JP6988659B2 - Single crystal growing device - Google Patents

Single crystal growing device Download PDF

Info

Publication number
JP6988659B2
JP6988659B2 JP2018076333A JP2018076333A JP6988659B2 JP 6988659 B2 JP6988659 B2 JP 6988659B2 JP 2018076333 A JP2018076333 A JP 2018076333A JP 2018076333 A JP2018076333 A JP 2018076333A JP 6988659 B2 JP6988659 B2 JP 6988659B2
Authority
JP
Japan
Prior art keywords
refractory
single crystal
seam
crystal growing
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018076333A
Other languages
Japanese (ja)
Other versions
JP2019182707A (en
Inventor
浩 畑中
敏男 東風谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018076333A priority Critical patent/JP6988659B2/en
Publication of JP2019182707A publication Critical patent/JP2019182707A/en
Application granted granted Critical
Publication of JP6988659B2 publication Critical patent/JP6988659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、原料融液の表面に接触させた種結晶を引き上げながら単結晶を育成する結晶育成方法に用いられる、単結晶育成装置に関する。 The present invention relates to a single crystal growing apparatus used in a crystal growing method for growing a single crystal while pulling up a seed crystal brought into contact with the surface of a raw material melt.

単結晶の育成方法としては、原料を充填したルツボを加熱溶融した後に、原料融液表面に種結晶を接触させ、種結晶を引き上げながら単結晶の育成を行うチョクラルスキー法が広く普及している。 As a method for growing a single crystal, the Czochralski method, in which a rutsubo filled with a raw material is heated and melted, and then the seed crystal is brought into contact with the surface of the raw material melt and the seed crystal is pulled up to grow the single crystal, has become widespread. There is.

単結晶の育成では、炉内の温度分布や温度勾配が重要である。単結晶の育成過程においては、熱平衡状態から僅かに過冷却の状態を作り、原料融液(液体)から結晶(固体)に変化した際に発生する潜熱を逃がしながら単結晶を成長させる。そのため、単結晶成長中の炉内の温度分布や温度勾配を制御することが、工業的に利用可能な単結晶体を製造するために重要になる。 The temperature distribution and temperature gradient in the furnace are important for growing single crystals. In the process of growing a single crystal, a slightly supercooled state is created from the thermal equilibrium state, and the single crystal is grown while releasing the latent heat generated when the raw material melt (liquid) changes to a crystal (solid). Therefore, it is important to control the temperature distribution and temperature gradient in the furnace during single crystal growth in order to produce an industrially usable single crystal.

例えば、夫々の等温線同士の間隔が狭くなっている炉内温度分布を有し、炉内温度勾配が急峻である場合、温度制御が容易で、結晶化に伴う潜熱を十分に逃がすことが出来るため、単結晶の形状制御が容易となる。
しかし、育成する単結晶内部の温度差が大きくなり、結晶の熱膨張に起因した熱ひずみにより、結晶欠陥が導入され、多結晶化が発生し易くなる。また、多結晶化しなくても熱ひずみによる結晶の割れや、結晶内部に導入された結晶欠陥により結晶品質が低下する問題が発生する。
For example, when the temperature distribution in the furnace is narrow and the distance between the isotherms is narrow and the temperature gradient in the furnace is steep, the temperature control is easy and the latent heat associated with crystallization can be sufficiently released. Therefore, the shape of the single crystal can be easily controlled.
However, the temperature difference inside the growing single crystal becomes large, and due to the thermal strain caused by the thermal expansion of the crystal, crystal defects are introduced and polycrystallization is likely to occur. Further, even if the crystals are not polycrystallized, there arises a problem that the crystal quality is deteriorated due to cracking of the crystal due to thermal strain and crystal defects introduced inside the crystal.

一方、夫々の等温線同士の間隔が広くなっている炉内温度分布を有し、炉内温度勾配が緩やかな場合、育成する単結晶内部の温度差が小さくなり、結晶の熱膨張に起因した熱ひずみは低減され、熱ひずみに起因した多結晶化や割れは、発生し難くなる。
しかし、結晶成長は、原料融液の等温線分布に沿って行われるため、炉内温度勾配が緩やかで、夫々の等温線同士の間隔が広くなっている状態では、単結晶の成長制御が非常に難しくなる。
例えば、抵抗加熱用発熱体や誘導加熱コイル等、単結晶育成時における炉内の加熱手段の出力制御幅が狭くなる。また、結晶成長が、単結晶育成装置周囲の環境変化や装置内構成物の変化に伴う温度変化に敏感となる。そして、わずかな単結晶成長装置内部の温度のゆらぎが発生しても、急激な結晶成長が起こる現象や逆に結晶成長が起こらなくなる現象が発生する。このような不安定な結晶成長では、結晶内部に導入された結晶欠陥に起因した多結晶化や、急激な結晶形状の変化による応力集中部の発生による割れが問題となる。さらに、所望の単結晶形状が得られないことにより、単結晶をウエハ状に加工した際に、ウエハが得られない部分が発生し、ウエハ加工時の歩留まりが低下する。
On the other hand, when each isotherm has a wide temperature distribution in the furnace and the temperature gradient in the furnace is gentle, the temperature difference inside the growing single crystal becomes small, which is caused by the thermal expansion of the crystal. Thermal strain is reduced, and polycrystallization and cracking due to thermal strain are less likely to occur.
However, since crystal growth is performed along the isotherm distribution of the raw material melt, the growth control of the single crystal is very difficult when the temperature gradient in the furnace is gentle and the distance between the isotherms is wide. It becomes difficult.
For example, the output control range of the heating means in the furnace at the time of growing a single crystal, such as a heating element for resistance heating and an induction heating coil, is narrowed. In addition, the crystal growth becomes sensitive to temperature changes due to changes in the environment around the single crystal growing device and changes in the components inside the device. Then, even if a slight fluctuation in the temperature inside the single crystal growth apparatus occurs, a phenomenon in which rapid crystal growth occurs or a phenomenon in which crystal growth does not occur occurs. In such unstable crystal growth, polycrystallization caused by crystal defects introduced into the crystal and cracking due to the generation of stress-concentrated portions due to a sudden change in crystal shape become problems. Further, since the desired single crystal shape cannot be obtained, when the single crystal is processed into a wafer shape, a portion where the wafer cannot be obtained is generated, and the yield at the time of wafer processing is lowered.

このように、単結晶の育成においては、単結晶育成装置内部の温度分布や温度勾配の最適化が必要となる。
ところで、本発明者は、単結晶育成装置における、発熱体の周囲に配置される断熱構造体に関し、発熱体からの輻射熱が断熱材間を通って外部に漏れることを抑制して、断熱構造体の内側領域の温度分布の不均一や熱効率の低下を抑制しうる技術として、次の特許文献1に記載の断熱構造体を導出した。
As described above, in growing a single crystal, it is necessary to optimize the temperature distribution and temperature gradient inside the single crystal growing device.
By the way, with respect to the heat insulating structure arranged around the heating element in the single crystal growing apparatus, the present inventor suppresses the radiant heat from the heating element from leaking to the outside through the heat insulating material, and suppresses the leakage to the outside of the heat insulating structure. As a technique capable of suppressing non-uniformity of the temperature distribution in the inner region and a decrease in thermal efficiency, the heat insulating structure described in the following Patent Document 1 was derived.

特開2016−200254号公報Japanese Unexamined Patent Publication No. 2016-20254

特許文献1に記載の技術は、図5(a)に示すように、発熱体(ヒータ54、55、ルツボ51、原料融液52)の周りに配置する断熱構造体53であって、高さ方向に積層された複数の断熱材53〜53を有し、図5(b)に示すように、高さ方向に隣接する一方の断熱材53と、他方の断熱材53n+1とにおいて、一方の断熱材53における他方の断熱材53n+1と対向する面には凸部53aが形成され、他方の断熱材53n+1における一方の断熱材53と対向する面には凸部53aに対応した凹部53bn+1が形成された構成となっている。なお、図5(a)中、56はチャンバ、57は種結晶、58aは種結晶保持部、58は引き上げ軸、59はルツボ支持台である。
特許文献1に記載の技術によれば、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有することで、凸部の側壁により発熱体からの輻射熱が断熱材間を通って外部に漏れることを抑制できる。
このため、本発明者らは、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いた単結晶育成装置を構成すれば、単結晶育成装置内部の温度分布や温度勾配の最適化ができると考えていた。
As shown in FIG. 5A, the technique described in Patent Document 1 is a heat insulating structure 53 arranged around a heating element (heaters 54, 55, rutsubo 51, raw material melt 52), and has a height. a plurality of heat insulating material 53 1-53 5 laminated direction, as shown in FIG. 5 (b) in a one heat insulating material 53 of n adjacent in the height direction, in the other heat insulating material 53 n + 1 Metropolitan , one to the other of the heat insulating material 53 n + 1 and the surface facing the heat insulator 53 n protrusion 53a n are formed, the other heat insulating material 53 n + one in 1 heat insulator 53 n opposed to the surface protrusion 53a The recess 53b n + 1 corresponding to n is formed. In FIG. 5A, 56 is a chamber, 57 is a seed crystal, 58a is a seed crystal holding portion, 58 is a pull-up shaft, and 59 is a crucible support.
According to the technique described in Patent Document 1, heat insulating materials laminated adjacent to each other in the height direction have concave portions and convex portions, so that radiant heat from a heating element passes between the heat insulating materials due to the side walls of the convex portions. It is possible to prevent leakage to the outside.
For this reason, the present inventors have configured a single crystal growing apparatus using the technique of a heat insulating structure in which heat insulating materials laminated adjacent to each other in the height direction have concave portions and convex portions described in Patent Document 1. By doing so, I thought that it would be possible to optimize the temperature distribution and temperature gradient inside the single crystal growth device.

しかるに、本発明者らは、更なる試行錯誤を繰り返した結果、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いた単結晶育成装置には、工業的に単結晶の育成を繰り返し行う場合において、コストを抑制しながら、単結晶育成装置内部の温度分布や温度勾配の最適化を維持し、単結晶の歩留まりを向上させるために、更なる改良すべき課題があることを見出した。 However, as a result of repeated trial and error, the present inventors have developed a technique of a heat insulating structure described in Patent Document 1 in which heat insulating materials laminated adjacent to each other in the height direction have concave portions and convex portions. In the single crystal growth device used, when the single crystal is grown repeatedly industrially, the yield of the single crystal is maintained by maintaining the optimization of the temperature distribution and temperature gradient inside the single crystal growth device while suppressing the cost. It was found that there are issues that need to be further improved in order to improve.

本発明は、上記事情に鑑み、工業的に単結晶の育成を繰り返し行うことによる、単結晶育成装置内部の温度分布や温度勾配の変化を極力抑制でき、低コストで単結晶の歩留まりが高い単結晶育成装置を提供することを目的とする。 In view of the above circumstances, the present invention can suppress changes in the temperature distribution and temperature gradient inside the single crystal growing apparatus as much as possible by repeatedly growing the single crystal industrially, and the single crystal yield is high at low cost. It is an object of the present invention to provide a crystal growth apparatus.

上記目的を達成するため、本発明による単結晶育成装置は、原料融液の表面に接触させた種結晶を引き上げながら単結晶を育成する結晶育成方法に用いられ、ルツボ上方を覆う位置に配設された、前記種結晶を引き上げる、引き上げ軸を通すための孔を有する板状の耐火物が、前記引き上げ軸を通すための孔を横断する直線を境界として分割されている、単結晶製造装置において、夫々の前記耐火物の合わせ目部は、一方の前記耐火物の合わせ目部の先端が他方の前記耐火物の合わせ目部の下側に位置し、互いの前記耐火物の前記合わせ目部において上側と下側とで対向する平面を有し、該平面同士が単結晶育成時に密着することを特徴とする。 In order to achieve the above object, the single crystal growing apparatus according to the present invention is used in a crystal growing method for growing a single crystal while pulling up a seed crystal in contact with the surface of the raw material melt, and is arranged at a position covering the upper part of the rutsubo. In a single crystal manufacturing apparatus in which a plate-shaped refractory material having a hole for pulling up the seed crystal and passing through the pulling shaft is divided at a straight line crossing the hole for pulling up the seed crystal. In each of the seams of the fireproof material, the tip of the seam portion of the fireproof material of one is located below the seam portion of the fireproof material of the other, and the seam portion of the fireproof material of each other is located. It is characterized in that it has planes facing each other on the upper side and the lower side, and the planes are in close contact with each other during single crystal growth.

また、本発明の単結晶育成装置においては、夫々の前記耐火物の合わせ目部は、凹部と凸部を有し、一方の前記耐火物の凹部と他方の前記耐火物の凸部、一方の前記耐火物の凸部と他方の前記耐火物の凹部とを突き合わせるインロー構造に形成され、夫々の前記耐火物の前記凹部及び前記凸部は、夫々、前記耐火物の厚みの略1/2の高さを有しているのが好ましい。 Further, in the single crystal growing apparatus of the present invention, each of the seams of the refractory has a concave portion and a convex portion, and one of the concave portion of the refractory and the convex portion of the other refractory. The convex portion of the refractory and the concave portion of the other refractory are formed into an inlay structure, and the concave portion and the convex portion of each of the refractory have approximately ½ of the thickness of the refractory. It is preferable to have the height of.

また、本発明の単結晶育成装置においては、夫々の前記耐火物の合わせ目部は、傾斜面からなり、互いの前記耐火物の前記傾斜面同士を突き合わせる構造に形成され、前記耐火物の前記傾斜面は、40°以上70°未満の傾斜角度を有しているのが好ましい。 Further, in the single crystal growing apparatus of the present invention, the joint portion of each of the refractory materials is composed of inclined surfaces, and is formed in a structure in which the inclined surfaces of the refractory materials are abutted against each other. The inclined surface preferably has an inclination angle of 40 ° or more and less than 70 °.

また、本発明の単結晶育成装置においては、前記耐火物の合わせ目部先端は、C面又はR面に形成された角部を有しているのが好ましい。 Further, in the single crystal growing apparatus of the present invention, it is preferable that the tip of the seam portion of the refractory has a corner portion formed on the C-plane or the R-plane.

本発明によれば、工業的に単結晶の育成を繰り返し行うことによる、単結晶育成装置内部の温度分布や温度勾配の変化を極力抑制でき、低コストで単結晶の歩留まりが高い単結晶育成装置を提供することができる。 According to the present invention, it is possible to suppress changes in the temperature distribution and temperature gradient inside the single crystal growing apparatus as much as possible by repeatedly growing the single crystal industrially, and the single crystal growing apparatus has a high single crystal yield at low cost. Can be provided.

本発明の実施形態に適用され得る単結晶育成装置の一例を概略的に示す説明図である。It is explanatory drawing which shows typically an example of the single crystal growth apparatus which can be applied to embodiment of this invention. 本発明の第1実施形態にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)に示す板状の耐火物の合わせ目部における凸部の高さ、長さと板状の耐火物の厚みとの関係を示す図、(d)は(c)に示す板状の耐火物における合わせ目部の角部の一変形例を示す図、(e)は(c)に示す板状の耐火物における合わせ目部の角部の他の変形例を示す図である。In the explanatory view showing the main part configuration of the single crystal growing apparatus according to the first embodiment of the present invention, (a) is a straight line crossing a hole for passing a pulling shaft, which is arranged at a position covering the upper part of the crucible. A perspective view showing the overall configuration of the plate-shaped refractory divided as a boundary, (b) is a perspective view showing the joint portion of one of the divided plate-shaped refractories shown in (a), (c). Is a diagram showing the relationship between the height and length of the convex portion at the joint portion of the plate-shaped refractory shown in (b) and the thickness of the plate-shaped refractory, and (d) is the plate-shaped refractory shown in (c). The figure which shows one deformation example of the corner part of a seam part in a refractory, (e) is the figure which shows the other deformation example of the corner part of a seam part in a plate-shaped refractory shown in (c). 図2の実施形態の変形例にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)の側面図である。It is explanatory drawing which shows the main part structure of the single crystal growth apparatus which concerns on the modification of embodiment of FIG. A perspective view showing the overall configuration of a plate-shaped refractory divided around the boundary, (b) is a side view of (a). 本発明の第2実施形態にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)に示す板状の耐火物の合わせ目部における傾斜面の傾斜角度を示す図、(d)は(c)に示す板状の耐火物における合わせ目部の角部の一変形例を示す図、(e)は(c)に示す板状の耐火物における合わせ目部の角部の他の変形例を示す図である。In the explanatory view showing the main part configuration of the single crystal growing apparatus according to the second embodiment of the present invention, (a) is a straight line crossing a hole for passing a pulling shaft, which is arranged at a position covering the upper part of the rutsubo. A perspective view showing the overall configuration of the plate-shaped refractory divided as a boundary, (b) is a perspective view showing the joint portion of one of the divided plate-shaped refractories shown in (a), (c). Is a diagram showing the inclination angle of the inclined surface at the seam of the plate-shaped refractory shown in (b), and (d) is a modification of the corner of the seam of the plate-shaped refractory shown in (c). (E) is a diagram showing another deformation example of the corner portion of the seam portion in the plate-shaped refractory shown in (c). 特許文献1に記載の断熱構造体を概略的に示す説明図で、(a)は断熱構造体を備えた単結晶育成装置の構成例を示す図、(b)は(a)の断熱構造体に含まれる断熱材の構成を示す図である。It is explanatory drawing which shows schematicly about the heat insulating structure described in Patent Document 1, (a) is the figure which shows the structural example of the single crystal growth apparatus provided with the heat insulating structure, (b) is the heat insulating structure of (a). It is a figure which shows the structure of the heat insulating material contained in. 従来の単結晶育成装置におけるルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の構成を示す説明図で、(a)は全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)の側面図である。An explanatory diagram showing the configuration of a plate-shaped refractory that is arranged at a position that covers the upper part of the crucible in a conventional single crystal growing device and is divided by a straight line that crosses a hole for passing a pulling shaft. a) is a perspective view showing the overall configuration, (b) is a perspective view showing a joint portion of one of the divided plate-shaped refractories shown in (a), and (c) is a side view of (b). ..

以下、図を参照して、本発明を実施するための形態の説明を行う。
図1は本発明の実施形態に適用され得る、単結晶製造方法として最も一般的なチョクラルスキー法に用いられる、単結晶育成装置の一例を概略的に示す説明図である。
チョクラルスキー法は、ある結晶方位に従って切り出された種結晶と呼ばれる単結晶を上下動可能な引上げ軸の先端部に取り付け、引き上げ軸を介して単結晶の先端を原料融液の表面に接触させ、回転しながら徐々に引上げることによって、種結晶の性質を伝播しながら大口径化して単結晶を製造する方法である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram schematically showing an example of a single crystal growing apparatus used in the Czochralski method, which is the most common method for producing a single crystal, which can be applied to the embodiment of the present invention.
In the Czochralski method, a single crystal called a seed crystal cut out according to a certain crystal orientation is attached to the tip of a pull-up shaft that can move up and down, and the tip of the single crystal is brought into contact with the surface of the raw material melt via the pull-up shaft. This is a method for producing a single crystal by increasing the diameter while propagating the properties of the seed crystal by gradually pulling it up while rotating.

図1に示すように、本実施形態に適用され得る単結晶育成装置は、ルツボ1と、ルツボ1の周囲に配設された耐火物3と、ルツボ1上方を覆う位置に配設された耐火物4と、回転機構(不図示)を備えた引き上げ軸8と、ルツボ1を加熱する加熱手段5(図1の例では高周波誘導コイル)と、ルツボ1を支持する支持台を構成する耐火物9を備えている。加熱手段5を構成する高周波誘導コイルには、高周波電力を供給するための電源(不図示)が設けられている。なお、加熱手段5は、抵抗発熱体で構成されていてもよい。 As shown in FIG. 1, the single crystal growing apparatus applicable to the present embodiment includes a crucible 1, a refractory 3 arranged around the crucible 1, and a refractory arranged at a position covering the upper part of the crucible 1. A refractory material constituting an object 4, a pulling shaft 8 provided with a rotation mechanism (not shown), a heating means 5 for heating the crucible 1 (a high-frequency induction coil in the example of FIG. 1), and a support base for supporting the crucible 1. It has a 9. The high frequency induction coil constituting the heating means 5 is provided with a power source (not shown) for supplying high frequency power. The heating means 5 may be composed of a resistance heating element.

単結晶の製造では、単結晶原料を充填したルツボ1を加熱手段5により加熱し、原料融液2を得る。その後、引上げ軸8の先端部に取り付けられた種結晶7を回転させながら原料融液2の表面に接触させ、原料融液2の表面に種結晶が接触した状態を維持したまま引き上げ軸8を徐々に引き上げながら単結晶の製造を行う。 In the production of a single crystal, the crucible 1 filled with the single crystal raw material is heated by the heating means 5 to obtain the raw material melt 2. After that, the seed crystal 7 attached to the tip of the pulling shaft 8 is brought into contact with the surface of the raw material melt 2 while rotating, and the pulling shaft 8 is moved while maintaining the state in which the seed crystal is in contact with the surface of the raw material melt 2. A single crystal is manufactured while gradually pulling up.

しかるに、上記構成の単結晶育成装置におけるルツボ1の周囲に配設された耐火物3に関し、本発明者が導出した特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いて、高さ方向に複数に積層され、高さ方向に隣接して積層される耐火物同士が凹部と凸部を有する構成とすれば、原料融液2及びルツボ1からの輻射熱が外部に漏れることを抑制できる。 However, regarding the refractory material 3 arranged around the crucible 1 in the single crystal growing apparatus having the above configuration, the heat insulating materials laminated adjacent to each other in the height direction described in Patent Document 1 derived by the present invention If a plurality of refractories are laminated in the height direction and the refractories laminated adjacent to each other in the height direction have the concave portions and the convex portions by using the technique of the heat insulating structure having the concave portions and the convex portions. It is possible to suppress the leakage of radiant heat from the raw material melt 2 and the crucible 1 to the outside.

ここで、本発明者らは、原料融液2及びルツボ1からの輻射熱が外部に漏れることを抑制できれば、単結晶育成装置内部の温度分布や温度勾配を最適化した状態に維持できると考えていた、そして、ルツボ1の周囲に配設される耐火物3が、高さ方向に複数に積層され、高さ方向に隣接して積層される耐火物3同士が凹部と凸部を有する構成の単結晶育成装置を用いて、工業的に単結晶の育成を繰り返す実験を行った。 Here, the present inventors consider that if the radiant heat from the raw material melt 2 and the crucible 1 can be suppressed from leaking to the outside, the temperature distribution and temperature gradient inside the single crystal growing apparatus can be maintained in an optimized state. Further, the refractory materials 3 arranged around the crucible 1 are laminated in a plurality of layers in the height direction, and the refractory materials 3 laminated adjacent to each other in the height direction have concave portions and convex portions. An experiment was conducted in which single crystal growth was repeated industrially using a single crystal growth device.

しかし、単結晶の育成を繰り返すと、ルツボ1の周囲に配設された耐火物3に、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いた、単結晶育成装置内部の温度分布や温度勾配が徐々にずれることにより、単結晶の歩留まりが低下する問題が発生することが判明した。 However, when the growth of the single crystal is repeated, the heat insulating materials laminated in the height direction adjacent to each other on the refractory material 3 arranged around the crucible 1 form concave portions and convex portions. It has been found that the problem of lowering the yield of a single crystal occurs due to the gradual deviation of the temperature distribution and temperature gradient inside the single crystal growing device using the technology of the heat insulating structure.

この単結晶育成装置内部の温度分布や温度勾配のずれは、単結晶育成過程における熱サイクルにより発生する炉内構成物の経時変化によるものと考えられる。単結晶育成過程では、室温で炉内のルツボに原料を入れ、耐火物を配設した状態から、原料融解及び結晶成長のために、単結晶育成装置内部の温度を上昇させる。このときに上昇させる温度としては、原料を融解するのに十分な温度が必要である。また、結晶成長終了後には、育成した単結晶を取り出すために、再び室温まで冷却をする必要がある。 It is considered that the deviation of the temperature distribution and the temperature gradient inside the single crystal growing apparatus is due to the change with time of the components in the furnace generated by the thermal cycle in the single crystal growing process. In the single crystal growth process, the raw material is put into the rutsubo in the furnace at room temperature, and the temperature inside the single crystal growth device is raised for melting the raw material and growing the crystal from the state where the refractory is arranged. As the temperature to be raised at this time, a temperature sufficient for melting the raw material is required. In addition, after the crystal growth is completed, it is necessary to cool the grown single crystal to room temperature again in order to take it out.

単結晶育成装置内部に設置された原料を融解するまでの温度は、融液成長の場合には、原料(単結晶体)の融点である。例えば、代表的な半導体材料であるシリコンでは、融点が約1414℃である。酸化物単結晶では、タンタル酸リチウムで、融点が約1650℃、サファイアで融点が約2050℃である。このような室温から1000℃を超える融点まで温度上昇を経て、再び室温まで温度を下げる熱サイクルにより、単結晶育成装置内部の構成物が経時変化する。その経時変化する主要な構成物として、耐火物が考えられる。 In the case of melt growth, the temperature until the raw material installed inside the single crystal growing device is melted is the melting point of the raw material (single crystal). For example, silicon, which is a typical semiconductor material, has a melting point of about 1414 ° C. In the oxide single crystal, lithium tantalate has a melting point of about 1650 ° C., and sapphire has a melting point of about 2050 ° C. Due to the thermal cycle in which the temperature rises from room temperature to a melting point exceeding 1000 ° C. and then lowered to room temperature again, the composition inside the single crystal growing apparatus changes with time. Refractory materials can be considered as the main constituents that change over time.

耐火物は、使用温度、雰囲気により材質が選択される。耐火物も上述のような熱サイクルを繰り返すことにより、単結晶育成装置内部の雰囲気との反応やごく僅かながらも昇華による劣化を生じる。また、耐火物は、膨張収縮を繰り返す。しかるに、耐火物には、熱を遮蔽するために、通常は熱伝導率の小さいものが用いられる。このため、単結晶の育成における熱サイクルを経る過程において、耐火物の内部で温度差が生じていることになる。その結果、上述のような熱サイクルを繰り返すことで、耐火物の内部の温度分布や温度勾配に起因した熱ひずみが発生し、耐火物に変形が生じる。 The material of the refractory is selected according to the operating temperature and atmosphere. By repeating the heat cycle as described above, the refractory material also undergoes a reaction with the atmosphere inside the single crystal growing apparatus and a slight deterioration due to sublimation. Further, the refractory material repeats expansion and contraction. However, as the refractory material, a refractory material having a low thermal conductivity is usually used in order to shield heat. For this reason, a temperature difference occurs inside the refractory in the process of undergoing the thermal cycle in the growth of the single crystal. As a result, by repeating the thermal cycle as described above, thermal strain due to the temperature distribution and temperature gradient inside the refractory is generated, and the refractory is deformed.

ここで、特許文献1に記載したルツボ周囲に配設する断熱構造体(耐火物)は、例えば、煉瓦状の断熱材(耐火物)を高さ方向に複数積み上げた構成であり、ルツボ上部に配設する断熱構造体(耐火物)に比べて厚みが大きい。厚みが大きい高さ方向に隣接して積層される断熱材(耐火物)同士が凹部と凸部を有する構成にすれば、凸部の側壁により発熱体からの輻射熱が断熱材(耐火物)間を通って外部に漏れることを抑制し易いと考えられる。 Here, the heat insulating structure (refractory) arranged around the crucible described in Patent Document 1 has, for example, a configuration in which a plurality of brick-shaped heat insulating materials (refractory) are stacked in the height direction on the upper part of the crucible. It is thicker than the heat insulating structure (refractory) to be arranged. If the heat insulating materials (refractory) that are laminated adjacent to each other in the height direction with a large thickness have a concave portion and a convex portion, the radiant heat from the heating element is generated between the heat insulating materials (refractory) due to the side wall of the convex portion. It is considered that it is easy to suppress leakage to the outside through.

ところで、ルツボ上部に配設する耐火物は、育成した単結晶を取り出すために、図6(a)に示すように、種結晶を引き上げる、引き上げ軸を通すための孔4Hを有するとともに、引き上げ軸を通すための孔4Hを横断する直線を境界として垂直方向(垂直な面により切断する方向)に略半円状に2分割された板状に形成されることが多い。
その理由は、ルツボ上部に配設する耐火物が、引き上げ軸を通すための孔を横断する直線を境界として分割された板状に形成されていれば、一方の板状の耐火物を取り外すことで、引き上げ軸を通すための孔の径よりも大きな径に成長した単結晶を取り出すことができるのに対し、ルツボ上部に配設する耐火物が分割されていない構成の場合、引き上げ軸を通すための孔の径よりも大きな径に成長した単結晶を取り出すことができなくなるためである。
By the way, the refractory material arranged on the upper part of the rutsubo has a hole 4H for pulling up the seed crystal and passing the pulling shaft as shown in FIG. 6A in order to take out the grown single crystal, and also has a pulling shaft. It is often formed in the shape of a plate divided into two in a substantially semicircular shape in the vertical direction (direction of cutting by a vertical surface) with a straight line crossing the hole 4H for passing through as a boundary.
The reason is that if the refractory material placed on the upper part of the crucible is formed in a plate shape divided by a straight line crossing the hole for passing the pulling shaft, one plate-shaped refractory material should be removed. So, while it is possible to take out a single crystal that has grown to a diameter larger than the diameter of the hole for passing the pulling shaft, if the refractory material arranged on the upper part of the crucible is not divided, the pulling shaft is passed through. This is because a single crystal grown to a diameter larger than the diameter of the crucible cannot be taken out.

しかるに、本発明者は、特許文献1に記載の技術の導出時点では、ルツボ周囲に配設する厚みの大きい断熱構造体(耐火物)における、発熱体からの輻射熱が断熱材間を通って外部に漏れることを抑制することに着目したが、ルツボ上部に配設する耐火物が、引き上げ軸を通すための孔を横断する直線を境界として垂直方向に略半円状に2分割された板状に形成されていることに伴う変形の問題、及び、工業的な単結晶の育成過程における熱サイクルを繰り返し経ることによる変形の問題は着目するには至っていなかった。 However, at the time of derivation of the technique described in Patent Document 1, the present inventor presents that the radiant heat from the heating element in the thick heat insulating structure (refractory) arranged around the crucible passes between the heat insulating materials to the outside. Focusing on suppressing leakage to the crucible, the refractory material placed on the upper part of the crucible is divided into two plates in the vertical direction with a straight line crossing the hole for passing the pulling shaft as a boundary. The problem of deformation due to the formation of the crucible and the problem of deformation due to repeated thermal cycles in the process of growing an industrial single crystal have not been noticed.

そして、原料融液の表面に接触させた種結晶を引き上げながら単結晶を育成する結晶育成方法に用いられる従来の単結晶育成装置では、特許文献1に記載の単結晶育成装置も含めて、ルツボ上部に配設する耐火物は、図6(b)に示すように、引き上げ軸を通すための孔4Hを横断する直線を境界として垂直方向に略半円状に分割し、夫々の板状の耐火物における垂直な面同士を突き合わせる構造となっていた。 The conventional single crystal growing apparatus used in the crystal growing method for growing a single crystal while pulling up the seed crystal brought into contact with the surface of the raw material melt includes a crucible including the single crystal growing apparatus described in Patent Document 1. As shown in FIG. 6 (b), the fireproof material disposed on the upper part is divided into substantially semicircular shapes in the vertical direction with a straight line crossing the hole 4H for passing the pulling shaft as a boundary, and each plate-like material is formed. The structure was such that the vertical surfaces of the fireproof material were butted against each other.

このような構造のルツボ上部に配設する耐火物(特に引き上げ軸を通すための孔4H近傍)に変形が生じると、耐火物同士の合わせ目部に隙間が生じ易くなる。この隙間から、雰囲気ガスの漏れが生じた場合には、対流伝熱による熱流出が起こる。また、光が漏れる場合には、輻射による熱流出が起こる。このような熱流出は、耐火物の変形により生じた隙間から、局所的に発生する。その結果、単結晶育成装置内部の温度分布や温度勾配が局所的に変化し、単結晶育成装置内部の温度分布や温度勾配の対称性が崩れ、単結晶の歩留まりが低下する。 If the refractory material (particularly in the vicinity of the hole 4H for passing the pulling shaft) arranged in the upper part of the crucible having such a structure is deformed, a gap is likely to occur in the joint portion between the refractory materials. When atmospheric gas leaks from this gap, heat outflow occurs due to convection heat transfer. Further, when light leaks, heat outflow occurs due to radiation. Such heat outflow occurs locally from the gap created by the deformation of the refractory. As a result, the temperature distribution and temperature gradient inside the single crystal growing device change locally, the symmetry of the temperature distribution and temperature gradient inside the single crystal growing device is broken, and the yield of the single crystal decreases.

ルツボ上部に配設する耐火物は、単結晶の育成時に、引き上げ軸を通すための孔近傍より雰囲気ガスが系外に流出し、対流伝熱による熱輸送量が多く、孔部側面からも加熱されるため、孔近傍の温度が最も高く、周辺に向かうにしたがって温度が低い、引き上げ軸を通すための孔近傍を中心とした同心円状の等温線となるような点対称の温度分布や温度勾配を有している。
しかるに、上述のように、本発明者らが、工業的な単結晶の育成過程での熱サイクルを繰り返したところ、ルツボ上部に配設する耐火物は、特に、引き上げ軸を通すための孔近傍が、耐火物内の温度分布や温度勾配に起因した熱ひずみにより変形し易いことが判明した。ルツボ上部に配設する耐火物の変形により当初設計した合わせ目部に隙間が生じると、隙間から雰囲気ガスによる対流伝熱及び輻射による熱流出が生じる。
ルツボ上部に配設する耐火物の変形は、例えば、図6(a)、図6(b)に示すような、略円板状の耐火物4が、引き上げ軸を通すための孔4Hを横断する直線を境界として垂直方向に耐火物4と耐火物4とに2分割された構成の場合、耐火物4の外形形状である円形の中心部に位置する引き上げ軸を通すための孔4H近傍の合わせ目部が、ルツボ上方部中央に位置しているため高温になり易く変形が大きくなる。この部分の変形は、一般的に下方からの熱により円形の中心部に位置する引き上げ軸を通すための孔4H近傍が上側へ反る傾向にあるため、円形の中心部に位置する引き上げ軸を通すための孔4H近傍に隙間が生じる。
The fireproof material placed on the upper part of the rutsubo has a large amount of heat transfer due to convection heat transfer due to the atmospheric gas flowing out of the system from the vicinity of the hole for passing the pulling shaft when growing a single crystal, and it also heats from the side of the hole. Therefore, the temperature in the vicinity of the hole is the highest, and the temperature is lower toward the periphery. have.
However, as described above, when the present inventors repeated the thermal cycle in the process of growing an industrial single crystal, the refractory material arranged on the upper part of the crucible was particularly near the hole for passing the pulling shaft. However, it was found that it is easily deformed by thermal strain caused by the temperature distribution and temperature gradient in the refractory. When a gap is created in the initially designed seam due to deformation of the refractory material arranged on the upper part of the crucible, convection heat transfer by atmospheric gas and heat outflow due to radiation occur from the gap.
As for the deformation of the refractory material arranged on the upper part of the crucible, for example, as shown in FIGS. 6 (a) and 6 (b), the substantially disc-shaped refractory material 4 crosses the hole 4H for passing the pulling shaft. In the case of a configuration in which the refractory 4 1 and the refractory 4 2 are vertically divided into two with the straight line as the boundary, the hole 4H for passing the pull-up shaft located in the center of the circle which is the outer shape of the refractory 4. Since the joint portion in the vicinity is located in the center of the upper part of the crucible, the temperature tends to be high and the deformation becomes large. As for the deformation of this part, the pull-up shaft located in the center of the circle tends to warp upward in the vicinity of the hole 4H for passing the pull-up shaft located in the center of the circle due to heat from below. A gap is created in the vicinity of the hole 4H for passing.

ルツボ上部に配設する耐火物に変形が生じると、単結晶の歩留まりが低下するため、変形したルツボ上部に配設する耐火物を交換する必要が生じる。しかるに、ルツボ上部に配設する耐火物の変形が生じるまでの、工業的な単結晶の育成過程における熱サイクルを繰り返す回数が少ないと、耐火物の交換コストが高くなってしまう。 If the refractory material arranged on the upper part of the crucible is deformed, the yield of the single crystal is lowered, so that it is necessary to replace the refractory material arranged on the deformed upper part of the crucible. However, if the number of times of repeating the thermal cycle in the industrial single crystal growing process until the refractory material disposed on the upper part of the crucible is deformed is small, the replacement cost of the refractory material becomes high.

しかるに、本発明者が特許文献1に記載の技術を導出した時点では、上述のように、ルツボ上部に配設する耐火物が、引き上げ軸を通すための孔を横断する直線を境界として垂直方向に略半円状に2分割された板状に形成されていることに伴う変形の問題、及び、工業的な単結晶の育成過程における熱サイクルを繰り返し経ることによる変形の問題は着目するに至っていなかった。
本発明者らは、更なる試行錯誤を繰り返した結果、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術を用いた単結晶育成装置には、工業的に単結晶の育成を繰り返し行う場合において、コストを抑制しながら、単結晶育成装置内部の温度分布や温度勾配の最適化を維持し、単結晶の歩留まりを向上させるために、更なる改良すべき課題が内在していたことを見出した。
However, at the time when the present inventor has derived the technique described in Patent Document 1, as described above, the refractory material arranged on the upper part of the rutsubo is in the vertical direction with the straight line crossing the hole for passing the pulling shaft as a boundary. Attention has been paid to the problem of deformation due to the formation of a plate divided into two in a substantially semicircular shape, and the problem of deformation due to repeated thermal cycles in the process of growing an industrial single crystal. I wasn't.
As a result of repeated trial and error, the present inventors have used the technique of a heat insulating structure described in Patent Document 1 in which heat insulating materials laminated adjacent to each other in the height direction have concave portions and convex portions. The single crystal growth device maintains the optimization of the temperature distribution and temperature gradient inside the single crystal growth device while suppressing the cost when growing the single crystal repeatedly industrially, and improves the yield of the single crystal. We found that there were inherent issues that needed to be further improved.

そこで、本発明者らは、ルツボ上部に配設する耐火物の変形が円形の中心に位置する引き上げ軸を通すための孔近傍が上側へ反る傾向にあることから、中心に位置する引き上げ軸を通すための孔近傍が上側に反ったとしても隙間が生じないようにするための手段として、夫々の耐火物の合わせ目部を、引き上げ軸を通すための孔を横断する直線を境界として分割されている一方の耐火物の合わせ目部の先端が他方の耐火物の合わせ目部の下側に位置し、互いの耐火物の合わせ目部において上側と下側とで対向する平面を有し、平面同士が単結晶育成時に密着する構造となる、本発明の単結晶育成装置の構成を着想するに至った。 Therefore, the present inventors tend to warp the vicinity of the hole for passing the refractory shaft located at the center of the circle upward due to the deformation of the refractory material arranged on the upper part of the crucible. As a means to prevent a gap from forming even if the vicinity of the hole for passing is warped upward, the joint of each refractory is divided with a straight line crossing the hole for passing the pulling shaft as a boundary. The tip of the seam of one refractory is located below the seam of the other refractory, and has planes facing each other on the upper and lower sides of the seam of each refractory. We have come up with the idea of the configuration of the single crystal growing apparatus of the present invention, which has a structure in which the planes are in close contact with each other during single crystal growing.

第1実施形態
図2は本発明の第1実施形態にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)に示す板状の耐火物の合わせ目部における凸部の高さ、長さと板状の耐火物の厚みとの関係を示す図、(d)は(c)に示す板状の耐火物における合わせ目部の角部の一変形例を示す図、(e)は(c)に示す板状の耐火物における合わせ目部の角部の他の変形例を示す図である。図3は図2の実施形態の変形例にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)の側面図である。なお、本発明の実施形態に用いる図においては、便宜上、特許文献1に記載の、高さ方向に隣接して積層される断熱材同士が凹部と凸部を有する断熱構造体の技術に対応する、耐火物3と耐火物4とが高さ方向に積層される部分の構成は省略してある。
1st Embodiment FIG. 2 is an explanatory view which shows the main part structure of the single crystal growing apparatus which concerns on 1st Embodiment of this invention, (a) is for passing a pulling shaft arranged at the position which covers the upper part of a refractory. A perspective view showing the overall configuration of a plate-shaped refractory divided with a straight line crossing the hole as a boundary, (b) shows the joint portion of one of the divided plate-shaped refractories shown in (a). The perspective view shown, (c) is a diagram showing the relationship between the height and length of the convex portion at the joint portion of the plate-shaped refractory shown in (b) and the thickness of the plate-shaped refractory, (d) is (d). The figure showing one modification of the corner of the seam in the plate-shaped refractory shown in c), (e) is another modification of the corner of the seam in the plate-shaped refractory shown in (c). It is a figure which shows. FIG. 3 is an explanatory view showing a main configuration of a single crystal growing device according to a modified example of the embodiment of FIG. 2, and FIG. 3A shows a hole for passing a pulling shaft arranged at a position covering the upper part of the crucible. A perspective view showing the overall configuration of a plate-shaped refractory divided with a crossing straight line as a boundary, (b) is a side view of (a). In the figure used in the embodiment of the present invention, for convenience, it corresponds to the technique of the heat insulating structure in which the heat insulating materials laminated adjacent to each other in the height direction have concave portions and convex portions, which is described in Patent Document 1. , The configuration of the portion where the refractory material 3 and the refractory material 4 are laminated in the height direction is omitted.

本実施形態の単結晶育成装置では、図2(a)、図2(b)に示すように、夫々の耐火物4(4)の合わせ目部は、凹部4b(4b)と凸部4a(4a)を有し、一方の耐火物4の凹部4bと他方の耐火物4の凸部4a、一方の耐火物4の凸部4aと他方の耐火物4の凹部4bとを突き合わせるインロー構造に形成されている。
夫々の耐火物4(4)の凹部4b(4b)及び凸部4a(4a)は、夫々、図2(c)に示すように、耐火物4(4)の厚み(tx)の略1/2倍の高さ(hb≒1/2tx、ha≒1/2tx)を有するとともに、耐火物4(4)の厚みの0.4倍〜0.6倍の長さ(Lb=(0.6〜0.4)tx、La=(0.4〜0.6)tx)を有している。
そして、互いの耐火物4(4)は、凹部4b(4b)及び凸部4a(4a)において上側と下側とで対向する平面を有し、この上側と下側で対向する平面同士が単結晶育成時に密着するように配設されている。
In single crystal growing apparatus of the present embodiment, FIG. 2 (a), the as shown in FIG. 2 (b), the joint portion of the refractory of the respective 4 1 (4 2), the recess 4b 1 and (4b 2) protrusions 4a 1 has a (4a 2), one of the refractory 4 1 recess 4b 1 and the other refractory 4 2 of the convex portion 4a 2, one of the refractory 4 of the projecting portion 4a 1 and the other refractory It is formed on the spigot structure to match the recess 4b 2 of the object 4 2.
Recess 4b 1 of the refractory respective 4 1 (4 2) (4b 2) and the protrusions 4a 1 (4a 2), respectively, as shown in FIG. 2 (c), refractory 4 1 (4 2) approximately half the height of the thickness (tx) (hb ≒ 1 / 2tx, ha ≒ 1 / 2tx) and having a refractory 4 1 (4 2) 0.4 times to 0.6 times the thickness of the Has a length of (Lb = (0.6 to 0.4) tx, La = (0.4 to 0.6) tx).
Then, another refractory 4 1 (4 2) has a plane face on the upper side and lower side of the recess 4b 1 (4b 2) and the protrusions 4a 1 (4a 2), in the upper and lower The planes facing each other are arranged so as to be in close contact with each other during single crystal growth.

本実施形態の単結晶育成装置によれば、夫々の耐火物4(4)の合わせ目部を、一方の耐火物4の凹部4bと他方の耐火物4の凸部4a、一方の耐火物4の凸部4aと他方の耐火物4の凹部4bとを突き合わせるインロー構造に形成し、凹部4b(4b)及び凸部4a(4a)において上側と下側で対向する平面同士が単結晶育成時に密着するようにしたので、互いの耐火物の凹部4b(4b)及び凸部4a(4a)が突き合わさることによって、耐火物の中心部に位置する引き上げ軸を通すための孔4H近傍が上側に反る変形が生じても、合わせ目部の先端が下側に位置する一方の耐火物4における凸部4aの垂直方向の平面が、凸部4aの長さにわたって、合わせ目部の先端が上側に位置する他方の耐火物4における凹部4bの垂直方向の平面と密着した状態に重なるため、ガス対流を遮断し、光(輻射)の漏れを防止することが出来る。 According to single crystal growing apparatus of the present embodiment, the refractory of the respective 4 1 (4 2) the seam portion of, one of the refractory 4 1 recess 4b 1 and the other refractory 4 2 of the convex portion 4a 2 , formed in one of the refractory 4 1 spigot structure matched with the recess 4b 2 of the convex portion 4a 1 and the other refractory 4 2, in the recess 4b 1 (4b 2) and the protrusions 4a 1 (4a 2) Since the planes facing each other on the upper side and the lower side are brought into close contact with each other during single crystal growth, the concave portions 4b 1 (4b 2 ) and the convex portions 4a 1 (4a 2 ) of the refractory are brought into close contact with each other, so that the refractory is a refractory. vertical hole 4H vicinity for passing the pulling shaft in the center portion even if deformation warped upward, the convex portion 4a 1 of the one of the refractory 4 1 the front end of the seam section is positioned below the Since the plane in the direction overlaps with the vertical plane of the recess 4b 2 in the other refractory 4 2 where the tip of the seam is located on the upper side over the length of the protrusion 4a 1, gas convection occurs. It can block and prevent light (radiation) leakage.

なお、本実施形態の単結晶育成装置における夫々の耐火物4(4)の合わせ目部のインロー構造をなす凹部4b(4b)及び凸部4a(4a)は、上側と下側とで対向する平面を有し、この上側と下側で対向する平面同士が単結晶育成時に密着するように配設することが重要である。この平面部分に隙間があるとガス対流を遮断し、光(輻射)の漏れを防止することができなくなる。
逆に、凸部4a(4a)の先端(凹部4b(4b)の根元)の垂直方向の合わせ目部同士は、室温において隙間を設けるのが好ましい。垂直方向の合わせ目部同士の隙間は、装置内で結晶育成を行う温度に合わせて設計され得る。室温の状態で垂直方向の合わせ目部同士に隙間が無いと、加熱時の温度上昇により耐火物が熱膨張したときに、垂直方向の合わせ目同士(特に、ルツボに近い側の合わせ目部同士)に応力がかかり過ぎることで、耐火物の位置ずれや破損の虞がある。そのため、耐火物の使用温度の熱ひずみ量を考慮して、室温では図3(a)、図3(b)に示すように垂直方向の合わせ目部同士に隙間がある構造とするのが好ましい。
なお、図3(a)、図3(b)の例では、凹部4b(4b)及び凸部4a(4a)において上側と下側で対向する平面同士は、室温において隙間を有し、加熱されたときに密着する構成となっている。
Incidentally, the refractory of each of the single crystal growing apparatus of the present embodiment 4 1 (4 2) recess 4b 1 which forms a spigot structure seam portion (4b 2) and the protrusions 4a 1 (4a 2) includes an upper It is important to have planes facing each other on the lower side and to arrange the planes facing each other on the upper side and the lower side so as to be in close contact with each other during single crystal growth. If there is a gap in this flat surface portion, gas convection can be blocked and light (radiation) leakage cannot be prevented.
On the contrary, it is preferable to provide a gap between the vertical seams of the tips of the convex portions 4a 1 (4a 2 ) (the roots of the concave portions 4b 1 (4b 2)) at room temperature. The gap between the joints in the vertical direction can be designed according to the temperature at which the crystal is grown in the apparatus. If there is no gap between the vertical seams at room temperature, when the refractory thermally expands due to the temperature rise during heating, the vertical seams (especially the seams near the crucible) ) Is overstressed, which may cause misalignment or damage to the refractory. Therefore, in consideration of the amount of thermal strain at the operating temperature of the refractory, it is preferable to have a structure in which there is a gap between the joints in the vertical direction as shown in FIGS. 3 (a) and 3 (b) at room temperature. ..
In the examples of FIGS. 3 (a) and 3 (b), the planes facing each other on the upper side and the lower side in the concave portion 4b 1 (4b 2 ) and the convex portion 4a 1 (4a 2) have a gap at room temperature. However, it is configured to be in close contact when heated.

また、本実施形態の単結晶育成装置によれば、夫々の耐火物4(4)の凹部4b(4b)及び凸部4a(4a)を、夫々、耐火物4(4)の厚み(tx)の略1/2倍の高さ(hb≒1/2tx、ha≒1/2tx)を有した構成とし、互いの耐火物における上側と下側とで密着する部位の厚みを略均等にしたので、一方の耐火物の合わせ目部のみに変形が激しく起きることや、凸部の割れや破損、あるいは隙間の発生を防止できる。この作用効果は、本発明者らが、互いの耐火物4a(4a)の凹部4b(4b)及び凸部4a(4a)の夫々の高さに関する試行錯誤の結果、知得するに至った。 Further, according to the single crystal growing apparatus of the present embodiment, the recess 4b 1 of the refractory respective 4 1 (4 2) (4b 2) and convex portions 4a 1 a (4a 2), respectively, refractory 4 1 ( 4 2 ) The structure has a height (hb≈1 / 2tx, ha≈1 / 2tx) approximately 1/2 times the thickness (tx), and the upper and lower portions of each refractory are in close contact with each other. Since the thickness of the refractory is made substantially uniform, it is possible to prevent severe deformation of only one of the refractory joints, cracking or breakage of the convex portion, or generation of a gap. This effect is known as a result of trial and error by the present inventors regarding the heights of the concave portions 4b 1 (4b 2 ) and the convex portions 4a 1 (4a 2 ) of each other's refractories 4a 1 (4a 2). I got it.

夫々の耐火物の凹部及び凸部を、夫々、耐火物の厚みの略1/2の高さを有した構成としない場合、合わせ目部の先端が下側に位置する一方の耐火物と、合わせ目部の先端が上側に位置する他方の耐火物とで、上側と下側とで重なる部位の厚みが異なることになる。
しかし、上側と下側とで重なる部位の厚みが異なる場合、一方の耐火物の合わせ目部のみに変形が激しく起き、凸部の割れや破損、あるいは凹部及び凸部における平面部分の隙間の発生が起こり易くなる。
If the recesses and protrusions of each refractory are not configured to have a height of approximately 1/2 the thickness of the refractory, the refractory with the tip of the seam located on the lower side and the refractory. The thickness of the overlapping portion differs between the upper side and the lower side of the other refractory whose tip of the seam is located on the upper side.
However, when the thickness of the overlapping portion is different between the upper side and the lower side, the joint portion of one of the refractories is severely deformed, and the convex portion is cracked or damaged, or the gap between the concave portion and the convex portion is generated. Is more likely to occur.

また、本実施形態の単結晶育成装置によれば、夫々の耐火物4(4)の凹部4b(4b)及び凸部4a(4a)を耐火物4(4)の厚み(tx)の0.4倍〜0.6倍の長さ(Lb=(0.6〜0.4)tx、La=(0.4〜0.6)tx)を有した構成としたので、耐火物に変形が生じても、凹部及び凸部における平面部分の隙間の発生や、凸部の割れや破損を防止し易くなる。
夫々の耐火物の凹部及び凸部の長さが、耐火物の厚みの0.4倍未満であると、耐火物の変形時に凹部及び凸部における平面部分に隙間が生じ易くなる。耐火物内の温度差は、耐火物の厚みに比例し、耐火物が厚くなるにしたがって耐火物内の温度差が広がって熱応力が大きくなり耐火物の変形量が多くなる。そのため、夫々の耐火物の凹部及び凸部の長さは、耐火物の厚みの0.4倍以上必要であり、耐火物の厚みが厚くなるほど長い方が好ましい。
但し、夫々の耐火物の凹部及び凸部の長さが、耐火物の厚みの0.6倍を超えると、耐火物の変形時に、合わせ目部の先端が下側に位置する一方の耐火物における凸部が、合わせ目部の先端が上側に位置する他方の耐火物における凹部に接触した状態が拘束され過ぎて応力が大きく発生し、合わせ目部の先端が下側に位置する一方の耐火物における凸部が割れる虞がある。
そこで、本実施形態の単結晶育成装置においては、好ましくは、夫々の耐火物4(4)の凹部4b(4b)及び凸部4a(4a)の長さLb、Laは、耐火物の厚みの0.5倍の長さ(Lb=0.5tx、La=0.5tx)とするのが良い。
Further, according to the single crystal growing apparatus of the present embodiment, the recess 4b 1 of the refractory respective 4 1 (4 2) (4b 2) and the protrusions 4a 1 (4a 2) a refractory 4 1 (4 2) With a configuration having a length (Lb = (0.6 to 0.4) tx, La = (0.4 to 0.6) tx) of 0.4 to 0.6 times the thickness (tx) of Therefore, even if the refractory is deformed, it becomes easy to prevent the generation of gaps in the flat portion in the concave portion and the convex portion, and the cracking or breakage of the convex portion.
If the length of the concave and convex portions of each refractory is less than 0.4 times the thickness of the refractory, a gap is likely to occur in the flat surface portion of the concave and convex portions when the refractory is deformed. The temperature difference in the refractory is proportional to the thickness of the refractory, and as the refractory becomes thicker, the temperature difference in the refractory widens, the thermal stress increases, and the amount of deformation of the refractory increases. Therefore, the length of the concave portion and the convex portion of each refractory must be 0.4 times or more the thickness of the refractory, and the thicker the refractory, the longer it is preferable.
However, if the length of the concave and convex portions of each refractory exceeds 0.6 times the thickness of the refractory, the tip of the seam will be located on the lower side of the refractory when the refractory is deformed. The convex part in the above is too restrained in contact with the concave part of the other refractory whose tip of the seam is located on the upper side, and a large stress is generated, and the tip of the seam is located on the lower side of the refractory. There is a risk that the convex part of the object will crack.
Therefore, the single crystal growing apparatus of the present embodiment, preferably, the length Lb of the recess 4b 1 of each of the refractories 4 1 (4 2) (4b 2) and the protrusions 4a 1 (4a 2), La is It is preferable that the length is 0.5 times the thickness of the refractory (Lb = 0.5tx, La = 0.5tx).

なお、合わせ目部を構成する凸部の先端は欠け易い。特に、合わせ目部の先端が下側に位置する一方の耐火物の凸部における、合わせ目部の先端が上側に位置する他方の耐火物の凹部の根元に近い側の角部は、耐火物の変形時に応力が集中して欠けを生じ易い。
このため、本実施形態の単結晶育成装置においては、好ましくは、耐火物の合わせ目部先端の角部(特に、合わせ目部の先端が下側に位置する一方の耐火物4の凸部4aにおける、合わせ目部の先端が上側に位置する他方の耐火物4の凹部4bの根元に近い側の角部)は、図2(d)、図2(e)に示すように、C面やR面に形成された構成とするのが望ましい。
The tip of the convex portion constituting the seam portion is easily chipped. In particular, in the convex portion of one refractory whose tip of the seam is located on the lower side, the corner portion on the side near the root of the concave portion of the other refractory whose tip of the seam is located on the upper side is the refractory. Stress is concentrated at the time of deformation, and chipping is likely to occur.
Therefore, in the single crystal growing apparatus of the present embodiment, it is preferable that the corner portion of the tip of the joint portion of the refractory (particularly, the convex portion of the one refractory 41 whose tip is located on the lower side). As shown in FIGS. 2 (d) and 2 (e), the corners of 4a 1 near the root of the recess 4b 2 of the other refractory 4 2 in which the tip of the seam is located on the upper side). , It is desirable to have a configuration formed on the C surface or the R surface.

第2実施形態
図4は本発明の第2実施形態にかかる単結晶育成装置の要部構成を示す説明図で、(a)はルツボ上方を覆う位置に配設された、引き上げ軸を通すための孔を横断する直線を境界として分割されている板状の耐火物の全体構成を示す斜視図、(b)は(a)に示す分割される一方の板状の耐火物の合わせ目部を示す斜視図、(c)は(b)に示す板状の耐火物の合わせ目部における傾斜面の傾斜角度を示す図、(d)は(c)に示す板状の耐火物における合わせ目部の角部の一変形例を示す図、(e)は(c)に示す板状の耐火物における合わせ目部の角部の他の変形例を示す図である。
本実施形態の単結晶育成装置では、図4(a)に示すように、夫々の耐火物4(4)の合わせ目部は、傾斜面からなり、互いの耐火物4(4)の傾斜面同士を突き合わせる構造に形成されている。
耐火物の傾斜面4(4)は、図4(c)に示すように、水平面に対し40°以上70°未満の傾斜角度(30°≦αx<70°)を有している。
2nd Embodiment FIG. 4 is an explanatory view which shows the main part structure of the single crystal growing apparatus which concerns on the 2nd Embodiment of this invention, (a) is for passing the pulling shaft arranged at the position which covers the upper part of a rut. A perspective view showing the overall configuration of a plate-shaped refractory divided with a straight line crossing the hole as a boundary, (b) shows the joint portion of one of the divided plate-shaped refractories shown in (a). The perspective view shown, (c) is a diagram showing the inclination angle of the inclined surface in the joint portion of the plate-shaped refractory shown in (b), and (d) is the joint portion in the plate-shaped refractory shown in (c). It is a figure which shows one deformation example of the corner part of, (e) is a figure which shows the other deformation example of the corner part of the seam part in the plate-shaped refractory shown in (c).
In the single crystal growing apparatus of the present embodiment, as shown in FIG. 4A, the seams of the respective refractories 4 1 (4 2 ) are formed of inclined surfaces, and each refractory 4 1 (4 2) is formed. ) Is formed in a structure in which the inclined surfaces are butted against each other.
The inclined surface 4 1 of the refractory (4 2), as shown in FIG. 4 (c), has an inclined angle less than 70 ° 40 ° or more with respect to the horizontal plane (30 ° ≦ αx <70 ° ).

本実施形態の単結晶育成装置における夫々の耐火物4(4)の合わせ目部は、耐火物の厚みが小さく、第1実施形態のようなインロー構造が難しい場合に最適な構造である。
この合わせ目部は、側方からみたときに直角三角形を反転させて突き合わせ、斜辺同士を接触させた構造となっている。そのため、耐火物が変形しても、図4(c)に示す直角三角形の底辺の長さLcに相当する部分までであれば、互いの耐火物4(4)の傾斜面同士を密着させた状態で、ガス対流を遮断し、光(輻射)の漏れを防止することが可能となる。
Seam portion of the refractory of the respective in single crystal growing apparatus 4 1 (4 2) of the present embodiment has a small thickness of the refractory is the optimal structure when spigot structure as in the first embodiment is difficult ..
This joint has a structure in which right triangles are inverted and abutted when viewed from the side, and the hypotenuses are brought into contact with each other. Therefore, even if the refractory is deformed, as long until a portion corresponding to the length Lc of the base of the right triangle shown in FIG. 4 (c), contact the inclined surfaces of each other refractory 4 1 (4 2) In this state, it is possible to block gas convection and prevent light (radiation) leakage.

そして、本実施形態の単結晶育成装置によれば、夫々の耐火物4(4)の合わせ目部を構成する傾斜面の傾斜角度を、水平面に対し40°以上70°未満(30°≦αx<70°)としたので、耐火物に変形が生じても、傾斜面同士の隙間の発生や、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の先端の破損を防止し易くなる。 Then, according to the single crystal growing apparatus of the present embodiment, the inclination angle of the inclined surface constituting the seam portion of each of the refractories 4 1 (4 2), less than 70 ° 40 ° or more with respect to the horizontal plane (30 ° Having a ≦ αx <70 °), even if variations in refractory, occurrence of a gap of the inclined faces, the seam portion tip seam portion at one refractory 4 1 located on the lower side It becomes easier to prevent damage to the tip.

耐火物の傾斜面の傾斜角度が70°を超えると、耐火物の変形時に合わせ目部に隙間が生じる可能性が高い。
一方、耐火物の傾斜面の傾斜角度が40°未満であると、耐火物の変形時に、合わせ目部の先端が下側に位置する一方の耐火物4における傾斜面が、合わせ目部の先端が上側に位置する他方の耐火物4における傾斜面に接触した状態が拘束され過ぎて応力が大きく発生し、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の下側の先端が割れる可能性がある。
そこで、本実施形態の単結晶育成装置においては、好ましくは、耐火物の傾斜面の傾斜角度を45°とすると、合わせ目部の先端が下側に位置する一方の耐火物4における傾斜面と、合わせ目部の先端が上側に位置する一方の耐火物4における傾斜面とにかかる応力のバランスがとれて、傾斜面同士の隙間の発生や、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の先端の破損を防止し易くなる。
If the angle of inclination of the inclined surface of the refractory exceeds 70 °, there is a high possibility that a gap will be formed at the seam when the refractory is deformed.
On the other hand, when the inclination angle of the inclined surface of the refractory is less than 40 °, when the refractory is deformed, the inclined surface of the one refractory 41 whose tip of the seam is located on the lower side is the seam. The state of contact with the inclined surface of the other refractory 4 2 whose tip is located on the upper side is excessively restrained and a large stress is generated, and the seam of the refractory 4 1 whose tip is located on the lower side is excessively restrained. The lower tip of the part may crack.
Therefore, in the single crystal growing apparatus of the present embodiment, preferably, when the inclination angle of the inclined surface of the refractory is 45 °, the inclined surface in one of the refractory 41 where the tip of the seam is located on the lower side. If, balanced the stress on the inclined surface of the seam portion one refractory tip is positioned above the 4 2, occurrence of a gap of the inclined faces, seam section located below the tip of the easily prevent breakage of the tip of the seam section in one of the refractory 4 1.

なお、傾斜面で構成された合わせ目部の先端は鋭利となり欠け易い。特に、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の先端の角部は、耐火物の変形時に応力が集中して欠けを生じ易い。
このため、本実施形態の単結晶育成装置においては、好ましくは、耐火物の合わせ目部の先端の角部(特に、合わせ目部の先端が下側に位置する一方の耐火物4における合わせ目部の先端の角部)は、図4(d)、図4(e)に示すように、C面やR面に形成された構成とすることが望ましい。また、夫々の耐火物の合わせ目部の先端の角部がC面やR面に形成されていると、互いの耐火物4(4)における合わせ目部の先端近傍で隙間をもつこともでき、第1実施形態の単結晶育成装置の合わせ目部を構成するインロー構造における凸部の先端(凹部の根元)の垂直方向の合わせ目部同士の隙間と同様、加熱時の温度上昇により耐火物が熱膨張したときの、傾斜角度を有する合わせ目部同士(特に、ルツボに近い側の合わせ目部同士)に応力がかかり過ぎることによる、耐火物の位置ずれや破損を防止することができる。
It should be noted that the tip of the seam portion formed of the inclined surface is sharp and easily chipped. In particular, the corners of the front end of the seam section in one of the refractory 4 1 the front end of the seam section is positioned on the lower side, prone to chipping stress is concentrated upon deformation of the refractory.
Therefore, in the single crystal growing apparatus of the present embodiment, preferably, the corners of the tip end of the joint portion of the refractory (especially, combined in one of the refractory 4 1 the front end of the seam section is positioned on the lower side As shown in FIGS. 4 (d) and 4 (e), it is desirable that the corner portion at the tip of the eye portion is formed on the C surface or the R surface. Further, when the edge of the distal end of the seam portion of the refractory of the respective is formed on the C plane or R plane, we have a gap in the vicinity of the distal end of the seam section in each other refractory 4 1 (4 2) Also, as in the gap between the vertical seams at the tips of the protrusions (roots of the recesses) in the inlay structure that constitutes the seams of the single crystal growing apparatus of the first embodiment, due to the temperature rise during heating. It is possible to prevent misalignment and damage of the refractory due to excessive stress applied to the seams having an inclination angle (particularly, the seams near the rutsubo) when the refractory thermally expands. can.

以下、本発明の実施例について比較例を挙げて具体的に説明する。ここでは、一例としてタンタル酸リチウム単結晶育成方法について説明する。なお、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be specifically described with reference to comparative examples. Here, a method for growing a lithium tantalate single crystal will be described as an example. The present invention is not limited to the following examples.

実施例1
実施例1の単結晶育成装置は、図2、図3に示した第1実施形態の単結晶育成装置に対応した構成を備えたものとした。
タンタル酸リチウム単結晶の育成手順は次のようにして行った。室温で、イリジウム製のルツボ1に、タンタル酸リチウムの原料2を充填し、ルツボ1を銅製の高周波誘導コイル5によって加熱する。ルツボ1内のタンタル酸リチウム原料を融解し、イリジウム製の引上げ軸8を1〜20rpmで回転させながら、1〜5mm/hの速度で垂直に引き上げることによって、種結晶7から単結晶を育成する。単結晶の育成が完了後、室温まで徐々に温度を下げ、その後に育成した単結晶を取り出す。
実施例1では、このような単結晶の育成を連続的に繰り返した。
Example 1
The single crystal growing apparatus of Example 1 is provided with a configuration corresponding to the single crystal growing apparatus of the first embodiment shown in FIGS. 2 and 3.
The procedure for growing the lithium tantalate single crystal was as follows. At room temperature, the crucible 1 made of iridium is filled with the raw material 2 of lithium tantalate, and the crucible 1 is heated by the high frequency induction coil 5 made of copper. A single crystal is grown from the seed crystal 7 by melting the lithium tantalate raw material in the crucible 1 and vertically pulling the iridium pulling shaft 8 at a speed of 1 to 5 mm / h while rotating the pulling shaft 8 at 1 to 20 rpm. .. After the growth of the single crystal is completed, the temperature is gradually lowered to room temperature, and then the grown single crystal is taken out.
In Example 1, such growth of a single crystal was continuously repeated.

実施例1の単結晶育成装置における、ルツボ上方を覆う位置に配設する耐火物はアルミナ製とした。円盤状の耐火物を2分割し、半円状の耐火物を2枚組み合わせて使用した。合わせ目部は、図2に示したのと同様、互いの耐火物4(4)の凹部4b(4b)と凸部4a(4a)とを突き合わせるインロー構造とした。インロー構造の凸部4a(4a)及び凸部4a(4a)の高さ及び長さを夫々15mm、耐火物全体の厚みは30mmとした。この耐火物は、タンタル酸リチウムの単結晶育成中に1400℃に上昇する。使用したアルミナの熱膨張率は8.0×10−6/Kである。そこで、インロー構造の隙間を0.2mmとした。
実施例1の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、100回まで単結晶の歩留まり低下は認められなかった。耐火物の変形は認められたが、合わせ目部からのガス対流や光(輻射)が漏れる隙間は認められなかった。
In the single crystal growing apparatus of Example 1, the refractory material arranged at the position covering the upper part of the crucible was made of alumina. The disc-shaped refractory was divided into two, and two semi-circular refractories were used in combination. Seam section, similar to that shown in FIG. 2, was spigot structure to match the mutual refractory 4 1 recess 4b 1 of the (4 2) (4b 2) and convex portions 4a 1 (4a 2). The height and length of the convex portions 4a 1 (4a 2 ) and the convex portions 4a 1 (4a 2 ) of the inlay structure were set to 15 mm, respectively, and the thickness of the entire refractory was set to 30 mm. This refractory rises to 1400 ° C. during the growth of a single crystal of lithium tantalate. The coefficient of thermal expansion of the alumina used is 8.0 × 10 -6 / K. Therefore, the gap of the inlay structure is set to 0.2 mm.
When the single crystal growth was continuously repeated using the single crystal growth apparatus of Example 1, no decrease in the yield of the single crystal was observed up to 100 times. Deformation of the refractory was observed, but no gaps for gas convection or light (radiation) leakage from the seams were observed.

実施例2
実施例2の単結晶育成装置は、図4に示した第2実施形態の単結晶育成装置に対応した構成を備えたものとした。
詳しくは、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を図4に示した傾斜面からなり、互いの耐火物4(4)の傾斜面同士を突き合わせる構造とした。傾斜面で構成される夫々の耐火物4(4)の合わせ目部における断面の直角三角形の底辺の長さを30mmとするとともに、傾斜面の水平面に対する傾斜角度を45°とした。また、室温における合わせ目部同士の隙間を0.2mmとした。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、実施例1と同様に単結晶の育成を連続的に繰り返した。
実施例2の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、100回まで単結晶の歩留まり低下は認められなかった。耐火物の変形は認められたが、合わせ目部からのガス対流や光(輻射)が漏れる隙間は認められなかった。
Example 2
The single crystal growing apparatus of Example 2 was provided with a configuration corresponding to the single crystal growing apparatus of the second embodiment shown in FIG.
For more information, becomes the joint portion of the alumina refractories arranged at a position covering the crucible upward from the inclined surface shown in FIG. 4, has a structure to match the inclined surfaces of each other refractory 4 1 (4 2) .. With a 30mm length of the base of the cross-section of a right triangle at the seams of the formed respective refractory 4 1 (4 2) the inclined surface, and the inclination angle relative to the horizontal plane of the inclined surface and 45 °. Further, the gap between the seams at room temperature was set to 0.2 mm.
Other configurations were the same as those of the single crystal growing apparatus of Example 1, and the growing of single crystals was continuously repeated as in Example 1.
When the single crystal growth was continuously repeated using the single crystal growth apparatus of Example 2, no decrease in the yield of the single crystal was observed up to 100 times. Deformation of the refractory was observed, but no gaps for gas convection or light (radiation) leakage from the seams were observed.

実施例3
実施例2の単結晶育成装置は、図4に示した第2実施形態の単結晶育成装置に対応した構成を備えたものとした。
詳しくは、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を図4に示した傾斜面からなり、互いの耐火物4(4)の傾斜面同士を突き合わせる構造とした。傾斜面で構成される夫々の耐火物4(4)の合わせ目部における傾斜面の水平面に対する傾斜角度を60°とするとともに、室温における合わせ目部同士の隙間を0.2mmとした。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、実施例1と同様に単結晶の育成を連続的に繰り返した。
実施例2の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、100回まで単結晶の歩留まり低下は認められなかった。耐火物の変形は認められたが、合わせ目部からのガス対流や光(輻射)が漏れる隙間は認められなかった。
Example 3
The single crystal growing apparatus of Example 2 was provided with a configuration corresponding to the single crystal growing apparatus of the second embodiment shown in FIG.
For more information, becomes the joint portion of the alumina refractories arranged at a position covering the crucible upward from the inclined surface shown in FIG. 4, has a structure to match the inclined surfaces of each other refractory 4 1 (4 2) .. With a 60 ° angle of inclination relative to the horizontal plane of the inclined surface of the seams of the formed respective refractory 4 1 (4 2) the inclined surface, and a 0.2mm clearance between the joint portion at room temperature.
Other configurations were the same as those of the single crystal growing apparatus of Example 1, and the growing of single crystals was continuously repeated as in Example 1.
When the single crystal growth was continuously repeated using the single crystal growth apparatus of Example 2, no decrease in the yield of the single crystal was observed up to 100 times. Deformation of the refractory was observed, but no gaps for gas convection or light (radiation) leakage from the seams were observed.

比較例1
比較例1の単結晶育成装置は、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を図6に示すような、夫々の板状の耐火物4(4)における垂直な面同士を突き合わせる構造とした。合わせ目部からガス対流や光(輻射)が漏れることを防止するため、室温において夫々の板状の耐火物4(4)の合わせ目部同士に隙間が無いように配設した。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、実施例1と同様に単結晶の育成を連続的に繰り返した。
比較例1の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、30回以後の単結晶の育成において単結晶の歩留まり低下が認められた。耐火物に変形が認められるとともに、合わせ目部からガス対流や光(輻射)が漏れる隙間が認められた。
Comparative Example 1
Apparatus for growing a single crystal of Comparative Example 1, perpendicular in the seam portion of the alumina refractories arranged at a position covering the crucible upward as shown in FIG. 6, a plate-like refractory respective 4 1 (4 2) The structure is such that the faces are butted against each other. To prevent gas convection or light (radiation) from leaking through the joint portion, is disposed so that there is no gap in the seam portions of the plate-like refractory respective 4 1 (4 2) at room temperature.
Other configurations were the same as those of the single crystal growing apparatus of Example 1, and the growing of single crystals was continuously repeated as in Example 1.
When the growth of the single crystal was continuously repeated using the single crystal growth apparatus of Comparative Example 1, a decrease in the yield of the single crystal was observed in the growth of the single crystal after 30 times. Deformation was observed in the refractory, and there were gaps where gas convection and light (radiation) leaked from the seams.

比較例2
比較例2の単結晶育成装置は、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を、互いの耐火物の凹部と凸部とを突き合わせるインロー構造とし、インロー構造の凸部の高さを、合わせ目部の先端が下側に位置する一方の耐火物:5mm、合わせ目部の先端が上側に位置する他方の耐火物:25mmとした。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、実施例1と同様に単結晶の育成を連続的に繰り返した。
比較例2の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、5回以後の単結晶の育成において単結晶の歩留まり低下が認められた。合わせ目部の先端が下側に位置する一方の耐火物におけるインロー構造の凸部に割れが認められるとともに、合わせ目部からガス対流や光(輻射)が漏れる隙間が認められた。
Comparative Example 2
The single crystal growing device of Comparative Example 2 has an in-row structure in which the joint portion of the alumina refractory arranged at a position covering the upper part of the crucible has an in-row structure in which the concave portion and the convex portion of each refractory are butted against each other, and the convex portion of the in-row structure. The height of the refractory was set to 5 mm for one refractory whose tip of the seam is located on the lower side and 25 mm for the other refractory whose tip of the seam is located on the upper side.
Other configurations were the same as those of the single crystal growing apparatus of Example 1, and the growing of single crystals was continuously repeated as in Example 1.
When the single crystal growth was continuously repeated using the single crystal growth apparatus of Comparative Example 2, a decrease in the yield of the single crystal was observed in the growth of the single crystal after 5 times. Cracks were found in the convex part of the inlay structure in one refractory whose tip was located on the lower side of the seam, and there was a gap where gas convection and light (radiation) leaked from the seam.

比較例3
比較例3の単結晶育成装置は、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を傾斜面からなり、互いの耐火物の傾斜面同士を突き合わせる構造とし、傾斜面の水平面に対する傾斜角度を10°とした。
その他の構成は、実施例1の単結晶育成装置と同様に構成した。そして、単結晶の育成を連続的に繰り返した。
比較例3の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、15回以後の単結晶の育成において単結晶の歩留まり低下が認められた。合わせ目部の先端が下側に位置する一方の耐火物における合わせ目部の先端の一部に割れが認められ、合わせ目部からガス対流や光(輻射)が漏れる隙間が認められた。
Comparative Example 3
The single crystal growing device of Comparative Example 3 has a structure in which the seams of the alumina refractories arranged at positions covering the upper part of the crucible are made of inclined surfaces and the inclined surfaces of the refractory are abutted against each other, and the horizontal plane of the inclined surfaces is formed. The inclination angle with respect to the relative angle was set to 10 °.
Other configurations were the same as those of the single crystal growing apparatus of Example 1. Then, the growth of the single crystal was continuously repeated.
When the single crystal growth was continuously repeated using the single crystal growth apparatus of Comparative Example 3, a decrease in the yield of the single crystal was observed in the growth of the single crystal after 15 times. A crack was found in a part of the tip of the seam in one refractory whose tip is located on the lower side of the seam, and a gap was observed in which gas convection and light (radiation) leaked from the seam.

比較例4
比較例4の単結晶育成装置は、ルツボ上方を覆う位置に配設するアルミナ耐火物の合わせ目部を傾斜面からなり、互いの耐火物の傾斜面同士を突き合わせる構造とし、傾斜面の水平面に対する傾斜角度を80°とした。
その他の構成は、実施例1の単結晶育成装置と同様に構成し、単結晶の育成を連続的に繰り返した。
比較例4の単結晶育成装置を用いて、単結晶の育成を連続的に繰り返したところ、40回以後の単結晶の育成において単結晶の歩留まり低下が認められた。耐火物に変形が認められるとともに、合わせ目部からガス対流や光(輻射)が漏れる隙間が認められた。
Comparative Example 4
The single crystal growing device of Comparative Example 4 has a structure in which the seams of the alumina refractories arranged at positions covering the upper part of the crucible are made of inclined surfaces and the inclined surfaces of the refractory are abutted against each other, and the horizontal plane of the inclined surfaces is formed. The inclination angle with respect to the relative angle was set to 80 °.
Other configurations were the same as those of the single crystal growing apparatus of Example 1, and the growing of single crystals was continuously repeated.
When the single crystal growth was continuously repeated using the single crystal growth apparatus of Comparative Example 4, a decrease in the yield of the single crystal was observed in the growth of the single crystal after 40 times. Deformation was observed in the refractory, and there were gaps where gas convection and light (radiation) leaked from the seams.

本発明の単結晶製造装置は、原料融液から種結晶を引き上げながら単結晶を育成する結晶育成方法を用いて工業的に単結晶の育成を繰り返し行うことが求められる分野に有用である。 The single crystal manufacturing apparatus of the present invention is useful in a field where it is required to repeatedly grow a single crystal industrially by using a crystal growing method for growing a single crystal while pulling up a seed crystal from a raw material melt.

1 ルツボ
2 原料融液
3 ルツボ1の周囲に配設された耐火物
4 ルツボ1上方を覆う位置に配設された耐火物
一方の耐火物
他方の耐火物
4a、4a 凸部
4b、4b 凹部
4H 孔
5 加熱手段(高周波誘導コイル)
6 チャンバ
7 種結晶
8 引き上げ軸
9 ルツボ1を支持する支持台をなす耐火物
51 ルツボ
52 原料融液
53 断熱構造体
53、53、53、53、53 断熱材
54、55 ヒータ
56 チャンバ
57 種結晶
58 引き上げ軸
58a 種結晶保持部
1 Crucible 2 Raw material melt 3 Refractory arranged around the crucible 4 Refractory arranged at a position covering the upper part of the crucible 4 1 One refractory 4 2 The other refractory 4a 1 , 4a 2 Convex Part 4b 1 , 4b 2 Concave 4H Hole 5 Heating means (high frequency induction coil)
6 Chamber 7 Seed crystal 8 Pull-up shaft 9 Refractory forming a support base for crucible 1 Crucible 52 Raw material melt 53 Insulation structure 53 1 , 53 2 , 53 3 , 53 4 , 5 5 Insulation material 54, 55 Heater 56 Chamber 57 Seed crystal 58 Pull-up shaft 58a Seed crystal holder

Claims (4)

原料融液の表面に接触させた種結晶を引き上げながら単結晶を育成する結晶育成方法に用いられ、ルツボ上方を覆う位置に配設された、前記種結晶を引き上げる、引き上げ軸を通すための孔を有する板状の耐火物が、前記引き上げ軸を通すための孔を横断する直線を境界として分割されている、単結晶育成装置において、
夫々の前記耐火物の合わせ目部は、一方の前記耐火物の合わせ目部の先端が他方の前記耐火物の合わせ目部の先端の下側に位置し、互いの前記耐火物の前記合わせ目部において上側と下側とで対向する平面を有し、該平面同士が単結晶育成時に密着することを特徴とする単結晶育成装置。
It is used in a crystal growth method to grow a single crystal while pulling up a seed crystal that is in contact with the surface of the raw material melt, and is arranged at a position that covers the upper part of the crucible. In a single crystal growing apparatus in which a plate-shaped refractory material having a crucible is divided with a straight line crossing a hole for passing the pulling shaft as a boundary.
In each of the refractory seams, the tip of one of the refractory seams is located below the tip of the other refractory seam, and the seams of each other of the refractories. A single crystal growing device characterized by having planes facing each other on the upper side and the lower side in a portion, and the planes are in close contact with each other during single crystal growing.
夫々の前記耐火物の合わせ目部は、凹部と凸部を有し、一方の前記耐火物の凹部と他方の前記耐火物の凸部、一方の前記耐火物の凸部と他方の前記耐火物の凹部とを突き合わせるインロー構造に形成され、
夫々の前記耐火物の前記凹部及び前記凸部は、夫々、前記耐火物の厚みの略1/2の高さを有していることを特徴とする請求項1に記載の単結晶育成装置。
Each of the refractory joints has a concave portion and a convex portion, one of the concave portion of the refractory and the convex portion of the other refractory, and one convex portion of the refractory and the other of the refractory. Formed in an in-row structure that abuts against the recesses of
The single crystal growing apparatus according to claim 1, wherein each of the concave portion and the convex portion of the refractory has a height of approximately ½ of the thickness of the refractory.
夫々の前記耐火物の合わせ目部は、傾斜面からなり、互いの前記耐火物の前記傾斜面同士を突き合わせる構造に形成され、
前記耐火物の前記傾斜面は、40°以上70°未満の傾斜角度を有していることを特徴とする請求項1に記載の単結晶育成装置。
The seams of each of the refractories are formed of inclined surfaces, and are formed in a structure in which the inclined surfaces of the refractories are abutted against each other.
The single crystal growing apparatus according to claim 1, wherein the inclined surface of the refractory has an inclination angle of 40 ° or more and less than 70 °.
前記耐火物の合わせ目部先端は、C面又はR面に形成された角部を有していることを特徴とする請求項1〜3のいずれかに記載の単結晶育成装置。 The single crystal growing apparatus according to any one of claims 1 to 3, wherein the tip of the seam portion of the refractory has a corner portion formed on a C-plane or an R-plane.
JP2018076333A 2018-04-11 2018-04-11 Single crystal growing device Active JP6988659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018076333A JP6988659B2 (en) 2018-04-11 2018-04-11 Single crystal growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076333A JP6988659B2 (en) 2018-04-11 2018-04-11 Single crystal growing device

Publications (2)

Publication Number Publication Date
JP2019182707A JP2019182707A (en) 2019-10-24
JP6988659B2 true JP6988659B2 (en) 2022-01-05

Family

ID=68339469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076333A Active JP6988659B2 (en) 2018-04-11 2018-04-11 Single crystal growing device

Country Status (1)

Country Link
JP (1) JP6988659B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199795U (en) * 1984-12-05 1986-06-26
JPH02296787A (en) * 1989-05-11 1990-12-07 Fujitsu Ltd Growing device for single crystal
JPH1081593A (en) * 1996-09-02 1998-03-31 Super Silicon Kenkyusho:Kk Production of cz silicon single crystal and apparatus therefor
JP3055095B2 (en) * 1997-03-10 2000-06-19 谷本化成株式会社 Variable width insulation
JP2002226299A (en) * 2000-12-01 2002-08-14 Toshiba Corp Apparatus and method for manufacturing single crystal
JP6697847B2 (en) * 2015-04-14 2020-05-27 住友金属鉱山株式会社 Thermal insulation structure

Also Published As

Publication number Publication date
JP2019182707A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
TWI458865B (en) Sapphire ingot grower
JP5596788B2 (en) Sapphire single crystal growth method and apparatus
EP0338411A2 (en) Apparatus and method for growth of large single crystals in plate/slab form
JP6790927B2 (en) Crystal growth device
CN110408988A (en) The growing method of SiC single crystal grower and SiC single crystal
CN105452542A (en) Crucible assembly for controlling oxygen and related methods
KR20200046467A (en) Apparatus and method for growing sapphire single crystal
JP6988659B2 (en) Single crystal growing device
JP6697847B2 (en) Thermal insulation structure
JP2021066651A (en) Semiconductor crystal growth apparatus
JP6507811B2 (en) Crystal growth system
JP6014838B1 (en) Multiple sapphire single crystals and method for producing the same
KR101532266B1 (en) An apparatus for growing a single crystal
KR101673482B1 (en) Single crystal grower having multiple crucibles
JP6204500B2 (en) Single crystal growth equipment
JP2004123510A (en) Apparatus for manufacturing single crystal and method for manufacturing the same
JP2016222471A (en) Production method of single crystal
KR20190075411A (en) Crucible Member Capable of Removing Lineage Defect, Apparatus and Method for Growing Sapphire Single Crystal of High Quality Using the Same
CN109972196A (en) Sapphire Crystal Growth device crucible, Sapphire Crystal Growth device and method
JP5951132B2 (en) Apparatus for producing single crystals by crystallization of single crystals in the melting region
KR20140019393A (en) High temperature furnace insulation
JP2013119500A (en) Single crystal growth method and apparatus thereof
JP7275674B2 (en) Method for growing lithium niobate single crystal
JP6984511B2 (en) After heater
JP5057770B2 (en) Method for producing solid phase sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150