(輻射)が漏れる隙間が認められた。
Comparative Example 3
The single crystal growth apparatus of Comparative Example 3 has a structure in which the joint portion of the alumina refractory disposed at a position covering the crucible is formed of an inclined surface, and the inclined surfaces of the refractories are abutted with each other. The inclination angle with respect to the angle was 10 °.
Other configurations were the same as those of the single crystal growth apparatus of Example 1. And the growth of the single crystal was repeated continuously.
When the single crystal growth was repeated continuously using the single crystal growth apparatus of Comparative Example 3, a decrease in the yield of the single crystal was observed in the growth of the single crystal after 15 times. Cracks were found in part of the tip of the joint in one refractory with the tip of the joint located below, and a gap through which gas convection and light (radiation) leaked from the joint was observed.

比較例4
比較例4の単結晶育成装置は、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を傾斜面からなり、互いの耐火物の傾斜面同士を突き合わせる構造とし、傾斜面の水平面に対する傾斜角度を80°とした。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、単結晶の育成を連続的に繰り返した。
比較例4の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、40回以後の単結晶の育成において単結晶の歩留まり低下が認められた。耐火物に変形が認められるとともに、合わせ目部からガス対流や光(輻射)が漏れる隙間が認められた。
Comparative Example 4
The single crystal growth apparatus of Comparative Example 4 has a structure in which the joint portion of the alumina refractory disposed at a position covering the upper portion of the crucible is formed of an inclined surface, and the inclined surfaces of the refractories are abutted with each other. The inclination angle with respect to was 80 °.
Other configurations were the same as those of the single crystal growth apparatus of Example 1, and single crystal growth was continuously repeated.
When the single crystal growth was repeated continuously using the single crystal growth apparatus of Comparative Example 4, a decrease in the yield of the single crystal was observed in the growth of the single crystal after 40 times. While deformation was observed in the refractory, gas convection and light (radiation) leaked from the joint.

本発明の単結晶製造装置は、原料融液から種結晶を引き上げながら単結晶を育成する結晶育成方法を用いて工業的に単結晶の育成を繰り返し行うことが求められる分野に有用である。   The single crystal production apparatus of the present invention is useful in a field where it is required to repeatedly grow a single crystal industrially using a crystal growth method for growing a single crystal while pulling a seed crystal from a raw material melt.

1 ルツボ
2 原料融液
3 ルツボ1の周囲に配設された耐火物
4 ルツボ1上方を覆う位置に配設された耐火物
一方の耐火物
他方の耐火物
4a、4a 凸部
4b、4b 凹部
4H 孔
5 加熱手段(高周波誘導コイル)
6 チャンバ
7 種結晶
8 引き上げ軸
9 ルツボ1を支持する支持台をなす耐火物
51 ルツボ
52 原料融液
53 断熱構造体
53、53、53、53、53 断熱材
54、55 ヒータ
56 チャンバ
57 種結晶
58 引き上げ軸
58a 種結晶保持部
1 crucible 2 material melt 3 refractory disposed around the crucible 1 4 crucible 1 refractories arranged above the covering position 4 1 one refractory 4 2 other refractory 4a 1, 4a 2 convex 4b 1 , 4b 2 recess 4H hole 5 heating means (high frequency induction coil)
6 refractory 51 crucible 52 a raw material melt 53 insulating structure 53 1 forming a support for supporting the chamber 7 seed crystal 8 pulling shaft 9 crucible 1, 53 2, 53 3, 53 4, 53 5 heat insulating material 54, 55 heater 56 Chamber 57 Seed crystal 58 Pull-up shaft 58a Seed crystal holding part

Claims (4)

原料融液の表面に接触させた種結晶を引き上げながら単結晶を育成する結晶育成方法に用いられ、ルツボ上方を覆う位置に配設された、前記種結晶を引き上げる、引き上げ軸を通すための孔を有する板状の耐火物が、前記引き上げ軸を通すための孔を横断する直線を境界として分割されている、単結晶育成装置において、
夫々の前記耐火物の合わせ目部は、一方の前記耐火物の合わせ目部の先端が他方の前記耐火物の合わせ目部の先端の下側に位置し、互いの前記耐火物の前記合わせ目部において上側と下側とで対向する平面を有し、該平面同士が単結晶育成時に密着することを特徴とする単結晶育成装置。
A hole used for a crystal growth method for growing a single crystal while pulling up a seed crystal brought into contact with the surface of the raw material melt, and disposed in a position covering the upper part of the crucible to pull up the seed crystal and pass a pulling shaft In a single crystal growing apparatus, a plate-like refractory material having a straight line crossing a hole for passing the pulling shaft is divided,
The joint portion of each of the refractories is such that the tip of the joint portion of one of the refractories is located below the tip of the joint portion of the other refractory, and the joint of the refractories of each other A single crystal growing apparatus characterized in that the upper surface and the lower surface of the portion are opposed to each other, and the flat surfaces are brought into close contact with each other during single crystal growth.
夫々の前記耐火物の合わせ目部は、凹部と凸部を有し、一方の前記耐火物の凹部と他方の前記耐火物の凸部、一方の前記耐火物の凸部と他方の前記耐火物の凹部とを突き合わせるインロー構造に形成され、
夫々の前記耐火物の前記凹部及び前記凸部は、夫々、前記耐火物の厚みの略1/2の高さを有していることを特徴とする請求項1に記載の単結晶育成装置。
The joint portion of each refractory has a concave portion and a convex portion, one concave portion of the refractory and the convex portion of the other refractory, one convex portion of the refractory and the other refractory Is formed in an inlay structure that abuts the recess of
The single crystal growing apparatus according to claim 1, wherein each of the concave portion and the convex portion of each refractory has a height substantially ½ of the thickness of the refractory.
夫々の前記耐火物の合わせ目部は、傾斜面からなり、互いの前記耐火物の前記傾斜面同士を突き合わせる構造に形成され、
前記耐火物の前記傾斜面は、40°以上70°未満の傾斜角度を有していることを特徴とする請求項1に記載の単結晶育成装置。
The joint part of each of the refractories consists of inclined surfaces, and is formed in a structure in which the inclined surfaces of the refractories of each other face each other.
The single crystal growing apparatus according to claim 1, wherein the inclined surface of the refractory has an inclination angle of 40 ° or more and less than 70 °.
前記耐火物の合わせ目部先端は、C面又はR面に形成された角部を有していることを特徴とする請求項1〜3のいずれかに記載の単結晶育成装置。   The single crystal growing apparatus according to any one of claims 1 to 3, wherein a tip of a joint portion of the refractory has a corner formed on a C plane or an R plane.
JP2018076333A 2018-04-11 2018-04-11 Single crystal growing device Active JP6988659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018076333A JP6988659B2 (en) 2018-04-11 2018-04-11 Single crystal growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076333A JP6988659B2 (en) 2018-04-11 2018-04-11 Single crystal growing device

Publications (2)

Publication Number Publication Date
JP2019182707A true JP2019182707A (en) 2019-10-24
JP6988659B2 JP6988659B2 (en) 2022-01-05

Family

ID=68339469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076333A Active JP6988659B2 (en) 2018-04-11 2018-04-11 Single crystal growing device

Country Status (1)

Country Link
JP (1) JP6988659B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199795U (en) * 1984-12-05 1986-06-26
JPH02296787A (en) * 1989-05-11 1990-12-07 Fujitsu Ltd Growing device for single crystal
JPH1081593A (en) * 1996-09-02 1998-03-31 Super Silicon Kenkyusho:Kk Production of cz silicon single crystal and apparatus therefor
JPH10252983A (en) * 1997-03-10 1998-09-22 Tanimoto Kasei Kk Variable plate width type heat insulation material
JP2002226299A (en) * 2000-12-01 2002-08-14 Toshiba Corp Apparatus and method for manufacturing single crystal
JP2016200254A (en) * 2015-04-14 2016-12-01 住友金属鉱山株式会社 Heat insulation structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199795U (en) * 1984-12-05 1986-06-26
JPH02296787A (en) * 1989-05-11 1990-12-07 Fujitsu Ltd Growing device for single crystal
JPH1081593A (en) * 1996-09-02 1998-03-31 Super Silicon Kenkyusho:Kk Production of cz silicon single crystal and apparatus therefor
JPH10252983A (en) * 1997-03-10 1998-09-22 Tanimoto Kasei Kk Variable plate width type heat insulation material
JP2002226299A (en) * 2000-12-01 2002-08-14 Toshiba Corp Apparatus and method for manufacturing single crystal
JP2016200254A (en) * 2015-04-14 2016-12-01 住友金属鉱山株式会社 Heat insulation structure

Also Published As

Publication number Publication date
JP6988659B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP5526666B2 (en) Sapphire single crystal manufacturing equipment
JP5564995B2 (en) Sapphire single crystal manufacturing equipment
CN110408988A (en) The growing method of SiC single crystal grower and SiC single crystal
JP2018145071A (en) Crystal growth apparatus
JP2019182707A (en) Single crystal growth apparatus
US9453291B2 (en) Single crystal pulling apparatus and low heat conductive member used for single crystal pulling apparatus
JP2021066651A (en) Semiconductor crystal growth apparatus
JP6697847B2 (en) Thermal insulation structure
TWI761956B (en) A semiconductor crystal growth apparatus
JP6014838B1 (en) Multiple sapphire single crystals and method for producing the same
KR101639627B1 (en) Sapphire single crystal growing apparatus and method using of cruciable supporter
JP4926633B2 (en) Single crystal pulling method
JP2018111633A (en) Apparatus and method for growing oxide single crystal
JP6204500B2 (en) Single crystal growth equipment
JP2016222471A (en) Production method of single crystal
JP2013119500A (en) Single crystal growth method and apparatus thereof
KR101532266B1 (en) An apparatus for growing a single crystal
KR20160014910A (en) Single crystal growing apparatus
KR102443802B1 (en) Manufacturing apparatus of semiconductor ring and manufacturing method of semiconductor ring using the same
JP2014043375A (en) Graphite crucible
KR20190075411A (en) Crucible Member Capable of Removing Lineage Defect, Apparatus and Method for Growing Sapphire Single Crystal of High Quality Using the Same
JP5951132B2 (en) Apparatus for producing single crystals by crystallization of single crystals in the melting region
JP2018002573A (en) Crystal growth apparatus
KR101607160B1 (en) Single crystal growing apparatus
JP6520642B2 (en) Method of growing lithium tantalate single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150