JP2019175636A - Boiling cooling type valve, boiling cooling type CO2 separator, SOFC system, SOEC system, and R-SOC system - Google Patents

Boiling cooling type valve, boiling cooling type CO2 separator, SOFC system, SOEC system, and R-SOC system Download PDF

Info

Publication number
JP2019175636A
JP2019175636A JP2018061134A JP2018061134A JP2019175636A JP 2019175636 A JP2019175636 A JP 2019175636A JP 2018061134 A JP2018061134 A JP 2018061134A JP 2018061134 A JP2018061134 A JP 2018061134A JP 2019175636 A JP2019175636 A JP 2019175636A
Authority
JP
Japan
Prior art keywords
gas
valve
separator
boiling cooling
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018061134A
Other languages
Japanese (ja)
Other versions
JP7106930B2 (en
Inventor
知寿 若杉
Tomohisa Wakasugi
知寿 若杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018061134A priority Critical patent/JP7106930B2/en
Publication of JP2019175636A publication Critical patent/JP2019175636A/en
Application granted granted Critical
Publication of JP7106930B2 publication Critical patent/JP7106930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide: a boiling cooling type valve and a boiling cooling type COseparator including the same; and an SOFC system, an SOEC system, and an R-SOC system including the boiling cooling type COseparator.SOLUTION: A boiling cooling type valve 10a includes: a housing part 20; a valve part 40 including valves 44, 46 joined to a shaft 42; seal part members 52, 54 inserted between the housing part 20 and the valve part 40; boiling cooling means; and driving means. In a boiling cooling type COseparator, the boiling cooling type valve 10a is used as a gas switching valve. An SOFC system, an SOEC system, and an R-SOC system include the boiling cooling type COseparator for separating COcontained in off-gas.SELECTED DRAWING: Figure 1

Description

本発明は、沸騰冷却式バルブ、沸騰冷却式CO2分離器、SOFCシステム、SOECシステム、及びR−SOCシステムに関し、さらに詳しくは、ガスの流通・遮断を行うためのシール部材を沸騰冷却流路により冷却する沸騰冷却式バルブ、このような沸騰冷却式バルブを用いた沸騰冷却式CO2分離器、並びに、このような沸騰冷却式CO2分離器を用いたSOFCシステム、SOCシステム、及びR−SOCシステムに関する。 The present invention relates to a boiling cooling type valve, a boiling cooling type CO 2 separator, an SOFC system, an SOEC system, and an R-SOC system, and more specifically, a sealing member for performing gas circulation / blocking is used as a boiling cooling channel. Boil-cooled valves cooled by the above, boil-cooled CO 2 separators using such boil-cooled valves, and SOFC systems, SOC systems, and R− using such boil-cooled CO 2 separators It relates to the SOC system.

CO2、H2、アンモニアなどの特定のガス成分を可逆的に吸収・放出することが可能な各種の材料(以下、これらを総称して「反応材」ともいう)が知られている。このような反応材は、いずれも吸収時には発熱を伴い、放出時には吸熱を伴う。そのため、反応材は、このような特性を利用して、
(a)固体酸化物型燃料電池の排ガス処理装置、
(b)水素を可逆的に吸蔵・放出するための水素貯蔵・供給装置、
(c)排熱を化学エネルギーとして蓄えるための化学蓄熱装置
などに応用されている。
しかしながら、反応材は、一般に、ガス成分の吸収・放出を繰り返すと、吸収・放出特性が劣化するという問題がある。
Various materials capable of reversibly absorbing and releasing specific gas components such as CO 2 , H 2 , and ammonia (hereinafter collectively referred to as “reactive materials”) are known. All of these reaction materials are exothermic during absorption and endothermic when released. Therefore, the reaction material takes advantage of these characteristics,
(A) an exhaust gas treatment device for a solid oxide fuel cell;
(B) a hydrogen storage and supply device for reversibly storing and releasing hydrogen;
(C) It is applied to a chemical heat storage device for storing exhaust heat as chemical energy.
However, the reaction material generally has a problem that the absorption / release characteristics deteriorate when the absorption / release of gas components is repeated.

そこでこの問題を解決するために、従来から種々の提案がなされている。
例えば、特許文献1には、リチウムシリケートを含む炭酸ガス吸収材を用いて炭酸ガスを可逆的に吸蔵・放出する場合において、炭酸リチウムを添加しながら炭酸ガスを放出させる方法が開示されている。
同文献には、
(a)リチウムオルトシリケートを含有する炭酸ガス吸収材にアルカリ炭酸塩を添加すると、炭酸ガスの吸収速度を高めることはできるが、炭酸リチウムとアルカリ炭酸塩が共晶を形成し、炭酸リチウムが溶出しやすくなる点、
(b)炭酸リチウムの溶出が炭酸ガスの吸収性能の劣化の一因となっている点、及び、
(c)炭酸リチウムを添加しながら炭酸ガスを放出させると、溶出した炭酸リチウムが補われるために炭酸ガス吸収材を良好に再生することが可能となる点、
が記載されている。
In order to solve this problem, various proposals have heretofore been made.
For example, Patent Document 1 discloses a method of releasing carbon dioxide while adding lithium carbonate in the case of reversibly occluding and releasing carbon dioxide using a carbon dioxide absorber containing lithium silicate.
In the same document,
(A) Adding alkali carbonate to a carbon dioxide absorbent containing lithium orthosilicate can increase the absorption rate of carbon dioxide, but lithium carbonate and alkali carbonate form a eutectic, and lithium carbonate is eluted. Points that make it easier to
(B) The elution of lithium carbonate contributes to the deterioration of carbon dioxide absorption performance, and
(C) When carbon dioxide gas is released while adding lithium carbonate, the eluted lithium carbonate is supplemented, so that the carbon dioxide gas absorbing material can be regenerated well.
Is described.

固体酸化物形燃料電池(SOFC)を用いた発電システムにおいて、通常、SOFCに供給される燃料のすべてが発電に利用されることはなく、未反応の燃料がSOFCから排出される。この未反応の燃料を有効利用するために、SOFCのアノードオフガスをアノード流路に戻すアノードオフガス循環式発電システムが提案されている。
アノードオフガス循環式発電システムにおいて、循環ガス中の反応生成物(CO2、H2O)の濃度が増大すると、濃度分極の増加により発電起電力が低下する。そのため、循環ガス中の反応生成物の除去が必要となる。一方、循環ガスは、可燃成分に加えて、顕熱も持つ。そのため、アノードオフガスを循環させることにより、アノードオフガスの顕熱も再利用することができ、系外への放熱量が低減し、発電効率を向上させることが可能となる。
In a power generation system using a solid oxide fuel cell (SOFC), not all of the fuel supplied to the SOFC is normally used for power generation, and unreacted fuel is discharged from the SOFC. In order to effectively use this unreacted fuel, an anode off-gas circulation power generation system that returns the anode off-gas of SOFC to the anode flow path has been proposed.
In the anode off-gas circulation power generation system, when the concentration of reaction products (CO 2 , H 2 O) in the circulation gas increases, the generated electromotive force decreases due to an increase in concentration polarization. Therefore, it is necessary to remove the reaction product in the circulating gas. On the other hand, circulating gas has sensible heat in addition to combustible components. Therefore, by circulating the anode off gas, the sensible heat of the anode off gas can be reused, the amount of heat released to the outside of the system can be reduced, and the power generation efficiency can be improved.

この点は、固体酸化物形電解セル(SOEC)を用いた電解システムも同様であり、電解効率を向上させるためには、カソードオフガス循環を行い、カソードオフガスに含まれる原料成分(CO2)と顕熱とを有効利用することが好ましい。そのためには、高温の循環ガスからCO2を分離することが必要不可欠となる。 This is the same for an electrolysis system using a solid oxide electrolysis cell (SOEC). In order to improve electrolysis efficiency, cathode offgas circulation is performed, and the raw material component (CO 2 ) contained in the cathode offgas It is preferable to effectively use sensible heat. For that purpose, it is indispensable to separate CO 2 from the hot circulating gas.

高温のガスからCO2を分離するための装置として、CO2吸収材を用いたバッチ切替式のCO2分離器が知られている。バッチ切替式のCO2分離器では、
(a)CO2吸収材を備えた反応流路層にCO2を含むガスを供給し、CO2吸収材にCO2を吸収させる動作と、
(b)反応流路層にパージガスを供給し、CO2吸収材からCO2を放出させる動作と
が交互に繰り返される。
As an apparatus for separating CO 2 from a high-temperature gas, a batch switching type CO 2 separator using a CO 2 absorbent is known. For batch-switchable CO 2 separators,
(A) supplying a gas containing CO 2 into CO 2 absorber reaction channel layer and an operation of absorbing CO 2 in the CO 2 absorbent material,
(B) The operation of supplying the purge gas to the reaction channel layer and releasing CO 2 from the CO 2 absorbent is repeated alternately.

CO2吸収材には、最適なCO2の吸収温度及び放出温度がある。そのため、バッチ切替式のCO2分離器においては、反応流路層に隣接して、熱交換媒体を流すための媒体流路層が設けられている。媒体流路層に高温の熱交換媒体を流すと、媒体流路層と反応流路層との間で熱交換が行われ、反応流路層を最適な温度に維持することができる。 CO 2 absorbers have optimum CO 2 absorption and release temperatures. Therefore, in the batch switching CO 2 separator, a medium flow path layer for flowing a heat exchange medium is provided adjacent to the reaction flow path layer. When a high-temperature heat exchange medium is passed through the medium flow path layer, heat exchange is performed between the medium flow path layer and the reaction flow path layer, and the reaction flow path layer can be maintained at an optimum temperature.

SOFC及びSOECの作動温度は700〜800℃であるため、バッチ切替式のCO2分離器を用いてオフガスを処理するためには、高温耐熱バルブが必要となる。しかし、高温耐熱バルブは、低・中温用バルブと比較してコストが高い。また、従来の高温耐熱バルブは、長期連続使用が困難であり、耐久性に問題があった。 Since the operating temperature of SOFC and SOEC is 700 to 800 ° C., a high temperature heat-resistant valve is required in order to treat off-gas using a batch switching type CO 2 separator. However, high temperature heat resistant valves are more expensive than low / medium temperature valves. Further, the conventional high temperature heat resistant valve is difficult to use continuously for a long period of time and has a problem in durability.

特開2004−098018号公報JP 2004-098018 A

本発明が解決しようとする課題は、CO2を含む高温のガスからCO2を分離することが可能であり、安価で耐久性に優れた沸騰冷却式CO2分離器、及び、これに用いられる沸騰冷却式バルブを提供することにある。
また、本発明が解決しようとする他の課題は、このような沸騰冷却式CO2分離器を用いたSOFCシステム、SOECシステム、及び、R−SOCシステムを提供することにある。
An object of the present invention is to provide, it is possible to separate the CO 2 from the hot gas containing CO 2, inexpensive durable boiling-cooled CO 2 separator, and is used to It is to provide a boil-cooled valve.
Another problem to be solved by the present invention is to provide an SOFC system, an SOEC system, and an R-SOC system using such a boiling cooling type CO 2 separator.

上記課題を解決するために本発明に係る沸騰冷却式バルブは、以下の構成を備えていることを要旨とする。
(1)前記沸騰冷却式バルブは、
ガスの流通経路を備えたハウジング部と、
シャフトに、前記流通経路の切り替えを行うためのバルブが接合されたバルブ部と、
前記ハウジング部のシール面(A)と、前記シール面(A)に着座する前記バルブのシール面(B)との間に挿入されたシール部材と、
前記シール部材を冷却するための沸騰冷却手段と、
前記シャフトの軸方向に沿って前記バルブ部を摺動させるための駆動手段と
を備えている。
(2)前記沸騰冷却手段は、
前記ハウジング部の前記シール面(A)の直下であって、前記シール部材との接触面の近傍に形成された沸騰冷却流路(A)と、
前記沸騰冷却流路(A)に水を供給し、かつ、前記沸騰冷却流路(A)から沸騰水を排出するための冷媒流路(A)と、
前記バルブの前記シール面(B)の直下であって、前記シール部材との接触面の近傍に形成された沸騰冷却流路(B)と、
前記沸騰冷却流路(B)に水を供給し、かつ、前記沸騰冷却流路(B)から沸騰水を排出するための冷媒流路(B)と、
を備えている。
In order to solve the above-mentioned problems, a boiling cooling valve according to the present invention has the following configuration.
(1) The boiling cooling type valve is
A housing with a gas flow path;
A valve portion in which a valve for switching the flow path is joined to a shaft;
A seal member inserted between a seal surface (A) of the housing part and a seal surface (B) of the valve seated on the seal surface (A);
Boiling cooling means for cooling the sealing member;
Drive means for sliding the valve portion along the axial direction of the shaft.
(2) The boiling cooling means is
A boiling cooling flow path (A) formed immediately below the seal surface (A) of the housing portion and in the vicinity of the contact surface with the seal member;
A coolant channel (A) for supplying water to the boiling cooling channel (A) and discharging the boiling water from the boiling cooling channel (A);
A boiling cooling channel (B) formed immediately below the sealing surface (B) of the valve and in the vicinity of the contact surface with the sealing member;
A coolant channel (B) for supplying water to the boiling cooling channel (B) and discharging boiling water from the boiling cooling channel (B);
It has.

本発明に係る沸騰冷却式CO2分離器は、以下の構成を備えていることを要旨とする。
(1)前記沸騰冷却式CO2分離器は、
CO2を吸収・放出するためのCO2吸収材を備えた反応流路層と、
熱交換媒体を流通させることにより、前記反応流路層と熱交換を行うための媒体流路層と、
前記反応流路層にCO2を含むガス又はパージガスのいずれか一方を切り替えて供給・排出するための第1切替バルブと、
前記媒体流路層に第1熱交換媒体又は第2熱交換媒体のいずれか一方を切り替えて供給・排出するための第2切替バルブと
を備えている。
(2)前記第1切替バルブ及び前記第2切替バルブは、それぞれ、本発明に係る沸騰冷却式バルブからなる。
The boiling cooling CO 2 separator according to the present invention is summarized as having the following configuration.
(1) The boiling cooling CO 2 separator is
A reaction channel layer with a CO 2 absorbent material for absorbing and releasing CO 2,
By circulating a heat exchange medium, a medium flow path layer for performing heat exchange with the reaction flow path layer,
A first switching valve for switching and supplying / discharging either the gas containing CO 2 or the purge gas to the reaction channel layer;
The medium flow path layer includes a second switching valve for switching and supplying / discharging either the first heat exchange medium or the second heat exchange medium.
(2) Each of the first switching valve and the second switching valve includes a boiling cooling valve according to the present invention.

本発明に係るSOFCシステムは、以下の構成を備えていることを要旨とする。
(1)前記SOFCシステムは、
燃料から電力を生成する固体酸化物形燃料電池(SOFC)と、
前記SOFCのアノードオフガス(Aout)からCO2を分離するCO2分離器と、
前記CO2分離器のフィード流路から排出されるオフガス(Bout)に含まれる水蒸気を凝縮させ、凝縮水を得る凝縮器と、
前記水蒸気の全部又は一部が分離された前記Boutを前記SOFCのアノード流路に戻すアノードオフガス循環手段と
を備えている。
(2)前記CO2分離器は、本発明に係る沸騰冷却式CO2分離器からなる。
The gist of the SOFC system according to the present invention is as follows.
(1) The SOFC system
A solid oxide fuel cell (SOFC) that generates electricity from fuel;
A CO 2 separator for separating CO 2 from the SOFC anode off-gas (A out );
A condenser for condensing water vapor contained in off-gas (B out ) discharged from the feed flow path of the CO 2 separator to obtain condensed water;
And an anode off-gas circulation means for returning the B out from which all or part of the water vapor has been separated to the anode flow path of the SOFC.
(2) The CO 2 separator comprises a boiling cooling CO 2 separator according to the present invention.

本発明に係るSOECシステムは、以下の構成を備えていることを要旨とする。
(1)前記SOECシステムは、
2O及びCO2から合成ガスを生成させる固体酸化物形電解セル(SOEC)と、
前記SOECのカソードオフガス(A'out)からCO2を分離する第1CO2分離器と、
前記第1CO2分離器のフィード流路から排出されるオフガス(Bout)から水蒸気の全部又は一部を分離するH2O分離器と、
CO2源から供給されるガスからCO2を分離し、分離されたCO2を前記SOECに供給する第2CO2分離器と、
前記SOECに電解用のH2Oを供給する蒸発器と、
前記SOECのカソードオフガス(A'out)に含まれる合成ガスから炭化水素を製造する燃料製造器と、
前記第1CO2分離器のパージ流路から排出される分離ガス(Cout)を前記SOECのカソード流路に戻すカソードオフガス循環手段と、
を備えている。
(2)前記第1CO2分離器及び前記第2CO2分離器は、それぞれ、本発明に係る沸騰冷却式CO2分離器からなる。
The summary of the SOEC system according to the present invention is as follows.
(1) The SOEC system
A solid oxide electrolytic cell (SOEC) for generating synthesis gas from H 2 O and CO 2 ;
And the 1 CO 2 separator for separating CO 2 from the cathode off-gas (A 'out) of the SOEC,
An H 2 O separator for separating all or part of water vapor from off-gas (B out ) discharged from the feed flow path of the first CO 2 separator;
Separating the CO 2 from the gas supplied from the CO 2 source, a first 2CO 2 separator for supplying the separated CO 2 to the SOEC,
An evaporator for supplying the SOEC with H 2 O for electrolysis;
A fuel producing unit for producing hydrocarbons from synthesis gas contained in the cathode off-gas (A 'out) of the SOEC,
Cathode off-gas circulation means for returning separation gas (C out ) discharged from the purge flow path of the first CO 2 separator to the cathode flow path of the SOEC;
It has.
(2) the first 1 CO 2 separator and the first 2CO 2 separator, respectively, consist of a boiling-cooled CO 2 separator of the present invention.

本発明に係るR−SOCシステムは、以下の構成を備えていることを要旨とする。
(1)前記R−SOCシステムは、
燃料から電力を生成するSOFCモードと、H2O及びCO2から合成ガスを生成させるSOECモードとを切替可能なリバーシブルSOC(R−SOC)と、
前記R−SOCのオフガス(Aout又はA'out)からCO2を分離する第1CO2分離器と、
前記第1CO2分離器のフィード流路から排出されるオフガス(Bout)から水蒸気の全部又は一部を分離するH2O分離器と、
前記Boutに含まれる水蒸気を凝縮させ、凝縮水を得る凝縮器と、
前記R−SOCが前記SOECモードにある時に、CO2源から供給されるガスからCO2を分離し、分離されたCO2を前記R−SOCに供給する第2CO2分離器と、
前記R−SOCが前記SOECモードにある時に、前記R−SOCに電解用のH2Oを供給する蒸発器と、
前記R−SOCが前記SOECモードにある時に、前記R−SOCのオフガス(A'out)に含まれる合成ガスから炭化水素を製造し、貯蔵する燃料製造・貯蔵手段と、
前記R−SOCが前記SOECモードにある時に、前記第1CO2分離器のパージ流路から排出される分離ガス(Cout)を前記R−SOCのカソード流路に戻すカソードオフガス循環手段と、
前記R−SOCが前記SOFCモードにある時に、前記水蒸気の全部又は一部が分離された前記Boutを前記R−SOCのアノード流路に戻すアノードオフガス循環手段と、
前記R−SOCが前記SOFCモードにある時に、貯蔵された前記炭化水素を前記R−SOCに供給する燃料供給手段と
を備えている。
(2)前記第1CO2分離器及び前記第2CO2分離器は、それぞれ、本発明に係る沸騰冷却式CO2分離器からなる。
The gist of the R-SOC system according to the present invention is as follows.
(1) The R-SOC system is
Reversible SOC (R-SOC) capable of switching between SOFC mode for generating electric power from fuel and SOEC mode for generating synthesis gas from H 2 O and CO 2 ;
And the 1 CO 2 separator for separating CO 2 from the R-SOC offgas (A out or A 'out),
An H 2 O separator for separating all or part of water vapor from off-gas (B out ) discharged from the feed flow path of the first CO 2 separator;
A condenser for condensing water vapor contained in the B out to obtain condensed water;
Wherein when R-SOC is in the SOEC mode, to separate the CO 2 from the gas supplied from the CO 2 source, a first 2CO 2 separator for supplying the separated CO 2 to the R-SOC,
An evaporator that supplies H 2 O for electrolysis to the R-SOC when the R-SOC is in the SOEC mode;
Fuel production and storage means for producing and storing hydrocarbons from synthesis gas contained in the off-gas (A ′ out ) of the R-SOC when the R-SOC is in the SOEC mode;
Cathode off-gas circulating means for returning separation gas (C out ) discharged from the purge flow path of the first CO 2 separator to the cathode flow path of the R-SOC when the R-SOC is in the SOEC mode;
An anode off-gas circulating means for returning the B out from which all or part of the water vapor has been separated to the anode flow path of the R-SOC when the R-SOC is in the SOFC mode;
Fuel supply means for supplying the stored hydrocarbon to the R-SOC when the R-SOC is in the SOFC mode.
(2) the first 1 CO 2 separator and the first 2CO 2 separator, respectively, consist of a boiling-cooled CO 2 separator of the present invention.

ガスの流通経路を備えたハウジング部と、流通経路の切り替えを行うためのバルブ部とを備えた高温耐熱バルブにおいて、ハウジング部のシール面(A)と、シール面(A)が着座するバルブのシール面(B)との間にシール部材を挿入し、シール部材を介してシール面(A)にシール面(B)を着座させると、相対的に小さな駆動力でガスの流通・遮断を行うことができる。
また、シール面(A)及びシール面(B)の直下に、それぞれ、沸騰冷却流路(A)及び沸騰冷却流路(B)を設けると、シール部材のみを選択的に冷却することができる。そのため、安価なシール部材を用いることができ、耐久性にも優れている。また、ガスの温度を過度に低下させることなく、ガスの流通・遮断を行うことができる。
In a high temperature heat resistant valve having a housing part having a gas flow path and a valve part for switching the flow path, a seal surface (A) of the housing part and a valve on which the seal surface (A) is seated When a seal member is inserted between the seal surface (B) and the seal surface (B) is seated on the seal surface (A) via the seal member, the gas is circulated and shut off with a relatively small driving force. be able to.
Moreover, if the boiling cooling channel (A) and the boiling cooling channel (B) are provided directly below the sealing surface (A) and the sealing surface (B), respectively, only the sealing member can be selectively cooled. . Therefore, an inexpensive seal member can be used and the durability is excellent. Further, the gas can be circulated / blocked without excessively reducing the gas temperature.

このような構造を備えた沸騰冷却式バルブをバッチ切替式のCO2分離器に適用すると、高価なシール部材を用いることなく、CO2を含む高温のガスからCO2を分離することができる。また、このような沸騰冷却式CO2分離器をSOFCシステム、SOECシステム、あるいは、R−SOCシステムに適用すると、オフガスに含まれる燃料成分(炭化水素、H2、CO)又は原料成分(CO2)だけでなく、オフガスの顕熱も有効利用することができる。 Applying ebullient cooling valve having such a structure batch switched the CO 2 separator, it is possible to separate the CO 2 from the expensive seal member without using a high-temperature gas containing CO 2. Further, when such a boiling cooling type CO 2 separator is applied to an SOFC system, an SOEC system, or an R-SOC system, a fuel component (hydrocarbon, H 2 , CO) or a raw material component (CO 2 ) contained in the off-gas. ) As well as sensible heat of off-gas can be used effectively.

本発明の第1の実施の形態に係る沸騰冷却式バルブの側面断面図(図1(A))、及び正面断面図(図1(B))である。It is a side sectional view (Drawing 1 (A)) and a front sectional view (Drawing 1 (B)) of a boiling cooling type valve concerning a 1st embodiment of the present invention. 断熱部を備えた沸騰冷却式バルブの第1バルブ近傍の拡大断面図(図2(A):バルブ開、図2(B):バルブ閉)である。It is an expanded sectional view (Drawing 2 (A): valve opening, Drawing 2 (B): Valve closing) near the 1st valve of a boiling cooling type valve provided with a heat insulation part. 本発明の第2の実施の形態に係る沸騰冷却式バルブの側面断面図(図3(A))、及び正面断面図(図3(B))である。It is a side sectional view (Drawing 3 (A)) and a front sectional view (Drawing 3 (B)) of a boiling cooling type valve concerning a 2nd embodiment of the present invention.

本発明の第1の実施の形態に係る沸騰冷却式CO2分離器の平面図(図4(A))、及びB−B’線断面図(図4(B))である。 They are a top view (Drawing 4 (A)) of a boiling cooling type CO2 separator concerning a 1st embodiment of the present invention, and a BB 'line sectional view (Drawing 4 (B)). 本発明の第2の実施の形態に係る沸騰冷却式CO2分離器の平面図(図5(A))、及びB−B’線断面図(図5(B))である。It is a plan view of a boiling-cooled CO 2 separator according to a second embodiment of the present invention (FIG. 5 (A)), and line B-B 'cross-sectional view (FIG. 5 (B)). 本発明の第1の実施の形態に係るSOFCシステムの模式図である。1 is a schematic diagram of an SOFC system according to a first embodiment of the present invention. 本発明の第2の実施の形態に係るSOFCシステムの模式図である。It is a schematic diagram of the SOFC system which concerns on the 2nd Embodiment of this invention.

本発明に係るSOECシステムの模式図である。1 is a schematic diagram of an SOEC system according to the present invention. 本発明に係るR−SOCシステムの模式図である。1 is a schematic diagram of an R-SOC system according to the present invention. 沸騰冷却効果の数値解析(FEM熱解析)に用いたバルブ簡易モデルである。It is the valve simple model used for the numerical analysis (FEM thermal analysis) of the boiling cooling effect. 沸騰冷却流路がない場合(左図)及び沸騰冷却流路がある場合(右図)のバルブ部/ハウジング部のシール部材付近の温度である。This is the temperature in the vicinity of the seal member of the valve part / housing part when there is no boiling cooling channel (left diagram) and when there is a boiling cooling channel (right diagram). 沸騰冷却流路がある場合のバルブオープン時(左図)、及びバルブクローズ時(右図)のシール部材付近の温度である。This is the temperature near the seal member when the valve is open (left diagram) and when the valve is closed (right diagram) when there is a boiling cooling channel.

バルブ部及びハウジング部に断熱部がない場合(左図)、及び断熱部がある場合(右図)のシール部材近傍の温度である。It is the temperature in the vicinity of the seal member when there is no heat insulating part in the valve part and the housing part (left figure) and when there is a heat insulating part (right figure). 沸点温度と蒸気圧力との関係を示す図である。It is a figure which shows the relationship between boiling point temperature and vapor | steam pressure. 沸点、ハウジング部材のシール面(B)の表面温度、及びシール部材の温度の沸騰冷却蒸気圧力依存性を示す図である。It is a figure which shows the boiling cooling steam pressure dependence of the boiling point, the surface temperature of the sealing surface (B) of a housing member, and the temperature of a sealing member. 伝熱面積の数値解析(FEM熱解析)に用いたバルブ簡易モデルである。It is a simple valve model used for numerical analysis of heat transfer area (FEM thermal analysis). SOFCシステムにおけるバルブ流路直径と伝熱面積との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter in a SOFC system, and a heat-transfer area.

SOFCのアノードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と最大流速との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter when the anode off gas of SOFC is supplied to the boiling cooling type valve, and the maximum flow velocity. SOFCのアノードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と圧力損失との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter and pressure loss when the anode off gas of SOFC is supplied to the boiling cooling type valve. SOFCのカソードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と最大流速との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter when a cathode off gas of SOFC is supplied to the boiling cooling type valve, and the maximum flow velocity. SOFCのカソードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と圧力損失との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter when a cathode off gas of SOFC is supplied to the boiling cooling type valve | bulb, and pressure loss. 伝熱面積の数値解析(FEM熱解析)に用いたバルブ簡易モデルである。It is a simple valve model used for numerical analysis of heat transfer area (FEM thermal analysis).

SOECシステムにおけるバルブ流路直径と伝熱面積との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter in a SOEC system, and a heat-transfer area. SOECのアノードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と最大流速との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter when the anode off gas of SOEC is supplied to the boil cooling type valve, and the maximum flow velocity. SOECのアノードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と圧力損失との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter and pressure loss when the anode off gas of SOEC is supplied to the boil cooling type valve. SOECのカソードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と最大流速との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter when the cathode off gas of SOEC is supplied to the boiling cooling type valve | bulb, and the maximum flow velocity. SOECのカソードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と圧力損失との関係を示す図である。It is a figure which shows the relationship between the valve flow path diameter and pressure loss when the cathode off gas of SOEC is supplied to the boil cooling type valve.

以下に、本発明の一実施の形態について詳細に説明する。
[1. 沸騰冷却式バルブ(1)]
図1に、本発明の第1の実施の形態に係る沸騰冷却式バルブの側面断面図(図1(A))、及び正面断面図(図1(B))を示す。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Boiling cooling type valve (1)]
FIG. 1 shows a side sectional view (FIG. 1 (A)) and a front sectional view (FIG. 1 (B)) of a boiling cooling type valve according to the first embodiment of the present invention.

図1において、沸騰冷却式バルブ10aは、
ガスの流通経路を備えたハウジング部20と、
シャフト42に、前記流通経路の切り替えを行うためのバルブ(第1バルブ44、第2バルブ46)が接合されたバルブ部40と、
ハウジング部20のシール面(A)と、シール面(A)に着座するバルブ(第1バルブ44、第2バルブ46)のシール面(B)との間に挿入されたシール部材(第1シール部材52、第2シール部材54)と、
シール部材(第1シール部材52、第2シール部材54)を冷却するための沸騰冷却手段(図示せず)と、
シャフト42の軸方向に沿ってバルブ部40を摺動させるための駆動手段(図示せず)と
を備えている。
In FIG. 1, the boiling cooling valve 10a is
A housing portion 20 having a gas flow path;
A valve portion 40 in which valves (first valve 44 and second valve 46) for switching the flow path are joined to the shaft 42;
A seal member (first seal) inserted between the seal surface (A) of the housing part 20 and the seal surface (B) of the valves (first valve 44 and second valve 46) seated on the seal surface (A). Member 52, second seal member 54),
Boiling cooling means (not shown) for cooling the sealing members (first sealing member 52, second sealing member 54);
Drive means (not shown) for sliding the valve portion 40 along the axial direction of the shaft 42 is provided.

[1.1. ハウジング部]
ハウジング部20は、シャフト42の軸方向に沿ってバルブ部40が摺動可能となるように、バルブ部40を収容するためのものである。ハウジング部20内には、ガスの流通経路が設けられており、バルブ部40をシャフト42の軸方向に沿って摺動させることにより、ガスの流通経路を開状態(ガスが流通している状態)又は閉状態(ガスの流通が遮断されている状態)のいずれか一方に切り替えることができる。
ハウジング部20は、1種類のガスの流通・遮断を行うものでも良く、あるいは、2種類のガスの流通・遮断を行うものでも良い。図1に示す例は、後者の例である。
[1.1. Housing part]
The housing part 20 is for accommodating the valve part 40 so that the valve part 40 can slide along the axial direction of the shaft 42. A gas flow path is provided in the housing portion 20, and the gas flow path is opened (the gas is flowing) by sliding the valve portion 40 along the axial direction of the shaft 42. ) Or a closed state (a state in which the gas flow is blocked).
The housing part 20 may be one that circulates or shuts off one type of gas, or may be one that circulates or shuts off two types of gas. The example shown in FIG. 1 is the latter example.

図1において、ハウジング部20は、
第1ガスを導入又は排出するための第1室22と、
第2ガスを導入又は排出するための第2室24と、
第1室22と第2室24との間に設けられた、第1ガス又は第2ガスを排出又は導入するための第3室26と
を備えている。
In FIG. 1, the housing part 20 is
A first chamber 22 for introducing or discharging a first gas;
A second chamber 24 for introducing or discharging a second gas;
A third chamber 26 is provided between the first chamber 22 and the second chamber 24 for discharging or introducing the first gas or the second gas.

第1室22と第3室26との間の第1隔壁28には第1貫通穴28aが設けられ、第1貫通孔28aの内表面又は周囲には第1シール面(A)が設けられている。
同様に、第2室24と第3室26との間の第2隔壁30には第2貫通穴30aが設けられ、第2貫通孔30aの内表面又は周囲には第2シール面(A)が設けられている。
The first partition wall 28 between the first chamber 22 and the third chamber 26 is provided with a first through hole 28a, and a first seal surface (A) is provided on the inner surface or the periphery of the first through hole 28a. ing.
Similarly, a second through hole 30a is provided in the second partition wall 30 between the second chamber 24 and the third chamber 26, and a second seal surface (A) is provided on the inner surface or the periphery of the second through hole 30a. Is provided.

なお、図1では、第1貫通穴28aが逆テーパ状になっており、第1貫通穴28aの内表面すべてが第1シール面(A)になっているが、これは単なる例示である。ガスの流通を確実に遮断できる限りにおいて、第1貫通穴28aの内表面の一部が第1シール面(A)であっても良く、あるいは、第1貫通穴28aの周囲に第1シール面(A)が形成されていても良い。これらの点は、第2貫通穴30aと第2シール面(A)との関係についても同様である。   In FIG. 1, the first through hole 28a has a reverse taper shape, and the entire inner surface of the first through hole 28a is the first seal surface (A), but this is merely an example. As long as the gas flow can be reliably blocked, a part of the inner surface of the first through hole 28a may be the first seal surface (A), or the first seal surface around the first through hole 28a. (A) may be formed. The same applies to the relationship between the second through hole 30a and the second seal surface (A).

第1室22には、第1ガス導入・排出口22aが設けられている。また、第2室24には、第2ガス導入・排出口24aが設けられている。さらに、第3室26の一端には開口部26aが設けられている。
そのため、バルブ部40をシャフト42の軸方向に沿って摺動させると、
(a)第1室22から供給される第1ガス、又は第2室24から供給される第2ガスのいずれか一方を第3室26の開口部26aから排出し、あるいは、
(b)第3室26の開口部26aから供給される第1ガス又は第2ガスを、第1室22又は第2室24のいずれか一方に排出することができる。
The first chamber 22 is provided with a first gas introduction / discharge port 22a. The second chamber 24 is provided with a second gas introduction / discharge port 24a. Furthermore, an opening 26 a is provided at one end of the third chamber 26.
Therefore, when the valve unit 40 is slid along the axial direction of the shaft 42,
(A) exhausting either the first gas supplied from the first chamber 22 or the second gas supplied from the second chamber 24 from the opening 26a of the third chamber 26; or
(B) The first gas or the second gas supplied from the opening 26 a of the third chamber 26 can be discharged into either the first chamber 22 or the second chamber 24.

[1.2. バルブ部]
バルブ部40は、ハウジング部20内にあるガスの流通経路を開状態又は閉状態のいずれか一方に切り替えるためのものである。バルブ部40を用いたガスの流通経路の遮断は、具体的には、バルブのシール面(B)をハウジング部のシール面(A)に着座させることにより行う。バルブ部40は、シャフト42に1個のバルブが接合されているものでも良く、あるいは、2個のバルブが接合されているものでも良い。図1に示す例は、後者の例である。
[1.2. Valve section]
The valve part 40 is for switching the flow path of the gas in the housing part 20 to either the open state or the closed state. Specifically, the gas flow path using the valve portion 40 is blocked by seating the seal surface (B) of the valve on the seal surface (A) of the housing portion. The valve unit 40 may be one in which one valve is joined to the shaft 42 or may be one in which two valves are joined. The example shown in FIG. 1 is the latter example.

図1において、バルブ部40は、
シャフト42と、
シャフト42に接合された、第1シール面(B)を備えた第1バルブ44と、
シャフト42に接合された、第2シール面(B)を備えた第2バルブ46と、
を備えている。
第1バルブ44は、シャフト42の先端に接合されている。第2バルブ46は、シャフト42の中間部であって、第1バルブ44よりもやや上方の位置に接合されている。
In FIG. 1, the valve section 40 is
A shaft 42;
A first valve 44 having a first sealing surface (B) joined to the shaft 42;
A second valve 46 having a second sealing surface (B) joined to the shaft 42;
It has.
The first valve 44 is joined to the tip of the shaft 42. The second valve 46 is an intermediate portion of the shaft 42 and is joined to a position slightly above the first valve 44.

第1バルブ44は、下に凸のテーパ状になっており、テーパ面が第1シール面(B)として機能する。一方、第2バルブ46は、上に凸のテーパ状になっており、テーパ面が第2シール面(B)として機能する。さらに、第1バルブ44及び第2バルブ46は、第3室26内において上下に移動可能になっている。
第1バルブ44の第1シール面(B)を第1隔壁28の第1シール面(A)に着座させると、第1バルブ44側が閉となり、第2バルブ46側が開となる。そのため、第2室24と第3室26との間で第2ガスを流通させることができる。
逆に、第2バルブ46の第2シール面(B)を第2隔壁30の第2シール面(A)に着座させると、第2バルブ46側が閉となり、第1バルブ44側が開となる。そのため、第1室22と第3室26との間で第1ガスを流通させることができる。
The first valve 44 has a downwardly convex taper shape, and the tapered surface functions as the first seal surface (B). On the other hand, the second valve 46 has an upwardly convex taper shape, and the tapered surface functions as the second seal surface (B). Further, the first valve 44 and the second valve 46 are movable up and down in the third chamber 26.
When the first seal surface (B) of the first valve 44 is seated on the first seal surface (A) of the first partition wall 28, the first valve 44 side is closed and the second valve 46 side is opened. Therefore, the second gas can be circulated between the second chamber 24 and the third chamber 26.
Conversely, when the second seal surface (B) of the second valve 46 is seated on the second seal surface (A) of the second partition wall 30, the second valve 46 side is closed and the first valve 44 side is opened. Therefore, the first gas can be circulated between the first chamber 22 and the third chamber 26.

[1.3. シール部材]
シール部材は、ガスの流通経路を遮断するためのものである。高温で使用することが可能なシール部材は、一般に高価である。また、耐熱性の高いシール部材であっても、高温において長期間連続使用すると耐久性が低下する。
これに対し、本発明においては、沸騰冷却手段を備えているため、シール部材の過度の温度上昇を抑制することができる。そのため、安価な材料(例えば、PEEK)からなるシール部材を使用することができる。また、シール部材を用いることによって、相対的に小さな駆動力でガスの流通経路の遮断を確実に行うことができる。
[1.3. Seal member]
The seal member is for blocking the gas flow path. Seal members that can be used at high temperatures are generally expensive. Moreover, even if the sealing member has high heat resistance, durability is lowered when continuously used at a high temperature for a long period of time.
On the other hand, in this invention, since the boiling cooling means is provided, the excessive temperature rise of a sealing member can be suppressed. Therefore, a sealing member made of an inexpensive material (for example, PEEK) can be used. Further, by using the seal member, it is possible to reliably block the gas flow path with a relatively small driving force.

シール部材は、バルブの数だけ必要となる。図1において、第1隔壁28の第1シール面(A)と、第1バルブ44の第1シール面(B)との間には、第1シール部材52が挿入されている。また、第2隔壁30の第2シール面(A)と、第2バルブ46の第2シール面(B)との間には、第2シール部材54が挿入されている。
なお、図1において、第2シール部材54は、第2バルブ46の第2シール面(B)上に固定されているが、第2隔壁30の第2シール面(A)上に固定されていても良い。この点は、第1シール部材52も同様である。
As many sealing members as the number of valves are required. In FIG. 1, a first seal member 52 is inserted between the first seal surface (A) of the first partition wall 28 and the first seal surface (B) of the first valve 44. A second seal member 54 is inserted between the second seal surface (A) of the second partition wall 30 and the second seal surface (B) of the second valve 46.
In FIG. 1, the second seal member 54 is fixed on the second seal surface (B) of the second valve 46, but is fixed on the second seal surface (A) of the second partition wall 30. May be. This also applies to the first seal member 52.

[1.4. 沸騰冷却手段]
「沸騰冷却手段」とは、高温に加熱された沸騰冷却流路に水を供給し、沸騰冷却流路内で水蒸気を含む熱水(沸騰水)を生成させ、沸騰水を沸騰冷却流路から排出することにより、沸騰冷却流路の近傍にある対象物を水冷時よりも高い熱伝達率により冷却するための手段をいう。
本発明において、沸騰冷却手段は、シール部材を冷却するために用いられる。バルブが閉状態にある場合、シール部材は、ハウジング部20のシール面(A)とバルブ部40のシール面(B)との間で狭持される。そのため、沸騰冷却手段は、ハウジング部20側及びバルブ部40側の双方に設けられている。また、シール部材が複数個ある場合には、沸騰冷却手段は、シール部材ごとに設けられる。
図1において、沸騰冷却式バルブ10aは、第1シール部材52及び第2シール部材54を備えているため、2組の沸騰冷却手段を備えている。
[1.4. Boiling cooling means]
“Boiling cooling means” refers to supplying water to a boiling cooling channel heated to a high temperature, generating hot water containing water vapor (boiling water) in the boiling cooling channel, and removing boiling water from the boiling cooling channel. By discharging, it means a means for cooling an object in the vicinity of the boiling cooling channel with a higher heat transfer coefficient than during water cooling.
In the present invention, the boiling cooling means is used to cool the seal member. When the valve is in the closed state, the seal member is held between the seal surface (A) of the housing portion 20 and the seal surface (B) of the valve portion 40. Therefore, the boiling cooling means is provided on both the housing part 20 side and the valve part 40 side. In addition, when there are a plurality of seal members, the boiling cooling means is provided for each seal member.
In FIG. 1, since the boiling cooling type valve 10 a includes the first seal member 52 and the second seal member 54, the boiling cooling valve 10 a includes two sets of boiling cooling means.

[1.4.1. 第1シール部材52側の沸騰冷却手段]
第1シール部材52の近傍に設けられたハウジング部20側の沸騰冷却手段は、
(a)第1隔壁28の第1シール面(A)の直下であって、第1シール部材52との接触面の近傍に形成された第1沸騰冷却流路(A)(図示せず)と、
(b)第1沸騰冷却流路(A)に水を供給し、かつ、第1沸騰冷却流路(A)から沸騰水を排出するための第1冷媒流路(A)(図示せず)と
を備えている。
[1.4.1. Boiling cooling means on the first seal member 52 side]
The boiling cooling means on the housing part 20 side provided in the vicinity of the first seal member 52 is:
(A) A first boiling cooling channel (A) (not shown) formed immediately below the first seal surface (A) of the first partition wall 28 and in the vicinity of the contact surface with the first seal member 52. When,
(B) A first refrigerant channel (A) (not shown) for supplying water to the first boiling cooling channel (A) and discharging boiling water from the first boiling cooling channel (A). And.

ここで、「近傍」とは、沸騰冷却流路を用いてシール部材を所定の温度まで冷却することが可能な位置をいう。
第1隔壁28内には、第1冷媒流路(A)(図示せず)が形成されており、第1冷媒流路(A)を介して、第1沸騰冷却流路(A)への水の供給及び沸騰水の排出を行うようになっている。第1冷却流路(A)の構造は、このような機能を奏する限りにおいて、特に限定されない。
Here, “near” means a position where the sealing member can be cooled to a predetermined temperature using the boiling cooling flow path.
A first refrigerant channel (A) (not shown) is formed in the first partition wall 28, and the first refrigerant channel (A) is connected to the first boiling cooling channel (A) via the first refrigerant channel (A). Water is supplied and boiling water is discharged. The structure of the 1st cooling flow path (A) is not specifically limited as long as there exists such a function.

また、第1シール部材52の近傍に設けられたバルブ部40側の沸騰冷却手段は、
(a)第1バルブ44の第1シール面(B)の直下であって、第1シール部材52との接触面の近傍に形成された第1沸騰冷却流路(B)(図示せず)と、
(b)第1沸騰冷却流路(B)に水を供給し、かつ、第1沸騰冷却流路(B)から沸騰水を排出するための第1冷媒流路(B)(図示せず)と、
を備えている。
The boiling cooling means on the valve unit 40 side provided in the vicinity of the first seal member 52 is:
(A) A first boiling cooling channel (B) (not shown) formed immediately below the first seal surface (B) of the first valve 44 and in the vicinity of the contact surface with the first seal member 52. When,
(B) A first refrigerant channel (B) (not shown) for supplying water to the first boiling cooling channel (B) and discharging boiling water from the first boiling cooling channel (B). When,
It has.

シャフト42内には、第1冷媒流路(B)(図示せず)が形成されており、第1冷媒流路(B)を介して、第1沸騰冷却流路(B)への水の供給及び沸騰水の排出を行うようになっている。第1冷媒流路(B)の構造は、このような機能を奏する限りにおいて、特に限定されない。
第1冷媒流路(B)の構造としては、例えば、
(a)内管に水が流れ、外管に沸騰水が流れるように構成された2重管式構造、
(b)水が流れる流路と沸騰水が流れる流路とが独立しているU字管式構造、
などがある。
2重管式構造の場合、内管と外管の間に緻密なセラミックスからなる断熱材が挿入されているのが好ましい。
A first refrigerant flow path (B) (not shown) is formed in the shaft 42, and water is supplied to the first boiling cooling flow path (B) via the first refrigerant flow path (B). Supply and discharge of boiling water are performed. The structure of the first refrigerant channel (B) is not particularly limited as long as it exhibits such a function.
As the structure of the first refrigerant flow path (B), for example,
(A) a double-pipe structure configured such that water flows through the inner tube and boiling water flows through the outer tube;
(B) a U-shaped structure in which a flow path through which water flows and a flow path through which boiling water flows are independent;
and so on.
In the case of a double-pipe structure, it is preferable that a heat insulating material made of dense ceramic is inserted between the inner tube and the outer tube.

[1.4.2. 第2シール部材54側の沸騰冷却手段]
第2シール部材54の近傍に設けられたハウジング部20側の沸騰冷却手段は、
(a)第2隔壁30の第2シール面(A)の直下であって、第2シール部材524の接触面の近傍に形成された第2沸騰冷却流路(A)(図示せず)と、
(b)第2沸騰冷却流路(A)に水を供給し、かつ、第2沸騰冷却流路(A)から沸騰水を排出するためめの第2冷媒流路(A)(図示せず)と
を備えている。
[1.4.2. Boiling cooling means on the second seal member 54 side]
The boiling cooling means on the housing part 20 side provided in the vicinity of the second seal member 54 is:
(A) a second boiling cooling channel (A) (not shown) formed immediately under the second sealing surface (A) of the second partition wall 30 and in the vicinity of the contact surface of the second sealing member 524; ,
(B) A second refrigerant channel (A) (not shown) for supplying water to the second boiling cooling channel (A) and discharging boiling water from the second boiling cooling channel (A). ).

第2隔壁30内には、第2冷媒流路(A)(図示せず)が形成されており、第2冷媒流路(A)を介して、第2沸騰冷却流路(A)への水の供給及び沸騰水の排出を行うようになっている。第2冷却流路(A)の構造は、このような機能を奏する限りにおいて、特に限定されない。   A second refrigerant flow path (A) (not shown) is formed in the second partition wall 30 and is connected to the second boiling cooling flow path (A) via the second refrigerant flow path (A). Water is supplied and boiling water is discharged. The structure of the 2nd cooling flow path (A) is not specifically limited as long as there exists such a function.

また、第2シール部材54の近傍に設けられたバルブ部40側の沸騰冷却手段は、
(a)第2バルブ46の第2シール面(B)の直下であって、第2シール部材54との接触面の近傍に形成された第2沸騰冷却流路(B)(図示せず)と、
(b)第2沸騰冷却流路(B)に水を供給し、かつ、第2沸騰冷却流路(B)から沸騰水を排出するための第2冷媒流路(B)(図示せず)と、
を備えている。
The boiling cooling means on the valve unit 40 side provided in the vicinity of the second seal member 54 is:
(A) A second boiling cooling channel (B) (not shown) formed immediately below the second seal surface (B) of the second valve 46 and in the vicinity of the contact surface with the second seal member 54. When,
(B) A second refrigerant channel (B) (not shown) for supplying water to the second boiling cooling channel (B) and discharging boiling water from the second boiling cooling channel (B). When,
It has.

シャフト42内には、第2冷媒流路(B)(図示せず)が形成されており、第2冷媒流路(B)を介して、第2沸騰冷却流路(B)への水の供給及び沸騰水の排出を行うようになっている。第2冷媒流路(B)の構造は、このような機能を奏する限りにおいて、特に限定されない。
また、第2冷媒流路(B)は、第1冷媒流路(B)と完全に独立していても良く、あるいは、第1冷媒流路(B)から分岐させたものでも良い。
A second refrigerant channel (B) (not shown) is formed in the shaft 42, and water is supplied to the second boiling cooling channel (B) via the second refrigerant channel (B). Supply and discharge of boiling water are performed. The structure of the second refrigerant channel (B) is not particularly limited as long as it has such a function.
The second refrigerant channel (B) may be completely independent of the first refrigerant channel (B) or may be branched from the first refrigerant channel (B).

[1.5. 駆動手段]
「駆動手段」とは、バルブ部40をシャフト42の軸方向に沿って摺動させる手段をいう。駆動手段としては、例えば、
(a)モーターや圧縮空気を用いてシャフト42を機械的に摺動させる機械的駆動手段、
(b)蒸気の圧力を用いてシャフト42を摺動させる蒸気駆動手段
などがある。
蒸気駆動手段の詳細については、後述する。
[1.5. Driving means]
“Drive means” refers to means for sliding the valve portion 40 along the axial direction of the shaft 42. As a driving means, for example,
(A) mechanical drive means for mechanically sliding the shaft 42 using a motor or compressed air;
(B) Steam driving means for sliding the shaft 42 using the pressure of steam is available.
Details of the steam driving means will be described later.

[1.6. 断熱部]
ハウジング部20及びバルブ部40は、全体が金属製であっても良い。しかし、沸騰冷却流路の近傍にセラミックス製の断熱部を設けると、沸騰冷却式バルブ10aを通過するガスの温度を過度に低下させることなく、シール部材の温度を下げることができる。
図2に、断熱部を備えた沸騰冷却式バルブ10aの第1バルブ44近傍の拡大断面図(図2(A):バルブ開、図2(B):バルブ閉)を示す。なお、図示はしないが、第2バルブ46も同様の構成を備えているのが好ましい。また、図2においては、見やすくするために、シール部材の図示が省略されている。
[1.6. Heat insulation part]
The housing part 20 and the valve part 40 may be entirely made of metal. However, if a ceramic heat insulating portion is provided in the vicinity of the boiling cooling channel, the temperature of the seal member can be lowered without excessively reducing the temperature of the gas passing through the boiling cooling valve 10a.
FIG. 2 shows an enlarged cross-sectional view (FIG. 2 (A): valve open, FIG. 2 (B): valve close) in the vicinity of the first valve 44 of the boiling cooling type valve 10a provided with a heat insulating portion. Although not shown, the second valve 46 preferably has the same configuration. Further, in FIG. 2, the illustration of the seal member is omitted for easy viewing.

図2において、ハウジング部20は、
第1シール面(A)及び第1沸騰冷却流路(A)32aが形成された金属製の受部32と、
受部32の底面及び側面に接合された、セラミックス製の断熱部(A)34と
を備えている。
また、第1バルブ44は、
第1シール面(B)及び第1沸騰冷却流路(B)48aが形成された金属製の傘部48と、
傘部48の底面に接合された、セラミックス製の断熱部(B)50と
を備えている。
In FIG. 2, the housing part 20 is
A metal receiving part 32 in which the first sealing surface (A) and the first boiling cooling channel (A) 32a are formed;
A ceramic heat insulating part (A) 34 joined to the bottom and side surfaces of the receiving part 32 is provided.
The first valve 44 is
A metal umbrella portion 48 formed with a first sealing surface (B) and a first boiling cooling channel (B) 48a;
A ceramic heat insulating part (B) 50 joined to the bottom surface of the umbrella part 48 is provided.

ハウジング部20の第1隔壁28に設けられた第1貫通穴28aの周囲には、断熱部(A)34及び受部32が埋め込まれている。断熱部(A)34は、凹型を呈しており、外底面及び外側面、並びに、内底面及び内側面が接合面になっている。断熱部(A)34は、接合面がメタライズ処理されており、ロウ付けにより第1隔壁28及び受部32と接合されている。受部32のすり鉢状の内表面が第1シール面(A)であり、第1シール部材(図示せず)との接触面の近傍には、第1沸騰冷却流路(A)32aが形成されている。   A heat insulating portion (A) 34 and a receiving portion 32 are embedded around the first through hole 28 a provided in the first partition wall 28 of the housing portion 20. The heat insulating portion (A) 34 has a concave shape, and the outer bottom surface and the outer surface, and the inner bottom surface and the inner surface are joint surfaces. The heat insulating part (A) 34 has a metallized bonding surface, and is bonded to the first partition wall 28 and the receiving part 32 by brazing. The mortar-shaped inner surface of the receiving portion 32 is the first seal surface (A), and a first boiling cooling channel (A) 32a is formed in the vicinity of the contact surface with the first seal member (not shown). Has been.

第1バルブ44は、円錐台状の傘部48と、円柱状の断熱部(B)50とを備えている。断熱部(B)50は、接合面がメタライズ処理されており、ロウ付けにより傘部48の底面に接合されている。傘部48の円錐面が第1シール面(B)であり、第1シール部材(図示せず)との接触面の近傍には、第1沸騰冷却流路(B)48aが形成されている。   The first valve 44 includes a frustoconical umbrella portion 48 and a cylindrical heat insulating portion (B) 50. The heat insulating portion (B) 50 has a metallized bonding surface and is bonded to the bottom surface of the umbrella portion 48 by brazing. The conical surface of the umbrella portion 48 is the first seal surface (B), and a first boiling cooling channel (B) 48a is formed in the vicinity of the contact surface with the first seal member (not shown). .

[2. 沸騰冷却式バルブ(2)]
図3に、本発明の第2の実施の形態に係る沸騰冷却式バルブの側面断面図(図3(A))、及び正面断面図(図3(B))を示す。
[2. Boiling cooling type valve (2)]
FIG. 3 shows a side sectional view (FIG. 3A) and a front sectional view (FIG. 3B) of a boiling cooling type valve according to the second embodiment of the present invention.

図3において、沸騰冷却式バルブ10bは、
ガスの流通経路を備えたハウジング部20と、
シャフト42に、前記流通経路の切り替えを行うためのバルブ(第1バルブ44、第2バルブ46)が接合されたバルブ部40と、
ハウジング部20のシール面(A)と、シール面(A)に着座するバルブ(第1バルブ44、第2バルブ46)のシール面(B)との間に挿入されたシール部材(第1シール部材52、第2シール部材54)と、
シール部材(第1シール部材52、第2シール部材54)を冷却するための沸騰冷却手段(図示せず)と、
シャフト42の軸方向に沿ってバルブ部40を摺動させるための駆動手段60と
を備えている。
In FIG. 3, the boiling cooling type valve 10b is
A housing portion 20 having a gas flow path;
A valve portion 40 in which valves (first valve 44 and second valve 46) for switching the flow path are joined to the shaft 42;
A seal member (first seal) inserted between the seal surface (A) of the housing part 20 and the seal surface (B) of the valves (first valve 44 and second valve 46) seated on the seal surface (A). Member 52, second seal member 54),
Boiling cooling means (not shown) for cooling the sealing members (first sealing member 52, second sealing member 54);
Drive means 60 for sliding the valve portion 40 along the axial direction of the shaft 42 is provided.

[2.1. ハウジング部、バルブ部、シール部材、及び沸騰冷却手段]
ハウジング部20、バルブ部40、シール部材(第1シール部材52、第2シール部材54)、及び沸騰冷却手段の詳細については、第1の実施の形態と同様であるので、説明を省略する。
[2.1. Housing part, valve part, sealing member, and boiling cooling means]
The details of the housing part 20, the valve part 40, the seal members (first seal member 52, second seal member 54), and the boiling cooling means are the same as those in the first embodiment, and thus the description thereof is omitted.

[2.2. 駆動手段]
本実施の形態において、駆動手段60は、バルブ部40の冷媒流路(B)から排出される沸騰水に含まれる水蒸気の圧力を用いてシャフト42を摺動させる蒸気駆動手段からなる。この点が、第1の実施の形態とは異なる。
[2.2. Driving means]
In the present embodiment, the driving means 60 is composed of steam driving means for sliding the shaft 42 using the pressure of water vapor contained in boiling water discharged from the refrigerant flow path (B) of the valve unit 40. This point is different from the first embodiment.

図3において、蒸気駆動手段60は、
ハウジング部20に隣接して設けられた蒸気バッファタンク62と、
シャフト42の基端に接合された、蒸気バッファタンク62内を摺動するピストン64と、
沸騰水をピストン64の一方の面側又は他方の面側に切り替えて排出することにより、ピストン64を摺動させる切替手段(第1開閉バルブV1〜第4開閉バルブV4)と
を備えている。
In FIG. 3, the steam driving means 60 is
A vapor buffer tank 62 provided adjacent to the housing part 20;
A piston 64 that is joined to the proximal end of the shaft 42 and slides in the vapor buffer tank 62;
Switching means (first opening / closing valve V1 to fourth opening / closing valve V4) for sliding the piston 64 by switching the boiling water to one surface side or the other surface side of the piston 64 and discharging it is provided.

蒸気バッファタンク62の内周面とピストン64の外周面との間には、シール部材66が挿入されている。ピストン64の上面には、第2シャフト70が接続されている。第2シャフト70は、蒸気バッファタンク62の上面を貫通しており、第2シャフト70と蒸気バッファタンク62の貫通穴との間にはシール部材72が挿入されている。さらに、第2シャフト70内には、シャフト42内の冷媒流路(B)に水を供給するための冷媒流路(C)(図示せず)が設けられている。   A seal member 66 is inserted between the inner peripheral surface of the vapor buffer tank 62 and the outer peripheral surface of the piston 64. A second shaft 70 is connected to the upper surface of the piston 64. The second shaft 70 passes through the upper surface of the vapor buffer tank 62, and a seal member 72 is inserted between the second shaft 70 and the through hole of the vapor buffer tank 62. Further, a coolant channel (C) (not shown) for supplying water to the coolant channel (B) in the shaft 42 is provided in the second shaft 70.

ピストン64内には、シャフト42内の冷媒流路(B)から排出される沸騰水を導入するための冷媒流路(D)(図示せず)が設けられている。冷媒流路(D)は、ピストン64の上面及び下面にそれぞれ設けられた第3開閉バルブV3、及び第4開閉バルブV4に接続されている。さらに、蒸気バッファタンク62の上側の側面及び下側の側面には、それぞれ、蒸気バッファタンク62内の沸騰水を排出するための第1開閉バルブV1、及び第2開閉バルブV2が設けられている。   A coolant channel (D) (not shown) for introducing boiling water discharged from the coolant channel (B) in the shaft 42 is provided in the piston 64. The refrigerant channel (D) is connected to a third on-off valve V3 and a fourth on-off valve V4 provided on the upper and lower surfaces of the piston 64, respectively. Furthermore, a first on-off valve V1 and a second on-off valve V2 for discharging boiling water in the steam buffer tank 62 are provided on the upper side surface and the lower side surface of the steam buffer tank 62, respectively. .

[2.3. 使用方法]
ハウジング部20が所定の温度に維持されている状態で、第2シャフト72の冷媒流路(C)に水を供給すると、水がシャフト42の冷媒流路(B)(往路)を通って、第1バルブ44及び第2バルブ46の沸騰冷却流路(B)に供給される。沸騰冷却流路(B)で生成した沸騰水は、シャフト42の冷媒流路(B)(復路)を通って、ピストン64内の冷媒流路(D)に供給される。
[2.3. how to use]
When water is supplied to the refrigerant flow path (C) of the second shaft 72 while the housing part 20 is maintained at a predetermined temperature, the water passes through the refrigerant flow path (B) (outward path) of the shaft 42, It is supplied to the boiling cooling flow path (B) of the first valve 44 and the second valve 46. The boiling water generated in the boiling cooling channel (B) is supplied to the refrigerant channel (D) in the piston 64 through the refrigerant channel (B) (return channel) of the shaft 42.

この時、第1開閉バルブV1を閉とし、第2開閉バルブV2を開とし、第3開閉バルブV3を開とし、かつ、第4開閉バルブV4を閉とすると、第3開閉バルブV3から排出された沸騰水に含まれる水蒸気の圧力によりピストン64が下方に押し下げられる。その結果、第1バルブ44の第1シール面(B)が第1隔壁28の第1シール面(A)に着座する。また、第2室24に導入された第2ガスが、第2隔壁30の第2貫通穴30aを通って、第3室26の開口部26aから排出される。   At this time, when the first on-off valve V1 is closed, the second on-off valve V2 is opened, the third on-off valve V3 is opened, and the fourth on-off valve V4 is closed, the air is discharged from the third on-off valve V3. The piston 64 is pushed downward by the pressure of water vapor contained in the boiling water. As a result, the first sealing surface (B) of the first valve 44 is seated on the first sealing surface (A) of the first partition wall 28. In addition, the second gas introduced into the second chamber 24 passes through the second through hole 30 a of the second partition wall 30 and is discharged from the opening 26 a of the third chamber 26.

逆に、第1開閉バルブV1を開とし、第2開閉バルブV2を閉とし、第3開閉バルブV3を閉とし、かつ、第4開閉バルブV4を開とすると、第4開閉バルブV4から排出された沸騰水に含まれる水蒸気の圧力によりピストン64が上方に押し上げられる。その結果、第2バルブ46の第2シール面(B)が第2隔壁30の第2シール面(A)に着座する。また、第1室22に導入された第1ガスが、第1隔壁28の第1貫通穴28aを通って、第3室26の開口部26aから排出される。   Conversely, when the first on-off valve V1 is opened, the second on-off valve V2 is closed, the third on-off valve V3 is closed, and the fourth on-off valve V4 is opened, the gas is discharged from the fourth on-off valve V4. The piston 64 is pushed upward by the pressure of water vapor contained in the boiling water. As a result, the second seal surface (B) of the second valve 46 is seated on the second seal surface (A) of the second partition wall 30. Further, the first gas introduced into the first chamber 22 is discharged from the opening 26 a of the third chamber 26 through the first through hole 28 a of the first partition wall 28.

[3. 沸騰冷却式CO2分離器(1)]
[3.1. 構成]
図4に、本発明の第1の実施の形態に係る沸騰冷却式CO2分離器の平面図(図4(A))、及びB−B’線断面図(図4(B))を示す。
[3. Boiling cooled CO 2 separator (1)]
[3.1. Constitution]
FIG. 4 shows a plan view (FIG. 4 (A)) and a cross-sectional view along line BB ′ (FIG. 4 (B)) of the boiling cooling type CO 2 separator according to the first embodiment of the present invention. .

図4において、沸騰冷却式CO2分離器80は、
CO2を吸収・放出するためのCO2吸収材を備えた反応流路層82、82…と、
熱交換媒体を流通させることにより、反応流路層82、82…と熱交換を行うための媒体流路層84、84…と、
反応流路層82、82…にCO2を含むガス又はパージガスのいずれか一方を切り替えて供給・排出するための第1切替バルブ86a、86bと、
媒体流路層84、84…に第1熱交換媒体又は第2熱交換媒体のいずれか一方を切り替えて供給・排出するための第2切替バルブ88a、88bと
を備えている。
In FIG. 4, the boil-cooled CO 2 separator 80 is
Reaction channel layer with a CO 2 absorbent material for absorbing and releasing CO 2 82, 82 ... and,
By circulating the heat exchange medium, the medium flow path layers 84, 84,... For performing heat exchange with the reaction flow path layers 82, 82,.
First switching valves 86a, 86b for supplying / discharging the reaction flow path layers 82, 82... By switching any one of the gas containing CO 2 and the purge gas;
The medium flow path layers 84, 84... Are provided with second switching valves 88a, 88b for switching and supplying / discharging either the first heat exchange medium or the second heat exchange medium.

反応流路層82、82…は、CO2を吸収・放出するためのものである。また、媒体流路層84、84…は、熱交換媒体を流通させることにより、反応流路層82、82…と熱交換を行うためのものである。反応流路層82、82…及び媒体流路層84、84…の構造は、このような機能を奏する限りにおいて、特に限定されない。
反応流路層82、82…と媒体流路層84、84…とは交互に積層されている。反応流路層82、82…の入口及び出口は、それぞれ、マニホールド90aの出口及びマニホールド90bの入口に接続されている。同様に、媒体流路層84、84…の入口及び出口は、それぞれ、マニホールド92aの出口及びマニホールド92bの入口に接続されている。
The reaction channel layers 82, 82... Are for absorbing and releasing CO 2 . Further, the medium flow path layers 84, 84... Are for exchanging heat with the reaction flow path layers 82, 82. The structures of the reaction flow path layers 82, 82... And the medium flow path layers 84, 84... Are not particularly limited as long as they have such a function.
The reaction flow path layers 82, 82... And the medium flow path layers 84, 84. The inlet and outlet of the reaction channel layers 82, 82... Are connected to the outlet of the manifold 90a and the inlet of the manifold 90b, respectively. Similarly, the inlets and outlets of the medium flow path layers 84, 84... Are connected to the outlet of the manifold 92a and the inlet of the manifold 92b, respectively.

第1切替バルブ86a、86b、及び、第2切替バルブ88a、88bは、それぞれ、本発明の第1の実施の形態に係る沸騰冷却式バルブ10aと同一の構造を備えている。マニホールド90aの入口は第1切替バルブ86aの第3室26に接続され、マニホールド90bの出口は第1切替バルブ86bの第3室26に接続されている。
同様に、マニホールド92aの入口は第2切替バルブ88aの第3室26に接続され、マニホールド92の出口は第2切替バルブ88bの第3室26に接続されている。
The first switching valves 86a and 86b and the second switching valves 88a and 88b each have the same structure as the boiling cooling valve 10a according to the first embodiment of the present invention. The inlet of the manifold 90a is connected to the third chamber 26 of the first switching valve 86a, and the outlet of the manifold 90b is connected to the third chamber 26 of the first switching valve 86b.
Similarly, the inlet of the manifold 92a is connected to the third chamber 26 of the second switching valve 88a, and the outlet of the manifold 92 is connected to the third chamber 26 of the second switching valve 88b.

[3.2. 使用方法]
第1切替バルブ86aのバルブ部40を摺動させると、第1切替バルブ86aの第1室22又は第2室24のいずれか一方を反応流路層82、82…の入口に接続することができる。また、第1切替バルブ86bのバルブ部40を摺動させると、反応流路層82、82…の出口を第1切替バルブ86bの第1室22又は第2室24のいずれか一方に接続することができる。そのため、反応流路層82、82…にCO2を含むガス(第1ガス)を流すと、CO2吸収材(図示せず)にCO2を吸収させることができる。一方、反応流路層82、82…にパージガス(第2ガス)を流すと、CO2吸収材からCO2を放出させることができる。
[3.2. how to use]
When the valve portion 40 of the first switching valve 86a is slid, either the first chamber 22 or the second chamber 24 of the first switching valve 86a can be connected to the inlets of the reaction flow path layers 82, 82. it can. When the valve portion 40 of the first switching valve 86b is slid, the outlet of the reaction flow path layers 82, 82... Is connected to either the first chamber 22 or the second chamber 24 of the first switching valve 86b. be able to. Therefore, when flowing gas (first gas) comprising the reaction channel layer 82 ... to CO 2, it can be absorbed CO 2 in the CO 2 absorber (not shown). On the other hand, when the flow purge gas (second gas) into the reaction channel layer 82 ..., it is possible to release CO 2 from the CO 2 absorber.

同様に、第2切替バルブ88aのバルブ部40を摺動させると、第2切替バルブ88aの第1室22又は第2室24のいずれか一方を媒体流路層84、84…の入口に接続することができる。また、第2切替バルブ88bのバルブ部40を摺動させると、媒体流路層84、84…の出口を第2切替バルブ88bの第1室22又は第2室24のいずれか一方に接続することができる。そのため、媒体流路層88、88…に適切な第1熱交換媒体又は第2熱交換媒体を流通させると、CO2の吸収反応時及び放出反応時にCO2吸収材を最適な温度に維持することができる。 Similarly, when the valve portion 40 of the second switching valve 88a is slid, either the first chamber 22 or the second chamber 24 of the second switching valve 88a is connected to the inlets of the medium flow path layers 84, 84. can do. When the valve portion 40 of the second switching valve 88b is slid, the outlet of the medium flow path layers 84, 84... Is connected to either the first chamber 22 or the second chamber 24 of the second switching valve 88b. be able to. Therefore, when circulating the first heat exchange medium and the second heat exchange medium suitable to the medium flow path layer 88 ..., to maintain the optimum temperature of the CO 2 absorbing material upon absorption reaction time and release reaction of the CO 2 be able to.

[4. 沸騰冷却式CO2分離器(2)]
図5に、本発明の第2の実施の形態に係る沸騰冷却式CO2分離器の平面図(図5(A))、及びB−B’線断面図(図5(B))を示す。
[4. Boiling cooled CO 2 separator (2)]
FIG. 5 shows a plan view (FIG. 5 (A)) and a cross-sectional view taken along the line BB ′ (FIG. 5 (B)) of the boiling cooling CO 2 separator according to the second embodiment of the present invention. .

図5において、沸騰冷却式CO2分離器80’は、
CO2を吸収・放出するためのCO2吸収材を備えた反応流路層82、82…と、
熱交換媒体を流通させることにより、反応流路層82、82…と熱交換を行うための媒体流路層84、84…と、
反応流路層82、82…にCO2を含むガス又はパージガスのいずれか一方を切り替えて供給・排出するための第1切替バルブ86c、86dと、
媒体流路層84、84…に第1熱交換媒体又は第2熱交換媒体のいずれか一方を切り替えて供給・排出するための第2切替バルブ88c、88dと
を備えている。
In FIG. 5, the boil-cooled CO 2 separator 80 ′
Reaction channel layer with a CO 2 absorbent material for absorbing and releasing CO 2 82, 82 ... and,
By circulating the heat exchange medium, the medium flow path layers 84, 84,... For performing heat exchange with the reaction flow path layers 82, 82,.
First switching valve 86c for supplying and discharging switches either the gas or purge gas containing CO 2 into the reaction channel layer 82 ..., and 86d,
Are provided with second switching valves 88c, 88d for switching and supplying / discharging either the first heat exchange medium or the second heat exchange medium.

本実施の形態において、第1切替バルブ86c、86d、及び、第2切替バルブ88c、88dは、それぞれ、本発明の第2の実施の形態に係る沸騰冷却式バルブ10bと同一の構造を備えている。この点が第1実施の形態とは異なる。その他の点については、第1の実施の形態に係る沸騰冷却式CO2分離器と同様であるので、説明を省略する。 In the present embodiment, the first switching valves 86c and 86d and the second switching valves 88c and 88d each have the same structure as the boiling cooling valve 10b according to the second embodiment of the present invention. Yes. This point is different from the first embodiment. Since the other points are the same as those in the boiling cooling CO 2 separator according to the first embodiment, the description thereof is omitted.

[5. SOFCシステム(1)]
[5.1. 構成]
図6に、本発明の第1の実施の形態に係るSOFCシステムの模式図を示す。図6において、SOFCシステム100aは、
燃料から電力を生成する固体酸化物形燃料電池(SOFC)102aと、
SOFC102aのアノードオフガス(以下、「Aout」ともいう)からCO2を分離するCO2分離器104と、
CO2分離器104のフィード流路から排出されるオフガス(以下、「Bout」ともいう)に含まれる水蒸気を凝縮させ、凝縮水を得る凝縮器106と、
水蒸気の全部又は一部が分離されたBoutをSOFC102aのアノード流路に戻すアノードオフガス循環手段と
を備えている。
[5. SOFC system (1)]
[5.1. Constitution]
FIG. 6 shows a schematic diagram of the SOFC system according to the first embodiment of the present invention. In FIG. 6, the SOFC system 100a
A solid oxide fuel cell (SOFC) 102a that generates electric power from fuel;
A CO 2 separator 104 that separates CO 2 from the anode off-gas (hereinafter also referred to as “A out ”) of the SOFC 102a;
A condenser 106 that condenses water vapor contained in off-gas (hereinafter also referred to as “B out ”) discharged from the feed flow path of the CO 2 separator 104 to obtain condensed water;
And an anode off-gas circulation means for returning B out from which all or part of the water vapor has been separated to the anode flow path of the SOFC 102a.

[5.1.1. SOFC]
SOFC102aは、CH4、CO、H2などの燃料から電力を生成するためのものである。SOEC102aのアノード流路の入口は、エジェクタ110の出口に接続され、アノード流路の出口は、CO2分離器104のフィード流路の入口に接続されている。
[5.1.1. SOFC]
The SOFC 102a is for generating electric power from fuels such as CH 4 , CO, and H 2 . The inlet of the anode channel of the SOEC 102 a is connected to the outlet of the ejector 110, and the outlet of the anode channel is connected to the inlet of the feed channel of the CO 2 separator 104.

[5.1.2. CO2分離器]
CO2分離器104は、SOFC102aのアノードオフガス(Aout)からCO2を分離するためのものである。CO2分離器104のフィード流路の入口は、SOFC102aのアノード流路の出口に接続され、フィード流路の出口は、ガス管108の一端に接続されている。ガス管108の他端は、エジェクタ110の吸引側に接続されている。さらに、CO2分離器104のパージ流路の入口は、水蒸気供給源(図示せず)に接続されている。
[5.1.2. CO 2 separator]
The CO 2 separator 104 is for separating CO 2 from the anode off gas (A out ) of the SOFC 102a. The feed channel inlet of the CO 2 separator 104 is connected to the anode channel outlet of the SOFC 102 a, and the feed channel outlet is connected to one end of the gas pipe 108. The other end of the gas pipe 108 is connected to the suction side of the ejector 110. Further, the inlet of the purge flow path of the CO 2 separator 104 is connected to a water vapor supply source (not shown).

CO2分離器104は、図6の下図に示すように、本発明に係る2個の沸騰冷却式CO2分離器が並列に接続されたものからなる。沸騰冷却式CO2分離器80a、80bの反応流路層82(フィード流路、パージ流路)には、SOFC102aのアノードオフガス、又は、図示しない水蒸気供給源からの水蒸気が供給される。また、沸騰冷却式CO2分離器80a、80bの媒体流路層84には、熱交換媒体(熱媒)としてのカソードオフガス、又は、熱交換媒体(冷媒)としてのカソード用空気が供給される。 As shown in the lower diagram of FIG. 6, the CO 2 separator 104 is composed of two boiling-cooled CO 2 separators according to the present invention connected in parallel. The reaction channel layer 82 (feed channel, purge channel) of the boiling cooling type CO 2 separators 80a, 80b is supplied with anode off gas of the SOFC 102a or water vapor from a water vapor supply source (not shown). Further, cathode off-gas as a heat exchange medium (heat medium) or cathode air as a heat exchange medium (refrigerant) is supplied to the medium flow path layer 84 of the boiling cooling type CO 2 separators 80a and 80b. .

[5.1.3. 凝縮器]
凝縮器106は、CO2分離器104のフィード流路から排出されるオフガス(Bout)に含まれる水蒸気を凝縮させ、凝縮水を得るためのものである。凝縮器106は、ガス管108に対して並列に接続されている。そのため、Boutを任意の比率で凝縮器106に分配することができる。
[5.1.3. Condenser]
The condenser 106 is for condensing water vapor contained in the off gas (B out ) discharged from the feed flow path of the CO 2 separator 104 to obtain condensed water. The condenser 106 is connected in parallel to the gas pipe 108. Therefore, Bout can be distributed to the condenser 106 at an arbitrary ratio.

[5.1.4. エジェクタ、アノードオフガス循環手段]
エジェクタ110は、燃料をSOFC102aのアノード流路に供給するためのものである。エジェクタ110の駆動側の入口は、CH4などの燃料の供給源(図示せず)に接続されている。エジェクタ110の出口は、SOFC102aのアノード流路の入口に接続されている。さらに、エジェクタ110の吸引側は、ガス管108を介してCO2分離器104のフィード流路の出口に接続されている。図6に示す例において、アノードオフガス循環手段は、凝縮器106、ガス管108及びエジェクタ110により構成されている。
[5.1.4. Ejector, anode off-gas circulation means]
The ejector 110 is for supplying fuel to the anode flow path of the SOFC 102a. The drive-side inlet of the ejector 110 is connected to a fuel supply source (not shown) such as CH 4 . The outlet of the ejector 110 is connected to the inlet of the anode flow path of the SOFC 102a. Further, the suction side of the ejector 110 is connected to the outlet of the feed flow path of the CO 2 separator 104 via the gas pipe 108. In the example shown in FIG. 6, the anode off-gas circulation means includes a condenser 106, a gas pipe 108, and an ejector 110.

[5.2. 運転方法]
エジェクタ110を介して燃料をSOFC102aのアノード流路に供給し、カソード流路に空気を供給すると、SOFC102aから電力を取り出すことができる。アノードオフガス(Aout)は、CO2分離器104のフィード流路に送られ、CO2が除去される。CO2分離器104のフィード流路から排出されるオフガス(Bout)の一部は、凝縮器106に分配され、Boutに含まれる水蒸気の一部が除去される。燃料としてCH4を用いる場合、CH4を水蒸気改質する必要があるため、Boutから水蒸気の一部が除去される。なお、燃料として水素を用いる場合には、Boutから水蒸気の全部を除去しても良い。
[5.2. how to drive]
When fuel is supplied to the anode flow path of the SOFC 102a through the ejector 110 and air is supplied to the cathode flow path, electric power can be taken out from the SOFC 102a. The anode off gas (A out ) is sent to the feed flow path of the CO 2 separator 104 to remove CO 2 . A part of the off gas (B out ) discharged from the feed flow path of the CO 2 separator 104 is distributed to the condenser 106, and a part of the water vapor contained in B out is removed. When CH 4 is used as the fuel, it is necessary to steam reform CH 4 , so that a part of the steam is removed from B out . In addition, when using hydrogen as a fuel, you may remove all the water vapor | steam from Bout.

水蒸気の全部又は一部が除去されたBoutは、ガス管108を介してエジェクタ110の吸引側から吸引される。吸引されたBoutは、そのままSOFC102aのアノードに供給される。その結果、Boutに含まれる未反応の燃料及び顕熱を発電に再利用することができる。 B out from which all or part of the water vapor has been removed is sucked from the suction side of the ejector 110 through the gas pipe 108. The suctioned B out is supplied as it is to the anode of the SOFC 102a. As a result, it is possible to reuse the fuel and sensible heat of the unreacted contained in B out power generation.

この時、図6の左下図に示すように、沸騰冷却式CO2分離器80aのフィード流路(反応流路層82)にアノードオフガス(Aout)を流し、媒体流路層84にカソード用空気を流すと、カソード用空気により、フィード流路の温度が最適なCO2吸収温度域まで低下する。その結果、Aoutに含まれるCO2を効率良く除去することができる。また、CO2除去後のアノードオフガス(Bout)は、高温状態を維持したままSOFC102aのアノード流路に戻される。さらに、媒体流路層84から排出される熱交換後のカソード用空気は、SOFC発電用のカソード空気として使用される。 At this time, as shown in the lower left diagram of FIG. 6, the anode off gas (A out ) is caused to flow through the feed flow path (reaction flow path layer 82) of the boiling cooling type CO 2 separator 80 a and the medium flow path layer 84 is used for the cathode. When air is flowed, the temperature of the feed flow path is lowered to the optimum CO 2 absorption temperature range by the cathode air. As a result, CO 2 contained in A out can be efficiently removed. Further, the anode off gas (B out ) after the CO 2 removal is returned to the anode flow path of the SOFC 102a while maintaining the high temperature state. Further, the cathode air after heat exchange discharged from the medium flow path layer 84 is used as cathode air for SOFC power generation.

一方、沸騰冷却式CO2分離器80bのパージ流路(反応流路層82)に高温の水蒸気を流すと、CO2吸収材からCO2が放出される。これと同時に、媒体流路層84に高温のカソードオフガスを流すと、カソードオフガスの顕熱により、反応流路層82の温度が上昇する。冷却されたカソードオフガスは、カソード用空気と熱交換器(図示せず)にて熱交換後、系外に排出される。
所定時間経過後に、図6の右下図に示すように、パージ流路とフィード流路を切り替えると、CO2の吸収と放出を連続的に行うことができる。
On the other hand, when high-temperature water vapor is passed through the purge flow path (reaction flow path layer 82) of the boiling cooling CO 2 separator 80b, CO 2 is released from the CO 2 absorbent. At the same time, when a high-temperature cathode off gas is allowed to flow through the medium channel layer 84, the temperature of the reaction channel layer 82 increases due to the sensible heat of the cathode off gas. The cooled cathode off-gas is discharged out of the system after heat exchange with cathode air and a heat exchanger (not shown).
When the purge flow path and the feed flow path are switched after a predetermined time has elapsed, as shown in the lower right diagram of FIG. 6, CO 2 can be absorbed and released continuously.

[6. SOFCシステム(2)]
[6.1. 構成]
図7に、本発明の第2の実施の形態に係るSOFCシステムの模式図を示す。図7において、SOFCシステム100bは、
燃料から電力を生成する固体酸化物形燃料電池(SOFC)102aと、
SOFC102aのアノードオフガス(Aout)からCO2を分離するCO2分離器104と、
CO2分離器104のフィード流路から排出されるオフガス(Bout)に含まれる水蒸気を凝縮させ、凝縮水を得る凝縮器106と、
水蒸気の全部又は一部が分離されたBoutをSOFC102aのアノード流路に戻すアノードオフガス循環手段と
を備えている。
[6. SOFC system (2)]
[6.1. Constitution]
FIG. 7 shows a schematic diagram of an SOFC system according to the second embodiment of the present invention. In FIG. 7, the SOFC system 100b
A solid oxide fuel cell (SOFC) 102a that generates electric power from fuel;
A CO 2 separator 104 that separates CO 2 from the anode off gas (A out ) of the SOFC 102a;
A condenser 106 for condensing water vapor contained in off-gas (B out ) discharged from the feed flow path of the CO 2 separator 104 to obtain condensed water;
And an anode off-gas circulation means for returning B out from which all or part of the water vapor has been separated to the anode flow path of the SOFC 102a.

本実施の形態において、SOFCシステム100bは、凝縮器106で凝縮させた水をCO2分離器104(沸騰冷却式CO2分離器)の沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給する水供給手段(A)をさらに備えている。また、SOFCシステム100bは、CO2分離器104のパージ流路に水蒸気を供給するための蒸発器114をさらに備えている。この点が、第1の実施の形態に係るSOFCシステム100aとは異なる。 In the present embodiment, the SOFC system 100b includes the boiling cooling channel (A) and the boiling cooling channel (B) of the CO 2 separator 104 (boiling cooled CO 2 separator) obtained by condensing the water condensed by the condenser 106. Are further provided with water supply means (A) for supplying them respectively. The SOFC system 100 b further includes an evaporator 114 for supplying water vapor to the purge flow path of the CO 2 separator 104. This point is different from the SOFC system 100a according to the first embodiment.

凝縮器106の凝縮水の排出口は、水管112の一端に接続され、水管112の他端は、CO2分離器104の沸騰冷却式バルブ10、10の入口に接続されている。水管112には、開閉バルブV1及び液ポンプPが接続されている。図7に示す例において、水供給手段(A)は、水管112、開閉バルブV1、及び液ポンプPにより構成されている。さらに、凝縮器106のガスの出口とガス管108との間には、蒸発器106へのBoutの分配量を制御する流量制御バルブVCが設けられている。
沸騰冷却式バルブ10、10の出口は、蒸発器114の入口に接続されている。さらに、蒸発器114の出口は、調圧弁を介してCO2分離器104のパージ流路の入口に接続されている。
The outlet of the condensed water of the condenser 106 is connected to one end of the water pipe 112, and the other end of the water pipe 112 is connected to the inlets of the boiling cooling type valves 10 and 10 of the CO 2 separator 104. An open / close valve V1 and a liquid pump P are connected to the water pipe 112. In the example shown in FIG. 7, the water supply means (A) includes a water pipe 112, an opening / closing valve V <b> 1, and a liquid pump P. Further, a flow rate control valve V C for controlling the distribution amount of B out to the evaporator 106 is provided between the gas outlet of the condenser 106 and the gas pipe 108.
The outlets of the boiling cooling valves 10 and 10 are connected to the inlet of the evaporator 114. Furthermore, the outlet of the evaporator 114 is connected to the inlet of the purge flow path of the CO 2 separator 104 via a pressure regulating valve.

CO2分離器104は、図7の下図に示すように、本発明に係る2個の沸騰冷却式CO2分離器が並列に接続されたものからなる。沸騰冷却式CO2分離器80a、80bの反応流路層82(フィード流路、パージ流路)には、SOFC102aのアノードオフガス、又は、水蒸気が供給される。また、沸騰冷却式CO2分離器80a、80bの媒体流路層84には、カソードオフガス(熱媒)、又は、カソード用空気(冷媒)が供給される。 As shown in the lower diagram of FIG. 7, the CO 2 separator 104 is composed of two boiling-cooled CO 2 separators according to the present invention connected in parallel. The anode off gas or water vapor of the SOFC 102a is supplied to the reaction channel layer 82 (feed channel, purge channel) of the boiling cooling type CO 2 separators 80a and 80b. Further, cathode offgas (heating medium) or cathode air (refrigerant) is supplied to the medium flow path layer 84 of the boiling cooling type CO 2 separators 80a and 80b.

[6.2. 運転方法]
SOFC102aのアノードオフガス(Aout)は、CO2分離器104のフィード流路に送られ、CO2が除去される。CO2分離器104のフィード流路から排出されるオフガス(Bout)の一部は、凝縮器106に分配され、Boutに含まれる水蒸気の全部又は一部が除去される。凝縮器106で分離された凝縮水は、液ポンプPにより沸騰冷却式バルブ10、10の沸騰冷却流路(A)及び沸騰冷却流路(B)に供給される。沸騰冷却式バルブ10、10から排出される沸騰水は、蒸発器114に送られる。さらに、蒸発器114で生成した水蒸気は、CO2分離器104のパージガスとして用いられる。
[6.2. how to drive]
The anode off gas (A out ) of the SOFC 102a is sent to the feed flow path of the CO 2 separator 104 to remove CO 2 . A part of the off gas (B out ) discharged from the feed flow path of the CO 2 separator 104 is distributed to the condenser 106, and all or a part of the water vapor contained in B out is removed. The condensed water separated by the condenser 106 is supplied to the boiling cooling channel (A) and the boiling cooling channel (B) of the boiling cooling type valves 10 and 10 by the liquid pump P. Boiling water discharged from the boiling cooling type valves 10 and 10 is sent to the evaporator 114. Further, the water vapor generated by the evaporator 114 is used as a purge gas for the CO 2 separator 104.

この時、図7の左下図に示すように、沸騰冷却式CO2分離器80aの反応流路層82(フィード流路)にアノードオフガス(Aout)を流し、媒体流路層84にカソード用空気を流すと、カソード用空気により、フィード流路の温度が最適なCO2吸収温度域まで低下する。その結果、Aoutに含まれるCO2を効率良く除去することができる。また、CO2除去後のアノードオフガス(Bout)は、高温状態を維持したままSOFC102aのアノード流路に戻される。さらに、媒体流路層84から排出される熱交換後のカソード用空気は、SOFC発電用のカソード空気として使用される。 At this time, as shown in the lower left diagram of FIG. 7, the anode off gas (A out ) is caused to flow through the reaction flow path layer 82 (feed flow path) of the boiling cooling type CO 2 separator 80a, and the cathode flow through the medium flow path layer 84. When air is flowed, the temperature of the feed flow path is lowered to the optimum CO 2 absorption temperature range by the cathode air. As a result, CO 2 contained in A out can be efficiently removed. Further, the anode off gas (B out ) after the CO 2 removal is returned to the anode flow path of the SOFC 102a while maintaining the high temperature state. Further, the cathode air after heat exchange discharged from the medium flow path layer 84 is used as cathode air for SOFC power generation.

一方、沸騰冷却式CO2分離器80bの反応流路層82(パージ流路)に高温の水蒸気を流すと、CO2吸収材からCO2が放出される。これと同時に、媒体流路層84に高温のカソードオフガスを流すと、カソードオフガスの顕熱により、反応流路層82の温度が上昇する。冷却されたカソードオフガスは、カソード用空気と熱交換器(図示せず)にて熱交換後、系外に排出される。
所定時間経過後に、図7の右下図に示すように、パージ流路とフィード流路を切り替えると、CO2の吸収と放出を連続的に行うことができる。
On the other hand, when high-temperature water vapor is passed through the reaction flow path layer 82 (purge flow path) of the boiling cooled CO 2 separator 80b, CO 2 is released from the CO 2 absorbent. At the same time, when a high-temperature cathode off gas is allowed to flow through the medium channel layer 84, the temperature of the reaction channel layer 82 increases due to the sensible heat of the cathode off gas. The cooled cathode off-gas is discharged out of the system after heat exchange with cathode air and a heat exchanger (not shown).
When the purge flow path and the feed flow path are switched after the predetermined time has elapsed, as shown in the lower right diagram of FIG. 7, absorption and release of CO 2 can be performed continuously.

[7. SOECシステム]
[7.1. 構成]
図8に、本発明に係るSOECシステムの模式図を示す。図8において、SOECシステム100cは、
2O及びCO2から合成ガスを生成させる固体酸化物形電解セル(SOEC)102bと、
SOEC102bのカソードオフガス(以下、「A'out」ともいう)からCO2を分離する第1CO2分離器104と、
第1CO2分離器104のフィード流路から排出されるオフガス(Bout)から水蒸気の全部又は一部を分離するH2O分離器116と、
CO2源から供給されるガスからCO2を分離し、分離されたCO2をSOEC102bに供給する第2CO2分離器118と、
SOEC102bに電解用のH2Oを供給する蒸発器114a、114bと、
SOEC102bのカソードオフガス(A'out)に含まれる合成ガスから炭化水素を製造する燃料製造器120と、
第1CO2分離器104のパージ流路から排出される分離ガス(以下、「Cout」ともいう)をSOEC102bのカソード流路に戻すカソードオフガス循環手段と、
を備えている。
[7. SOEC system]
[7.1. Constitution]
FIG. 8 shows a schematic diagram of an SOEC system according to the present invention. In FIG. 8, the SOEC system 100c is
A solid oxide electrolytic cell (SOEC) 102b for generating synthesis gas from H 2 O and CO 2 ;
A first CO 2 separator 104 that separates CO 2 from the cathode off-gas (hereinafter also referred to as “A ′ out ”) of the SOEC 102b;
An H 2 O separator 116 that separates all or part of water vapor from off-gas (B out ) discharged from the feed flow path of the first CO 2 separator 104;
Separating the CO 2 from the gas supplied from the CO 2 source, a first 2CO 2 separator 118 supplies the separated CO 2 to SOEC102b,
Evaporator 114a, and 114b to supply of H 2 O for electrolysis SOEC102b,
A fuel generator 120 for producing hydrocarbons from synthesis gas contained in the cathode off-gas (A ′ out ) of the SOEC 102b;
Cathode off-gas circulation means for returning separation gas (hereinafter also referred to as “C out ”) discharged from the purge flow path of the first CO 2 separator 104 to the cathode flow path of the SOEC 102b;
It has.

[7.1.1. SOEC]
SOEC102bは、H2O及びCO2を原料として、合成ガス(H2+CO)を製造するためのものである。SOEC102bは、使用方法が異なる以外は、SOFC102aと同一の構造を備えている。
SOEC102bのカソード流路の入口は、第2CO2分離器118のパージ流路の出口に接続されている。また、カソード流路の出口は、第1CO2分離器104のフィード流路の入口に接続されている。
[7.1.1. SOEC]
The SOEC 102b is for producing synthesis gas (H 2 + CO) using H 2 O and CO 2 as raw materials. The SOEC 102b has the same structure as the SOFC 102a except that the usage method is different.
The cathode channel inlet of the SOEC 102 b is connected to the purge channel outlet of the second CO 2 separator 118. The outlet of the cathode channel is connected to the inlet of the feed channel of the first CO 2 separator 104.

[7.1.2. 第1CO2分離器、第2CO2分離器]
第1CO2分離器104は、SOEC102bのカソードオフガスから未反応原料(CO2)を回収するためのものである。一方、第2CO2分離器118は、CO2源(例えば、自動車、工場など)から排出されるガスからCO2を分離し、SOEC102bに供給するためのものである。
第1CO2分離器104及び第2CO2分離器118は、いずれも、本発明に係る2個の沸騰冷却式CO2分離器(図示せず)が並列に接続されたものからなる。
[7.1.2. The 1 CO 2 separator, the 2CO 2 separator]
The first CO 2 separator 104 is for recovering unreacted raw material (CO 2 ) from the cathode offgas of the SOEC 102b. On the other hand, the second CO 2 separator 118 is for separating CO 2 from gas discharged from a CO 2 source (for example, automobile, factory, etc.) and supplying it to the SOEC 102b.
Each of the first CO 2 separator 104 and the second CO 2 separator 118 is composed of two boiling-cooled CO 2 separators (not shown) according to the present invention connected in parallel.

第1CO2分離器104のフィード流路の入口は、SOEC102bのカソード流路の出口に接続され、第1CO2分離器104のフィード流路の出口は、H2O分離器116のフィード流路の入口に接続されている。第1CO2分離器104のパージ流路の入口は、蒸発器114aの出口に接続され、第1CO2分離器104のパージ流路の出口は、第2CO2分離器118のパージ流路の入口に接続されている。
第2CO2分離器118のフィード流路の入口は、CO2源(図示せず)に接続され、第2CO2分離器118のフィード流路の出口は、大気に開放されている。さらに、第2CO2分離器118のパージ流路の出口は、SOEC102bのカソード流路の入口に接続されている。
The inlet of the feed channel of the first CO 2 separator 104 is connected to the outlet of the cathode channel of the SOEC 102b, and the outlet of the feed channel of the first CO 2 separator 104 is the feed channel of the H 2 O separator 116. Connected to the entrance. Inlet of the purge flow path of the 1 CO 2 separator 104 is connected to the outlet of the evaporator 114a, the outlet of the purge flow path of the 1 CO 2 separator 104, to the inlet of the purge flow path of the 2CO 2 separator 118 It is connected.
The inlet of the feed channel of the 2CO 2 separator 118 is connected to the CO 2 source (not shown), the outlet of the feed channel of the 2CO 2 separator 118 is open to the atmosphere. Further, the outlet of the purge channel of the second CO 2 separator 118 is connected to the inlet of the cathode channel of the SOEC 102b.

[7.1.3. H2O分離器]
2O分離器116は、第1CO2分離器104のフィード流路から排出されるオフガス(Bout)から水蒸気の全部又は一部を分離するためのものである。分離されたH2Oは、第1CO2分離器104で回収されたCO2と共に、SOEC102bのカソード流路に戻される。
2O分離器116のフィード流路の入口は、第1CO2分離器104のフィード流路の出口に接続され、H2O分離器116のフィード流路の出口は、燃料製造器120の入口に接続されている。さらに、H2O分離器116のパージ流路の出口は、蒸発器114aの入口に接続されている。
[7.1.3. H 2 O separator]
The H 2 O separator 116 is for separating all or part of the water vapor from the off-gas (B out ) discharged from the feed flow path of the first CO 2 separator 104. The separated H 2 O, together with CO 2 recovered in the 1 CO 2 separator 104 is returned to the cathode channel of SOEC102b.
The inlet of the feed channel of the H 2 O separator 116 is connected to the outlet of the feed channel of the 1 CO 2 separator 104, the outlet of the feed channel of the H 2 O separator 116, the inlet of the fuel production 120 It is connected to the. Further, the outlet of the purge flow path of the H 2 O separator 116 is connected to the inlet of the evaporator 114a.

[7.1.4. 蒸発器]
蒸発器114a、114bは、液ポンプPを介して水供給源(図示せず)から供給される水を蒸発させ、SOEC102bに電解用のH2Oを供給するためのものである。発生させたH2Oは、CO2のパージにも用いられる。
また、SOECシステム100cは、電解用のH2Oを沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給する水供給手段(B)を備えている。すなわち、SOECシステム100cにおいて、水は、直接、蒸発器114a、114bには供給されず、沸騰冷却式CO2分離器(第1CO2分離器104、第2CO2分離器118)の沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給される。蒸発器114a、114bには、沸騰冷却流路(A)及び沸騰冷却流路(B)から排出される沸騰水が供給される。
[7.1.4. Evaporator]
Evaporator 114a, 114b through the liquid pump P to evaporate the water supplied from the water supply source (not shown), is intended to supply of H 2 O for electrolysis SOEC102b. The generated H 2 O is also used for purging CO 2 .
The SOEC system 100c also includes water supply means (B) for supplying H 2 O for electrolysis to the boiling cooling channel (A) and the boiling cooling channel (B), respectively. That is, in SOEC system 100c, water is directly evaporator 114a, not supplied to the 114b, boiling cooling channels boiling cooled CO 2 separator (first 1 CO 2 separator 104, first 2CO 2 separator 118) (A) and the boiling cooling channel (B) are respectively supplied. Boiling water discharged from the boiling cooling channel (A) and the boiling cooling channel (B) is supplied to the evaporators 114a and 114b.

第1CO2分離器104の沸騰冷却式バルブ10、10の入口は、液ポンプPを介して水供給源(図示せず)に接続されている。沸騰冷却式バルブ10、10の出口は、蒸発器114aの入口に接続されている。さらに、蒸発器114aの出口は、第1CO2分離器104のパージ流路の入口に接続されている。
同様に、第2CO2分離器104の沸騰冷却式バルブ10、10の入口は、液ポンプPを介して水供給源(図示せず)に接続されている。沸騰冷却式バルブ10、10の出口は、蒸発器114bの入口に接続されている。さらに、蒸発器114bの出口は、第2CO2分離器118のパージ流路の出口に接続されている。
The inlets of the boiling cooling valves 10 and 10 of the first CO 2 separator 104 are connected to a water supply source (not shown) via a liquid pump P. The outlets of the boiling cooling type valves 10 and 10 are connected to the inlet of the evaporator 114a. Further, the outlet of the evaporator 114 a is connected to the inlet of the purge flow path of the first CO 2 separator 104.
Similarly, the inlets of the boiling cooling type valves 10 and 10 of the second CO 2 separator 104 are connected to a water supply source (not shown) via the liquid pump P. The outlets of the boiling cooling type valves 10 and 10 are connected to the inlet of the evaporator 114b. Further, the outlet of the evaporator 114 b is connected to the outlet of the purge flow path of the second CO 2 separator 118.

[7.1.5. 燃料製造器]
燃料製造器120は、SOEC102bのカソードオフガス(A'out)に含まれる合成ガスから炭化水素を製造するためのものである。燃料製造器120の構造は、特に限定されるものではなく、公知の装置を用いることができる。
[7.1.5. Fuel maker]
The fuel producer 120 is for producing hydrocarbons from synthesis gas contained in the cathode offgas (A ′ out ) of the SOEC 102b. The structure of the fuel maker 120 is not particularly limited, and a known device can be used.

[7.1.6. カソードオフガス循環手段]
カソードオフガス循環手段は、第1CO2分離器104のパージ流路から排出される分離ガス(Cout)をSOEC102bのカソード流路に戻すための手段である。図8に示す例において、第1CO2分離器104のパージ流路の出口は、第2CO2分離器118を介して、SOEC102bのカソード流路の入口に接続されている。また、第1CO2分離器104では、H2O分離器116から排出される水蒸気を用いて、CO2のパージを行っている。そのため、本実施の形態において、カソードオフガス循環手段は、第1CO2分離器104、第2CO2分離器118、及びH2O分離器116、並びに、これらを繋ぐ配管により構成されていてる。
[7.1.6. Cathode off-gas circulation means]
The cathode off-gas circulation means is means for returning the separation gas (C out ) discharged from the purge flow path of the first CO 2 separator 104 to the cathode flow path of the SOEC 102b. In the example shown in FIG. 8, the outlet of the purge flow path of the first CO 2 separator 104 is connected to the inlet of the cathode flow path of the SOEC 102b via the second CO 2 separator 118. In the first CO 2 separator 104, CO 2 is purged using the water vapor discharged from the H 2 O separator 116. Therefore, in this embodiment, cathode off-gas circulation means, first 1 CO 2 separator 104, first 2CO 2 separator 118, and H 2 O separator 116, and it has been configured by a pipe connecting these.

[7.2. 運転方法]
第2CO2分離器118のフィード流路にCO2を含むガスを供給する。これと同時に、蒸発器114bに水を供給し、水蒸気を発生させる。発生した水蒸気を第2CO2分離器118のパージ流路に流すと、パージ流路からH2OとCO2の混合ガスが排出される。
2OとCO2の混合ガスをSOEC102bのカソード流路に供給し、電極間に電力を供給すると、H2OとCO2の共電解が起こる。その結果、SOEC102bのカソード流路から、H2とCOを含むカソードオフガス(A'out)が排出される。
[7.2. how to drive]
A gas containing CO 2 is supplied to the feed flow path of the second CO 2 separator 118. At the same time, water is supplied to the evaporator 114b to generate water vapor. When flow generated steam purge flow path of the 2CO 2 separator 118, a mixed gas of between H 2 O and CO 2 are discharged from the purge flow path.
When a mixed gas of H 2 O and CO 2 is supplied to the cathode channel of the SOEC 102b and electric power is supplied between the electrodes, co-electrolysis of H 2 O and CO 2 occurs. As a result, the cathode off gas (A ′ out ) containing H 2 and CO is discharged from the cathode flow path of the SOEC 102b.

カソードオフガス(A'out)は、第1CO2分離器104でCO2が除去され、かつ、H2O分離器116でH2Oが除去された後、燃料製造器120に供給される。燃料製造器120では、A'outに含まれるH2及びCOから炭化水素が合成される。
また、H2O分離器116で分離されたH2Oは、蒸発器114aに送られる。蒸発器114aで発生させた水蒸気は、第1CO2分離器104に送られ、CO2のパージに用いられる。その結果、第1CO2分離器104のパージ流路から、CO2及びH2Oを含む混合ガスが排出される。得られた混合ガスは、蒸発器114b、及び第2CO2分離器118を通って、SOEC10bのカソード流路に戻される。
The cathode off gas (A ′ out ) is supplied to the fuel producer 120 after CO 2 is removed by the first CO 2 separator 104 and H 2 O is removed by the H 2 O separator 116. In the fuel producer 120, hydrocarbons are synthesized from H 2 and CO contained in A ′ out .
Also, H 2 O, separated with H 2 O separator 116 is sent to the evaporator 114a. Steam generated in the evaporator 114a is sent to the 1 CO 2 separator 104, it is used to purge the CO 2. As a result, the mixed gas containing CO 2 and H 2 O is discharged from the purge flow path of the first CO 2 separator 104. The obtained mixed gas is returned to the cathode flow path of the SOEC 10b through the evaporator 114b and the second CO 2 separator 118.

一方、沸騰冷却バルブ10、10…には、液ポンプPを介して水が供給される。供給された水は、沸騰冷却流路(A)及び沸騰冷却流路(B)において沸騰水となる。沸騰冷却バルブ10、10…から排出された沸騰水は、蒸発器114a、114bに送られ、水蒸気となる。得られた水蒸気は、電解用原料及びパージガスとして、第1CO2分離器104、第2CO2分離器118、及びSOEC102bに送られる。 On the other hand, water is supplied to the boiling cooling valves 10, 10. The supplied water becomes boiling water in the boiling cooling channel (A) and the boiling cooling channel (B). The boiling water discharged from the boiling cooling valves 10, 10... Is sent to the evaporators 114a and 114b to become water vapor. The resulting water vapor, as the electrolyte for raw material and the purge gas, the 1 CO 2 separator 104 is sent first 2CO 2 separator 118, and SOEC102b.

[8. R−SOCシステム]
[8.1. 構成]
図9に、本発明に係るR−SOCシステムの模式図を示す。図9において、R−SOCシステム100dは、
燃料から電力を生成するSOFCモードと、H2O及びCO2から合成ガスを生成させるSOECモードとを切替可能なリバーシブルSOC(R−SOC)102cと、
R−SOC102cのオフガス(Aout又はA'out)からCO2を分離する第1CO2分離器104と、
第1CO2分離器104のフィード流路から排出されるオフガス(Bout)から水蒸気の全部又は一部を分離するH2O分離器116と、
前記Boutに含まれる水蒸気を凝縮させ、凝縮水を得る凝縮器106と、
R−SOC102cがSOECモードにある時に、CO2源から供給されるガスからCO2を分離し、分離されたCO2をR−SOC102cに供給する第2CO2分離器118と、
R−SOC102cがSOECモードにある時に、R−SOC102cに電解用のH2Oを供給する蒸発器114a、114bと、
R−SOC102cがSOECモードにある時に、R−SOC102cのオフガス(A'out)に含まれる合成ガスから炭化水素を製造し、貯蔵する燃料製造・貯蔵手段と、
R−SOC102cがSOECモードにある時に、第1CO2分離器104のパージ流路から排出される分離ガス(Cout)をR−SOC102cのカソード流路に戻すカソードオフガス循環手段と、
R−SOC102cがSOFCモードにある時に、前記水蒸気の全部又は一部が分離された前記BoutをR−SOC102cのアノード流路に戻すアノードオフガス循環手段と、
R−SOC102cがSOFCモードにある時に、貯蔵された前記炭化水素をR−SOC102cに供給する燃料供給手段と
を備えている。
[8. R-SOC system]
[8.1. Constitution]
FIG. 9 shows a schematic diagram of an R-SOC system according to the present invention. In FIG. 9, the R-SOC system 100d
Reversible SOC (R-SOC) 102c capable of switching between an SOFC mode for generating electric power from fuel and an SOEC mode for generating syngas from H 2 O and CO 2 ;
A first CO 2 separator 104 that separates CO 2 from off-gas (A out or A ′ out ) of the R-SOC 102c;
An H 2 O separator 116 that separates all or part of water vapor from off-gas (B out ) discharged from the feed flow path of the first CO 2 separator 104;
A condenser 106 for condensing water vapor contained in the B out to obtain condensed water;
When in the R-SOC102c is SOEC mode, to separate the CO 2 from the gas supplied from the CO 2 source, a first 2CO 2 separator 118 supplies the separated CO 2 to the R-SOC102c,
Evaporators 114a and 114b for supplying H 2 O for electrolysis to the R-SOC 102c when the R-SOC 102c is in the SOEC mode;
Fuel production / storage means for producing and storing hydrocarbons from synthesis gas contained in off-gas (A ′ out ) of R-SOC 102c when R-SOC 102c is in the SOEC mode;
Cathode off-gas circulation means for returning separation gas (C out ) discharged from the purge flow path of the first CO 2 separator 104 to the cathode flow path of the R-SOC 102c when the R-SOC 102c is in the SOEC mode;
An anode off-gas circulating means for returning the B out from which all or part of the water vapor has been separated to the anode flow path of the R-SOC 102c when the R-SOC 102c is in the SOFC mode;
Fuel supply means for supplying the stored hydrocarbons to the R-SOC 102c when the R-SOC 102c is in the SOFC mode.

すなわち、図9に示すR−SOCシステム100dは、図7に示すSOFCシステム100bと、図8に示すSOECシステム100cとを組み合わせたものからなる。
換言すれば、図9に示すR−SOCシステム100dは、図8に示すSOECシステム100cに対して、
(a)凝縮器106、
(b)エジェクタ110(アノードオフガス循環手段、燃料供給手段)、並びに、
(c)貯蔵タンク122、第1調圧器124、及び第2調圧器126(燃料製造・貯蔵手段、燃料供給手段)
が付加されたものからなる。
That is, the R-SOC system 100d shown in FIG. 9 is a combination of the SOFC system 100b shown in FIG. 7 and the SOEC system 100c shown in FIG.
In other words, the R-SOC system 100d shown in FIG. 9 is different from the SOEC system 100c shown in FIG.
(A) the condenser 106,
(B) Ejector 110 (anode off gas circulation means, fuel supply means), and
(C) Storage tank 122, first pressure regulator 124, and second pressure regulator 126 (fuel production / storage means, fuel supply means)
Is added.

[8.1.1. R−SOC]
R−SOC102cは、燃料から電力を生成するSOFCモードと、H2O及びCO2から合成ガスを生成させるSOECモードとを切替可能なものからなる。R−SOC102cは、使用方法が異なる以外は、SOFC又はSOECと同一の構造を備えている。
[8.1.1. R-SOC]
The R-SOC 102c can be switched between a SOFC mode for generating electric power from fuel and a SOEC mode for generating synthesis gas from H 2 O and CO 2 . The R-SOC 102c has the same structure as the SOFC or SOEC except that the usage method is different.

[8.1.2. 第1CO2分離器、第2CO2分離器]
第1CO2分離器104は、R−SOC102cのオフガス(SOFCモード時はアノードオフガス(Aout)、SOECモード時はカソードオフガス(A'out))からCO2を分離するためのものである。第2CO2分離器118は、R−SOC102cがSOECモードにある時に、CO2源から供給されるガスからCO2を分離し、分離されたCO2をR−SOC102cに供給するためのものである。
[8.1.2. The 1 CO 2 separator, the 2CO 2 separator]
The first CO 2 separator 104 is for separating CO 2 from the off-gas of the R-SOC 102c (the anode off-gas (A out ) in the SOFC mode and the cathode off-gas (A ′ out ) in the SOEC mode). The second CO 2 separator 118 is for separating CO 2 from the gas supplied from the CO 2 source and supplying the separated CO 2 to the R-SOC 102c when the R-SOC 102c is in the SOEC mode. .

第1CO2分離器104のパージ流路の出口と第2CO2分離器118のパージ流路の入口との間には、第3三方弁V33が設けられている。第3三方弁V33は、R−SOC102cがSOFCモードにある時に、第2CO2分離器118をシステムから切り離すためのものである。
第1CO2分離器104及び第2CO2分離器118に関するその他の点については、図8に示すSOECシステム100cと同様であるので、説明を省略する。
Between the inlet of the purge flow path of the 1 CO 2 separator 104 of the purge flow path outlet and the 2CO 2 separator 118, the third three-way valve V33 are provided. The third three-way valve V33 is for disconnecting the second CO 2 separator 118 from the system when the R-SOC 102c is in the SOFC mode.
The other points relating to the 1 CO 2 separator 104 and the 2CO 2 separator 118 is the same as SOEC system 100c shown in FIG. 8, a description thereof will be omitted.

[8.1.3. H2O分離器]
2O分離器116は、第1CO2分離器104のフィード流路から排出されるオフガス(Bout)から水蒸気の全部又は一部を分離するためのものである。H2O分離器116のフィード流路の出口と燃料製造器120の入口との間には、第2三方弁V32が設けられている。第2三方弁V32は、R−SOC102cがSOFCモードにある時に、アノードオフガスをエジェクタ110の吸引側に戻すためのものであり、アノードオフガス循環手段の一部を構成する。
[8.1.3. H 2 O separator]
The H 2 O separator 116 is for separating all or part of the water vapor from the off-gas (B out ) discharged from the feed flow path of the first CO 2 separator 104. A second three-way valve V32 is provided between the feed channel outlet of the H 2 O separator 116 and the fuel producer 120 inlet. The second three-way valve V32 is for returning the anode off gas to the suction side of the ejector 110 when the R-SOC 102c is in the SOFC mode, and constitutes a part of the anode off gas circulation means.

また、H2O分離器116のパージ流路と蒸発器114aとの間には、第2開閉バルブV2が設けられている。第2開閉バルブV2は、SOFCモード時にH2O分離器116をシステムから切り離すために用いられる。
2O分離器116に関するその他の点については、図8に示すSOECシステム100cと同様であるので、説明を省略する。
A second open / close valve V2 is provided between the purge flow path of the H 2 O separator 116 and the evaporator 114a. The second on-off valve V2 is used to disconnect the H 2 O separator 116 from the system during the SOFC mode.
The other points regarding the H 2 O separator 116 are the same as those of the SOEC system 100c shown in FIG.

[8.1.4. 凝縮器]
凝縮器106は、R−SOC102cがSOFCモードにある時に、Boutに含まれる水蒸気を凝縮させ、凝縮水を得るために用いられる。得られた凝縮水は、第1開閉バルブV1及び液ポンプP1を介して、第1CO2分離器104の沸騰冷却バルブ10、10…に供給される。
すなわち、R−SOCシステム100dは、R−SOC102cがSOFCモードにある時に、凝縮器106で凝縮させた水を第1CO2分離器104(沸騰冷却式CO2分離器)の沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給する水供給手段(A)を備えている。
[8.1.4. Condenser]
Condenser 106, when the R-SOC102c is in SOFC mode, to condense water vapor contained in B out, used to obtain the condensed water. The obtained condensed water is supplied to the boiling cooling valves 10, 10... Of the first CO 2 separator 104 via the first opening / closing valve V1 and the liquid pump P1.
That, R-SOC system 100d, when the R-SOC102c is in SOFC mode, boiling cooling channels were condensed in the condenser 106 water first 1 CO 2 separator 104 (boiling cooled CO 2 separator) (A ) And a water cooling means (A) for supplying the water to the boiling cooling flow path (B).

また、凝縮器106の出口とH2O分離器116の出口との間には、流量制御バルブVcが設けられている。流量制御バルブVcは、SOFCモード時に凝縮器106に分配するBoutの量を制御するために用いられる。
凝縮器106に関するその他の点については、図7に示すSOFCシステム100bと同様であるので、説明を省略する。
A flow rate control valve V c is provided between the outlet of the condenser 106 and the outlet of the H 2 O separator 116. The flow control valve V c is used to control the amount of B out distributed to the condenser 106 in the SOFC mode.
Since the other points regarding the condenser 106 are the same as those of the SOFC system 100b shown in FIG.

[8.1.5. 蒸発器]
蒸発器114a、114bは、液ポンプP2を介して水供給源(図示せず)から供給される水を蒸発させ、SOEC102bに電解用のH2Oを供給するためのものである。
また、R−SOCシステム100dは、電解用のH2Oを沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給する水供給手段(B)を備えている。すなわち、R−SOCシステム100dにおいて、水は、直接、蒸発器114a、114bには供給されず、第1CO2分離器104、第2CO2分離器118(沸騰冷却式CO2分離器)の沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給される。蒸発器114a、114bには、沸騰冷却流路(A)及び沸騰冷却流路(B)から排出される沸騰水が供給される。
蒸発器114a、114bに関するその他の点については、図8に示すSOECシステム100cと同様であるので、説明を省略する。
[8.1.5. Evaporator]
The evaporators 114a and 114b are for evaporating water supplied from a water supply source (not shown) via the liquid pump P2 and supplying H 2 O for electrolysis to the SOEC 102b.
The R-SOC system 100d also includes water supply means (B) for supplying H 2 O for electrolysis to the boiling cooling channel (A) and the boiling cooling channel (B), respectively. That is, in the R-SOC system 100d, water is not supplied directly to the evaporators 114a and 114b, and the first CO 2 separator 104 and the second CO 2 separator 118 (boiling cooled CO 2 separator) are boiled and cooled. It supplies to a flow path (A) and a boiling cooling flow path (B), respectively. Boiling water discharged from the boiling cooling channel (A) and the boiling cooling channel (B) is supplied to the evaporators 114a and 114b.
Since the other points regarding the evaporators 114a and 114b are the same as those of the SOEC system 100c shown in FIG.

[8.1.6. 貯蔵タンク、第1調圧器、第2調圧器]
貯蔵タンク112は、燃料製造器120で製造された炭化水素を貯蔵するためのものである。第1調圧器124は、燃料製造器120から排出されたガスを減圧又は昇圧するためのものである。また、第2調圧器126は、貯蔵タンク112から排出されたガスを昇圧又は減圧するためのものである。第1調圧器124と貯蔵タンク122の間には、第5開閉バルブV5が設けられている。また、第2調圧器126とエジェクタ110との間には、第4開閉バルブV4が設けられている。
[8.1.6. Storage tank, first pressure regulator, second pressure regulator]
The storage tank 112 is for storing hydrocarbons produced by the fuel producer 120. The first pressure regulator 124 is for reducing or increasing the pressure of the gas discharged from the fuel producer 120. The second pressure regulator 126 is for increasing or decreasing the pressure of the gas discharged from the storage tank 112. A fifth open / close valve V <b> 5 is provided between the first pressure regulator 124 and the storage tank 122. A fourth open / close valve V4 is provided between the second pressure regulator 126 and the ejector 110.

[8.1.7. エジェクタ]
エジェクタ110は、R−SOCシステム100dがSOFCモードにある時に、R−SOC100cに燃料を供給し、かつ、アノードオフガスを循環させるためのものである。エジェクタ110の出口は、第1三方弁V31を介してR−SOC102cのアノード流路に接続されている。また、第1三方弁V31の残りの入口は、第2CO2分離器118のパージ流路の出口に接続されている。
[8.1.7. Ejector]
The ejector 110 is for supplying fuel to the R-SOC 100c and circulating the anode off-gas when the R-SOC system 100d is in the SOFC mode. The outlet of the ejector 110 is connected to the anode flow path of the R-SOC 102c via the first three-way valve V31. The remaining inlet of the first three-way valve V31 is connected to the outlet of the purge flow path of the second CO 2 separator 118.

第1三方弁V31は、
(a)R−SOCシステム100dがSOECモードにある時に、エジェクタ110をシステムから切り離すため、及び、
(b)R−SOCシステム100dがSOFCモードにある時に、第2CO2分離器118をシステムから切り離すため
に用いられる。
The first three-way valve V31 is
(A) to disconnect the ejector 110 from the system when the R-SOC system 100d is in the SOEC mode; and
(B) Used to disconnect the second CO 2 separator 118 from the system when the R-SOC system 100d is in the SOFC mode.

[8.2. 運転方法]
[8.2.1. SOFCモード]
SOFCモードで運転する場合、第1三方弁V31を介して、R−SOC102cとエジェクタ110とを接続する。また、第2開閉バルブV2を閉とし、H2O分離器116をシステムから切り離す。また、第2三方弁V32をエジェクタ110側に切り替えて、燃料製造器120をシステムから切り離す。さらに、第3三方弁を大気側に切り替えて、第2CO2分離器118をシステムから切り離す。この状態で、貯蔵タンク112からR−SOC102cに燃料を供給する。以下、図7に示すSOFCシステム100bと同様にして、発電を行う。
[8.2. how to drive]
[8.2.1. SOFC mode]
When operating in the SOFC mode, the R-SOC 102c and the ejector 110 are connected via the first three-way valve V31. Further, the second opening / closing valve V2 is closed, and the H 2 O separator 116 is disconnected from the system. Further, the second three-way valve V32 is switched to the ejector 110 side to disconnect the fuel producer 120 from the system. Further, the third three-way valve is switched to the atmosphere side to disconnect the second CO 2 separator 118 from the system. In this state, fuel is supplied from the storage tank 112 to the R-SOC 102c. Thereafter, power generation is performed in the same manner as the SOFC system 100b shown in FIG.

[8.2.2. SOECモード]
SOECモードで運転する場合、第1三方弁V31を介して、R−SOC102cと第2CO2分離器118とを接続する。また、第2開閉バルブV2を開とし、H2O分離器116をシステムに接続する。また、第2三方弁V32を燃料製造器120側に切り替える。さらに、第3三方弁V33を介して第1CO2分離器104と第2CO2分離器118とを接続する。以下、図8に示すSOECシステム100cと同様にして、H2OとCO2の共電解を行う。また、燃料製造器120において合成ガスから炭化水素を合成し、得られた炭化水素を貯蔵タンク122に貯蔵する。
[8.2.2. SOEC mode]
When operating in the SOEC mode, the R-SOC 102c and the second CO 2 separator 118 are connected via the first three-way valve V31. Further, the second on-off valve V2 is opened, and the H 2 O separator 116 is connected to the system. The second three-way valve V32 is switched to the fuel producer 120 side. Furthermore, connected to the first 1 CO 2 separator 104 via a third three-way valve V33 and a second 2CO 2 separator 118. Thereafter, co-electrolysis of H 2 O and CO 2 is performed in the same manner as in the SOEC system 100c shown in FIG. Further, the fuel maker 120 synthesizes hydrocarbons from the synthesis gas, and stores the obtained hydrocarbons in the storage tank 122.

[9. 作用]
[9.1. 沸騰冷却式CO2分離器]
[9.1.1. 反応流路層と媒体流路層との間の熱交換]
アノードオフガス循環式SOFCシステムでは、循環ガス中の生成物(CO2、H2O)の濃度が増大すると、濃度分極の増加により発電起電力が低下する。このため、循環ガス中の反応生成物の除去が必要となる。一方、ガス循環は、可燃成分の有効利用の他、オフガスの顕熱を再利用することができる。その結果、系外への放熱量が低減され、発電効率を向上させることが可能となる。そのためには、循環ガス中のCO2を高温で除去することが必要不可欠となる。
[9. Action]
[9.1. Boiling-cooled CO 2 separator]
[9.1.1. Heat exchange between reaction channel layer and medium channel layer]
In the anode off-gas circulation SOFC system, when the concentration of the product (CO 2 , H 2 O) in the circulation gas increases, the generated electromotive force decreases due to an increase in concentration polarization. For this reason, it is necessary to remove reaction products in the circulating gas. On the other hand, the gas circulation can reuse the sensible heat of off-gas in addition to effective use of combustible components. As a result, the amount of heat released to the outside of the system is reduced, and the power generation efficiency can be improved. For that purpose, it is indispensable to remove CO 2 in the circulating gas at a high temperature.

CO2吸収/放出反応を利用したCO2ガス分離では、2台の分離器をバッチ方式で切り替えることにより、連続的なガス分離が可能となる。CO2放出/吸収反応を独立に作動させるためには、カソードオフガスとの熱交換/反応流路へのアノードオフガスの供給を切り替え可能な合計8個の高温耐熱バルブが必要となる。SOFC/SOECの作動温度は高温(700〜800℃)であるため、金属やセラミックスを原料としたガスシールが必要となる。 In the CO 2 gas separation using the CO 2 absorption / release reaction, continuous gas separation can be performed by switching two separators in a batch system. In order to operate the CO 2 release / absorption reaction independently, a total of eight high temperature heat resistant valves capable of switching the heat exchange with the cathode off gas / the supply of the anode off gas to the reaction flow path are required. Since the operating temperature of SOFC / SOEC is high (700 to 800 ° C.), a gas seal using metal or ceramic as a raw material is required.

しかし、従来の高温耐熱バルブは、低・中温用バルブと比較してコストが高く、長期連続使用時における耐久性にも問題がある。また、不完全なガスシールでは、循環ガス中の燃料ガス濃度の低下/系外への放出によりシステム効率が低下するため、連続的な気密シールが要求される。シールの気密性を確保するためには、シール部における高い圧力が必要で、駆動のための高圧空気・電気エネルギーが必要となる。   However, the conventional high-temperature heat-resistant valve is more expensive than the low / medium temperature valve and has a problem in durability during long-term continuous use. Further, incomplete gas seals require continuous airtight seals because the system efficiency is reduced due to a decrease in the concentration of fuel gas in the circulating gas / release to the outside of the system. In order to ensure the hermeticity of the seal, a high pressure in the seal portion is required, and high-pressure air / electric energy for driving is required.

これに対し、図4に示す沸騰冷却式CO2分離器80は、ハウジング部20内にバルブ部40が摺動可能に収容された沸騰冷却式バルブ(第1切替バルブ86a、86b、第2切替バルブ88a、88b)を備えている。これらの沸騰冷却式バルブは、電気エネルギー、空気圧力エネルギーなどを用いてバルブを開閉することができる。 On the other hand, the boiling cooling type CO 2 separator 80 shown in FIG. 4 is a boiling cooling type valve (first switching valves 86a and 86b, second switching valves) in which the valve unit 40 is slidably accommodated in the housing unit 20. Valves 88a and 88b) are provided. These boiling cooling valves can be opened and closed using electrical energy, air pressure energy, and the like.

CO2吸収時では、媒体流路層84側(第2切替バルブ88a、88b側)においてバルブ部40が下方向に移動し、第2室24と第3室26が接続される。その結果、媒体流路層84に、カソードInガス(カソード用空気)を流すことが可能となる。
一方、反応流路層82側(第1切替バルブ86a、86b側)では、バルブ部40が下方向に移動し、第2室24と第3室26が接続される。その結果、反応流路層82には、アノードオフガスを流すことが可能となる。また、CO2吸収反応により温度が上昇した反応流路層82をカソードInガスにより冷却することができる。
At the time of CO 2 absorption, the valve section 40 moves downward on the medium flow path layer 84 side (second switching valves 88a and 88b side), and the second chamber 24 and the third chamber 26 are connected. As a result, the cathode In gas (cathode air) can flow through the medium flow path layer 84.
On the other hand, on the reaction channel layer 82 side (first switching valves 86a and 86b side), the valve unit 40 moves downward, and the second chamber 24 and the third chamber 26 are connected. As a result, the anode off gas can flow through the reaction channel layer 82. In addition, the reaction channel layer 82 whose temperature has been increased by the CO 2 absorption reaction can be cooled by the cathode In gas.

CO2放出時では、媒体流路層84側(第2切替バルブ88a、88b側)においてバルブ部40が上方向に移動し、第1室22と第3室26が接続される。その結果、媒体流路層84にカソードオフガスを流すことができる。
一方、反応流路層82側(第1切替バルブ86a、86b側)では、バルブ部が上方向に移動し、第1室22と第3室26が接続される。その結果、反応流路層82にパージガスを流すことができる。また、媒体流路層84に供給されるカソードオフガスを熱源として、CO2放出反応が進行する。
At the time of CO 2 release, the valve unit 40 moves upward on the medium flow path layer 84 side (second switching valves 88a and 88b side), and the first chamber 22 and the third chamber 26 are connected. As a result, the cathode off gas can flow through the medium flow path layer 84.
On the other hand, on the reaction channel layer 82 side (first switching valves 86a and 86b side), the valve portion moves upward, and the first chamber 22 and the third chamber 26 are connected. As a result, the purge gas can flow through the reaction channel layer 82. Further, the CO 2 releasing reaction proceeds using the cathode off gas supplied to the medium flow path layer 84 as a heat source.

[9.1.2. 2重管式流路構造]
沸騰冷却式バルブ10のシャフト42が2重管式流路構造であり、かつ、内管と外管との間に緻密なセラミックスからなる断熱材が挿入されている場合において、内管に冷却水を流し、外管に沸騰冷却後の沸騰水(沸点温度)を流すと、内管と外管の温度差を小さくすることができる。これにより、冷却水への入熱量が抑制され、冷却水が沸騰冷却流路へ到達するまでのクオリティ(=気化分の蒸発潜熱[W]/供給水全量の蒸発潜熱出力[W])の増加を抑制することができる。
[9.1.2. Double pipe channel structure]
When the shaft 42 of the boiling cooling type valve 10 has a double-pipe type flow path structure and a heat insulating material made of dense ceramics is inserted between the inner pipe and the outer pipe, the cooling water is supplied to the inner pipe. When boiling water (boiling point temperature) after boiling cooling is passed through the outer pipe, the temperature difference between the inner pipe and the outer pipe can be reduced. As a result, the amount of heat input to the cooling water is suppressed, and the quality until the cooling water reaches the boiling cooling flow path (= evaporation latent heat [W] for vaporization / evaporation latent heat output [W] of the total amount of supplied water) is increased. Can be suppressed.

[9.1.3. シール部材、及び沸騰冷却流路]
本発明に係る沸騰冷却式バルブ10において、気密性の高いガスシールを得るために、バルブ部40とハウジング部20のシール面の間に高温耐熱性のシール部材52、54(例えば、PEEK材等、耐熱温度380℃)が挿入されている。また、シール面の近傍には沸騰冷却流路が設けられ、沸騰冷却流路内に冷却水を流せるようになっている。そのため、シール面とシール部材52、54との間の温度差を小さくすることができる。
[9.1.3. Seal member and boiling cooling channel]
In the boiling cooling type valve 10 according to the present invention, in order to obtain a gas seal with high airtightness, high temperature and heat resistant seal members 52 and 54 (for example, PEEK material or the like) are provided between the valve portion 40 and the seal surface of the housing portion 20. , Heat resistant temperature of 380 ° C.). In addition, a boiling cooling channel is provided in the vicinity of the seal surface so that cooling water can flow in the boiling cooling channel. Therefore, the temperature difference between the sealing surface and the sealing members 52 and 54 can be reduced.

特に、熱伝達率の高い対流核沸騰熱伝達(1.0×105W/m2/K)による冷却効果により、沸騰水の温度を供給水の圧力における沸点温度に制御することができる。また、ハウジング部20及びバルブ部40のシール面近傍の材料がステンレス鋼(熱伝導率17W/m/K)などの金属からなる場合、シール部材52、54と沸騰冷却流路との間の温度差が小さい場合であっても、熱輸送が可能となる。また、沸騰冷却流路に供給する冷却水の圧力を制御すると、沸騰水の沸点温度、及びシール部材52、54の温度を制御することができる。 In particular, the temperature of the boiling water can be controlled to the boiling point temperature of the feed water by the cooling effect by convective nucleate boiling heat transfer (1.0 × 10 5 W / m 2 / K) having a high heat transfer coefficient. Further, when the material in the vicinity of the seal surface of the housing part 20 and the valve part 40 is made of a metal such as stainless steel (thermal conductivity 17 W / m / K), the temperature between the seal members 52 and 54 and the boiling cooling flow path. Even if the difference is small, heat transport is possible. Moreover, if the pressure of the cooling water supplied to the boiling cooling flow path is controlled, the boiling temperature of the boiling water and the temperatures of the seal members 52 and 54 can be controlled.

バルブ部40のシャフト42及びハウジング部20からの熱伝導、並びに、高温ガス(700℃)からの熱伝導による入熱と、沸騰冷却流路(沸点温度)への放熱との熱バランスにより、シール面の温度をシール部材52、54の耐熱温度以下に制御することができる。その結果、バルブ44、46のシール性と耐久性の確保を両立させることができる。
バルブ簡易モデルによる沸騰冷却解析(FEM解析)により、バルブ44、46側のシール面の温度を699.5℃から275℃(PEEK製シール部材内部の最大温度)まで低減できることが分かった。一方、ハウジング部20のシール面の温度は、沸騰冷却効果により117.6℃まで低下することがわかった。これにより、バルブ閉時におけるシール部材52、54の高温接触を回避し、開閉サイクルの耐久性を向上することができる。
Sealing is achieved by the heat balance between the heat conduction from the shaft 42 and the housing part 20 of the valve part 40 and the heat input from the high-temperature gas (700 ° C.) and the heat radiation to the boiling cooling channel (boiling point temperature). The surface temperature can be controlled below the heat resistance temperature of the seal members 52 and 54. As a result, both the sealing performance and durability of the valves 44 and 46 can be ensured.
It was found by boiling cooling analysis (FEM analysis) using a simple valve model that the temperature of the seal surfaces on the side of the valves 44 and 46 can be reduced from 699.5 ° C. to 275 ° C. (maximum temperature inside the PEEK seal member). On the other hand, it has been found that the temperature of the sealing surface of the housing part 20 decreases to 117.6 ° C. due to the boiling cooling effect. Thereby, the high temperature contact of the sealing members 52 and 54 when the valve is closed can be avoided, and the durability of the open / close cycle can be improved.

[9.2. 沸騰冷却式蒸気駆動バルブ]
図3に示す沸騰冷却式バルブ10bは、ハウジング部20の上部に蒸気バッファタンク62が設けられ、蒸気バッファタンク62内にはピストン64が挿入され、ピストン64とバルブ部40のシャフト42とが連結されている。さらに、ピストン64の上面及び下面は、それぞれ、沸騰冷却流路の出口に連結している。このような構成を備えた沸騰冷却式バルブ10bにおいて、沸騰冷却流路から排出される沸騰水をピストン64の上面又は下面に排出すると、沸騰水に含まれる水蒸気の圧力によりバルブ44、46を開閉することができる。
[9.2. Boiling cooled steam driven valve]
The boiling cooling type valve 10b shown in FIG. 3 is provided with a vapor buffer tank 62 in the upper part of the housing part 20, a piston 64 is inserted into the vapor buffer tank 62, and the piston 64 and the shaft 42 of the valve part 40 are connected. Has been. Furthermore, the upper surface and the lower surface of the piston 64 are respectively connected to the outlet of the boiling cooling channel. In the boiling cooling type valve 10b having such a configuration, when the boiling water discharged from the boiling cooling channel is discharged to the upper surface or the lower surface of the piston 64, the valves 44 and 46 are opened and closed by the pressure of water vapor contained in the boiling water. can do.

このような沸騰冷却式バルブ10bを備えた沸騰冷却式CO2分離器80’(図3、図5)において、CO2吸収時では、媒体流路層84側(第2切替バルブ88c、88d側)において蒸気バッファタンク62のA室と沸騰冷却流路の出口が接続される(V1/V2を閉/開、V3/V4を開/閉)。その結果、ガスシールに要求される圧力相当の蒸気圧力がA室に印加される。これにより、ハウジング部20の第2室24と第3室26が接続され、媒体流路層84にカソードInガスを流すことができる。 In the boiling cooling type CO 2 separator 80 ′ (FIGS. 3 and 5) provided with such a boiling cooling type valve 10b, the medium flow path layer 84 side (second switching valves 88c and 88d side) during CO 2 absorption. ), The A chamber of the vapor buffer tank 62 is connected to the outlet of the boiling cooling flow path (V1 / V2 is closed / opened, V3 / V4 is opened / closed). As a result, a vapor pressure corresponding to the pressure required for the gas seal is applied to the A chamber. As a result, the second chamber 24 and the third chamber 26 of the housing portion 20 are connected, and the cathode In gas can flow through the medium flow path layer 84.

一方、反応流路層82側(第1切替バルブ86c、86d側)においては、蒸気バッファタンク62のA室と沸騰冷却流路の出口が接続される(V1/V2を閉/開、V3/V4を開/閉)。その結果、ガスシールに要求される圧力相当の蒸気圧力がA室に印加される。これにより、ハウジング部20の第2室24と第3室26が接続され、反応流路層82にアノードオフガスを流すことができる。また、CO2吸収反応により温度が上昇した反応流路層82をカソードInガスにより冷却することができる。 On the other hand, on the reaction channel layer 82 side (first switching valves 86c, 86d side), the A chamber of the vapor buffer tank 62 and the outlet of the boiling cooling channel are connected (V1 / V2 is closed / open, V3 / V4 open / close). As a result, a vapor pressure corresponding to the pressure required for the gas seal is applied to the A chamber. As a result, the second chamber 24 and the third chamber 26 of the housing portion 20 are connected, and the anode off gas can flow through the reaction flow path layer 82. In addition, the reaction channel layer 82 whose temperature has been increased by the CO 2 absorption reaction can be cooled by the cathode In gas.

CO2放出時では、媒体流路層84側(第2切替バルブ88c、88d側)において蒸気バッファタンク62のB室と沸騰冷却流路の出口が接続される(V1/V2を開/閉、V3/V4を閉/開)。その結果、ガスシールに要求される圧力相当の蒸気圧力がB室に印加される。これにより、第1室22と第3室26が接続され、媒体流路層84にカソードオフガスを流すことができる。 At the time of CO 2 release, the chamber B of the vapor buffer tank 62 and the outlet of the boiling cooling channel are connected on the medium channel layer 84 side (second switching valves 88c and 88d side) (V1 / V2 is opened / closed, V3 / V4 closed / open). As a result, a vapor pressure corresponding to the pressure required for the gas seal is applied to the B chamber. As a result, the first chamber 22 and the third chamber 26 are connected, and the cathode off gas can flow through the medium flow path layer 84.

一方、反応流路層82側(第1切替バルブ86c、86d側)においては、蒸気バッファタンク62のB室と沸騰冷却流路の出口が接続される(V1/V2を開/閉、V3/V4を閉/開)。その結果、ガスシールに要求される圧力相当の蒸気圧力がB室に印加される。これにより、第1室22と第3室26が接続され、反応流路層82にパージガスを流すことができる。また、媒体流路層84に供給されるカソードオフガスを熱源として、CO2放出反応が進行する。 On the other hand, on the reaction channel layer 82 side (first switching valves 86c, 86d side), the B chamber of the vapor buffer tank 62 and the outlet of the boiling cooling channel are connected (V1 / V2 is opened / closed, V3 / V4 closed / open). As a result, a vapor pressure corresponding to the pressure required for the gas seal is applied to the B chamber. Thereby, the first chamber 22 and the third chamber 26 are connected, and the purge gas can flow through the reaction flow path layer 82. Further, the CO 2 releasing reaction proceeds using the cathode off gas supplied to the medium flow path layer 84 as a heat source.

沸騰冷却流路に供給する冷却水の圧力を制御すると、沸騰水の沸点温度、及びシール部材52、54の温度を制御することができる。
また、バルブ部40のシャフト42及びハウジング部20からの熱伝導、並びに、高温ガス(700℃)からの熱伝導による入熱と、沸騰冷却流路(沸点温度)への放熱との熱バランスにより、シール面の温度をシール部材52、54の耐熱温度以下に制御することができる。その結果、バルブ44、46のシール性と耐久性の確保を両立させることができる。
When the pressure of the cooling water supplied to the boiling cooling flow path is controlled, the boiling temperature of the boiling water and the temperature of the seal members 52 and 54 can be controlled.
Further, due to the heat balance between the heat conduction from the shaft 42 and the housing part 20 of the valve part 40 and the heat conduction from the high temperature gas (700 ° C.) and the heat radiation to the boiling cooling channel (boiling point temperature). The temperature of the sealing surface can be controlled below the heat resistance temperature of the sealing members 52 and 54. As a result, both the sealing performance and durability of the valves 44 and 46 can be ensured.

[9.3. 断熱部]
図2に示すように、バルブ部40の傘部48及びハウジング部20の受部32を金属製とし、これに隣接してセラミックス製の断熱部50、34を設けると、熱伝導による容器からシール面への入熱を抑制することができる。金属製の傘部48及び受部32と断熱部50、34との間は、バルブ閉時において高い気密性が必要となる。セラミックス製の断熱部50、34の表面を緻密な金属膜によりメタライズ処理し、ろう材(Ni系ろう材、又はAg系ろう材)又は拡散接合により高い気密シールを行うことで、バルブ部40及びハウジング部20からの入熱と、バルブ44、46のシール面よりも上流からのガスの流入を遮断することが可能となる。
[9.3. Heat insulation part]
As shown in FIG. 2, when the umbrella portion 48 of the valve portion 40 and the receiving portion 32 of the housing portion 20 are made of metal and adjacent to the ceramic heat insulating portions 50 and 34, sealing is performed from the container by heat conduction. Heat input to the surface can be suppressed. A high airtightness is required between the metallic umbrella portion 48 and the receiving portion 32 and the heat insulating portions 50 and 34 when the valve is closed. The surfaces of the ceramic heat insulating portions 50 and 34 are metallized with a dense metal film, and a high airtight seal is achieved by brazing (Ni-based brazing material or Ag-based brazing material) or diffusion bonding. It is possible to block heat input from the housing portion 20 and inflow of gas from upstream of the sealing surfaces of the valves 44 and 46.

高温ガスからバルブ部40及びハウジング部20のシール面への入熱量と、沸騰冷却熱伝達による放熱量との熱バランスにより、シール面をより効果的に低温に維持することができる。その結果、シール部材52、54の温度制御性と長期耐久性を確保することができる。
さらに、金属製の部材及びセラミックス製の部材に、線膨張係数の近い材料(金属:コバール(5.0×10-6/K)、セラミックス:マグネシア(4.7×10-6/K))を用いると、界面における熱膨張による変位差が抑制される。その結果、変位差に起因して発生するせん断応力が抑制され、ろう付け部のガスシール耐久性を確保することが可能となる。また、バルブ部40及びハウジング部20の断熱効果により、シャフト42やハウジング部20からの入熱量が抑制され、シール面近傍の沸騰冷却による低温領域を拡大することができる。
Due to the heat balance between the amount of heat input from the high-temperature gas to the sealing surfaces of the valve unit 40 and the housing unit 20 and the amount of heat released by the boiling cooling heat transfer, the sealing surface can be more effectively maintained at a low temperature. As a result, the temperature controllability and long-term durability of the seal members 52 and 54 can be ensured.
Furthermore, a material having a linear expansion coefficient close to that of a metal member or a ceramic member (metal: Kovar (5.0 × 10 −6 / K), ceramics: magnesia (4.7 × 10 −6 / K)) Is used, the displacement difference due to thermal expansion at the interface is suppressed. As a result, the shear stress generated due to the displacement difference is suppressed, and the gas seal durability of the brazed portion can be ensured. Moreover, the heat insulation effect of the valve part 40 and the housing part 20 suppresses the amount of heat input from the shaft 42 and the housing part 20, and the low temperature region due to boiling cooling near the seal surface can be expanded.

[9.4. 凝縮水を用いた沸騰冷却]
アノードオフガス循環式SOFCシステムでは、凝縮器により循環ガスから不要な水分を凝縮分離することにより、循環ガス中の水分量は改質に必要な水分量(Steam/Carbon比=2〜3)に維持される。分離除去された液水は、液ポンプ・調圧弁により圧力・流量が制御され、冷却水として沸騰冷却流路に供給される。これにより、沸騰冷却温度を沸点温度に制御し、シール部材52、54の温度を耐熱温度以下に制御することができる。また、蒸気駆動バルブにおいては、シール圧力に必要な蒸気圧を確保することが可能となる。
[9.4. Boiling cooling using condensed water]
In the anode off-gas circulation SOFC system, the moisture content in the circulation gas is maintained at the moisture content necessary for reforming (Steam / Carbon ratio = 2-3) by condensing and separating unnecessary moisture from the circulation gas using a condenser. Is done. The separated and removed liquid water is controlled in pressure and flow rate by a liquid pump and a pressure regulating valve, and is supplied to the boiling cooling flow path as cooling water. Thereby, the boiling cooling temperature can be controlled to the boiling point temperature, and the temperature of the seal members 52 and 54 can be controlled to the heat resistant temperature or lower. Further, in the steam drive valve, it is possible to ensure the steam pressure necessary for the seal pressure.

[9.5. SOECシステム]
カソードオフガス循環式SOECシステムでは、循環ガス中の生成物(CO、H2)の濃度が増大すると、濃度分極の増加によりSOEC電解電圧が増大する。このため、循環ガス中の反応生成物の除去が必要となる。一方、ガス循環は、原料成分の有効利用の他、オフガスの顕熱を再利用することができる。その結果、系外への放熱量が低減され、電解効率を向上させることが可能となる。そのためには、循環ガス中のCO2を高温で分離することが必要不可欠となる。
[9.5. SOEC system]
In the cathode off-gas circulation type SOEC system, when the concentration of the product (CO, H 2 ) in the circulation gas increases, the SOEC electrolysis voltage increases due to an increase in concentration polarization. For this reason, it is necessary to remove reaction products in the circulating gas. On the other hand, the gas circulation can reuse the sensible heat of off-gas in addition to the effective use of raw material components. As a result, the amount of heat released to the outside of the system is reduced, and the electrolytic efficiency can be improved. For that purpose, it is indispensable to separate CO 2 in the circulating gas at a high temperature.

CO2吸収/放出反応を利用したCO2ガス分離では、2台の分離器をバッチ方式で切り替えることにより、連続的なガス分離が可能となる。CO2放出/吸収反応を独立に作動させるためには、カソードオフガスとの熱交換/反応流路へのアノードオフガス/水蒸気の供給を切り替え可能な合計16個の高温耐熱バルブが必要となる。SOFC/SOECの作動温度は高温(700〜800℃)であるため、金属やセラミックスを原料としたガスシールが必要となる。 In the CO 2 gas separation using the CO 2 absorption / release reaction, continuous gas separation can be performed by switching two separators in a batch system. In order to operate the CO 2 release / absorption reaction independently, a total of 16 high temperature heat resistant valves capable of switching the heat exchange with the cathode off gas / the supply of the anode off gas / water vapor to the reaction flow path are required. Since the operating temperature of SOFC / SOEC is high (700 to 800 ° C.), a gas seal using metal or ceramic as a raw material is required.

しかし、従来の高温耐熱バルブは、低・中温用バルブと比較してコストが高く、長期連続使用時における耐久性にも問題がある。また、不完全なガスシールでは、循環ガス中の原料ガス濃度の低下/系外への放出によりシステム効率が低下するため、連続的な気密シールが要求される。シールの気密性を確保するためには、シール部における高い圧力が必要で、駆動のための高圧空気・電気エネルギーが必要となる。   However, the conventional high-temperature heat-resistant valve is more expensive than the low / medium temperature valve and has a problem in durability during long-term continuous use. Further, incomplete gas seals require continuous airtight seals because the system efficiency decreases due to a decrease in the concentration of the raw material gas in the circulating gas / release to the outside of the system. In order to ensure the hermeticity of the seal, a high pressure in the seal portion is required, and high-pressure air / electric energy for driving is required.

図8に示すカソードオフガス循環式SOECシステム100cでは、電解反応後の生成物(CO、H2)は、第1CO2分離器104及びH2O分離器116で未反応原料(CO2、H2O)が除去された後、燃料ガスとして貯蔵・利用される。H2O分離器116により分離されたH2Oは、蒸発器114aの出口に接続された配管を流れ、蒸発器114aにより生成された水蒸気と合流する。
一方、電解用の原料であるH2Oは、まず第1CO2分離器104の沸騰冷却流路に送られ、沸騰冷却水として利用される。また、沸騰冷却流路から排出された沸騰水は、蒸発器114aに送られる。そのため、シール部材52、54の温度を耐熱温度以下に制御するだけでなく、電解用の水の蒸発潜熱を沸騰冷却流路から得ることができる。
In the cathode off-gas circulation type SOEC system 100c shown in FIG. 8, the products (CO, H 2 ) after the electrolytic reaction are unreacted raw materials (CO 2 , H 2 ) in the first CO 2 separator 104 and the H 2 O separator 116. After O) is removed, it is stored and used as fuel gas. H 2 O, separated by H 2 O separator 116 flows through the pipe connected to the outlet of the evaporator 114a, merges with steam generated by the evaporator 114a.
On the other hand, H 2 O, which is a raw material for electrolysis, is first sent to the boiling cooling flow path of the first CO 2 separator 104 and used as boiling cooling water. Moreover, the boiling water discharged | emitted from the boiling cooling flow path is sent to the evaporator 114a. Therefore, not only the temperature of the seal members 52 and 54 can be controlled to be equal to or lower than the heat resistant temperature, but also the latent heat of evaporation of electrolyzed water can be obtained from the boiling cooling channel.

[9.6. R−SOCシステム]
図9に示すR−SOCシステム100dをSOFCモードで運転する場合、第1開閉バルブV1を開き、液ポンプP1を稼働させる。第2開閉バルブV2を閉じ、H2O分離器116はバイパス(H2O分離なし)とする。第1三方弁V31及び第2三方弁V32をエジェクタ110側に切り替え、第3三方弁V33を排気側に切り替える。また、第4開閉バルブV4を開き、第5開閉バルブV5を閉じて、燃料をR−SOC102cに供給する。
[9.6. R-SOC system]
When the R-SOC system 100d shown in FIG. 9 is operated in the SOFC mode, the first on-off valve V1 is opened and the liquid pump P1 is operated. The second on-off valve V2 is closed, and the H 2 O separator 116 is bypassed (no H 2 O separation). The first three-way valve V31 and the second three-way valve V32 are switched to the ejector 110 side, and the third three-way valve V33 is switched to the exhaust side. Further, the fourth on-off valve V4 is opened, the fifth on-off valve V5 is closed, and the fuel is supplied to the R-SOC 102c.

流量制御バルブVcをアノード循環ガス中のSteam/Carbon比が一定となるように制御することで、発電で生成した余剰のH2Oを凝縮器106にて回収することができる。回収された液水は、液ポンプP1により昇圧され、第1CO2分離器104の沸騰冷却式バルブ(8箇所)の沸騰冷却流路を流れる。生成した沸騰水(水蒸気+水)は、第1蒸発器114aにてクオリティ100%の水蒸気となる。水蒸気は、第1CO2分離器104のCO2放出用のパージガスとして使用される。パージ流路から排出されるCO2+H2Oの混合ガスは、第3三方弁V33にて系外へ放出される。 By controlling the flow rate control valve V c so that the Steam / Carbon ratio in the anode circulation gas becomes constant, surplus H 2 O generated by power generation can be recovered by the condenser 106. The recovered liquid water is pressurized by the liquid pump P <b> 1 and flows through the boiling cooling flow path of the boiling cooling type valve (eight locations) of the first CO 2 separator 104. The produced boiling water (water vapor + water) becomes water vapor with a quality of 100% in the first evaporator 114a. The steam is used as a purge gas for releasing CO 2 in the first CO 2 separator 104. The mixed gas of CO 2 + H 2 O discharged from the purge flow path is discharged out of the system by the third three-way valve V33.

SOECモードで運転する場合、第1開閉バルブV1を閉じ、液ポンプP1を停止させる。第2開閉バルブV2を開き、流量制御バルブVcを閉とすると、全カソードオフガスはH2O分離器116を流れる。H2O分離器116で分離されたH2Oは、電解用原料として再利用可能となる。第3三方弁V31を第2CO2分離器118側に切り替え、第2三方弁V32を燃料製造器120側に切り替え、第3三方弁V33を第2CO2分離器118側に切り替える。また、第4開閉バルブV4を閉じ、第5開閉バルブV5を開くことにより、燃料製造器120で合成された炭化水素は貯蔵タンク122に貯蔵される。 When operating in the SOEC mode, the first on-off valve V1 is closed and the liquid pump P1 is stopped. When the second opening / closing valve V2 is opened and the flow control valve Vc is closed, the entire cathode off gas flows through the H 2 O separator 116. H 2 O, separated with H 2 O separator 116 becomes reusable as an electrolyte for a raw material. The third three-way valve V31 is switched to the second CO 2 separator 118 side, the second three-way valve V32 is switched to the fuel producer 120 side, and the third three-way valve V33 is switched to the second CO 2 separator 118 side. Further, by closing the fourth on-off valve V4 and opening the fifth on-off valve V5, the hydrocarbon synthesized in the fuel maker 120 is stored in the storage tank 122.

この時、電解に必要なH2Oの内、H2O分離器116から供給されるH2Oの補完分は、液ポンプP2により昇圧され、第1CO2分離器104及び第2CO2分離器118の沸騰冷却式バルブ(全16箇所)に供給される。供給されたH2Oは、沸騰冷却流路において沸騰水(水蒸気+水)となる。また、生成した沸騰水は、蒸発器114a、114bにおいて、クオリティ100%の水蒸気となる。さらに、生成した水蒸気は、CO2放出用のパージガスとして使用され、電解用原料(H2O+CO2)を生成する。 At this time, of the H 2 O necessary for electrolysis, the supplement of H 2 O supplied from the H 2 O separator 116 is boosted by the liquid pump P2, and the first CO 2 separator 104 and the second CO 2 separator. 118 boil-cooled valves (total of 16 locations). The supplied H 2 O becomes boiling water (water vapor + water) in the boiling cooling channel. Further, the produced boiling water becomes water vapor having a quality of 100% in the evaporators 114a and 114b. Furthermore, the generated steam is used as purge gas for the CO 2 emission, and generates an electrolytic material (H 2 O + CO 2) .

さらに、電力余剰時にはSOECモードとし、電力不足時にはSOFCモードとするリバーシブル作動とすることで、電力を化学エネルギーとして貯蔵し、あるいは、化学エネルギーを電力に変換することができる。また、これによって、再生可能エネルギーを用いた発電システムの出力の平準化が可能となる。   Furthermore, by using the reversible operation in the SOEC mode when power is surplus and in the SOFC mode when power is short, power can be stored as chemical energy or chemical energy can be converted into power. This also makes it possible to level the output of the power generation system using renewable energy.

(実施例1)
[1. 試験方法]
沸騰冷却効果(シール面の温度、及び蒸気圧力)をFEM熱解析により評価した。図10に、沸騰冷却効果の数値解析(FEM熱解析)に用いたバルブ簡易モデルを示す。なお、ガス温度は、700℃とした。また、評価は、
(a)沸騰冷却流路があるケースと、沸騰冷却流路がないケース、並びに、
(b)断熱部があるケースと、断熱部がないケース、
について行った。
Example 1
[1. Test method]
The boiling cooling effect (sealing surface temperature and vapor pressure) was evaluated by FEM thermal analysis. FIG. 10 shows a simple valve model used for the numerical analysis (FEM thermal analysis) of the boiling cooling effect. The gas temperature was 700 ° C. Moreover, evaluation is
(A) a case with a boiling cooling channel, a case without a boiling cooling channel, and
(B) a case with a heat insulating part and a case without a heat insulating part,
Went about.

[2. 結果]
[2.1. シール面の温度]
図11に、沸騰冷却流路がない場合(左図)及び沸騰冷却流路がある場合(右図)のバルブ部/ハウジング部のシール部材付近の温度を示す。図12に、沸騰冷却流路がある場合のバルブオープン時(左図)、及びバルブクローズ時(右図)のシール部材付近の温度を示す。さらに、図13に、バルブ部及びハウジング部に断熱部がない場合(左図)、及び断熱部がある場合(右図)のシール部材近傍の温度を示す。図11〜図13より、以下のことが分かる。
[2. result]
[2.1. Seal surface temperature]
FIG. 11 shows the temperature in the vicinity of the seal member of the valve part / housing part when there is no boiling cooling channel (left diagram) and when there is a boiling cooling channel (right diagram). FIG. 12 shows the temperature in the vicinity of the seal member when the valve is open (left diagram) and when the valve is closed (right diagram) when there is a boiling cooling channel. Furthermore, FIG. 13 shows the temperature in the vicinity of the seal member when the valve part and the housing part do not have a heat insulating part (left figure) and when there is a heat insulating part (right figure). The following can be understood from FIGS.

(1)バルブが開いている場合において、沸騰冷却を行わない時には、ハウジング部のシール面(A)の温度は697℃であり、バルブのシール面(B)の温度は699.5℃であった。一方、沸騰冷却を行った時には、ハウジング部のシール面(A)の温度は117.6℃まで低下し、バルブのシール面(B)の温度は275.1℃まで低下した(図11参照)。
(2)沸騰冷却を行った状態でバルブを閉じると、ハウジング部のシール面(A)の温度は124℃に上昇した。一方、バルブのシール面(B)の温度は、141℃まで低下した(図12参照)。
(3)バルブが開いている場合において、ハウジング部が金属製の受部とセラミックス製の断熱部を備えている時には、バルブ開時のシール面(A)の温度は、116℃に低下した。同様に、バルブが金属製の傘部とセラミックス製の断熱部とを備えている時には、バルブ開時のシール面(B)の温度は269℃まで低下した。
(1) When the valve is open and boiling cooling is not performed, the temperature of the sealing surface (A) of the housing is 697 ° C, and the temperature of the sealing surface (B) of the valve is 699.5 ° C. It was. On the other hand, when boiling cooling is performed, the temperature of the sealing surface (A) of the housing portion is reduced to 117.6 ° C., and the temperature of the sealing surface (B) of the valve is decreased to 275.1 ° C. (see FIG. 11). .
(2) When the valve was closed with boiling cooling, the temperature of the sealing surface (A) of the housing part increased to 124 ° C. On the other hand, the temperature of the sealing surface (B) of the valve decreased to 141 ° C. (see FIG. 12).
(3) When the valve is open, the temperature of the sealing surface (A) when the valve is open is lowered to 116 ° C. when the housing part is provided with a metal receiving part and a ceramic heat insulating part. Similarly, when the valve was provided with a metal umbrella and a ceramic heat insulating part, the temperature of the sealing surface (B) when the valve was opened decreased to 269 ° C.

[2.2. 沸騰冷却流路内の蒸気圧力]
図14に、沸点温度と蒸気圧力との関係を示す。図15に、沸点、ハウジング部材のシール面(B)の表面温度、及びシール部材の温度の沸騰冷却蒸気圧力依存性を示す。図14及び図15より、以下のことが分かる。
[2.2. Steam pressure in boiling cooling channel]
FIG. 14 shows the relationship between the boiling point temperature and the vapor pressure. FIG. 15 shows the boiling cooling steam pressure dependence of the boiling point, the surface temperature of the sealing surface (B) of the housing member, and the temperature of the sealing member. 14 and 15 show the following.

(1)沸騰冷却式バルブの沸騰冷却流路において発生する蒸気圧力は、沸騰冷却流路に供給される水の圧力及び流量により制御することができる。図14に示すように、沸騰冷却流路内の蒸気圧力が高くなるほど、沸騰冷却流路内の沸点温度が上昇する。
(2)図15に示すように、沸騰冷却流路内の沸点温度の上昇に伴い、ハウジング部のシール面(A)の温度及びシール部材内部の最大温度も上昇する。しかし、蒸気圧力が5atmでも、シール部材内部の最大温度は、PEEK製シール部材の耐熱温度(380℃)未満に抑えることができた。すなわち、沸騰冷却式蒸気駆動バルブは、シール部材の温度を耐熱温度以下に制御しつつ、高いシール圧力を確保することができる。
(1) The vapor pressure generated in the boiling cooling channel of the boiling cooling valve can be controlled by the pressure and flow rate of water supplied to the boiling cooling channel. As shown in FIG. 14, the boiling point temperature in the boiling cooling channel increases as the vapor pressure in the boiling cooling channel increases.
(2) As shown in FIG. 15, the temperature of the sealing surface (A) of the housing part and the maximum temperature inside the seal member also rise with the rise of the boiling point temperature in the boiling cooling channel. However, even when the steam pressure was 5 atm, the maximum temperature inside the seal member could be kept below the heat resistance temperature (380 ° C.) of the PEEK seal member. In other words, the boil-cooled steam-driven valve can ensure a high sealing pressure while controlling the temperature of the sealing member below the heat-resistant temperature.

(実施例2)
[1. 試験方法]
沸騰冷却式CO2分離器を備えたSOFCシステム(図7)において、沸騰冷却式バルブの伝熱面積、最大流量、及び圧力損失をFEM熱解析により評価した。図16に、伝熱面積の数値解析(FEM熱解析)に用いたバルブ簡易モデルを示す。なお、沸騰冷却式バルブの温度は700℃とし、沸騰冷却式バルブの個数は8個とした。また、凝縮器のH2O分離速度は、440cc/minとした。
(Example 2)
[1. Test method]
In a SOFC system (FIG. 7) equipped with a boiling cooled CO 2 separator, the heat transfer area, maximum flow rate, and pressure loss of the boiling cooled valve were evaluated by FEM thermal analysis. FIG. 16 shows a simple valve model used for numerical analysis of the heat transfer area (FEM thermal analysis). The temperature of the boiling cooling type valve was 700 ° C., and the number of boiling cooling type valves was eight. The H 2 O separation rate of the condenser was 440 cc / min.

[2. 結果]
[2.1. 伝熱面積]
図17に、SOFCシステムにおけるバルブ流路直径と伝熱面積との関係を示す。
ここで、「バルブ流路直径D」とは、ハウジング部20の隔壁28、30に設けられた貫通孔28a、30aの直径をいう(図2参照)。
「伝熱面積」とは、沸騰冷却流路における流路断面0.3×1(cm)×流路長14.4(cm)とする。
「許容伝熱面積」とは、沸騰熱伝達率10000W/m2/K、クオリティ≦10%を確保するために必要なバルブ1個当たりの伝熱面積の最大値(=104cm2)をいう。
図17より、以下のことが分かる。
[2. result]
[2.1. Heat transfer area]
FIG. 17 shows the relationship between the valve flow path diameter and the heat transfer area in the SOFC system.
Here, the “valve channel diameter D” refers to the diameters of the through holes 28a and 30a provided in the partition walls 28 and 30 of the housing portion 20 (see FIG. 2).
The “heat transfer area” is defined as channel cross section 0.3 × 1 (cm) × channel length 14.4 (cm) in the boiling cooling channel.
“Allowable heat transfer area” refers to the maximum value (= 104 cm 2 ) of the heat transfer area per valve necessary for ensuring a boiling heat transfer rate of 10000 W / m 2 / K and quality ≦ 10%.
FIG. 17 shows the following.

(1)伝熱面積を許容伝熱面積以下にするためには、バルブ流路直径Dを30mm以下にする必要がある。 (1) In order to make the heat transfer area equal to or less than the allowable heat transfer area, the valve flow path diameter D needs to be 30 mm or less.

[2.2. 最大流量、及び圧力損失]
図18に、SOFCのアノードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と最大流速との関係を示す。図19に、SOFCのアノードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と圧力損失との関係を示す。図20に、SOFCのカソードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と最大流速との関係を示す。図21に、SOFCのカソードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と圧力損失との関係を示す。図18〜図21より、以下のことが分かる。
[2.2. Maximum flow rate and pressure loss]
FIG. 18 shows the relationship between the valve flow path diameter and the maximum flow rate when the SOFC anode off gas is supplied to the boiling cooling type valve. FIG. 19 shows the relationship between the valve flow path diameter and the pressure loss when the SOFC anode off gas is supplied to the boiling cooling type valve. FIG. 20 shows the relationship between the valve flow path diameter and the maximum flow velocity when the SOFC cathode off-gas is supplied to the boiling cooling type valve. FIG. 21 shows the relationship between the valve flow path diameter and the pressure loss when the SOFC cathode off gas is supplied to the boiling cooling type valve. The following can be understood from FIGS.

(1)アノードオフガスを沸騰冷却式バルブに供給する場合において、10%のクオリティを確保し、最大流速を音速以下とし、かつ、圧力損失を50Pa以下とするためには、バルブ流路直径を15mm以上にする必要がある。
(2)カソードオフガスを沸騰冷却式バルブに供給する場合において、10%のクオリティを確保し、最大流速を音速以下とし、かつ、圧力損失を50Pa以下とするためには、バルブ流路直径を25mm以上にする必要がある。
(1) When supplying anode off gas to the boiling cooling type valve, in order to ensure 10% quality, maximum flow velocity is less than sonic velocity, and pressure loss is less than 50 Pa, the valve channel diameter is 15 mm. It is necessary to do more.
(2) When supplying the cathode off gas to the boiling cooling type valve, in order to ensure 10% quality, the maximum flow velocity is less than the sonic velocity, and the pressure loss is 50 Pa or less, the valve channel diameter is 25 mm. It is necessary to do more.

(実施例3)
[1. 試験方法]
FEM熱解析により、SOECシステムの伝熱面積、最大流量、及び圧力損失を評価した。図22に、伝熱面積の数値解析(FEM熱解析)に用いたバルブ簡易モデルを示す。なお、沸騰冷却式バルブの温度は700℃とし、沸騰冷却式バルブの個数は16個とした。また、電解用H2Oの供給速度は、1.9L/minとした。
(Example 3)
[1. Test method]
The heat transfer area, maximum flow rate, and pressure loss of the SOEC system were evaluated by FEM thermal analysis. FIG. 22 shows a simple valve model used for numerical analysis (FEM thermal analysis) of the heat transfer area. The temperature of the boiling cooling type valve was 700 ° C., and the number of boiling cooling type valves was 16. The supply rate of H 2 O for electrolysis was 1.9 L / min.

[2. 結果]
[2.1. 伝熱面積]
図23に、SOECシステムにおけるバルブ流路直径と伝熱面積との関係を示す。ここで、「許容伝熱面積」とは、沸騰熱伝達率10000W/m2/K、クオリティ≦10%を確保するために許容されるバルブ1個当たりの伝熱面積の最大値(=220cm2)をいう。図23より、以下のことが分かる。
[2. result]
[2.1. Heat transfer area]
FIG. 23 shows the relationship between the valve flow path diameter and the heat transfer area in the SOEC system. Here, “allowable heat transfer area” means the maximum value of heat transfer area per valve (= 220 cm 2 ) allowed to ensure a boiling heat transfer rate of 10000 W / m 2 / K and quality ≦ 10%. ). FIG. 23 shows the following.

(1)SOECシステムの場合、伝熱面積を許容伝熱面積以下にするためには、バルブ流路直径を102mm以下にすればよい。すなわち、SOFCシステムに比べて、バルブ流路直径を大きくすることができる。これは、SOECシステムでは電解用H2Oが沸騰冷却流路に供給され、十分な冷却水量の確保が可能なためである。 (1) In the case of an SOEC system, in order to make the heat transfer area less than the allowable heat transfer area, the valve flow path diameter may be made 102 mm or less. That is, the valve flow path diameter can be increased as compared with the SOFC system. This is because in the SOEC system, H 2 O for electrolysis is supplied to the boiling cooling channel, and a sufficient amount of cooling water can be secured.

[2.2. 最大流量、及び圧力損失]
図24に、SOECのアノードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と最大流速との関係を示す。図25に、SOECのアノードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と圧力損失との関係を示す。図26に、SOECのカソードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と最大流速との関係を示す。図27に、SOECのカソードオフガスを沸騰冷却式バルブに供給した時のバルブ流路直径と圧力損失との関係を示す。図24〜図27より、以下のことが分かる。
[2.2. Maximum flow rate and pressure loss]
FIG. 24 shows the relationship between the valve flow path diameter and the maximum flow velocity when the SOEC anode off-gas is supplied to the boiling cooling type valve. FIG. 25 shows the relationship between the valve flow path diameter and the pressure loss when the SOEC anode off gas is supplied to the boiling cooling type valve. FIG. 26 shows the relationship between the valve flow path diameter and the maximum flow rate when the SOEC cathode off-gas is supplied to the boiling cooling type valve. FIG. 27 shows the relationship between the valve flow path diameter and the pressure loss when the SOEC cathode off-gas is supplied to the boiling cooling type valve. The following can be understood from FIGS.

(1)アノードオフガスを沸騰冷却式バルブに供給する場合において、10%のクオリティを確保し、最大流速を音速以下とし、かつ、圧力損失を50Pa以下とするためには、バルブ流路直径を10mm以上にする必要がある。
(2)カソードオフガスを沸騰冷却式バルブに供給する場合において、10%のクオリティを確保し、最大流速を音速以下とし、かつ、圧力損失を50Pa以下とするためには、バルブ流路直径を15mm以上にする必要がある。
(1) When supplying anode off-gas to the boiling cooling type valve, in order to ensure 10% quality, maximum flow velocity is less than sonic velocity, and pressure loss is less than 50 Pa, the valve channel diameter is 10 mm. It is necessary to do more.
(2) When supplying the cathode off gas to the boiling cooling type valve, in order to ensure 10% quality, the maximum flow velocity is less than the sonic velocity, and the pressure loss is less than 50 Pa, the valve channel diameter is 15 mm. It is necessary to do more.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明に係る沸騰冷却式バルブは、CO2分離器の高温耐熱バルブなどに用いることができる。
本発明に係る沸騰冷却式CO2分離器は、SOFCシステム、SOECシステム、及びR−SOCシステムのオフガスの処理に用いることができる。
本発明に係るSOFCシステム、SOECシステム、及びR−SOCシステムは、電力貯蔵システムとして用いることができる。
The boiling cooling type valve according to the present invention can be used for a high temperature heat resistant valve of a CO 2 separator and the like.
The boiling cooled CO 2 separator according to the present invention can be used for off-gas processing of SOFC systems, SOEC systems, and R-SOC systems.
The SOFC system, the SOEC system, and the R-SOC system according to the present invention can be used as a power storage system.

10、10a、10b 沸騰冷却式バルブ
20 ハウジング部
40 バルブ部
42 シャフト
44、46 バルブ
52、54 シール部材
80、80’ 沸騰冷却式CO2分離器
100a、100b SOFCシステム
100c SOECシステム
100d R−SOCシステム
10, 10a, 10b Boiling cooling type valve 20 Housing part 40 Valve part 42 Shaft 44, 46 Valve 52, 54 Seal member 80, 80 'Boiling cooling type CO 2 separator 100a, 100b SOFC system 100c SOEC system 100d R-SOC system

Claims (11)

以下の構成を備えた沸騰冷却式バルブ。
(1)前記沸騰冷却式バルブは、
ガスの流通経路を備えたハウジング部と、
シャフトに、前記流通経路の切り替えを行うためのバルブが接合されたバルブ部と、
前記ハウジング部のシール面(A)と、前記シール面(A)に着座する前記バルブのシール面(B)との間に挿入されたシール部材と、
前記シール部材を冷却するための沸騰冷却手段と、
前記シャフトの軸方向に沿って前記バルブ部を摺動させるための駆動手段と
を備えている。
(2)前記沸騰冷却手段は、
前記ハウジング部の前記シール面(A)の直下であって、前記シール部材との接触面の近傍に形成された沸騰冷却流路(A)と、
前記沸騰冷却流路(A)に水を供給し、かつ、前記沸騰冷却流路(A)から沸騰水を排出するための冷媒流路(A)と、
前記バルブの前記シール面(B)の直下であって、前記シール部材との接触面の近傍に形成された沸騰冷却流路(B)と、
前記沸騰冷却流路(B)に水を供給し、かつ、前記沸騰冷却流路(B)から沸騰水を排出するための冷媒流路(B)と、
を備えている。
A boil-cooled valve with the following configuration.
(1) The boiling cooling type valve is
A housing with a gas flow path;
A valve portion in which a valve for switching the flow path is joined to a shaft;
A seal member inserted between a seal surface (A) of the housing part and a seal surface (B) of the valve seated on the seal surface (A);
Boiling cooling means for cooling the sealing member;
Drive means for sliding the valve portion along the axial direction of the shaft.
(2) The boiling cooling means is
A boiling cooling flow path (A) formed immediately below the seal surface (A) of the housing portion and in the vicinity of the contact surface with the seal member;
A coolant channel (A) for supplying water to the boiling cooling channel (A) and discharging the boiling water from the boiling cooling channel (A);
A boiling cooling channel (B) formed immediately below the sealing surface (B) of the valve and in the vicinity of the contact surface with the sealing member;
A coolant channel (B) for supplying water to the boiling cooling channel (B) and discharging boiling water from the boiling cooling channel (B);
It has.
以下の構成をさらに備えた請求項1に記載の沸騰冷却式バルブ。
(3)前記ハウジング部は、
第1ガスを導入又は排出するための第1室と、
第2ガスを導入又は排出するための第2室と、
前記第1室又は前記第2室の間に設けられた、前記第1ガス又は前記第2ガスを排出又は導入するための第3室と
を備え、
前記第1室と前記第3室との間の第1隔壁には第1貫通穴が設けられ、前記第1貫通孔の内表面又は周囲には第1シール面(A)が設けられ、
前記第2室と前記第3室との間の第2隔壁には第2貫通穴が設けられ、前記第2貫通孔の内表面又は周囲には第2シール面(A)が設けられている。
(4)前記バルブ部は、
シャフトと、
前記シャフトに接合された、第1シール面(B)を備えた第1バルブと、
前記シャフトに接合された、第2シール面(B)を備えた第2バルブと、
を備えている。
(5)前記第1シール面(A)と前記第1シール面(B)との間には、第1シール部材が挿入され、
前記第2シール面(A)と前記第2シール面(B)との間には、第2シール部材が挿入されている。
The boiling cooling valve according to claim 1, further comprising the following configuration.
(3) The housing part is
A first chamber for introducing or discharging a first gas;
A second chamber for introducing or discharging a second gas;
A third chamber provided between the first chamber or the second chamber for discharging or introducing the first gas or the second gas;
A first through hole is provided in the first partition wall between the first chamber and the third chamber, and a first seal surface (A) is provided on the inner surface or the periphery of the first through hole,
A second through hole is provided in the second partition wall between the second chamber and the third chamber, and a second seal surface (A) is provided on the inner surface or the periphery of the second through hole. .
(4) The valve portion is
A shaft,
A first valve having a first sealing surface (B) joined to the shaft;
A second valve having a second sealing surface (B) joined to the shaft;
It has.
(5) A first seal member is inserted between the first seal surface (A) and the first seal surface (B),
A second seal member is inserted between the second seal surface (A) and the second seal surface (B).
以下の構成をさらに備えた請求項1又は2に記載の沸騰冷却式バルブ。
(7)前記駆動手段は、前記冷媒流路(B)から排出される前記沸騰水に含まれる水蒸気の圧力を用いて前記シャフトを摺動させる蒸気駆動手段である。
(6)前記蒸気駆動手段は、
前記ハウジング部に隣接して設けられた蒸気バッファタンクと、
前記シャフトの基端に接合された、前記蒸気バッファタンク内を摺動するピストンと、
前記沸騰水を前記ピストンの一方の面側又は他方の面側に切り替えて排出することにより、前記ピストンを摺動させる切替手段と
を備えている。
The boiling cooling valve according to claim 1 or 2, further comprising the following configuration.
(7) The drive means is steam drive means for sliding the shaft using the pressure of water vapor contained in the boiling water discharged from the refrigerant flow path (B).
(6) The steam driving means includes:
A vapor buffer tank provided adjacent to the housing part;
A piston that slides in the vapor buffer tank, joined to the proximal end of the shaft;
Switching means for sliding the piston by switching the boiling water to one surface side or the other surface side of the piston and discharging it.
以下の構成をさらに備えた請求項1から3までのいずれか1項に記載の沸騰冷却式バルブ。
(7)前記ハウジング部は、
前記シール面(A)及び前記沸騰冷却流路(A)が形成された金属製の受部と、
前記受部の底面及び側面に接合された、セラミックス製の断熱部(A)と
を備えている。
(8)前記バルブは、
前記シール面(B)及び前記沸騰冷却流路(B)が形成された金属製の傘部と、
前記傘部の底面に接合された、セラミックス製の断熱部(B)と
を備えている。
The boiling cooling valve according to any one of claims 1 to 3, further comprising the following configuration.
(7) The housing part is
A metal receiving part in which the sealing surface (A) and the boiling cooling channel (A) are formed;
And a ceramic heat insulating part (A) joined to the bottom and side surfaces of the receiving part.
(8) The valve is
A metal umbrella portion on which the sealing surface (B) and the boiling cooling channel (B) are formed;
And a ceramic heat insulating part (B) joined to the bottom surface of the umbrella part.
以下の構成を備えた沸騰冷却式CO2分離器。
(1)前記沸騰冷却式CO2分離器は、
CO2を吸収・放出するためのCO2吸収材を備えた反応流路層と、
熱交換媒体を流通させることにより、前記反応流路層と熱交換を行うための媒体流路層と、
前記反応流路層にCO2を含むガス又はパージガスのいずれか一方を切り替えて供給・排出するための第1切替バルブと、
前記媒体流路層に第1熱交換媒体又は第2熱交換媒体のいずれか一方を切り替えて供給・排出するための第2切替バルブと
を備えている。
(2)前記第1切替バルブ及び前記第2切替バルブは、それぞれ、請求項1から4までのいずれか1項に記載の沸騰冷却式バルブからなる。
A boil-cooled CO 2 separator having the following configuration.
(1) The boiling cooling CO 2 separator is
A reaction channel layer with a CO 2 absorbent material for absorbing and releasing CO 2,
By circulating a heat exchange medium, a medium flow path layer for performing heat exchange with the reaction flow path layer,
A first switching valve for switching and supplying / discharging either the gas containing CO 2 or the purge gas to the reaction channel layer;
The medium flow path layer includes a second switching valve for switching and supplying / discharging either the first heat exchange medium or the second heat exchange medium.
(2) Each of the first switching valve and the second switching valve includes the boiling cooling type valve according to any one of claims 1 to 4.
以下の構成を備えたSOFCシステム。
(1)前記SOFCシステムは、
燃料から電力を生成する固体酸化物形燃料電池(SOFC)と、
前記SOFCのアノードオフガス(Aout)からCO2を分離するCO2分離器と、
前記CO2分離器のフィード流路から排出されるオフガス(Bout)に含まれる水蒸気を凝縮させ、凝縮水を得る凝縮器と、
前記水蒸気の全部又は一部が分離された前記Boutを前記SOFCのアノード流路に戻すアノードオフガス循環手段と
を備えている。
(2)前記CO2分離器は、請求項5に記載の沸騰冷却式CO2分離器からなる。
SOFC system with the following configuration.
(1) The SOFC system
A solid oxide fuel cell (SOFC) that generates electricity from fuel;
A CO 2 separator for separating CO 2 from the SOFC anode off-gas (A out );
A condenser for condensing water vapor contained in off-gas (B out ) discharged from the feed flow path of the CO 2 separator to obtain condensed water;
And an anode off-gas circulation means for returning the B out from which all or part of the water vapor has been separated to the anode flow path of the SOFC.
(2) The CO 2 separator comprises the boiling cooling CO 2 separator according to claim 5.
以下の構成をさらに備えた請求項6に記載のSOFCシステム。
(3)前記SOFCシステムは、前記凝縮器で凝縮させた水を前記沸騰冷却式CO2分離器の沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給する水供給手段(A)を備えている。
The SOFC system according to claim 6, further comprising the following configuration.
(3) The SOFC system includes water supply means (A) for supplying water condensed by the condenser to the boiling cooling channel (A) and the boiling cooling channel (B) of the boiling cooling CO 2 separator, respectively. ).
以下の構成を備えたSOECシステム。
(1)前記SOECシステムは、
2O及びCO2から合成ガスを生成させる固体酸化物形電解セル(SOEC)と、
前記SOECのカソードオフガス(A'out)からCO2を分離する第1CO2分離器と、
前記第1CO2分離器のフィード流路から排出されるオフガス(Bout)から水蒸気の全部又は一部を分離するH2O分離器と、
CO2源から供給されるガスからCO2を分離し、分離されたCO2を前記SOECに供給する第2CO2分離器と、
前記SOECに電解用のH2Oを供給する蒸発器と、
前記SOECのカソードオフガス(A'out)に含まれる合成ガスから炭化水素を製造する燃料製造器と、
前記第1CO2分離器のパージ流路から排出される分離ガス(Cout)を前記SOECのカソード流路に戻すカソードオフガス循環手段と、
を備えている。
(2)前記第1CO2分離器及び前記第2CO2分離器は、それぞれ、請求項5に記載の沸騰冷却式CO2分離器からなる。
An SOEC system with the following configuration.
(1) The SOEC system
A solid oxide electrolytic cell (SOEC) for generating synthesis gas from H 2 O and CO 2 ;
And the 1 CO 2 separator for separating CO 2 from the cathode off-gas (A 'out) of the SOEC,
An H 2 O separator for separating all or part of water vapor from off-gas (B out ) discharged from the feed flow path of the first CO 2 separator;
Separating the CO 2 from the gas supplied from the CO 2 source, a first 2CO 2 separator for supplying the separated CO 2 to the SOEC,
An evaporator for supplying the SOEC with H 2 O for electrolysis;
A fuel producing unit for producing hydrocarbons from synthesis gas contained in the cathode off-gas (A 'out) of the SOEC,
Cathode off-gas circulation means for returning separation gas (C out ) discharged from the purge flow path of the first CO 2 separator to the cathode flow path of the SOEC;
It has.
(2) the first 1 CO 2 separator and the first 2CO 2 separator, respectively, consist of a boiling-cooled CO 2 separator of claim 5.
以下の構成をさらに備えた請求項8に記載のSOECシステム。
(3)前記SOECシステムは、前記電解用のH2Oを前記沸騰冷却式CO2分離器の沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給する水供給手段(B)を備えている。
The SOEC system according to claim 8, further comprising:
(3) The SOEC system includes water supply means (B) for supplying H 2 O for electrolysis to the boiling cooling channel (A) and the boiling cooling channel (B) of the boiling cooling CO 2 separator, respectively. It has.
以下の構成を備えたR−SOCシステム。
(1)前記R−SOCシステムは、
燃料から電力を生成するSOFCモードと、H2O及びCO2から合成ガスを生成させるSOECモードとを切替可能なリバーシブルSOC(R−SOC)と、
前記R−SOCのオフガス(Aout又はA'out)からCO2を分離する第1CO2分離器と、
前記第1CO2分離器のフィード流路から排出されるオフガス(Bout)から水蒸気の全部又は一部を分離するH2O分離器と、
前記Boutに含まれる水蒸気を凝縮させ、凝縮水を得る凝縮器と、
前記R−SOCが前記SOECモードにある時に、CO2源から供給されるガスからCO2を分離し、分離されたCO2を前記R−SOCに供給する第2CO2分離器と、
前記R−SOCが前記SOECモードにある時に、前記R−SOCに電解用のH2Oを供給する蒸発器と、
前記R−SOCが前記SOECモードにある時に、前記R−SOCのオフガス(A'out)に含まれる合成ガスから炭化水素を製造し、貯蔵する燃料製造・貯蔵手段と、
前記R−SOCが前記SOECモードにある時に、前記第1CO2分離器のパージ流路から排出される分離ガス(Cout)を前記R−SOCのカソード流路に戻すカソードオフガス循環手段と、
前記R−SOCが前記SOFCモードにある時に、前記水蒸気の全部又は一部が分離された前記Boutを前記R−SOCのアノード流路に戻すアノードオフガス循環手段と、
前記R−SOCが前記SOFCモードにある時に、貯蔵された前記炭化水素を前記R−SOCに供給する燃料供給手段と
を備えている。
(2)前記第1CO2分離器及び前記第2CO2分離器は、それぞれ、請求項5に記載の沸騰冷却式CO2分離器からなる。
An R-SOC system having the following configuration.
(1) The R-SOC system is
Reversible SOC (R-SOC) capable of switching between SOFC mode for generating electric power from fuel and SOEC mode for generating synthesis gas from H 2 O and CO 2 ;
And the 1 CO 2 separator for separating CO 2 from the R-SOC offgas (A out or A 'out),
An H 2 O separator for separating all or part of water vapor from off-gas (B out ) discharged from the feed flow path of the first CO 2 separator;
A condenser for condensing water vapor contained in the B out to obtain condensed water;
Wherein when R-SOC is in the SOEC mode, to separate the CO 2 from the gas supplied from the CO 2 source, a first 2CO 2 separator for supplying the separated CO 2 to the R-SOC,
An evaporator that supplies H 2 O for electrolysis to the R-SOC when the R-SOC is in the SOEC mode;
Fuel production and storage means for producing and storing hydrocarbons from synthesis gas contained in the off-gas (A ′ out ) of the R-SOC when the R-SOC is in the SOEC mode;
Cathode off-gas circulating means for returning separation gas (C out ) discharged from the purge flow path of the first CO 2 separator to the cathode flow path of the R-SOC when the R-SOC is in the SOEC mode;
An anode off-gas circulating means for returning the B out from which all or part of the water vapor has been separated to the anode flow path of the R-SOC when the R-SOC is in the SOFC mode;
Fuel supply means for supplying the stored hydrocarbon to the R-SOC when the R-SOC is in the SOFC mode.
(2) the first 1 CO 2 separator and the first 2CO 2 separator, respectively, consist of a boiling-cooled CO 2 separator of claim 5.
以下の構成をさらに備えた請求項10に記載のR−SOCシステム。
(3)前記R−SOCシステムは、
前記R−SOCが前記SOFCモードにある時に、前記凝縮器で凝縮させた水を前記沸騰冷却式CO2分離器の沸騰冷却流路(A)及び沸騰冷却流路(B)にそれぞれ供給する水供給手段(A)と、
前記R−SOCが前記SOECモードにある時に、電解用のH2Oを前記沸騰冷却流路(A)及び前記沸騰冷却流路(B)にそれぞれ供給する水供給手段(B)と
を備えている。
The R-SOC system according to claim 10, further comprising the following configuration.
(3) The R-SOC system is
When the R-SOC is in the SOFC mode, water condensed by the condenser is supplied to the boiling cooling channel (A) and the boiling cooling channel (B) of the boiling cooling CO 2 separator, respectively. Supply means (A);
Water supply means (B) for supplying H 2 O for electrolysis to the boiling cooling channel (A) and the boiling cooling channel (B), respectively, when the R-SOC is in the SOEC mode. Yes.
JP2018061134A 2018-03-28 2018-03-28 Evaporative Cooling Valves, Evaporative Cooling CO2 Separators, SOFC Systems, SOEC Systems, and R-SOC Systems Active JP7106930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061134A JP7106930B2 (en) 2018-03-28 2018-03-28 Evaporative Cooling Valves, Evaporative Cooling CO2 Separators, SOFC Systems, SOEC Systems, and R-SOC Systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061134A JP7106930B2 (en) 2018-03-28 2018-03-28 Evaporative Cooling Valves, Evaporative Cooling CO2 Separators, SOFC Systems, SOEC Systems, and R-SOC Systems

Publications (2)

Publication Number Publication Date
JP2019175636A true JP2019175636A (en) 2019-10-10
JP7106930B2 JP7106930B2 (en) 2022-07-27

Family

ID=68169665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061134A Active JP7106930B2 (en) 2018-03-28 2018-03-28 Evaporative Cooling Valves, Evaporative Cooling CO2 Separators, SOFC Systems, SOEC Systems, and R-SOC Systems

Country Status (1)

Country Link
JP (1) JP7106930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191061A1 (en) 2021-03-11 2022-09-15 日本碍子株式会社 Methane production system
WO2022191069A1 (en) 2021-03-11 2022-09-15 日本碍子株式会社 Methane production system and methane production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100229U (en) * 1976-01-27 1977-07-29
JPS61128474U (en) * 1985-01-30 1986-08-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100229U (en) * 1976-01-27 1977-07-29
JPS61128474U (en) * 1985-01-30 1986-08-12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191061A1 (en) 2021-03-11 2022-09-15 日本碍子株式会社 Methane production system
WO2022191069A1 (en) 2021-03-11 2022-09-15 日本碍子株式会社 Methane production system and methane production method

Also Published As

Publication number Publication date
JP7106930B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
JP7446372B2 (en) System for high temperature reversible electrolysis of water including a hydride tank combined with an electrolyzer
RU2670991C2 (en) Electrolysis method and electrolysis apparatus
US20060010866A1 (en) Pressurized near-isothermal fuel cell - gas turbine hybrid system
KR101843380B1 (en) Cooling and heating device
US8227119B2 (en) Fuel cell system
JP2009230926A (en) Fuel cell system
JP2010257644A (en) Method of controlling fuel cell system
JPS61168876A (en) Operation system of fuel cell
JP6042174B2 (en) Hydrogen power storage system and method
JP2019175636A (en) Boiling cooling type valve, boiling cooling type CO2 separator, SOFC system, SOEC system, and R-SOC system
US7560181B2 (en) Fuel cell system and method of operating the same
KR102518536B1 (en) Heat exchange device for cooling water of fuel cell and fuel cell system comprising the same
KR20060067890A (en) Near-isothermal high-temperature fuel cell
JP2013058337A (en) Fuel cell system
JP5503372B2 (en) Fuel cell cogeneration system
KR101817432B1 (en) Fuel cell system
JP5127733B2 (en) Combined power generator
JP2009170307A (en) Fuel cell module, and operation method of fuel cell module
JP2014149147A (en) Heat supply system
WO2012166040A1 (en) Energy generation using a stack of fuel cells
US20110143231A1 (en) Integrated piping module in fuel cell system
CN114586205B (en) Hybrid power generation system
JPH04144069A (en) Fuel cell
JP2000294262A (en) Fuel cell power generating device
JP4660888B2 (en) Fuel cell power generation system and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7106930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150