JP5057770B2 - Method for producing solid phase sheet - Google Patents

Method for producing solid phase sheet Download PDF

Info

Publication number
JP5057770B2
JP5057770B2 JP2006346088A JP2006346088A JP5057770B2 JP 5057770 B2 JP5057770 B2 JP 5057770B2 JP 2006346088 A JP2006346088 A JP 2006346088A JP 2006346088 A JP2006346088 A JP 2006346088A JP 5057770 B2 JP5057770 B2 JP 5057770B2
Authority
JP
Japan
Prior art keywords
crucible
radiation
melt
phase sheet
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006346088A
Other languages
Japanese (ja)
Other versions
JP2008159781A (en
Inventor
浩司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006346088A priority Critical patent/JP5057770B2/en
Publication of JP2008159781A publication Critical patent/JP2008159781A/en
Application granted granted Critical
Publication of JP5057770B2 publication Critical patent/JP5057770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体材料融液を基板表面に凝固成長させる固相シートの製造方法に関し、特に太陽電池用多結晶シリコンシートの製造方法に関する。また、その固相シートの製造方法に使用する輻射反射板に関する。   The present invention relates to a method for producing a solid phase sheet in which a semiconductor material melt is solidified and grown on a substrate surface, and more particularly to a method for producing a polycrystalline silicon sheet for solar cells. Moreover, it is related with the radiation reflecting plate used for the manufacturing method of the solid-phase sheet | seat.

従来、多結晶シリコンの固相シートは、鋳型に入ったシリコン融液を時間をかけて徐々に冷却し、得られる多結晶インゴットをブロック上に切り分け、その後、ブロックをスライスして製造しているため、スライスによるコストの増大およびシリコンの損失が大きい。   Conventionally, a solid phase sheet of polycrystalline silicon is manufactured by gradually cooling a silicon melt contained in a mold over time, cutting the resulting polycrystalline ingot on a block, and then slicing the block. Therefore, the cost increase due to slicing and the loss of silicon are large.

かかる問題を解決し、多結晶シリコンの固相シートを低コストで大量に製造する方法として、スライス工程を必要としない方法が知られている(特許文献1参照)。この方法は、密閉した処理室内で複数のカーボン(黒鉛)製基板を旋回し、ルツボ内に保持したシリコン融液にカーボン基板を浸漬し、基板上に結晶シートを析出させ、固相シートを製造する方法である(特許文献1参照)。この製造方法により、後工程における待ち時間を短縮でき、半導体基材の破損および不具合を防止することができる。   As a method for solving such a problem and manufacturing a solid phase sheet of polycrystalline silicon in a large amount at a low cost, a method that does not require a slicing step is known (see Patent Document 1). In this method, a plurality of carbon (graphite) substrates are swirled in a sealed processing chamber, the carbon substrate is immersed in a silicon melt held in a crucible, a crystal sheet is deposited on the substrate, and a solid phase sheet is produced. (See Patent Document 1). By this manufacturing method, the waiting time in the post-process can be shortened, and damage and defects of the semiconductor substrate can be prevented.

一方、角型ルツボを使用したシリコン製固相シートの製造装置としては、角型ルツボの上面に断熱材を設置した例が知られている(特許文献2参照)。角型ルツボの上面に断熱材を設置することにより、ルツボの水平方向の温度分布のバラツキを小さくし、炉材の損傷、原料融液の過冷却、凝固およびルツボの割れなどの問題を回避することができる。   On the other hand, as an apparatus for producing a silicon solid-phase sheet using a square crucible, an example in which a heat insulating material is installed on the upper surface of the square crucible is known (see Patent Document 2). By installing a heat insulating material on the upper surface of the square crucible, the variation in temperature distribution in the horizontal direction of the crucible is reduced, and problems such as furnace material damage, material melt supercooling, solidification and crucible cracking are avoided. be able to.

また、チョクラルスキー(CZ)法による単結晶引上げ法に関する方法であって、ルツボ壁近傍の融液の凝固成長を抑制することにより、融液の表面温度をできるだけ低く保ち、結晶の引上げを速くすることを目的とする方法が紹介されている(特許文献3参照)。この方法は、ワイヤーで吊るした輻射反射板をルツボ壁近傍に設置することにより、ルツボ壁近傍の融液温度を上昇させ、凝固成長を抑制しようとするものである。   Further, it is a method related to a single crystal pulling method by the Czochralski (CZ) method, and by suppressing the solidification growth of the melt in the vicinity of the crucible wall, the surface temperature of the melt is kept as low as possible and the pulling of the crystal is made fast. A method intended to do this has been introduced (see Patent Document 3). This method is intended to suppress solidification growth by increasing the melt temperature in the vicinity of the crucible wall by installing a radiation reflecting plate suspended by a wire in the vicinity of the crucible wall.

さらに、特許文献2と同様に、ルツボの上面に断熱手段を設け、この断熱手段を可動式とした固相シートの製造装置が紹介されている(特許文献4参照)。この固相シートの製造装置においては、断熱手段を可動式とすることにより、角型ルツボなどにおける溶融シリコンの水平方向の温度分布をより積極的に均一化することができ、融液を覆うような断熱材が例示されている。
特開2002−289544号公報 特開2005−29405号公報 特開平5−43383号公報 特開2006−182626号公報
Furthermore, as in Patent Document 2, a solid-phase sheet manufacturing apparatus in which heat insulating means is provided on the upper surface of the crucible and the heat insulating means is movable is introduced (see Patent Document 4). In this solid-phase sheet manufacturing apparatus, by making the heat insulating means movable, the horizontal temperature distribution of the molten silicon in a square crucible or the like can be more evenly distributed and the melt can be covered. Examples of heat insulation materials are illustrated.
JP 2002-289544 A JP 2005-29405 A JP-A-5-43383 JP 2006-182626 A

固相シートを作製するための融液温度は、1430℃付近であり、シリコン融点に近い温度であるため、温度分布により融液が凝固を始める場合がある。特に、ルツボ壁の近傍にある融液は、ルツボ内壁が輻射熱の逃げる領域であり、結晶核が生じやすいため、特に、ルツボ壁近傍から凝固が発生し、成長しやすい。   The melt temperature for producing the solid-phase sheet is around 1430 ° C. and is close to the melting point of silicon, so that the melt may start to solidify due to the temperature distribution. In particular, the melt in the vicinity of the crucible wall is a region where the inner wall of the crucible escapes radiant heat, and crystal nuclei are likely to be generated.

特許文献1に記載されている固相シートの製造方法では、シリコン融液を収容するルツボ自体が小さく、円形状のルツボであるため、融液の温度分布のバラツキが小さく、融液の凝固成長は問題にならなかった。しかし、浸漬効率を上げるために、ルツボを長方形状に変更すると、温度分布のバラツキが大きくなり、特に長辺側の温度低下が見られ、長辺側より融液が凝固成長し、基板の浸漬を阻害する。   In the method for producing a solid phase sheet described in Patent Document 1, since the crucible for containing the silicon melt is small and a circular crucible, there is little variation in the temperature distribution of the melt, and the solidification growth of the melt. Was not a problem. However, if the crucible is changed to a rectangular shape in order to increase the immersion efficiency, the variation in temperature distribution will increase, especially the temperature drop on the long side will be seen, and the melt will solidify and grow from the long side, and the substrate will be immersed. Inhibits.

また、特許文献2に記載されている固相シートの製造装置は、長方形状のルツボを使用しているが、角型ルツボのサイズが比較的小さく、融液保持日数も数日というオーダーである。また、融液の水平方向における温度分布のバラツキが小さく、角型ルツボの長辺側から成長する凝固も10mm程度のものである。しかし、角型ルツボが大きくなり、保持日数が数週間というオーダーになると、角型ルツボの長辺側で発生した凝固が徐々に成長し、基板の浸漬を阻害することになる。   Moreover, although the solid-phase sheet manufacturing apparatus described in Patent Document 2 uses a rectangular crucible, the size of the square crucible is relatively small, and the melt retention time is on the order of several days. . Further, the dispersion of the temperature distribution in the horizontal direction of the melt is small, and the solidification that grows from the long side of the square crucible is about 10 mm. However, when the square crucible becomes large and the holding days are on the order of several weeks, solidification generated on the long side of the square crucible gradually grows and inhibits immersion of the substrate.

一方、特許文献3に紹介されている単結晶引上げ方法は、ワイヤーで吊るす形態で融液面上に輻射反射板を設置しているため、輻射反射板は、シリコン融液からの輻射熱のみにより加熱される。したがって、輻射反射板自体は高温とはならず、輻射反射板自らにより融液の凝固を抑制するほどの輻射熱は放射されない。   On the other hand, in the single crystal pulling method introduced in Patent Document 3, the radiation reflector is installed on the melt surface in the form of being hung by a wire, and therefore the radiation reflector is heated only by radiant heat from the silicon melt. Is done. Therefore, the radiation reflecting plate itself does not reach a high temperature, and the radiation reflecting plate itself does not radiate heat enough to suppress solidification of the melt.

また、特許文献4に記載されている製造装置は、実施例の中に、融液上に断熱材を設置する例も示されているが、断熱材はルツボ上面と接しているものの、可動式であるため、ルツボとの接触度合いが小さく、ルツボ自体からの伝導熱量は大きくない。したがって、特許文献3の例と同様に、断熱材は、シリコン融液からの輻射熱のみにより加熱されるため、断熱材自体は高温とならず、ルツボの大型化および融液保持の長期化による、ルツボ壁付近での凝固成長の抑制は困難である。   Moreover, although the example which installs a heat insulating material on a melt is also shown in the Example for the manufacturing apparatus described in patent document 4, although a heat insulating material is in contact with the crucible upper surface, it is movable. Therefore, the degree of contact with the crucible is small and the amount of heat conducted from the crucible itself is not large. Therefore, as in the example of Patent Document 3, since the heat insulating material is heated only by the radiant heat from the silicon melt, the heat insulating material itself does not become a high temperature, and the crucible is enlarged and the melt is held for a long time. Suppression of solidification growth near the crucible wall is difficult.

本発明の課題は、半導体材料融液に基板を浸漬することにより、固相シートを連続的に製造する方法であって、ルツボ内壁と半導体材料融液の界面付近から発生する凝固を抑制して、連続生産が可能な固相シートの製造方法を提供することにある。また、かかる製造方法に使用する輻射反射板を提供しようとするものである。   An object of the present invention is a method for continuously producing a solid-phase sheet by immersing a substrate in a semiconductor material melt, which suppresses solidification occurring near the interface between the inner wall of the crucible and the semiconductor material melt. Another object of the present invention is to provide a method for producing a solid phase sheet capable of continuous production. Another object of the present invention is to provide a radiation reflector used in such a manufacturing method.

本発明は、ルツボ内に半導体材料融液を収容し、半導体材料融液に基板を浸漬することにより、基板表面に固相シートを作製する固相シートの製造方法であって、ルツボ上面およびルツボ外側面の両面に接した輻射反射板を設け、輻射反射板は半導体材料融液からの輻射を反射することが可能な輻射反射部を備え、輻射反射部を半導体材料融液の直上に配置することを特徴とする。ルツボの上面が略長方形の形状を有する場合は、長方形の長辺側に輻射反射板を設ける態様が好ましい。また、輻射反射板の輻射反射部が、ルツボ上面と輻射反射板とが接する平面と交差する部分を有する態様が好適である。   The present invention relates to a method for manufacturing a solid phase sheet in which a semiconductor material melt is accommodated in a crucible and a substrate is immersed in the semiconductor material melt to produce a solid phase sheet on the surface of the substrate. A radiation reflector is provided in contact with both sides of the outer surface, and the radiation reflector is provided with a radiation reflector capable of reflecting radiation from the semiconductor material melt, and the radiation reflector is disposed immediately above the semiconductor material melt. It is characterized by that. When the upper surface of the crucible has a substantially rectangular shape, a mode in which a radiation reflector is provided on the long side of the rectangle is preferable. Moreover, the aspect in which the radiation reflection part of a radiation reflection plate has a part which cross | intersects the plane which a crucible upper surface and a radiation reflection plate contact | connect is suitable.

本発明の輻射反射板は、ルツボ内に半導体材料融液を収容し、半導体材料融液に基板を浸漬することにより、基板表面に固相シートを作製する固相シートの製造方法に使用する輻射反射板であって、ルツボ外側面に接触することが可能な外側面接触部と、ルツボ上面に接触することが可能な上面接触部と、ルツボに設置した際にルツボの融液収容部へ向け、融液からの輻射を反射することが可能な輻射反射部とを有する。この輻射反射板の輻射反射部は、輻射反射板とルツボ上面とが接する面より下側に位置する部分を有する態様が好ましい。   The radiation reflector of the present invention contains a semiconductor material melt in a crucible and radiates the solid phase sheet for use in a method for producing a solid phase sheet by immersing the substrate in the semiconductor material melt. Reflecting plate, an outer surface contact portion that can contact the outer surface of the crucible, an upper surface contact portion that can contact the upper surface of the crucible, and toward the crucible melt storage portion when installed on the crucible And a radiation reflecting portion capable of reflecting radiation from the melt. It is preferable that the radiation reflecting portion of the radiation reflecting plate has a portion located below the surface where the radiation reflecting plate and the upper surface of the crucible are in contact.

本発明によれば、半導体材料融液とルツボ内壁の境界付近から発生する凝固の成長を抑制することが可能であるため、連続生産可能日数を延ばすことができる。   According to the present invention, it is possible to suppress the growth of solidification generated from the vicinity of the boundary between the melt of the semiconductor material and the inner wall of the crucible, so that the number of days that can be continuously produced can be extended.

本発明の固相シートの製造方法は、たとえば、誘導加熱により加熱された黒鉛製ルツボに保持されたシリコンなどの半導体材料の融液に、固相シート成長用の基板を浸漬させ、半導体材料の融液を基板表面上で結晶成長させることにより、固相シートを製造する方法である。また、ルツボ上面およびルツボ外側面の両面に接した輻射反射板を設ける。この輻射反射板は半導体材料融液からの輻射を反射することが可能な輻射反射部を備え、輻射反射部を半導体材料融液の直上に配置する。したがって、輻射反射部により、半導体材料融液からの輻射熱を反射することができる。さらに、ルツボからの伝導熱により輻射反射板自体も高温となり、輻射反射板自体から半導体融液の湯面とルツボとの接線近傍へ熱を放射することができる。このため、ルツボ壁付近の凝固成長を抑制する効果が大きい。   The method for producing a solid phase sheet of the present invention includes, for example, immersing a substrate for solid phase sheet growth in a melt of a semiconductor material such as silicon held in a graphite crucible heated by induction heating. This is a method for producing a solid-phase sheet by crystal growth of a melt on a substrate surface. Further, a radiation reflecting plate in contact with both the upper surface of the crucible and the outer surface of the crucible is provided. The radiation reflecting plate includes a radiation reflecting portion capable of reflecting radiation from the semiconductor material melt, and the radiation reflecting portion is disposed immediately above the semiconductor material melt. Therefore, radiant heat from the semiconductor material melt can be reflected by the radiation reflecting portion. Furthermore, the radiation reflector itself becomes high temperature by the conduction heat from the crucible, and heat can be radiated from the radiation reflector itself to the vicinity of the tangent line between the molten metal surface of the semiconductor melt and the crucible. For this reason, the effect of suppressing solidification growth near the crucible wall is great.

輻射反射板は、ルツボの上面が略長方形の形状を有する場合、長方形の長辺側に設ける態様が好ましい。通常、長方形状のルツボを使用すると、長辺側のルツボ壁付近から優先的に凝固成長が発生するが、長辺側に輻射反射板を設置することにより、長辺側での凝固成長を抑制することができる。また、輻射反射板の輻射反射部が、ルツボ上面と輻射反射板とが接する平面と交差する部分を有する態様が好ましい。輻射反射部が、ルツボ上面と輻射反射板が接する平面と交差する部分を有すると、シリコン融液からの輻射よりも一層強力なルツボ内壁からの輻射熱を輻射反射板に受け、この輻射熱を放出することにより、ルツボ壁付近の凝固成長をより効果的に抑制することができる。   When the upper surface of the crucible has a substantially rectangular shape, the radiation reflector is preferably provided on the long side of the rectangle. Normally, when a rectangular crucible is used, solidification growth occurs preferentially from the vicinity of the crucible wall on the long side, but the solidification growth on the long side is suppressed by installing a radiation reflector on the long side. can do. Moreover, the aspect in which the radiation reflection part of a radiation reflection plate has a part which cross | intersects the plane which a crucible upper surface and a radiation reflection plate contact | connect is preferable. If the radiation reflector has a portion that intersects the flat surface where the upper surface of the crucible and the radiation reflector are in contact, the radiation reflector receives the radiation heat from the inner wall of the crucible, which is stronger than the radiation from the silicon melt, and emits this radiation heat. As a result, solidification growth near the crucible wall can be more effectively suppressed.

図1に、本発明の固相シートの製造方法を実施するときに使用するルツボの斜視図を例示する。図1に示すようなルツボ上面101が略長方形のルツボ105を誘導加熱により加熱した場合、磁束密度は、角部が最も高く、短辺部、長辺部の順に低くなり、それぞれの温度も同じく角部が最も高く、長辺部が最も低くなる。半導体材料融液104から固相シートを作製する場合、半導体材料融液104の温度は、基板上での固相シートの成長速度を高めるため、融点付近に設定されるが、前述の温度分布が生じるため、長辺付近からの凝固成長が大きくなる。   In FIG. 1, the perspective view of the crucible used when implementing the manufacturing method of the solid-phase sheet | seat of this invention is illustrated. When a crucible 105 having a substantially rectangular crucible upper surface 101 as shown in FIG. 1 is heated by induction heating, the magnetic flux density is highest at the corners and lower in the order of the short side and the long side, and the respective temperatures are also the same. The corner is the highest and the long side is the lowest. When producing a solid phase sheet from the semiconductor material melt 104, the temperature of the semiconductor material melt 104 is set near the melting point in order to increase the growth rate of the solid phase sheet on the substrate. As a result, solidification growth from the vicinity of the long side increases.

また、一度成長した凝固は、定常状態では自ら溶融することはない。これは、たとえば、シリコン融液の場合、シリコン融液の輻射率が0.27程度であるのに対し、固体シリコンの輻射率は0.55程度である。輻射による熱の流出エネルギーEは、E=εδT4で表される。ここで、εは輻射率、δはステファン・ボルツマン係数、Tは温度である。したがって、同一温度のシリコンの場合、固体は融液に対して2倍程度のエネルギー流出がある。このため、ルツボ内壁付近で発生した凝固は、自ら溶融することはなく、エネルギー流出が大きいため、凝固成長が促進されることとなる。 Further, once solidified, solidification does not melt by itself in a steady state. For example, in the case of silicon melt, the emissivity of silicon melt is about 0.27, whereas the emissivity of solid silicon is about 0.55. The outflow energy E of heat due to radiation is expressed by E = εδT 4 . Here, ε is the emissivity, δ is the Stefan-Boltzmann coefficient, and T is the temperature. Therefore, in the case of silicon at the same temperature, the solid has an energy outflow about twice that of the melt. For this reason, the solidification generated in the vicinity of the inner wall of the crucible is not melted by itself and the outflow of energy is large, so that the solidification growth is promoted.

そこで、図1に示すように、ルツボ105の内壁と半導体材料融液104との界面付近を覆うように、輻射反射板103を設置する。ここで、ルツボ105の内壁と半導体材料融液104との界面を加熱する場合に、半導体材料融液104からの輻射熱を輻射反射板103により反射するのみならず、輻射反射板103自体を高温とすることにより、輻射反射板103自体からの熱放射を加えれば、より効果的である。輻射反射板103を高温とするためには、輻射反射板103を、ルツボ上面101とルツボ外側面102の両面に接触する構造とし、ルツボ105からの熱の伝導を受ける態様が好ましい。かかる態様により、半導体材料融液104からの輻射熱のみにより加熱する場合と比べて、より効果的に加熱することができる。   Therefore, as shown in FIG. 1, the radiation reflector 103 is installed so as to cover the vicinity of the interface between the inner wall of the crucible 105 and the semiconductor material melt 104. Here, when the interface between the inner wall of the crucible 105 and the semiconductor material melt 104 is heated, not only the radiation heat from the semiconductor material melt 104 is reflected by the radiation reflector 103, but also the radiation reflector 103 itself is heated to a high temperature. Thus, it is more effective to add heat radiation from the radiation reflector 103 itself. In order to increase the temperature of the radiation reflecting plate 103, it is preferable that the radiation reflecting plate 103 has a structure in contact with both the crucible upper surface 101 and the crucible outer surface 102 and receives heat from the crucible 105. According to such an embodiment, heating can be performed more effectively than in the case of heating only by radiant heat from the semiconductor material melt 104.

輻射反射板103は、半導体材料融液104からの輻射のみで加熱される部分と、ルツボ105より直接加熱される部分が存在するため、輻射反射板の面内では大きな温度分布が生じる。このため、輻射反射板103の材料として、アルミナ系などのセラミックスまたはグラファイトを使用すると、上述の温度分布による大きな内部応力に耐え切れず破壊されやすい。そこで、輻射反射板103の材料としては、耐熱性があり、熱応力にも強い炭素繊維強化炭素材料(コンポジットカーボン)が望ましい。また、高融点金属のタンタル、モリブテンなどを使用することが好ましい。   The radiation reflecting plate 103 includes a portion heated only by radiation from the semiconductor material melt 104 and a portion heated directly from the crucible 105, so that a large temperature distribution occurs in the plane of the radiation reflecting plate. For this reason, when ceramic or graphite such as alumina is used as the material of the radiation reflector 103, it cannot withstand the large internal stress due to the temperature distribution described above and is easily destroyed. Therefore, the material of the radiation reflector 103 is preferably a carbon fiber reinforced carbon material (composite carbon) that has heat resistance and is resistant to thermal stress. Further, it is preferable to use a refractory metal such as tantalum or molybdenum.

図1では、輻射反射板103とルツボ外側面102との接触関係を示すため、断熱材は図示していない。図2は、図1に例示した本発明の固相シートの製造方法を実施するときに使用するルツボを、II−IIを含む面で切断したときの断面図である。図2に示すように、半導体材料融液204を保持するためのルツボ205を加熱する場合、通常、加熱エネルギーの節約および誘導加熱用コイル207の保護のため、断熱材206でルツボ205の周囲を被覆する。このとき使用される断熱材206は、耐熱性があり、断熱性の高い、アルミナ系のフェルトもしくは炭素繊維性のフェルトを成型したものが好適である。また、輻射反射板203の固定方法としては、ルツボ205と断熱材206によって挟み込む態様が望ましい。   In FIG. 1, the heat insulating material is not shown in order to show the contact relationship between the radiation reflector 103 and the crucible outer surface 102. FIG. 2 is a cross-sectional view of a crucible used when the method for producing a solid phase sheet of the present invention illustrated in FIG. 1 is cut along a plane including II-II. As shown in FIG. 2, when heating the crucible 205 for holding the semiconductor material melt 204, normally, the insulating material 206 surrounds the crucible 205 to save heating energy and protect the induction heating coil 207. Cover. The heat insulating material 206 used at this time is preferably a heat-resistant, high heat-insulating alumina felt or carbon fiber felt. Further, as a method for fixing the radiation reflecting plate 203, a mode in which the crucible 205 and the heat insulating material 206 are sandwiched is desirable.

図3は、図1に例示した本発明の固相シートの製造方法を実施するときに使用するルツボを、図2と同様に切断したときの断面図であり、より効果的な輻射反射板の加熱方法を示す。輻射反射板303はルツボ305からの熱伝導、および半導体材料融液304からの輻射熱により加熱されるが、ルツボ内壁305aからの輻射熱を利用することにより、より効果的に輻射反射板303を加熱することが可能となる。   FIG. 3 is a cross-sectional view of the crucible used in carrying out the method for producing a solid phase sheet of the present invention illustrated in FIG. 1 in the same manner as in FIG. 2, and is a more effective radiation reflector. The heating method is shown. The radiation reflector 303 is heated by heat conduction from the crucible 305 and radiant heat from the semiconductor material melt 304. By using the radiant heat from the crucible inner wall 305a, the radiation reflector 303 is more effectively heated. It becomes possible.

たとえば、ルツボ305の材料を黒鉛とした場合、黒鉛の輻射率は略1.0であるので、シリコン融液からの輻射率0.27と比較すると非常に大きなエネルギーが輻射される。したがって、ルツボ内壁305aからの輻射熱を効果的に輻射反射板303で受けるため、図3に示すように、輻射反射板303の輻射反射部が、ルツボ305の上面と輻射反射板303とが接する面308と交差する形状が好ましい。換言すれば、輻射反射板は、ルツボ外側面に接触することが可能な外側面接触部と、ルツボ上面に接触することが可能な上面接触部と、ルツボに設置した際にルツボの融液収容部に向けて、融液からの輻射を反射することが可能な輻射反射部を有し、輻射反射部は、輻射反射板をルツボに設置した際に、ルツボ上面と輻射反射板とが接する面より下側に位置する部分を有する態様が好ましい。輻射反射板303が、このような輻射反射部を有するときは、融液304およびルツボ内壁305aの両方からの輻射熱を受け、ルツボ内壁付近の融液へ向けて輻射熱を放射することで、ルツボ内壁付近の融液の凝固成長の抑制効果を高めることができる。   For example, when the material of the crucible 305 is graphite, the emissivity of graphite is approximately 1.0, so that a very large energy is radiated as compared with the emissivity 0.27 from the silicon melt. Therefore, in order to effectively receive the radiant heat from the crucible inner wall 305a by the radiation reflector 303, the radiation reflector of the radiation reflector 303 is a surface where the upper surface of the crucible 305 and the radiation reflector 303 are in contact as shown in FIG. A shape that intersects 308 is preferred. In other words, the radiation reflector includes an outer surface contact portion that can contact the crucible outer surface, an upper surface contact portion that can contact the upper surface of the crucible, and a crucible melt container when installed on the crucible. A radiation reflection part capable of reflecting radiation from the melt toward the part, and the radiation reflection part is a surface where the crucible upper surface and the radiation reflection plate are in contact with each other when the radiation reflection plate is installed in the crucible. An embodiment having a portion located on the lower side is preferable. When the radiation reflecting plate 303 has such a radiation reflecting portion, the crucible inner wall receives radiation heat from both the melt 304 and the crucible inner wall 305a and radiates radiation heat toward the melt near the crucible inner wall. The effect of suppressing the coagulation growth of the nearby melt can be enhanced.

図4も、図1に例示した本発明の固相シートの製造方法を実施するときに使用するルツボを、図2と同様に切断したときの断面図であり、より効果的な輻射反射板の加熱方法を示す。図3では、輻射反射板の断面形状が「コ」の字形状である態様を例示したが、そのほか、図4に示すように、輻射反射部が、ルツボ上面と輻射反射板とが接する面408と交差する態様でも、輻射反射板403は同様に、ルツボ内壁からの輻射を有効に利用することができ、輻射反射板403の温度を高めることができる。輻射反射部が、ルツボ上面と輻射反射板とが接する面と交差する態様を、図3と図4に例示したが、これは一例であり、これらの例に限定されるものではない。また、ルツボ上面が略長方形状であるルツボについて説明したが、本発明は、略長方形状のルツボに適用が限定されるものではない。たとえば、ルツボ上面が円形状である場合には、長方形状のルツボと比較して、ルツボの水平方向における温度分布のバラツキは小さいが、半導体材料融液温度を低下させていくと、半導体材料融液とルツボ内壁の境界から凝固が発生し、成長するという問題は避けられない。そこで、円形状のルツボの上面の全周に輻射反射板を設置することにより、結晶の凝固成長の問題を回避することができる。   FIG. 4 is also a cross-sectional view of the crucible used when the method for producing the solid phase sheet of the present invention illustrated in FIG. 1 is cut in the same manner as in FIG. The heating method is shown. 3 exemplifies a mode in which the cross-sectional shape of the radiation reflector is “U” -shaped, but in addition, as shown in FIG. 4, the radiation reflector has a surface 408 where the crucible upper surface and the radiation reflector are in contact with each other. Similarly, the radiation reflecting plate 403 can effectively use the radiation from the crucible inner wall, and the temperature of the radiation reflecting plate 403 can be increased. Although the aspect which a radiation reflection part cross | intersects the surface which a crucible upper surface and a radiation reflecting plate contact | connect is illustrated in FIG. 3 and FIG. 4, this is an example and is not limited to these examples. Moreover, although the crucible whose crucible upper surface is substantially rectangular shape was demonstrated, application of this invention is not limited to a substantially rectangular crucible. For example, when the upper surface of the crucible is circular, the variation in temperature distribution in the horizontal direction of the crucible is smaller than that of a rectangular crucible, but as the semiconductor material melt temperature is lowered, the melting of the semiconductor material is reduced. The problem that solidification occurs and grows from the boundary between the liquid and the inner wall of the crucible is inevitable. Therefore, the problem of crystal solidification growth can be avoided by installing a radiation reflector on the entire circumference of the upper surface of the circular crucible.

固相シートの製造方法の一実施例を示すが、本発明はこの例に限定されるものではない。   An example of a method for producing a solid phase sheet is shown, but the present invention is not limited to this example.

(実施例1)
図5に、本発明の固相シートの製造方法を実施するときに使用する製造装置を例示する。製造される固相シートの比抵抗が2Ω・cmになるようにボロン濃度を調整したシリコン原料を、図5に示すように、高純度黒鉛製ルツボ505に入れ、装置内に設置した。この時に使用したルツボ505の上面は長方形状であり、内径のサイズは600mm×400mmであった。このルツボ505の2つの長辺のそれぞれに輻射反射板503を設置した。輻射反射板503は、長辺方向に幅400mm、ルツボの上面との接触長さ30mm、融液面上への張り出し長さ60mm、ルツボ外側面との接触長さ60mmであり、炭素繊維強化炭素材料(コンポジットカーボン)からなるものを用いた。輻射反射板503は、アルミナ系フェルトからなる断熱材506とルツボ505との間に挟み込むように設置した結果、半導体材料融液からの輻射を反射することが可能な輻射反射部が、ルツボの融液収容部の直上に配置された。
Example 1
FIG. 5 illustrates a production apparatus used when the solid phase sheet production method of the present invention is carried out. A silicon raw material whose boron concentration was adjusted so that the specific resistance of the produced solid phase sheet was 2 Ω · cm was placed in a high-purity graphite crucible 505 and installed in the apparatus as shown in FIG. The upper surface of the crucible 505 used at this time was rectangular, and the size of the inner diameter was 600 mm × 400 mm. A radiation reflector 503 was installed on each of the two long sides of the crucible 505. The radiation reflector 503 has a width of 400 mm in the long side direction, a contact length of 30 mm with the upper surface of the crucible, a projecting length of 60 mm on the melt surface, and a contact length of 60 mm with the outer surface of the crucible. What consists of material (composite carbon) was used. The radiation reflecting plate 503 is disposed so as to be sandwiched between the heat insulating material 506 made of alumina felt and the crucible 505. As a result, the radiation reflecting portion capable of reflecting the radiation from the melt of the semiconductor material has a melting point of the crucible. It was arrange | positioned just above the liquid storage part.

つぎに、チャンバー502内の真空引きを行ない、その後、Arガスを導入し、800hPaを保ちつつ、常に100L/minでチャンバー上部よりArガスを導入した。つぎに、ルツボ505の周囲にある誘導加熱コイル507の制御用熱電対の設定温度を1500℃に設定して加熱し、完全にシリコンを熔融状態にする。最初に仕込んだシリコンは、溶解することで嵩が低くなるため、追加のシリコン原料を投入することにより、シリコン湯面の高さを所定の高さにした。その後、制御温度を1430℃に設定し、30分間保持し、融液温度の安定化を図った。   Next, the inside of the chamber 502 was evacuated, and then Ar gas was introduced. Ar gas was always introduced from the upper part of the chamber at 100 L / min while maintaining 800 hPa. Next, the set temperature of the control thermocouple of the induction heating coil 507 around the crucible 505 is set to 1500 ° C. and heated to completely melt the silicon. Since the initially charged silicon becomes low in volume when dissolved, an additional silicon raw material is added to make the silicon hot water surface a predetermined height. Thereafter, the control temperature was set to 1430 ° C. and held for 30 minutes to stabilize the melt temperature.

その後、浸漬機構512の先端に、黒鉛で形成した200mm×200mmサイズの基板513をセットした。つぎに上記基板513を、浸漬深さ10mmでシリコン融液504中へ浸漬し、基板の表面に固相シート511を成長させた。その後、基板を搬送用コンベア508により装置副室509に搬送し、副室と装置本体を仕切るゲートバルブ510を閉じた後、副室内をロータリーポンプで真空排気し、大気で置換後、固相シートが形成された状態の基板を、副室外へ取り出した。このようにして、14日間の連続生産を行なった。その後、誘導加熱コイルを切って急激に温度を低下させ、ルツボを装置外へ搬出し、輻射反射板を取り外した。連続生産中に成長した凝固514は、徐々に成長するために、結晶粒が細かい。これに対して、生産終了後、誘導加熱コイルを切って急激に温度を低下させた場合に成長する凝固は針状結晶が主であり、連続生産中に成長した細かい凝固514と明確に区別できるため、連続生産中に成長した凝固514量を測定することが可能である。連続生産中に成長した長辺中央付近のシリコン凝固514につき、ルツボの内壁からの長さを測定したところ約25mmであった。   Thereafter, a substrate 513 of 200 mm × 200 mm size made of graphite was set at the tip of the immersion mechanism 512. Next, the substrate 513 was immersed in the silicon melt 504 at an immersion depth of 10 mm, and a solid phase sheet 511 was grown on the surface of the substrate. Thereafter, the substrate is transferred to the apparatus sub chamber 509 by the transfer conveyor 508, the gate valve 510 that partitions the sub chamber and the apparatus main body is closed, the sub chamber is evacuated by a rotary pump, replaced with the atmosphere, and then the solid phase sheet. The substrate in a state in which was formed was taken out of the sub chamber. In this way, continuous production for 14 days was performed. Thereafter, the induction heating coil was turned off to rapidly reduce the temperature, the crucible was taken out of the apparatus, and the radiation reflector was removed. Since the solidified 514 grown during the continuous production grows gradually, the crystal grains are fine. On the other hand, after the production is completed, the solidification that grows when the induction heating coil is turned off and the temperature is suddenly lowered is mainly acicular crystals, and can be clearly distinguished from the fine solidification 514 grown during continuous production. Therefore, it is possible to measure the amount of solidified 514 grown during continuous production. When the length from the inner wall of the crucible was measured for the silicon solidified 514 near the center of the long side grown during continuous production, it was about 25 mm.

比較例として、輻射反射板503を除いた以外は、実施例と同様にして14日間の連続生産を行ない、その後、ルツボの長辺における中央付近のシリコン凝固につき、ルツボの内壁からの距離を測定したところ約75mmであった。ルツボ505と基板513の間隔は、(400−200)/2=100mmであるから、14日間の連続運転後、基板浸漬時のルツボ内壁と基板との間隔は、輻射反射板503を設けた場合は、100−25=75mmであり、輻射反射板を設けなかった場合は、100−75=25mmであった。ルツボ内壁と基板との間隔がなくなると、基板513とシリコン凝固514とが衝突し、装置の破損につながる危険がある。一方、シリコン凝固514の成長速度は、輻射反射板を設けた場合は、25mm÷14日≒1.8mm/日であるのに対して、輻射反射板を設けなかった場合は、75mm÷14日≒5.4mm/日である。したがって、連続生産の可能日数は、輻射反射板を設けた場合は、100mm÷1.8mm/日=55.6日であるに対して、輻射反射板を設けなかった場合には、100mm÷5.4mm/日=18.5日となる。したがって、輻射反射板503を設置することにより、連続生産可能日数が大きく伸びることがわかった。   As a comparative example, continuous production was carried out for 14 days in the same manner as in the example except that the radiation reflector 503 was omitted, and then the distance from the inner wall of the crucible was measured for silicon solidification near the center of the long side of the crucible. As a result, it was about 75 mm. Since the distance between the crucible 505 and the substrate 513 is (400−200) / 2 = 100 mm, the distance between the inner wall of the crucible and the substrate when the substrate is immersed after continuous operation for 14 days is the case where the radiation reflector 503 is provided. Was 100−25 = 75 mm, and 100−75 = 25 mm when no radiation reflector was provided. If there is no gap between the inner wall of the crucible and the substrate, the substrate 513 and the silicon solidified 514 collide with each other, and there is a risk of causing damage to the apparatus. On the other hand, the growth rate of the silicon solidified 514 is 25 mm ÷ 14 days≈1.8 mm / day when the radiation reflector is provided, whereas it is 75 mm ÷ 14 days when the radiation reflector is not provided. ≈5.4 mm / day. Therefore, the possible number of days for continuous production is 100 mm ÷ 1.8 mm / day = 55.6 days when the radiation reflector is provided, whereas 100 mm ÷ 5 when the radiation reflector is not provided. 4 mm / day = 18.5 days. Therefore, it was found that the number of days that can be continuously produced is greatly increased by installing the radiation reflector 503.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

ルツボ内壁における結晶の凝固成長を抑制することができるため、連続生産可能日数を伸ばすことができる。   Since the solidification growth of crystals on the inner wall of the crucible can be suppressed, the number of days that can be continuously produced can be extended.

本発明の固相シートの製造方法を実施するときに使用するルツボの斜視図である。It is a perspective view of a crucible used when implementing the manufacturing method of the solid phase sheet of the present invention. 本発明の固相シートの製造方法を実施するときに使用するルツボの断面図である。It is sectional drawing of the crucible used when implementing the manufacturing method of the solid-phase sheet | seat of this invention. 本発明の固相シートの製造方法を実施するときに使用するルツボの断面図であり、より効果的な輻射反射板の加熱方法を示す図である。It is sectional drawing of the crucible used when implementing the manufacturing method of the solid-phase sheet | seat of this invention, and is a figure which shows the heating method of a more effective radiation reflecting plate. 本発明の固相シートの製造方法を実施するときに使用するルツボの断面図であり、より効果的な輻射反射板の加熱方法を示す図である。It is sectional drawing of the crucible used when implementing the manufacturing method of the solid-phase sheet | seat of this invention, and is a figure which shows the heating method of a more effective radiation reflecting plate. 本発明の固相シートの製造方法を実施するときに使用する装置を例示する図である。It is a figure which illustrates the apparatus used when implementing the manufacturing method of the solid-phase sheet | seat of this invention.

符号の説明Explanation of symbols

101 ルツボ上面、102 ルツボ外側面、103,203,303,403,503 輻射反射板、104,204,304 半導体材料融液、105,205,305,505 ルツボ、206,506 断熱材、207,507 誘導加熱コイル、305a ルツボ内壁、308,408 ルツボの上面と輻射反射板とが接する面、502 チャンバー、504 シリコン融液、508 搬送用コンベア、509 装置副室、510 ゲートバルブ、511 固相シート、512 浸漬機構、513 基板、514 凝固。   101 crucible upper surface, 102 crucible outer surface, 103, 203, 303, 403, 503 radiation reflector, 104, 204, 304 semiconductor material melt, 105, 205, 305, 505 crucible, 206, 506 heat insulating material, 207, 507 Induction heating coil, 305a crucible inner wall, 308, 408 surface where crucible upper surface and radiation reflector come into contact, 502 chamber, 504 silicon melt, 508 conveyor for conveyance, 509 equipment subchamber, 510 gate valve, 511 solid phase sheet, 512 Immersion mechanism, 513 substrate, 514 solidification.

Claims (2)

ルツボ内に半導体材料融液を収容し、該半導体材料融液に基板を浸漬することにより、基板表面に固相シートを作製する固相シートの製造方法であって、
前記ルツボの上面が略長方形の形状を有し、前記ルツボ上面に接する上面接触部および前記ルツボ外側面に接する外側面接触部を備えた輻射反射板を前記ルツボ上面の長方形の両方の長辺側に設け、該輻射反射板は半導体材料融液からの輻射を反射することが可能な輻射反射部を前記上面接触部から前記外側面接触部の反対側に伸びるように備え、該輻射反射部を半導体材料融液の直上に配置し、前記輻射反射板の材料として炭素繊維強化炭素素材、タンタルまたはモリブデンを使用することを特徴とする固相シートの製造方法。
A method for producing a solid phase sheet in which a semiconductor material melt is accommodated in a crucible and a substrate is immersed in the semiconductor material melt to produce a solid phase sheet on the surface of the substrate,
The upper surface of the crucible has a substantially rectangular shape, and a radiation reflecting plate having an upper surface contact portion in contact with the upper surface of the crucible and an outer surface contact portion in contact with the outer surface of the crucible is arranged on both long sides of the rectangle on the upper surface of the crucible. The radiation reflector is provided with a radiation reflection portion capable of reflecting radiation from the semiconductor material melt so as to extend from the upper surface contact portion to the opposite side of the outer surface contact portion , and the radiation reflection portion is provided. A method for producing a solid phase sheet, which is disposed immediately above a melt of a semiconductor material and uses a carbon fiber reinforced carbon material, tantalum or molybdenum as a material of the radiation reflector.
前記輻射反射板は、輻射反射部が、前記上面接触部の下面よりも下側に位置する部分を有することを特徴とする請求項1に記載の固相シートの製造方法。 2. The method for producing a solid phase sheet according to claim 1, wherein the radiation reflecting plate has a portion where a radiation reflecting portion is located below a lower surface of the upper surface contact portion .
JP2006346088A 2006-12-22 2006-12-22 Method for producing solid phase sheet Expired - Fee Related JP5057770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006346088A JP5057770B2 (en) 2006-12-22 2006-12-22 Method for producing solid phase sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346088A JP5057770B2 (en) 2006-12-22 2006-12-22 Method for producing solid phase sheet

Publications (2)

Publication Number Publication Date
JP2008159781A JP2008159781A (en) 2008-07-10
JP5057770B2 true JP5057770B2 (en) 2012-10-24

Family

ID=39660382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346088A Expired - Fee Related JP5057770B2 (en) 2006-12-22 2006-12-22 Method for producing solid phase sheet

Country Status (1)

Country Link
JP (1) JP5057770B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273172B1 (en) 2008-11-07 2009-06-03 キヤノン株式会社 Color electrophotographic image forming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263483A (en) * 1996-03-28 1997-10-07 Shin Etsu Handotai Co Ltd Apparatus for producing single crystal and puroduction thereof
JP3670493B2 (en) * 1998-10-09 2005-07-13 東芝セラミックス株式会社 Single crystal pulling device
JP4480357B2 (en) * 2003-07-09 2010-06-16 シャープ株式会社 Plate silicon manufacturing equipment

Also Published As

Publication number Publication date
JP2008159781A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
KR101997608B1 (en) Silicon single crystal growing apparatus and silicon single crystal growing method
EP3396029B1 (en) Sic single crystal production method and production apparatus
TWI458865B (en) Sapphire ingot grower
JP6302192B2 (en) Single crystal growth apparatus and method
JP2017149641A (en) Liquid-cooled heat exchanger
US20160230307A1 (en) Apparatus and methods for producing silicon-ingots
JP6826536B2 (en) Silicon single crystal ingot pulling device and silicon single crystal ingot manufacturing method
KR20150127682A (en) Crucible assembly for controlling oxygen and related methods
JP2011184250A (en) Crucible for growing silicon crystal, method for manufacturing the same, and method for growing silicon crystal
JP5057770B2 (en) Method for producing solid phase sheet
US9453291B2 (en) Single crystal pulling apparatus and low heat conductive member used for single crystal pulling apparatus
KR101675903B1 (en) Apparatus and method for manufacturing semiconductor single crystal
JP5715159B2 (en) Single crystal growth equipment
JP5392040B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP5888198B2 (en) Sapphire single crystal manufacturing equipment
CN111379018B (en) Method for growing semiconductor silicon crystal bar
JP4480357B2 (en) Plate silicon manufacturing equipment
JP2004123510A (en) Apparatus for manufacturing single crystal and method for manufacturing the same
JP2014189468A (en) Silicon single crystal production apparatus, and silicon single crystal production method using the same
JP6075625B2 (en) Silicon casting apparatus and silicon casting method
JP5949601B2 (en) Multi-layered heat reflector and oxide single crystal growth apparatus using the same
JP2017193469A (en) After-heater and sapphire single crystal production apparatus
JP2001002490A (en) Single crystal pulling up device
JPH08325090A (en) Device for pulling up single crystal
JP5454456B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees