JP2014149147A - Heat supply system - Google Patents

Heat supply system Download PDF

Info

Publication number
JP2014149147A
JP2014149147A JP2013269739A JP2013269739A JP2014149147A JP 2014149147 A JP2014149147 A JP 2014149147A JP 2013269739 A JP2013269739 A JP 2013269739A JP 2013269739 A JP2013269739 A JP 2013269739A JP 2014149147 A JP2014149147 A JP 2014149147A
Authority
JP
Japan
Prior art keywords
heat
heat storage
temperature side
storage unit
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013269739A
Other languages
Japanese (ja)
Other versions
JP6188570B2 (en
Inventor
Kentaro Ueda
健太郎 植田
Hideki Hayakawa
秀樹 早川
Teru Morita
輝 森田
Akira Kishimoto
章 岸本
Kazuki Morita
和樹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013269739A priority Critical patent/JP6188570B2/en
Publication of JP2014149147A publication Critical patent/JP2014149147A/en
Application granted granted Critical
Publication of JP6188570B2 publication Critical patent/JP6188570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent operation efficiency of a heat source from decreasing while storing heat with high density in a heat storage part, without causing fluctuation of the pressure and flow rate of a heat medium circulating through a heat reception part as the heat source.SOLUTION: A first heat medium circulation passage C is provided so that a first heat medium can flow into a heat storage part 10. A hot water flow passage L1 comprises: a water supply port to which pressurized water is supplied; heat exchangers 12, 13 installed in the heat storage part; and a hot water discharge port discharging high-temperature water. Water having flowed in from the water supply port is subjected to heat exchange to at least any of latent heat storage materials 20a, 20b and the first heat medium by the heat exchangers 12, 13, to be thereby flown out to the hot water discharge port. Consequently, heat supply is performed on a heat use side.

Description

本発明は、蓄熱部で授熱側となる第1熱媒が循環する第1熱媒循環路を受熱部と蓄熱部との間に備え、前記蓄熱部の内部には潜熱蓄熱材が充填され、前記受熱部で昇温された第1熱媒の熱を前記蓄熱部の内部の前記潜熱蓄熱材へ蓄熱可能に構成され、湯水通流路を使って、蓄熱状態にある前記蓄熱部から熱利用側へ熱供給が可能な熱供給システムに関する。   The present invention includes a first heat medium circulation path through which a first heat medium on the heat transfer side in the heat storage unit circulates between the heat receiving unit and the heat storage unit, and the heat storage unit is filled with a latent heat storage material. The heat of the first heat medium heated at the heat receiving part is configured to be stored in the latent heat storage material inside the heat storage part, and heat is generated from the heat storage part in a heat storage state using a hot water passage. The present invention relates to a heat supply system capable of supplying heat to the user side.

従来、熱供給システムとしては、受熱部から熱回収した湯水を蓄熱部に循環させるよう配設された流路と、上水として給水した水を蓄熱部に通流させ蓄熱部の熱を回収し給湯として排出させるよう配設された流路とが、共用される構成を有するものが知られている(特許文献1を参照)。
一方、熱源に設けられた受熱部と蓄熱部との間で熱媒を循環させる熱媒流路と、上水として給水される水を通流する給湯利用側の流路との夫々を、蓄熱部の内部に配設する構成を有するものが知られている(特許文献2を参照)。
Conventionally, as a heat supply system, a flow path arranged to circulate hot water recovered from a heat receiving part to a heat storage part and water supplied as clean water are passed through the heat storage part to recover heat of the heat storage part. There is known one having a configuration in which a flow path arranged to be discharged as hot water supply is shared (see Patent Document 1).
On the other hand, each of the heat medium flow path for circulating the heat medium between the heat receiving section and the heat storage section provided in the heat source and the flow path on the hot water supply side through which water supplied as clean water flows are stored. What has the structure arrange | positioned inside a part is known (refer patent document 2).

特開2012−180993号公報JP 2012-180993 A 特許第3912232号公報Japanese Patent No. 3912232

上記特許文献1に開示の構成では、給湯側バルブの開閉や上水圧の変動による給水圧の変動が、熱源の受熱部に直接伝わるため、当該受熱部を循環する水の流量が安定せず、一部の熱源(例えば燃料電池)では通常期待する運転ができない。例えば、燃料電池の例では、受熱部を凝縮器とし、当該凝縮器にて、運転中に燃料電池の排ガスに含まれる水蒸気8を一定量凝縮し続ける必要があるが、この凝縮について過不足が発生し、発電効率の低下に繋がる虞がある。
一方で、当該課題を解決すべく、上述した特許文献2に開示の構成のように、熱媒流路と給湯利用側の流路との夫々を、蓄熱部の内部に配設する構成を採用すると、蓄熱部の熱交換器が複雑化すると共に、増加した熱交換器の体積の顕熱の分だけ熱をロスすることになり、熱効率の観点で問題があった。
本願は、上記課題に鑑みてなされたものであり、その目的は、蓄熱部にて高密度に蓄熱しながらも、受熱部を循環する熱媒の圧力及び流量に変動を起こさせず、熱源(例えば燃料電池)の運転効率の低下を防止可能な、熱供給システムを提供する点にある。
In the configuration disclosed in Patent Document 1 above, fluctuations in the water supply pressure due to the opening and closing of the hot water supply side valve and fluctuations in the upper water pressure are directly transmitted to the heat receiving part of the heat source, so the flow rate of water circulating through the heat receiving part is not stable, Some heat sources (for example, fuel cells) do not normally operate as expected. For example, in the case of a fuel cell, the heat receiving portion is a condenser, and it is necessary to continue to condense a certain amount of water vapor 8 contained in the exhaust gas of the fuel cell during the operation. It may occur and lead to a decrease in power generation efficiency.
On the other hand, in order to solve the problem, as in the configuration disclosed in Patent Document 2 described above, a configuration in which each of the heat medium channel and the channel on the hot water supply side is disposed inside the heat storage unit is adopted. Then, the heat exchanger of the heat storage unit becomes complicated, and heat is lost by the amount of sensible heat of the increased heat exchanger volume, which is problematic in terms of thermal efficiency.
The present application has been made in view of the above problems, and its purpose is to store heat at a high density in the heat storage unit, but not to cause fluctuations in the pressure and flow rate of the heat medium circulating in the heat receiving unit. For example, the present invention is to provide a heat supply system capable of preventing a decrease in the operation efficiency of a fuel cell).

上記目的を達成するための熱供給システムは、
蓄熱部で熱供給側となる第1熱媒が循環する第1熱媒循環路を受熱部と前記蓄熱部との間に備え、
前記蓄熱部の内部には潜熱蓄熱材が充填され、
前記受熱部で昇温された第1熱媒の熱を前記蓄熱部の内部の前記潜熱蓄熱材へ蓄熱可能に構成され、
湯水流通路を使って、蓄熱状態にある前記蓄熱部から熱利用側に熱供給が可能な熱供給システムであって、その特徴構成は、
前記第1熱媒循環路は、第1熱媒を前記蓄熱部の内部へ流入可能に設けられ、
前記湯水流通路が、加圧水が供給される給水口と、前記蓄熱部に内蔵された第1熱交換器と、高温水を出湯する出湯口から構成され、
前記給水口から流入した水が、前記第1熱交換器により前記潜熱蓄熱材と第1熱媒の少なくとも何れか一方と熱交換して出湯口へ流出することにより熱利用側に熱供給可能である点にある。
A heat supply system for achieving the above object is as follows:
A first heat medium circulation path through which the first heat medium on the heat supply side in the heat storage unit circulates is provided between the heat receiving unit and the heat storage unit,
The heat storage part is filled with a latent heat storage material,
The heat of the first heat medium heated at the heat receiving part is configured to be able to store heat to the latent heat storage material inside the heat storage part,
A heat supply system capable of supplying heat from the heat storage section in a heat storage state to a heat utilization side using a hot water flow passage,
The first heat medium circulation path is provided so that the first heat medium can flow into the heat storage unit,
The hot water flow passage is composed of a water supply port to which pressurized water is supplied, a first heat exchanger built in the heat storage unit, and a hot water outlet for hot water.
The water flowing in from the water supply port can supply heat to the heat utilization side by exchanging heat with at least one of the latent heat storage material and the first heat medium by the first heat exchanger and flowing out to the hot water outlet. There is a point.

上記特徴構成によれば、第1熱媒循環路と湯水流通路とが独立に設けられ、湯水流通路を流通する湯水が、第1熱媒循環路に導かれることはないため、湯水流通路への湯水の給水圧及び流量が変化する場合であっても、当該給水圧及び流量の変化が、第1熱媒循環路を介して、熱源における受熱部に伝わることを防止できる。これにより、例えば、熱源として燃料電池を採用すると共に、受熱部として排ガスに含まれる水蒸気を凝縮する凝縮器を採用する場合に、当該凝縮器において一定以上の凝縮水を確保して、当該凝縮水により燃料電池の水自立を実現して、燃料電池の運転を良好に持続することができる。
また、第1熱媒循環路を循環する第1熱媒は、蓄熱部の内部に流入する構成が採用されていることから、蓄熱部の内部に第1熱媒循環路を熱交換器として配設する必要がなく、蓄熱部を簡易でコンパクトな構成とでき、構成をコンパクトにした分だけ、顕熱のロスを低減できる。
According to the above characteristic configuration, the first heat medium circulation path and the hot water flow path are provided independently, and hot water flowing through the hot water flow path is not guided to the first heat medium circulation path. Even when the hot water supply pressure and flow rate change, the change in the water supply pressure and flow rate can be prevented from being transmitted to the heat receiving part in the heat source via the first heat medium circulation path. Thus, for example, when a fuel cell is used as a heat source and a condenser that condenses water vapor contained in exhaust gas is used as a heat receiving part, a certain amount of condensed water is secured in the condenser, and the condensed water As a result, the water self-supporting of the fuel cell can be realized and the operation of the fuel cell can be favorably sustained.
In addition, since the first heat medium circulating in the first heat medium circulation path is configured to flow into the heat storage section, the first heat medium circulation path is arranged inside the heat storage section as a heat exchanger. It is not necessary to install the heat storage unit, and the heat storage unit can be configured in a simple and compact manner, and the loss of sensible heat can be reduced by the amount of the compact configuration.

本願の熱供給システムの更なる特徴構成は、
前記蓄熱部として、前記受熱部で昇温された第1熱媒が流入する高温側蓄熱部と、前記受熱部に戻る第1熱媒を流出する低温側蓄熱部とを備える点にある。
Further features of the heat supply system of the present application are as follows:
The heat storage unit is provided with a high temperature side heat storage unit into which the first heat medium heated at the heat receiving unit flows and a low temperature side heat storage unit through which the first heat medium returning to the heat receiving unit flows out.

上記特徴構成によれば、受熱部で昇温された第1熱媒が流入する高温側蓄熱部と、受熱部に戻る第1熱媒を流出する低温側蓄熱部とを各別に備えているので、例えば、高温側蓄熱部に設けられる潜熱蓄熱材の融点を、受熱部で昇温された第1熱媒の温度近傍に設定することで、高温側蓄熱部に比較的高温で蓄熱できる。一方、低温側蓄熱部に設けられている潜熱蓄熱材の融点を、受熱部で要求される第1熱媒の上限温度未満に設定することで、当該低温側蓄熱部を通過して受熱部に導かれる第1熱媒の温度を、受熱部で要求される第1熱媒の上限温度未満まで低下させることができる。   According to the above characteristic configuration, since the high temperature side heat storage unit into which the first heat medium raised in temperature at the heat receiving unit flows and the low temperature side heat storage unit from which the first heat medium returning to the heat receiving unit flows out are provided separately. For example, by setting the melting point of the latent heat storage material provided in the high temperature side heat storage unit to be close to the temperature of the first heat medium raised in temperature in the heat receiving unit, the high temperature side heat storage unit can store heat at a relatively high temperature. On the other hand, by setting the melting point of the latent heat storage material provided in the low temperature side heat storage unit to be lower than the upper limit temperature of the first heat medium required in the heat reception unit, the low temperature side heat storage unit passes through the low temperature side heat storage unit to the heat reception unit. The temperature of the 1st heat medium guide | induced can be reduced to less than the upper limit temperature of the 1st heat medium requested | required in a heat receiving part.

本願の熱供給システムの更なる特徴構成は、
前記湯水流通路は、それを流通する湯水が、前記低温側蓄熱部に蓄熱された熱を回収した後に、前記高温側蓄熱部に蓄熱された熱を回収可能に配設されている点にある。
Further features of the heat supply system of the present application are as follows:
The hot water flow passage is arranged such that the hot water flowing through the hot water flow passage recovers the heat stored in the low temperature side heat storage unit and then recovers the heat stored in the high temperature side heat storage unit. .

上記特徴構成によれば、湯水流通路を通流する湯水は、比較的低温で熱を蓄熱する低温側蓄熱部にて熱を回収した後に、比較的高温で熱を蓄熱する高温側蓄熱部にて熱を回収するから、湯水を十分に昇温させて、出湯口から供給できる。   According to the above characteristic configuration, the hot water flowing through the hot water flow passage is collected in the high temperature side heat storage unit that stores heat at a relatively high temperature after the heat is collected in the low temperature side heat storage unit that stores heat at a relatively low temperature. Since the heat is recovered, the hot water can be sufficiently heated and supplied from the outlet.

本願の熱供給システムの更なる特徴構成は、
前記蓄熱部として、前記高温側蓄熱部と、前記低温側蓄熱部とは別に、1つ又は複数の中温側蓄熱部を備え、
前記受熱部で昇温された第1熱媒が、前記高温側蓄熱部、前記中温側蓄熱部、及び前記低温側蓄熱部を記載の順に通流して前記受熱部へ戻るように前記第1熱媒循環路が配設されている点にある。
Further features of the heat supply system of the present application are as follows:
In addition to the high temperature side heat storage unit and the low temperature side heat storage unit, the heat storage unit includes one or a plurality of medium temperature side heat storage units,
The first heat medium so that the first heat medium heated at the heat receiving part flows through the high temperature side heat storage part, the intermediate temperature side heat storage part, and the low temperature side heat storage part in the order described and returns to the heat receiving part. The medium circulation path is provided.

上記特徴構成の如く、蓄熱部として、高温側蓄熱部、中温側蓄熱部、及び低温側蓄熱部を備えると共に、受熱部で昇温された第1熱媒を、高温側、中温側、及び低温側蓄熱部に、記載の順に通流する構成を採用することで、受熱部で昇温された第1熱媒の温度が、低温側にふれた場合であっても、第1熱媒が保有する熱を、有効に蓄熱できる。
説明を追加すると、熱源として、例えば比較的運転温度が低い固体高分子型燃料電池(以下、PEFCと略称)を備えると共に、受熱部が当該PEFCの排熱を回収するように構成されている場合、PEFCの排熱温度は定格運転時の60℃から48℃程度にまで低下することがある。このとき、高温側蓄熱部の潜熱蓄熱材の融点を53℃(定格運転時の排熱の回収を目的として設定された温度)程度にしておくと、当該高温側蓄熱部では潜熱を使った蓄熱ができず、第1熱媒は高温側蓄熱部においてほぼ放熱しないまま下流側へ流れることとなる。
そこで、上記特徴構成の如く、高温側蓄熱部の下流側に、融点44℃程度の潜熱蓄熱材を充填した中温側蓄熱部を設けておくことで、高温側蓄熱部をほぼ放熱しない状態で通過した48℃程度の第1熱媒の熱を、中温側蓄熱部で潜熱を用いて蓄熱できる。
更に、中温側蓄熱部の下流側では、低温側蓄熱部にて融点が36℃程度の潜熱蓄熱材を充填しておくことで、受熱部に戻る第1熱媒の温度を40℃未満とすることができる。結果、熱源としてPEFCを採用し、受熱部にて当該PEFCからの排ガスと第1熱媒とを熱交換させる構成を採用する場合、受熱部にて排ガスに含まれる水蒸気を好適に凝縮させることができ、当該凝縮水にてPEFCを水自立運転させることができる。
As in the above characteristic configuration, as the heat storage unit, a high temperature side heat storage unit, an intermediate temperature side heat storage unit, and a low temperature side heat storage unit are provided. By adopting a configuration that allows the side heat storage section to flow in the order described, even if the temperature of the first heat medium raised in the heat receiving section touches the low temperature side, the first heat medium is retained. Heat can be stored effectively.
When a description is added, for example, a solid polymer fuel cell (hereinafter abbreviated as PEFC) having a relatively low operating temperature is provided as a heat source, and the heat receiving unit is configured to recover the exhaust heat of the PEFC. The exhaust heat temperature of PEFC may drop from 60 ° C. during rated operation to about 48 ° C. At this time, if the melting point of the latent heat storage material of the high temperature side heat storage unit is set to about 53 ° C. (temperature set for the purpose of recovering exhaust heat during rated operation), the high temperature side heat storage unit uses latent heat to store heat. Therefore, the first heat medium flows to the downstream side without substantially radiating heat in the high temperature side heat storage section.
Therefore, as shown in the above characteristic configuration, by providing an intermediate temperature side heat storage unit filled with a latent heat storage material having a melting point of about 44 ° C. on the downstream side of the high temperature side heat storage unit, the high temperature side heat storage unit passes almost without radiating heat. The heat of the first heat medium at about 48 ° C. can be stored using latent heat in the intermediate temperature side heat storage section.
Further, on the downstream side of the intermediate temperature side heat storage unit, the temperature of the first heat medium returning to the heat receiving unit is set to less than 40 ° C. by filling the latent heat storage material having a melting point of about 36 ° C. in the low temperature side heat storage unit. be able to. As a result, when adopting a configuration in which PEFC is adopted as the heat source and the exhaust gas from the PEFC and the first heat medium are exchanged in the heat receiving part, water vapor contained in the exhaust gas is preferably condensed in the heat receiving part. It is possible to operate the PEFC in water self-sustained operation with the condensed water.

尚、上述の構成において、高温側蓄熱部を設けず、中温側蓄熱部と低温側蓄熱部のみを設ける構成を採用することも考えられるが、この場合、排熱を潜熱にて回収できる回収温度の上限が、中温側蓄熱部の融点(例えば、44℃)付近となるため、受熱部で昇温された第1熱媒の温度が60℃程度である場合には、その温度の熱を有効に蓄熱できないことになる。特に、蓄熱部で蓄熱される熱を高温暖房に用いる場合、回収温度が低いと補助熱源機が運転されるため、省エネ性が低下することになる。そこで、上記特徴構成では、蓄熱部を、高温側蓄熱部と中温側蓄熱部と低温側蓄熱部とを備える構成を採用している。   In addition, in the above-described configuration, it may be possible to adopt a configuration in which only the intermediate temperature side heat storage unit and the low temperature side heat storage unit are provided without providing the high temperature side heat storage unit. Since the upper limit of the temperature is near the melting point (for example, 44 ° C.) of the intermediate temperature side heat storage part, when the temperature of the first heat medium raised in the heat receiving part is about 60 ° C., the heat at that temperature is effective. It will not be possible to store heat. In particular, when the heat stored in the heat storage unit is used for high-temperature heating, the auxiliary heat source device is operated when the recovery temperature is low, so that energy saving performance is reduced. So, in the said characteristic structure, the structure provided with a high temperature side heat storage part, a middle temperature side heat storage part, and a low temperature side heat storage part is employ | adopted for the heat storage part.

本願の熱供給システムの更なる特徴構成は、
前記蓄熱部と熱負荷端末との間で、前記蓄熱部にて受熱側となる第2熱媒を循環させる暖房回路を、前記湯水流通路とは別に備える点にある。
Further features of the heat supply system of the present application are as follows:
A heating circuit that circulates a second heat medium that is on the heat receiving side in the heat storage unit between the heat storage unit and the thermal load terminal is provided separately from the hot water flow passage.

上記特徴構成によれば、湯水流通路とは別に暖房回路を備えることで、蓄熱部に蓄熱される熱を、比較的低温の熱需要がある給湯だけでなく、比較的高温の熱需要がある熱負荷端末でも利用することができ、蓄熱部に蓄熱される幅広い温度域の熱を、より有効に利用可能となる。   According to the above characteristic configuration, the heating circuit is provided separately from the hot water flow passage, so that the heat stored in the heat storage unit is not only hot water supply having a relatively low temperature demand but also relatively high temperature demand. The heat load terminal can also be used, and heat in a wide temperature range stored in the heat storage section can be used more effectively.

本願の熱供給システムの更なる特徴構成は、
前記暖房回路は、第2熱媒が、前記高温側蓄熱部、前記中温側蓄熱部、及び前記低温側蓄熱部のうち、前記熱負荷端末を出た後の第2熱媒の戻り温度よりも高い融点の前記潜熱蓄熱材が充填される蓄熱部の熱を回収する状態で配設されている点にある。
Further features of the heat supply system of the present application are as follows:
In the heating circuit, the second heat medium is higher than the return temperature of the second heat medium after exiting the thermal load terminal among the high temperature side heat storage unit, the intermediate temperature side heat storage unit, and the low temperature side heat storage unit. It exists in the point arrange | positioned in the state which collect | recovers the heat | fever of the thermal storage part with which the said latent heat storage material of high melting | fusing point is filled.

上記特徴構成によれば、例えば、低温側蓄熱部の潜熱蓄熱材の融点よりも高温で戻る第2熱媒の熱にて、低温側蓄熱部の潜熱蓄熱材が融解することを避けることができる。
これにより、低温側蓄熱部を通過する第1熱媒の熱を、低温側蓄熱部の潜熱蓄熱材にて適切に潜熱回収でき、第1熱媒を40℃未満の温度まで降温できる。結果、受熱部をPEFCの排ガスに含まれる水蒸気を凝縮させる凝縮器として働かせる場合、受熱部にて排ガスに含まれる水蒸気を適切に凝縮させて、PEFCを水自立運転させることができる。
According to the above characteristic configuration, for example, the latent heat storage material of the low temperature side heat storage unit can be prevented from melting by the heat of the second heat medium returning at a temperature higher than the melting point of the latent heat storage material of the low temperature side heat storage unit. .
Thereby, the heat of the 1st heat medium which passes a low temperature side heat storage part can be appropriately recovered with latent heat with the latent heat storage material of a low temperature side heat storage part, and the 1st heat medium can be temperature-fallen to the temperature below 40 degreeC. As a result, when the heat receiving part is used as a condenser for condensing the water vapor contained in the exhaust gas of PEFC, the water vapor contained in the exhaust gas is appropriately condensed in the heat receiving part, and the PEFC can be operated in a water self-supporting manner.

本願の熱供給システムの更なる特徴構成は、
前記暖房回路は、第2熱媒が前記高温側蓄熱部に蓄熱された熱のみを回収する状態、又は前記高温側蓄熱部と前記中温側蓄熱部に蓄熱された熱のみを回収する状態で配設され、
前記湯水流通路は、湯水が前記低温側蓄熱部と前記中温側蓄熱部と前記高温側蓄熱部とに蓄熱された熱を記載の順に回収可能に配設されている点にある。
Further features of the heat supply system of the present application are as follows:
The heating circuit is arranged in a state where the second heat medium recovers only the heat stored in the high temperature side heat storage unit, or in a state where only the heat stored in the high temperature side heat storage unit and the intermediate temperature side heat storage unit is recovered. Established,
The hot water flow passage is in such a manner that the hot water is collected in the order described in the order of the heat stored in the low temperature side heat storage unit, the intermediate temperature side heat storage unit, and the high temperature side heat storage unit.

上記特徴構成によれば、暖房回路を通流する第2熱媒は、少なくとも高温側蓄熱部に蓄熱された比較的高温の熱を回収することができるから、当該比較的高温の熱を、比較的高温の熱需要がある熱負荷端末にて、有効に利用することができ、補助熱源機を働かせる頻度を低減でき、省エネ性を向上できる。
また、当該暖房回路は、第2熱媒が低温側蓄熱部に蓄熱された熱は回収しない状態で配設されるから、低温側蓄熱部の潜熱蓄熱材の融点よりも高温で戻ることがある第2熱媒の熱にて、低温側蓄熱部の潜熱蓄熱材が融解することを避けることができる。
更に、湯水流通路は、湯水が低温側蓄熱部と中温側蓄熱部と高温側蓄熱部とに蓄熱された熱を記載の順に回収可能に配設されているから、特に、低温側蓄熱部の潜熱蓄熱材が、その融点(例えば、36℃)よりも低い温度の給水へ放熱され、低温側蓄熱部での蓄熱量に余裕を持たせることができ、受熱部へ戻る第1熱媒の熱を、低温側蓄熱部の潜熱蓄熱材の潜熱にて適切に回収して、第1熱媒を40℃未満の温度まで降温させて受熱部へ戻すことができる。
これにより、受熱部をPEFCの排ガスに含まれる水蒸気を凝縮させる凝縮器として働かせる場合、受熱部にて排ガスに含まれる水蒸気を適切に凝縮させて、PEFCを水自立運転させることができる。
According to the above characteristic configuration, the second heat medium that flows through the heating circuit can recover at least the relatively high-temperature heat stored in the high-temperature side heat storage unit, so the relatively high-temperature heat is compared. It can be used effectively at a thermal load terminal that has a high heat demand, and the frequency with which the auxiliary heat source machine is operated can be reduced, thus improving energy saving.
Moreover, since the said heating circuit is arrange | positioned in the state which does not collect | recover the heat which the 2nd heat carrier stored in the low temperature side heat storage part, it may return at high temperature rather than melting | fusing point of the latent heat storage material of a low temperature side heat storage part. It is possible to avoid melting of the latent heat storage material in the low-temperature side heat storage unit due to the heat of the second heat medium.
Furthermore, since the hot water flow passage is disposed so that the hot water is stored in the low temperature side heat storage unit, the intermediate temperature side heat storage unit, and the high temperature side heat storage unit in the order described, The latent heat storage material is dissipated to the water supply having a temperature lower than its melting point (for example, 36 ° C.), and the heat storage amount in the low temperature side heat storage unit can be given a surplus, and the heat of the first heat medium returning to the heat receiving unit Can be appropriately recovered by the latent heat of the latent heat storage material of the low temperature side heat storage section, and the first heat medium can be lowered to a temperature of less than 40 ° C. and returned to the heat receiving section.
Thereby, when making a heat receiving part work as a condenser which condenses the water vapor | steam contained in the waste gas of PEFC, the water vapor | steam contained in waste gas is appropriately condensed in a heat receiving part, and PEFC can be water-self-supported.

本願の熱供給システムの更なる特徴構成は、
前記受熱部は、熱源機にて発生する排ガスの排熱を回収するものであり、
前記中温側蓄熱部に充填される中温側潜熱蓄熱材の融点が、前記熱源機から排出される前記排ガスの下限温度未満に設定されている点にある。
Further features of the heat supply system of the present application are as follows:
The heat receiving part collects exhaust heat of exhaust gas generated in a heat source machine,
The melting point of the intermediate temperature side latent heat storage material filled in the intermediate temperature side heat storage unit is set to be lower than the lower limit temperature of the exhaust gas discharged from the heat source unit.

例えば、熱源をPEFCとして構成する場合、当該PEFCの運転状態が変動すること等により、その排ガスの温度が、定格の60℃から48℃程度(以下、排ガスの下限温度と呼ぶ)まで低下することがある。
上記特徴構成によれば、中温側蓄熱部に充填される中温側潜熱蓄熱材の融点を、熱源機から排出される排ガスの下限温度(48℃)未満に設定することで、排ガスの温度が下限温度まで低下した場合でも、当該排ガスの排熱を回収した第1熱媒の熱を、少なくとも中温側蓄熱部へ蓄熱することができる。
これにより、第1熱媒の熱が、高温側蓄熱部及び中温側蓄熱部に蓄熱されずに、低温側蓄熱部のみに蓄熱され、低温側蓄熱部の蓄熱量が上限に達し、第1熱媒が、十分に温度低下しないまま(40℃以上の温度で)、受熱部へ導かれることを防止できる。
For example, when the heat source is configured as a PEFC, the temperature of the exhaust gas decreases from the rated 60 ° C. to about 48 ° C. (hereinafter referred to as the lower limit temperature of the exhaust gas) due to fluctuations in the operating state of the PEFC. There is.
According to the above characteristic configuration, the temperature of the exhaust gas is set to the lower limit by setting the melting point of the intermediate temperature side latent heat storage material filled in the intermediate temperature side heat storage unit to be lower than the lower limit temperature (48 ° C.) of the exhaust gas discharged from the heat source unit. Even when the temperature is lowered to the temperature, the heat of the first heat medium that has recovered the exhaust heat of the exhaust gas can be stored at least in the intermediate temperature side heat storage section.
Thereby, the heat of the first heat medium is not stored in the high temperature side heat storage unit and the intermediate temperature side heat storage unit, but is stored only in the low temperature side heat storage unit, and the amount of heat stored in the low temperature side heat storage unit reaches the upper limit, and the first heat It is possible to prevent the medium from being guided to the heat receiving part without sufficiently lowering the temperature (at a temperature of 40 ° C. or higher).

本願の熱供給システムの更なる特徴構成は、
前記受熱部は、燃料電池にて発生する排ガスと前記熱媒循環路の熱媒とを熱交換させ、排ガスに含まれる水蒸気を凝縮させる凝縮器であり、
前記低温側蓄熱部に充填される低温側潜熱蓄熱材の融点が、前記排ガスに含まれる水蒸気を凝縮させる凝縮温度未満に設定されている点にある。
Further features of the heat supply system of the present application are as follows:
The heat receiving unit is a condenser that causes heat exchange between the exhaust gas generated in the fuel cell and the heat medium in the heat medium circulation path, and condenses water vapor contained in the exhaust gas,
The melting point of the low-temperature side latent heat storage material filled in the low-temperature side heat storage unit is set to be lower than a condensation temperature for condensing water vapor contained in the exhaust gas.

上記特徴構成によれば、受熱部を、燃料電池にて発生する排ガスと第1熱媒循環路の第1熱媒とを熱交換させる凝縮器にて構成すると共に、低温側蓄熱部に設けられる低温側潜熱蓄熱材の融点が、凝縮器にて排ガスに含まれる水蒸気を凝縮させる凝縮温度未満の温度に設定されているから、低温側潜熱蓄熱材の一部が熱利用側の湯水により冷却され、冷熱蓄熱している状態(例えば低温側潜熱蓄熱材が固相状態にある場合)では、低温側蓄熱部から流出し凝縮器に導かれる第1熱媒の温度を、凝縮器にて排ガスに含まれる水蒸気を適切に凝縮させることができる。これにより、当該凝縮水を用いて、燃料電池の水自立運転を実現できる。   According to the above characteristic configuration, the heat receiving unit is configured by the condenser for exchanging heat between the exhaust gas generated in the fuel cell and the first heat medium in the first heat medium circuit, and is provided in the low temperature side heat storage unit. Since the melting point of the low-temperature side latent heat storage material is set to a temperature lower than the condensation temperature at which the water vapor contained in the exhaust gas is condensed by the condenser, a part of the low-temperature side latent heat storage material is cooled by hot water on the heat utilization side. In a state where cold heat is stored (for example, when the low temperature side latent heat storage material is in a solid phase), the temperature of the first heat medium that flows out of the low temperature side heat storage section and is guided to the condenser is converted into exhaust gas by the condenser. The contained water vapor can be condensed appropriately. Thereby, the water self-sustained operation of the fuel cell can be realized using the condensed water.

第1実施形態に係る熱供給システムの概略構成図Schematic configuration diagram of a heat supply system according to the first embodiment 第1実施形態に係る蓄熱槽の内部構成を示す図The figure which shows the internal structure of the thermal storage tank which concerns on 1st Embodiment. 第2実施形態に係る熱供給システムの概略構成図Schematic configuration diagram of a heat supply system according to the second embodiment 別実施形態に係る蓄熱槽の内部構成を示す図The figure which shows the internal structure of the heat storage tank which concerns on another embodiment.

本発明の熱供給システム100は、蓄熱部である高温側蓄熱槽10a(高温側蓄熱部の一例)及び低温側蓄熱槽10b(低温側蓄熱部の一例)に高密度に蓄熱しながらも、熱源としての受熱部37を流通する第1熱媒の圧力及び流量に変動を起こさせず、受熱部37を有する燃料電池30の運転効率の低下を防止できるものである。
本発明の熱供給システム100は、受熱部37に導かれる第1熱媒の温度を十分に低下させることができるものであるため、例えば、固体酸化物形燃料電池及び固体高分子形燃料電池等の燃料電池30に適用する場合、当該燃料電池30にて水自立運転を実行させることができる。そこで、以下では、燃料電池30の構成を説明した後、燃料電池30に本発明の熱供給システム100を適用した場合の第1実施形態を、図1、2に基づいて説明する。
While the heat supply system 100 of the present invention stores heat at high density in a high temperature side heat storage tank 10a (an example of a high temperature side heat storage part) and a low temperature side heat storage tank 10b (an example of a low temperature side heat storage part) that are heat storage parts, As a result, it is possible to prevent the operating efficiency of the fuel cell 30 having the heat receiving portion 37 from being lowered without causing fluctuations in the pressure and flow rate of the first heat medium flowing through the heat receiving portion 37.
Since the heat supply system 100 of the present invention can sufficiently reduce the temperature of the first heat medium guided to the heat receiving portion 37, for example, a solid oxide fuel cell, a solid polymer fuel cell, etc. When this is applied to the fuel cell 30, water self-sustained operation can be executed in the fuel cell 30. Therefore, in the following, after describing the configuration of the fuel cell 30, a first embodiment in which the heat supply system 100 of the present invention is applied to the fuel cell 30 will be described with reference to FIGS.

〔第1実施形態〕
燃料電池30は、図1に示すように、燃料ガスFから硫黄化合物を除去する脱硫器33と、脱硫された燃料ガスFを水蒸気改質触媒の存在下で水蒸気と反応させて改質ガスを生成する改質器34と、改質ガス中の一酸化炭素を触媒の存在下で水蒸気と反応させて二酸化炭素に変成する変成処理を実行する変成器35が、記載順に配設され、変成処理等により一酸化炭素が除去された水素リッチの改質燃料ガスが生成される。
生成された改質燃料ガスは、アノード電極(燃料極)32へ供給されると共に、空気中の酸素が、カソード電極(空気極)31へ供給され、当該アノード電極(燃料極)32とカソード電極(空気極)31とにおける電気化学反応により、電力を発生可能に構成されている。
[First Embodiment]
As shown in FIG. 1, the fuel cell 30 includes a desulfurizer 33 that removes sulfur compounds from the fuel gas F, and reacts the desulfurized fuel gas F with steam in the presence of a steam reforming catalyst to produce reformed gas. A reformer 34 to be generated, and a transformer 35 for performing a transformation process for reacting carbon monoxide in the reformed gas with water vapor in the presence of a catalyst to transform it into carbon dioxide are arranged in the order of description, and the transformation process is performed. Thus, a hydrogen-rich reformed fuel gas from which carbon monoxide has been removed is generated.
The generated reformed fuel gas is supplied to the anode electrode (fuel electrode) 32, and oxygen in the air is supplied to the cathode electrode (air electrode) 31, and the anode electrode (fuel electrode) 32 and the cathode electrode are supplied. It is configured to be able to generate electric power by an electrochemical reaction with the (air electrode) 31.

一方、上記電力を発生する過程で排出される排ガスEは、排ガス流通路38を流通して、凝縮器37(受熱部の一例)へ送られる。当該凝縮器37には、後述する第1熱媒を循環する第1熱媒循環路Cが配設されており、当該凝縮器37への第1熱媒の入り温度は、低温TL(例えば、37℃程度)に設定されている。これにより、排ガスEは、当該第1熱媒との熱交換により、40℃以下に降温し、その内部に含まれる水蒸気が凝縮される。凝縮された水は、一旦、回収水タンク36に貯留された後、公知の水処理装置(図示せず)により純水化させて、改質器34へ導かれる。
当該構成を採用することにより、燃料電池30は、自身の内部にて水蒸気改質に必要な水を生成する、所謂、水自立運転を実行可能になる。
On the other hand, the exhaust gas E discharged in the process of generating electric power flows through the exhaust gas flow passage 38 and is sent to the condenser 37 (an example of a heat receiving unit). The condenser 37 is provided with a first heat medium circulation path C that circulates a first heat medium, which will be described later, and the temperature at which the first heat medium enters the condenser 37 is a low temperature TL (for example, 37 ° C.). Thereby, the exhaust gas E is cooled to 40 ° C. or less by heat exchange with the first heat medium, and the water vapor contained therein is condensed. The condensed water is once stored in the recovered water tank 36, purified by a known water treatment device (not shown), and guided to the reformer 34.
By adopting this configuration, the fuel cell 30 can perform a so-called water self-sustained operation in which water necessary for steam reforming is generated inside itself.

本発明の熱供給システム100では、上述した燃料電池30の凝縮器37(受熱部の一例)と蓄熱部10との間で、第1熱媒を循環する第1熱媒循環路Cを備えると共に、当該第1熱媒循環路Cにて第1熱媒を圧送する第1循環ポンプP1を備えている。
蓄熱部10としては、凝縮器37で昇温された第1熱媒が流入する高温側蓄熱槽10a(高温側蓄熱部の一例)と、凝縮器37へ戻る第1熱媒を流出する低温側蓄熱槽10b(低温側蓄熱部の一例)とを備えている。即ち、第1熱媒循環路Cは、高温側蓄熱槽10aから流出する第1熱媒を低温側蓄熱槽10bへ流入させるように配設されている。これにより、第1熱媒は、凝縮器37で昇温した後、高温側蓄熱槽10aと低温側蓄熱槽10bとを、記載順に直列に流通することとなる。
The heat supply system 100 of the present invention includes the first heat medium circulation path C that circulates the first heat medium between the condenser 37 (an example of the heat receiving unit) of the fuel cell 30 and the heat storage unit 10 described above. A first circulation pump P1 that pumps the first heat medium in the first heat medium circulation path C is provided.
As the heat storage unit 10, a high temperature side heat storage tank 10 a (an example of a high temperature side heat storage unit) into which the first heat medium heated by the condenser 37 flows, and a low temperature side from which the first heat medium returning to the condenser 37 flows out. And a heat storage tank 10b (an example of a low temperature side heat storage unit). That is, the first heat medium circulation path C is disposed so that the first heat medium flowing out from the high temperature side heat storage tank 10a flows into the low temperature side heat storage tank 10b. Thereby, after heating up the 1st heat carrier with the condenser 37, it will distribute | circulate the high temperature side heat storage tank 10a and the low temperature side heat storage tank 10b in series in order of description.

高温側蓄熱槽10a及び低温側蓄熱槽10bには、図2に示すように、夫々、第1熱媒との熱交換により相変化を伴って潜熱蓄熱する高温側潜熱蓄熱材20a、低温側潜熱蓄熱材20bが備えられている。   As shown in FIG. 2, the high temperature side heat storage tank 10a and the low temperature side heat storage tank 10b have a high temperature side latent heat storage material 20a that stores latent heat with phase change by heat exchange with the first heat medium, respectively, and a low temperature side latent heat. A heat storage material 20b is provided.

高温側潜熱蓄熱材20aの融点は、例えば、燃料電池30が定格運転をしている場合に、高温側蓄熱槽10aに流入する第1熱媒の温度TH(固体酸化物形燃料電池の場合:85℃、固体高分子形燃料電池の場合:65℃)未満で、当該第1熱媒の温度THから40℃程度低い温度以上に設定されており、低温側潜熱蓄熱材20bの融点よりも高い温度に設定されている。
一方、低温側蓄熱槽10bに設けられる低温側潜熱蓄熱材20bの融点は、燃料電池30の凝縮器37にて、排ガスEに含まれる水蒸気の凝縮温度(例えば、40℃未満の温度)未満の温度TLに設定されている。
The melting point of the high-temperature side latent heat storage material 20a is, for example, the temperature TH of the first heat medium flowing into the high-temperature side heat storage tank 10a when the fuel cell 30 is in rated operation (in the case of a solid oxide fuel cell: 85 ° C., in the case of a polymer electrolyte fuel cell: less than 65 ° C.), the temperature is set to about 40 ° C. lower than the temperature TH of the first heat medium, and higher than the melting point of the low-temperature side latent heat storage material 20b. The temperature is set.
On the other hand, the melting point of the low-temperature side latent heat storage material 20b provided in the low-temperature side heat storage tank 10b is less than the condensation temperature of the water vapor contained in the exhaust gas E (for example, a temperature below 40 ° C.) in the condenser 37 of the fuel cell 30. The temperature TL is set.

以上の構成により、第1熱媒循環路Cを循環する第1熱媒は、凝縮器37にて排ガスEの排熱を回収することで昇温(温度TH)し、回収した熱の一部を、高温側蓄熱槽10aにて高温側潜熱蓄熱材20aへ放熱(温度TM)し、その後、熱の残部を、低温側蓄熱槽10bの低温側潜熱蓄熱材20bへ放熱(温度TL)する。結果、高温側蓄熱槽10aでは、高温側潜熱蓄熱材20aの融点以上の温度の比較的高温で蓄熱され、低温側蓄熱槽10bでは、低温側潜熱蓄熱材20bの融点以上の温度の比較的低温で蓄熱されることとなる。   With the above configuration, the first heat medium circulating in the first heat medium circuit C is heated (temperature TH) by recovering the exhaust heat of the exhaust gas E by the condenser 37, and a part of the recovered heat. Is radiated (temperature TM) to the high temperature side latent heat storage material 20a in the high temperature side heat storage tank 10a, and then the remaining heat is radiated (temperature TL) to the low temperature side latent heat storage material 20b of the low temperature side heat storage tank 10b. As a result, in the high temperature side heat storage tank 10a, heat is stored at a relatively high temperature that is equal to or higher than the melting point of the high temperature side latent heat storage material 20a, and in the low temperature side heat storage tank 10b, a relatively low temperature that is equal to or higher than the melting point of the low temperature side latent heat storage material 20b. It will be stored heat.

ここで、高温側蓄熱槽10a及び低温側蓄熱槽10bにおける熱移動に関して、以下に説明する。
図1、図2に示されるように、熱供給側である燃料電池30側からの高温側蓄熱槽10aでの熱移動は、高温側蓄熱槽10aにおいて、熱供給側の第1熱媒がTH〜TMへ降温する状態で、且つ熱利用側である湯水流通路L1を流通する湯水がtm〜thに昇温する状態で行なわれる。従って、高温側蓄熱槽10aに収容される高温側潜熱蓄熱材20aは、槽内の最高温度であるTHと槽内の最低温度であるtmとの間で、相変化するように設定されている。
一方、低温側蓄熱槽10bでの熱移動は、低温側蓄熱槽10bにおいて、熱供給側の第1熱媒がTM〜TLへ降温する状態で、且つ熱利用側である湯水流通路L1を流通する湯水がtl〜tmに昇温する状態で行なわれる。従って、低温側蓄熱槽10bに収容される低温側潜熱蓄熱材20bは、槽内の最高温度であるTMと槽内の最低温度であるtlとの間で、相変化するように設定されている。
結果、第1熱媒の受熱部である凝縮器37に戻る第1熱媒温度は、水蒸気の凝縮温度(例えば40℃)未満となる。
上記高温側潜熱蓄熱材20a及び低温側潜熱蓄熱材20bとしては、以下の〔表1〕に示すものが好適に利用される。尚、以下の〔表1〕では、説明の都合上、後述する第2実施形態で説明する中温側潜熱蓄熱材20cについても、例示してある。
Here, the heat transfer in the high temperature side heat storage tank 10a and the low temperature side heat storage tank 10b will be described below.
As shown in FIGS. 1 and 2, the heat transfer from the fuel cell 30 side, which is the heat supply side, in the high temperature side heat storage tank 10a is the same as that in the high temperature side heat storage tank 10a. The hot water flowing through the hot water flow passage L1 on the heat utilization side is raised to tm to th while the temperature is lowered to -TM. Therefore, the high-temperature side latent heat storage material 20a accommodated in the high-temperature side heat storage tank 10a is set to change in phase between TH, which is the highest temperature in the tank, and tm, which is the lowest temperature in the tank. .
On the other hand, the heat transfer in the low temperature side heat storage tank 10b flows through the hot water flow passage L1 on the heat utilization side in the state where the temperature of the first heat medium on the heat supply side drops to TM to TL in the low temperature side heat storage tank 10b. The hot water is heated to tl to tm. Therefore, the low-temperature side latent heat storage material 20b accommodated in the low-temperature side heat storage tank 10b is set to change in phase between TM, which is the highest temperature in the tank, and tl, which is the lowest temperature in the tank. .
As a result, the first heat medium temperature that returns to the condenser 37 that is the heat receiving portion of the first heat medium is lower than the condensation temperature (for example, 40 ° C.) of the water vapor.
As the high temperature side latent heat storage material 20a and the low temperature side latent heat storage material 20b, those shown in Table 1 below are preferably used. In the following [Table 1], for the convenience of explanation, the intermediate temperature side latent heat storage material 20c described in the second embodiment to be described later is also illustrated.

Figure 2014149147
Figure 2014149147

高温側蓄熱槽10a及び低温側蓄熱槽10bに蓄熱された熱は、給湯に利用可能に構成されている。
説明を加えると、加圧水が供給される給水口(図示せず)と、高温側蓄熱槽10aに内蔵された高温側熱交換器12及び低温側蓄熱槽10bに内蔵された低温側熱交換器13と、高温水を出湯する出湯口(図示せず)とを有する湯水流通路L1が設けられている。当該湯水流通路L1を流通する湯水は、低温側熱交換器13にて、低温側潜熱蓄熱材20bと第1熱媒との少なくとも何れか一方と熱交換した後に、高温側熱交換器12にて、高温側潜熱蓄熱材20aと第1熱媒との少なくとも何れか一方と熱交換する。
湯水は、低温側熱交換器13を通過することにより、低温側潜熱蓄熱材20bの融点近傍の温度(例えば、32℃〜36℃の温度)まで昇温した後、高温側熱交換器12を通過することにより、高温側潜熱蓄熱材20aの融点近傍の温度(例えば、47℃〜58℃の温度)まで昇温され、給湯として有効に利用可能となる。
The heat stored in the high temperature side heat storage tank 10a and the low temperature side heat storage tank 10b is configured to be available for hot water supply.
In other words, a water supply port (not shown) to which pressurized water is supplied, a high temperature side heat exchanger 12 built in the high temperature side heat storage tank 10a, and a low temperature side heat exchanger 13 built in the low temperature side heat storage tank 10b. And a hot water flow passage L1 having a hot water outlet (not shown) through which hot water is discharged. After the hot water flowing through the hot water flow passage L1 is heat-exchanged with at least one of the low-temperature side latent heat storage material 20b and the first heat medium in the low-temperature side heat exchanger 13, the hot-water flows to the high-temperature side heat exchanger 12. Then, heat exchange is performed with at least one of the high-temperature side latent heat storage material 20a and the first heat medium.
After passing through the low temperature side heat exchanger 13, the hot water is heated to a temperature near the melting point of the low temperature side latent heat storage material 20b (for example, a temperature of 32 ° C. to 36 ° C.), and then the high temperature side heat exchanger 12 is changed. By passing, the temperature is raised to a temperature in the vicinity of the melting point of the high-temperature side latent heat storage material 20a (for example, a temperature of 47 ° C. to 58 ° C.), and can be effectively used as hot water.

高温側蓄熱槽10aに接続される第1熱媒循環路Cの接続端部は、高温側蓄熱槽10aの内部に、鉛直方向で上方側と下方側とに穿設されている。上方側の接続端部Cuと、下方側接続端部Cdとは、高温側蓄熱槽10aの内部で水平方向に延びると共に、当該水平方向に沿って等間隔に開口部Caが複数設けられている。
これにより、上方側接続端部Cuの開口部Caから、高温側蓄熱槽10aの内部に流入した第1熱媒は、高温側蓄熱槽10aの全体に亘り拡散し、高温側潜熱蓄熱材20a及び高温側熱交換器12に直接接触する形態で熱交換した後、下方側接続端部Cdの開口部Caから第1熱媒循環路Cの内部へ流入する。
Connection end portions of the first heat medium circulation path C connected to the high temperature side heat storage tank 10a are drilled in the upper side and the lower side in the vertical direction inside the high temperature side heat storage tank 10a. The upper connection end Cu and the lower connection end Cd extend in the horizontal direction inside the high temperature side heat storage tank 10a, and a plurality of openings Ca are provided at equal intervals along the horizontal direction. .
Thereby, the 1st heat medium which flowed into the inside of high temperature side heat storage tank 10a from opening Ca of upper part side connection end Cu spreads over the whole high temperature side heat storage tank 10a, and high temperature side latent heat storage material 20a and After exchanging heat in a form in direct contact with the high temperature side heat exchanger 12, the heat flows into the inside of the first heat medium circulation path C from the opening Ca of the lower connection end Cd.

同様に、低温側蓄熱槽10bに接続される第1熱媒循環路Cの接続端部は、低温側蓄熱槽10bの内部に、鉛直方向で上方側と下方側とに穿設されている。上方側接続端部Cuと、下方側接続端部Cdとは、低温側蓄熱槽10bの内部で水平方向に延びると共に、当該水平方向に沿って等間隔に開口部Cbが複数設けられている。
これにより、上方側接続端部Cuの開口部Cbから、低温側蓄熱槽10bの内部に流入した第1熱媒は、低温側蓄熱槽10bの全体に亘り拡散し、低温側潜熱蓄熱材20b及び低温側熱交換器13に直接接触する形態で熱交換した後、下方側接続端部Cdの開口部Cbから第1熱媒循環路Cの内部へ流入する。
Similarly, connection end portions of the first heat medium circulation path C connected to the low temperature side heat storage tank 10b are formed in the low temperature side heat storage tank 10b on the upper side and the lower side in the vertical direction. The upper connection end Cu and the lower connection end Cd extend in the horizontal direction inside the low temperature side heat storage tank 10b, and a plurality of openings Cb are provided at equal intervals along the horizontal direction.
Thereby, the 1st heat medium which flowed into the inside of the low temperature side heat storage tank 10b from the opening part Cb of the upper side connection end Cu diffuses over the whole low temperature side heat storage tank 10b, and the low temperature side latent heat storage material 20b and After exchanging heat in a form in direct contact with the low-temperature side heat exchanger 13, the heat flows into the first heating medium circulation path C from the opening Cb of the lower connection end Cd.

尚、第1熱媒としては、液相の潜熱蓄熱材20a、20bと相互溶解しないものが採用される。これにより、潜熱蓄熱材20a、20bは、低温側蓄熱槽10b及び高温側蓄熱槽10aの内部から流出しない状態が維持される。   As the first heat medium, one that does not mutually dissolve with the liquid phase latent heat storage materials 20a and 20b is employed. Thereby, the state in which the latent heat storage materials 20a and 20b do not flow out from the inside of the low temperature side heat storage tank 10b and the high temperature side heat storage tank 10a is maintained.

〔第2実施形態〕
上記第1実施形態に係る熱供給システム100では、蓄熱部10として、高温側蓄熱槽10aと低温側蓄熱槽10bとを備える構成を示した。当該第2実施形態に係る熱供給システム100では、高温側蓄熱槽10a及び低温側蓄熱槽10bに加えて、1つ又は複数の中温側蓄熱槽10c(中温側蓄熱部の一例)を備える構成を採用している。
以下では、当該第2実施形態において特徴的な構成に重点をおいて説明するものとし、それ以外の構成で第1実施形態と同一の構成については、第1実施形態と同一の符号を付すと共に、その説明を割愛する。以下、図3に基づいて、当該第2実施形態に係る熱供給システム100について説明する。
第2実施形態に係る熱供給システム100では、蓄熱部10として、凝縮器37で昇温された第1熱媒が流入する高温側蓄熱槽10aと、当該高温側蓄熱槽10aから流出した第1熱媒が流入する中温側蓄熱槽10c(第2実施形態では、1つ)と、中温側蓄熱槽10cから流出した第1熱媒が流入すると共に凝縮器37へ戻る熱媒を流出する低温側蓄熱槽10bとを備えている。
即ち、当該第2実施形態にあっては、受熱部37で昇温された第1熱媒が、高温側蓄熱槽10a、中温側蓄熱槽10c、及び低温側蓄熱槽10bを記載の順に通流して受熱部37へ戻るように第1熱媒循環路Cが配設されている。
[Second Embodiment]
In the heat supply system 100 which concerns on the said 1st Embodiment, the structure provided with the high temperature side heat storage tank 10a and the low temperature side heat storage tank 10b as the heat storage part 10 was shown. In the heat supply system 100 according to the second embodiment, in addition to the high temperature side heat storage tank 10a and the low temperature side heat storage tank 10b, one or a plurality of medium temperature side heat storage tanks 10c (an example of an intermediate temperature side heat storage unit) are provided. Adopted.
In the following, the description will be given with an emphasis on the characteristic configuration in the second embodiment, and the same configuration as in the first embodiment in other configurations will be denoted by the same reference numerals as in the first embodiment. , Omit the explanation. Hereinafter, based on FIG. 3, the heat supply system 100 which concerns on the said 2nd Embodiment is demonstrated.
In the heat supply system 100 according to the second embodiment, as the heat storage unit 10, the high temperature side heat storage tank 10a into which the first heat medium heated by the condenser 37 flows, and the first flow out of the high temperature side heat storage tank 10a. A medium temperature side heat storage tank 10c (one in the second embodiment) into which the heat medium flows and a low temperature side from which the first heat medium flowing out from the medium temperature side heat storage tank 10c flows in and out of the heat medium returning to the condenser 37 And a heat storage tank 10b.
That is, in the second embodiment, the first heat medium raised in temperature by the heat receiving unit 37 flows through the high temperature side heat storage tank 10a, the medium temperature side heat storage tank 10c, and the low temperature side heat storage tank 10b in the order described. The first heat medium circulation path C is disposed so as to return to the heat receiving unit 37.

ここで、高温側蓄熱槽10a、中温側蓄熱槽10c、及び低温側蓄熱槽10bには、高温側潜熱蓄熱材20a、中温側潜熱蓄熱材20c、及び低温側潜熱蓄熱材20bが、夫々備えられており、その材料等については、先に説明した〔表1〕に示すものが好適に利用可能である。   Here, the high temperature side heat storage tank 10a, the medium temperature side heat storage tank 10c, and the low temperature side heat storage tank 10b are respectively provided with a high temperature side latent heat storage material 20a, a medium temperature side latent heat storage material 20c, and a low temperature side latent heat storage material 20b. As for the materials and the like, those shown in [Table 1] described above can be suitably used.

ここで、熱源として固体高分子型の燃料電池30を用いる場合、排ガスEの温度が、定格運転時の60℃から48℃程度まで低下する場合がある。この場合、高温側潜熱蓄熱材20aとして、先に説明した〔表1〕に示されるように融点が52℃や58℃のものを採用すると、高温側蓄熱槽10aにて潜熱を用いた蓄熱ができず、第1熱媒は高温側蓄熱槽10aでほとんど放熱できないまま低温側に流れていくことになる。
当該第2実施形態の熱供給システム100にあっては、第1熱媒循環路Cの流れ方向で、当該高温側蓄熱槽10aの下流側に、中温側潜熱蓄熱材20cを充填した中温側蓄熱槽10cを設けると共に、中温側潜熱蓄熱材20cの融点を、固体高分子型の燃料電池30から排出される排ガスEの下限温度(例えば、48℃)未満に設定している。これにより、燃料電池30の排ガスEの温度が定格時の温度より低下した場合であっても、その排ガスEが保有する熱を、中温側蓄熱槽10cにて潜熱回収することができる。
Here, when the polymer electrolyte fuel cell 30 is used as a heat source, the temperature of the exhaust gas E may decrease from 60 ° C. during rated operation to about 48 ° C. In this case, as the high temperature side latent heat storage material 20a, when the melting point is 52 ° C. or 58 ° C. as shown in [Table 1] described above, heat storage using latent heat is performed in the high temperature side heat storage tank 10a. The first heat medium cannot flow in the high temperature side heat storage tank 10a and flows to the low temperature side without being able to radiate heat.
In the heat supply system 100 of the second embodiment, the intermediate temperature side heat storage in which the intermediate temperature side latent heat storage material 20c is filled on the downstream side of the high temperature side heat storage tank 10a in the flow direction of the first heat medium circulation path C. While providing the tank 10c, the melting point of the intermediate temperature side latent heat storage material 20c is set to be lower than the lower limit temperature (for example, 48 ° C.) of the exhaust gas E discharged from the polymer electrolyte fuel cell 30. Thereby, even if it is a case where the temperature of the waste gas E of the fuel cell 30 falls from the temperature at the time of rating, the heat which the waste gas E can carry out can be latent-heat-recovered in the intermediate temperature side heat storage tank 10c.

当該第2実施形態では、湯水流通路L1は、給水口(図示せず)から供給される加圧水を、低温側蓄熱槽10bに内蔵された低温側熱交換器13と、中温側蓄熱槽10cに内蔵された中温側熱交換器14と、高温側蓄熱槽10aに内蔵された高温側熱交換器12とに、記載の順に湯水を通流するように配設されている。
給水口から供給される低温(tl:例えば15℃)の湯水は、低温側熱交換器13にて、低温側潜熱蓄熱材20bと第1熱媒との少なくとも何れか一方と熱交換して第1中温(tm1:例えば25℃)まで昇温し、中温側熱交換器14にて、中温側潜熱蓄熱材20cと第1熱媒との少なくとも何れか一方と熱交換して第2中温(tm2:例えば35℃)まで昇温し、高温側熱交換器12にて、高温側潜熱蓄熱材20aと熱媒との少なくとも何れか一方と熱交換して高温(th:例えば45℃)まで昇温した後に、出湯口(図示せず)から給湯される。
In the said 2nd Embodiment, the hot water flow path L1 makes the pressurized water supplied from a water supply port (not shown) into the low temperature side heat exchanger 13 incorporated in the low temperature side heat storage tank 10b, and the intermediate temperature side heat storage tank 10c. It arrange | positions so that hot water may flow through the built-in intermediate temperature side heat exchanger 14 and the high temperature side heat exchanger 12 built in the high temperature side heat storage tank 10a in the order of description.
The low-temperature (tl: 15 ° C., for example) hot water supplied from the water supply port exchanges heat with at least one of the low-temperature side latent heat storage material 20b and the first heat medium in the low-temperature side heat exchanger 13. The temperature is raised to 1 intermediate temperature (tm1: 25 ° C., for example), and the intermediate temperature side heat exchanger 14 exchanges heat with at least one of the intermediate temperature side latent heat storage material 20c and the first heat medium to obtain the second intermediate temperature (tm2 The temperature is raised to, for example, 35 ° C., and the temperature is raised to a high temperature (th: for example, 45 ° C.) by exchanging heat with at least one of the high-temperature side latent heat storage material 20a and the heat medium in the high temperature side heat exchanger 12. After that, hot water is supplied from a hot water outlet (not shown).

更に、当該第2実施形態では、蓄熱部10と熱負荷端末50(例えば、床暖房パネルや浴室暖房乾燥機)との間で、蓄熱部10にて受熱側となる第2熱媒を循環させる第2循環ポンプP2及び暖房回路L2を、湯水流通路L1とは別に備えている。
説明を追加すると、当該暖房回路L2は、第2熱媒が、高温側蓄熱槽10a、中温側蓄熱槽10c、及び低温側蓄熱槽10bのうち、熱負荷端末50を出た後の第2熱媒の戻り温度(さらに言えば、戻り温度の下限温度)よりも高い融点の潜熱蓄熱材が充填されている蓄熱部の熱を回収する状態で配設されている。換言すると、暖房回路L2は、熱負荷端末50を出た後の第2熱媒を、中温側蓄熱槽10cに内蔵される中温側暖房熱交換器41と、高温側蓄熱槽10aに内蔵される高温側暖房熱交換器42に記載の順に第2熱媒を循環させる状態で、配設される。
これにより、熱負荷端末50を通過した後の低温(dtl:例えば42℃)の第2熱媒は、中温側暖房熱交換器41にて、中温側潜熱蓄熱材20cと第1熱媒との少なくとも何れか一方と熱交換して中温(dtm:例えば46℃)まで昇温し、高温側暖房熱交換器42にて、高温側潜熱蓄熱材20aと第1熱媒との少なくとも何れか一方と熱交換して高温(dth:例えば53℃)まで昇温し、再び、熱負荷端末50へ向かうこととなる。
Furthermore, in the said 2nd Embodiment, the 2nd heat medium used as the heat receiving side is circulated in the thermal storage part 10 between the thermal storage part 10 and the thermal load terminal 50 (for example, a floor heating panel or a bathroom heating dryer). The second circulation pump P2 and the heating circuit L2 are provided separately from the hot water flow passage L1.
If description is added, the said heating circuit L2 will be the 2nd heat | fever after the 2nd heat medium leaves the thermal load terminal 50 among the high temperature side heat storage tank 10a, the intermediate temperature side heat storage tank 10c, and the low temperature side heat storage tank 10b. It arrange | positions in the state which collect | recovers the heat | fever of the thermal storage part with which the latent heat storage material of melting | fusing point higher than the return temperature of a medium (further speaking, lower limit temperature of return temperature) is filled. In other words, the heating circuit L2 incorporates the second heat medium after exiting the heat load terminal 50 into the medium temperature side heat exchanger 41 built in the medium temperature side heat storage tank 10c and the high temperature side heat storage tank 10a. It arrange | positions in the state which circulates a 2nd heat medium in the order as described in the high temperature side heating heat exchanger 42.
Thereby, the low temperature (dtl: for example, 42 ° C.) second heat medium after passing through the heat load terminal 50 is changed between the intermediate temperature side latent heat storage material 20c and the first heat medium in the intermediate temperature side heating heat exchanger 41. Heat exchange with at least one of them to raise the temperature to an intermediate temperature (dtm: 46 ° C., for example), and at the high temperature side heating heat exchanger 42, at least one of the high temperature side latent heat storage material 20a and the first heat medium Heat exchange is performed to increase the temperature to a high temperature (dth: 53 ° C., for example), and the heat load terminal 50 is headed again.

ここで、高温側蓄熱槽10a、中温側蓄熱槽10c、及び低温側蓄熱槽10bにおける熱移動に関して、以下に説明する。
図3に示されるように、高温側蓄熱槽10aでの熱移動は、高温側蓄熱槽10aにおいて、熱供給側の第1熱媒がTH〜TM1(例えば60℃〜55℃)へ降温する状態で、熱利用側である湯水流通路L1を流通する湯水がtm2〜th(例えば35℃〜45℃)に昇温する状態で、更には、熱利用側である暖房回路L2を流通する第2熱媒がdtm〜dth(例えば46℃〜53℃)に昇温する状態で行われる。従って、高温側蓄熱槽10aに収容される高温側潜熱蓄熱材20aは、槽内の最高温度であるTHと槽内の最低温度であるtm2又はdtmとの間で、相変化するように設定されている。
中温側蓄熱槽10cでの熱移動は、中温側蓄熱槽10cにおいて、熱供給側の第1熱媒がTM1〜TM2(例えば55℃〜48℃)へ降温する状態で、熱利用側である湯水流通路L1を流通する湯水がtm1〜tm2(例えば25℃〜35℃)に昇温する状態で、更には、熱利用側である暖房回路L2を流通する第2熱媒がdtl〜dtm(例えば42℃〜46℃)に昇温する状態で行われる。従って、中温側蓄熱槽10cに収容される中温側潜熱蓄熱材20cは、槽内の最高温度であるTM1と槽内の最低温度であるtm1又はdtlとの間で、相変化するように設定されている。
低温側蓄熱槽10bでの熱移動は、低温側蓄熱槽10bにおいて、熱供給側の第1熱媒がTM〜TL(例えば45℃〜28℃)へ降温する状態で、熱利用側である湯水流通路L1を流通する湯水がtl〜tm1(例えば15℃〜25℃)に昇温する状態で行なわれる。従って、低温側蓄熱槽10bに収容される低温側潜熱蓄熱材20bは、槽内の最高温度であるTM2と槽内の最低温度であるtlとの間で、相変化するように設定されている。
結果、第1熱媒の受熱部である凝縮器37に戻る熱媒温度は、水蒸気の凝縮温度(例えば40℃)未満となる。
Here, the heat transfer in the high temperature side heat storage tank 10a, the intermediate temperature side heat storage tank 10c, and the low temperature side heat storage tank 10b will be described below.
As shown in FIG. 3, the heat transfer in the high temperature side heat storage tank 10a is a state in which the first heat medium on the heat supply side drops in temperature to TH to TM1 (for example, 60 ° C. to 55 ° C.) in the high temperature side heat storage tank 10a. In the state where the hot water flowing through the hot water flow passage L1 on the heat utilization side is heated to tm2 to th (for example, 35 ° C. to 45 ° C.), the second flowing through the heating circuit L2 on the heat utilization side. The heating medium is performed in a state where the temperature is raised to dtm to dth (for example, 46 ° C to 53 ° C). Therefore, the high temperature side latent heat storage material 20a accommodated in the high temperature side heat storage tank 10a is set so as to change in phase between TH which is the highest temperature in the tank and tm2 or dtm which is the lowest temperature in the tank. ing.
The heat transfer in the intermediate temperature side heat storage tank 10c is performed in the state where the first heat medium on the heat supply side drops to TM1 to TM2 (for example, 55 ° C to 48 ° C) in the intermediate temperature side heat storage tank 10c. In the state where the hot water flowing through the flow passage L1 is heated to tm1 to tm2 (for example, 25 ° C. to 35 ° C.), the second heat medium flowing through the heating circuit L2 on the heat utilization side is dtl to dtm (for example, 42 to 46 ° C.). Therefore, the intermediate temperature side latent heat storage material 20c accommodated in the intermediate temperature side heat storage tank 10c is set so as to change in phase between TM1 which is the highest temperature in the tank and tm1 or dtl which is the lowest temperature in the tank. ing.
The heat transfer in the low-temperature side heat storage tank 10b is performed in the state where the first heat medium on the heat supply side drops to TM to TL (for example, 45 ° C to 28 ° C) in the low-temperature side heat storage tank 10b. The hot water flowing through the flow path L1 is heated to tl to tm1 (for example, 15 ° C to 25 ° C). Therefore, the low-temperature side latent heat storage material 20b accommodated in the low-temperature side heat storage tank 10b is set to change in phase between TM2 which is the highest temperature in the tank and tl which is the lowest temperature in the tank. .
As a result, the heat medium temperature that returns to the condenser 37 that is the heat receiving portion of the first heat medium is lower than the condensation temperature (for example, 40 ° C.) of the water vapor.

〔別実施形態〕
(1)上記実施形態においては、高温側蓄熱槽10a及び低温側蓄熱槽10bの双方に、蓄熱材として潜熱蓄熱材20を備える構成としたが、これらの何れか一方に、蓄熱材として水を備え、構成を簡略化することができる。
[Another embodiment]
(1) In the said embodiment, although it was set as the structure provided with the latent heat storage material 20 as a heat storage material in both the high temperature side heat storage tank 10a and the low temperature side heat storage tank 10b, water is used as a heat storage material in any one of these. And the configuration can be simplified.

(2)上記実施形態では、低温側蓄熱槽10bの低温側潜熱蓄熱材20bの熱利用側への熱供給(放熱)が良好に行われず、潜熱蓄熱材が温熱を蓄熱している場合(例えば、潜熱蓄熱材のすべてが液相を維持している場合)には、低温側蓄熱槽10bから凝縮器37の側へ導かれる第1熱媒の温度は、凝縮器37にて排ガスEに含まれる水蒸気を凝縮可能な凝縮温度(例えば、40℃)を上回り、排ガスEに含まれる水蒸気を適切に凝縮できないこととなる。そこで、上記実施形態にあっては、第1熱媒循環路Cの低温側蓄熱槽10bと凝縮器37との間に放熱器(図示せず)設ける構成を採用しても構わない。
これにより、低温側蓄熱槽10bから吐出される第1熱媒の温度が凝縮温度を超えている場合であっても、当該第1熱媒を放熱器にて放熱させて、その温度を凝縮温度未満に低下させることができる。
(2) In the above embodiment, when the heat supply (radiation) to the heat utilization side of the low temperature side latent heat storage material 20b of the low temperature side heat storage tank 10b is not performed satisfactorily, the latent heat storage material stores the heat (for example, In the case where all of the latent heat storage material maintains the liquid phase), the temperature of the first heat medium guided from the low temperature side heat storage tank 10b to the condenser 37 side is included in the exhaust gas E by the condenser 37. It exceeds the condensation temperature (for example, 40 ° C.) at which water vapor can be condensed, and the water vapor contained in the exhaust gas E cannot be condensed properly. Therefore, in the above embodiment, a configuration in which a radiator (not shown) is provided between the low temperature side heat storage tank 10b of the first heat medium circulation path C and the condenser 37 may be adopted.
Thereby, even if it is a case where the temperature of the 1st heating medium discharged from the low temperature side heat storage tank 10b exceeds the condensation temperature, the said 1st heating medium is radiated with a heat radiator, and the temperature is made into condensation temperature. Can be reduced to less than

(3)上記実施形態では、受熱部が燃料電池30の凝縮器37である構成を例に挙げて説明した。しかしながら、受熱部は、エンジンのエンジン冷却水や排ガスと熱交換する排熱回収熱交換器により構成しても構わない。 (3) In the above embodiment, the configuration in which the heat receiving portion is the condenser 37 of the fuel cell 30 has been described as an example. However, the heat receiving unit may be configured by an exhaust heat recovery heat exchanger that exchanges heat with engine cooling water or exhaust gas of the engine.

(4)上記第2実施形態において、暖房回路L2を循環する第2熱媒は、図4に示すように、第1実施形態で第1熱媒循環路Cを通流する第1熱媒と同様に、蓄熱部10としての高温側蓄熱槽10a及び中温側蓄熱槽10cの内部へ流入可能な構成を採用しても構わない。
説明を追加すると、高温側蓄熱槽10aに接続される暖房回路L2の接続端部は、高温側蓄熱槽10aの内部で、鉛直方向で上方側に設けられる上方側の接続端部L2uと、鉛直方向で下方側に設けられる接続端部L2dとから構成されており、両者は、水平方向に延びると共に、当該水平方向に沿って等間隔に開口部が複数設けられている。
また、中温側蓄熱槽10cに接続される暖房回路L2の接続端部は、中温側蓄熱槽10cの内部で、鉛直方向で上方側に設けられる上方側の接続端部L2uと、鉛直方向で下方側に設けられる接続端部L2dとから構成されており、両者は、水平方向に延びると共に、当該水平方向に沿って等間隔に開口部が複数設けられている。
当該構成にあっては、第1熱媒と第2熱媒とを同一熱媒とすると共に、第1循環ポンプP1と第2循環ポンプP2とを同一流量の熱媒を循環するように働かせることが好ましい。
当該構成を採用することにより、例えば、高温側蓄熱槽10aにおいて、第1熱媒循環路Cの上方側の接続端部Cuから流入した比較的高温の第1熱媒の一部は、暖房回路L2の上方側の接続端部L2uへ直接流入することとなり、熱負荷端末へ導かれるため、熱効率の高い運転を実現できる。
また、第2実施形態の熱供給システム100との対比の観点では、中温側蓄熱槽10cの内部にて中温側暖房熱交換器41を、高温側蓄熱槽10aの内部にて高温側暖房熱交換器42を省略することができるから、その体積分だけ潜熱蓄熱材を多く充填でき、蓄熱容量を増加させることができる。
(4) In the second embodiment, the second heat medium circulating in the heating circuit L2 is, as shown in FIG. 4, the first heat medium flowing through the first heat medium circulation path C in the first embodiment. Similarly, you may employ | adopt the structure which can be poured into the inside of the high temperature side heat storage tank 10a and the middle temperature side heat storage tank 10c as the heat storage part 10. FIG.
If description is added, the connection end part of the heating circuit L2 connected to the high temperature side heat storage tank 10a will be vertically connected to the upper connection end part L2u provided on the upper side in the vertical direction inside the high temperature side heat storage tank 10a. The connection end portion L2d is provided on the lower side in the direction, both of which extend in the horizontal direction, and a plurality of openings are provided at equal intervals along the horizontal direction.
Moreover, the connection end part of the heating circuit L2 connected to the middle temperature side heat storage tank 10c is the upper side connection end part L2u provided on the upper side in the vertical direction inside the middle temperature side heat storage tank 10c, and the lower side in the vertical direction. It is comprised from the connection edge part L2d provided in the side, both are extended in the horizontal direction, and several opening parts are provided in the said horizontal direction at equal intervals.
In this configuration, the first heat medium and the second heat medium are made the same heat medium, and the first circulation pump P1 and the second circulation pump P2 are made to work so as to circulate the same flow rate of the heat medium. Is preferred.
By adopting the configuration, for example, in the high temperature side heat storage tank 10a, a part of the relatively high temperature first heat medium flowing from the connection end Cu on the upper side of the first heat medium circulation path C is used as a heating circuit. Since it directly flows into the connection end L2u on the upper side of L2 and is led to the thermal load terminal, it is possible to realize an operation with high thermal efficiency.
Moreover, from a viewpoint of comparison with the heat supply system 100 of the second embodiment, the middle temperature side heat storage tank 41 c is provided with the middle temperature side heating heat exchanger 41, and the higher temperature side heat storage tank 10 a is provided with the high temperature side heating heat exchange. Since the vessel 42 can be omitted, a large amount of latent heat storage material can be filled by the volume, and the heat storage capacity can be increased.

(5)上記第2実施形態では、暖房回路L2は、第2熱媒が中温側蓄熱槽10cに蓄熱された熱を回収すると共に、高温側蓄熱槽10aに蓄熱された熱を回収するように配設されている例を示した。
しかしながら、暖房回路L2は、第2熱媒が高温側蓄熱槽10aに蓄熱された熱のみを回収するように配設しても構わない。
何れの場合であっても、暖房回路L2は、低温側蓄熱槽10bを迂回するように構成して、低温側潜熱蓄熱材20bの融点を超える温度で戻る場合がある熱負荷端末50から戻る第2熱媒の熱が、低温側潜熱蓄熱材20bの潜熱として蓄熱されないようにして、潜熱蓄熱容量が低下することを防いでいる。
これにより、第1熱媒循環路Cを循環して低温側潜熱蓄熱材20bを通過した後の第1熱媒の熱を、低温側潜熱蓄熱材20bの潜熱として蓄熱することで、第1熱媒の温度を、低温側潜熱蓄熱材20bの融点で、凝縮器37にて排ガスEに含まれる水蒸気を凝縮させる凝縮温度未満とすることができる。
(5) In the second embodiment, the heating circuit L2 is configured so that the second heat medium recovers the heat stored in the intermediate temperature side heat storage tank 10c and recovers the heat stored in the high temperature side heat storage tank 10a. An example of arrangement is shown.
However, the heating circuit L2 may be arranged such that the second heat medium recovers only the heat stored in the high temperature side heat storage tank 10a.
In any case, the heating circuit L2 is configured to bypass the low temperature side heat storage tank 10b, and return from the thermal load terminal 50 that may return at a temperature exceeding the melting point of the low temperature side latent heat storage material 20b. The heat of the two heat mediums is prevented from being stored as the latent heat of the low-temperature side latent heat storage material 20b, thereby preventing the latent heat storage capacity from decreasing.
As a result, the heat of the first heat medium after circulating through the first heat medium circulation path C and passing through the low-temperature side latent heat storage material 20b is stored as latent heat of the low-temperature side latent heat storage material 20b. The temperature of the medium can be made lower than the condensation temperature at which the water vapor contained in the exhaust gas E is condensed by the condenser 37 at the melting point of the low-temperature side latent heat storage material 20b.

(6)上記第2実施形態では、中温側蓄熱槽10cを1つ設ける例を示したが、1つ以上の複数を設けても構わない。また、当該複数の中温側蓄熱槽10cは、第1熱媒循環路Cの流れ方向において、直列に設けられていても構わないし、並列に設けられていても構わない。 (6) In the second embodiment, an example in which one intermediate temperature side heat storage tank 10c is provided has been described, but one or more pluralities may be provided. Further, the plurality of medium temperature side heat storage tanks 10c may be provided in series in the flow direction of the first heat medium circulation path C or may be provided in parallel.

本発明の熱供給システムは、蓄熱部にて高密度に蓄熱しながらも、熱源としての受熱部を循環する第1熱媒の圧力及び流量に変動を起こさせず、熱源(例えば燃料電池)の運転効率の低下を防止可能な熱供給システムとして、有効に利用可能である。   The heat supply system of the present invention does not cause fluctuations in the pressure and flow rate of the first heat medium circulating through the heat receiving unit as the heat source while storing heat at a high density in the heat storage unit, and the heat source (for example, fuel cell) It can be effectively used as a heat supply system capable of preventing a decrease in operating efficiency.

10a :高温側蓄熱槽
10b :低温側蓄熱槽
20a :高温側潜熱蓄熱材
20b :低温側潜熱蓄熱材
30 :燃料電池
37 :凝縮器(受熱部の一例)
100 :熱供給システム
C :熱媒循環路
E :排ガス
10a: High temperature side heat storage tank 10b: Low temperature side heat storage tank 20a: High temperature side latent heat storage material 20b: Low temperature side latent heat storage material 30: Fuel cell 37: Condenser (an example of a heat receiving part)
100: Heat supply system C: Heat medium circuit E: Exhaust gas

Claims (9)

蓄熱部で熱供給側となる第1熱媒が循環する第1熱媒循環路を受熱部と前記蓄熱部との間に備え、
前記蓄熱部の内部には潜熱蓄熱材が充填され、
前記受熱部で昇温された第1熱媒の熱を前記蓄熱部の内部の前記潜熱蓄熱材へ蓄熱可能に構成され、
湯水流通路を使って、蓄熱状態にある前記蓄熱部から熱利用側に熱供給が可能な熱供給システムであって、
前記第1熱媒循環路は、第1熱媒を前記蓄熱部の内部へ流入可能に設けられ、
前記湯水流通路が、加圧水が供給される給水口と、前記蓄熱部に内蔵された第1熱交換器と、高温水を出湯する出湯口から構成され、
前記給水口から流入した水が、前記第1熱交換器により前記潜熱蓄熱材と第1熱媒の少なくとも何れか一方と熱交換して出湯口へ流出することにより熱利用側に熱供給可能な熱供給システム。
A first heat medium circulation path through which the first heat medium on the heat supply side in the heat storage unit circulates is provided between the heat receiving unit and the heat storage unit,
The heat storage part is filled with a latent heat storage material,
The heat of the first heat medium heated at the heat receiving part is configured to be able to store heat to the latent heat storage material inside the heat storage part,
A heat supply system capable of supplying heat from the heat storage section in the heat storage state to the heat utilization side using a hot water flow passage,
The first heat medium circulation path is provided so that the first heat medium can flow into the heat storage unit,
The hot water flow passage is composed of a water supply port to which pressurized water is supplied, a first heat exchanger built in the heat storage unit, and a hot water outlet for hot water.
The water flowing in from the water supply port can supply heat to the heat utilization side by exchanging heat with at least one of the latent heat storage material and the first heat medium by the first heat exchanger and flowing out to the hot water outlet. Heat supply system.
前記蓄熱部として、前記受熱部で昇温された第1熱媒が流入する高温側蓄熱部と、前記受熱部に戻る第1熱媒を流出する低温側蓄熱部とを備える請求項1に記載の熱供給システム。   The high temperature side heat storage part into which the 1st heat medium heated at the said heat receiving part flows in as the said heat storage part, and the low temperature side heat storage part which flows out the 1st heat medium which returns to the said heat receiving part are provided. Heat supply system. 前記湯水流通路は、それを流通する湯水が、前記低温側蓄熱部に蓄熱された熱を回収した後に、前記高温側蓄熱部に蓄熱された熱を回収可能に配設されている請求項2に記載の熱供給システム。   The hot water flow passage is disposed so that the hot water flowing through the hot water flow passage can recover the heat stored in the high temperature side heat storage unit after recovering the heat stored in the low temperature side heat storage unit. The heat supply system described in. 前記蓄熱部として、前記高温側蓄熱部と、前記低温側蓄熱部とは別に、1つ又は複数の中温側蓄熱部を備え、
前記受熱部で昇温された第1熱媒が、前記高温側蓄熱部、前記中温側蓄熱部、及び前記低温側蓄熱部を記載の順に通流して前記受熱部へ戻るように前記第1熱媒循環路が配設されている請求項2又は3に記載の熱供給システム。
In addition to the high temperature side heat storage unit and the low temperature side heat storage unit, the heat storage unit includes one or a plurality of medium temperature side heat storage units,
The first heat medium so that the first heat medium heated at the heat receiving part flows through the high temperature side heat storage part, the intermediate temperature side heat storage part, and the low temperature side heat storage part in the order described and returns to the heat receiving part. The heat supply system according to claim 2 or 3, wherein a medium circulation path is disposed.
前記蓄熱部と熱負荷端末との間で、前記蓄熱部にて受熱側となる第2熱媒を循環させる暖房回路を、前記湯水流通路とは別に備える請求項4に記載の熱供給システム。   The heat supply system according to claim 4, wherein a heating circuit that circulates a second heat medium on a heat receiving side in the heat storage unit between the heat storage unit and the thermal load terminal is provided separately from the hot water flow passage. 前記暖房回路は、第2熱媒が、前記高温側蓄熱部、前記中温側蓄熱部、及び前記低温側蓄熱部のうち、前記熱負荷端末を出た後の第2熱媒の戻り温度よりも高い融点の前記潜熱蓄熱材が充填される蓄熱部の熱を回収する状態で配設されている請求項5に記載の熱供給システム。   In the heating circuit, the second heat medium is higher than the return temperature of the second heat medium after exiting the thermal load terminal among the high temperature side heat storage unit, the intermediate temperature side heat storage unit, and the low temperature side heat storage unit. The heat supply system of Claim 5 arrange | positioned in the state which collect | recovers the heat | fever of the heat storage part with which the said latent heat storage material of high melting | fusing point is filled. 前記暖房回路は、第2熱媒が前記高温側蓄熱部に蓄熱された熱のみを回収する状態、又は前記高温側蓄熱部と前記中温側蓄熱部に蓄熱された熱のみを回収する状態で配設され、
前記湯水流通路は、湯水が前記低温側蓄熱部と前記中温側蓄熱部と前記高温側蓄熱部とに蓄熱された熱を記載の順に回収可能に配設されている請求項5又は6に記載の熱供給システム。
The heating circuit is arranged in a state where the second heat medium recovers only the heat stored in the high temperature side heat storage unit, or in a state where only the heat stored in the high temperature side heat storage unit and the intermediate temperature side heat storage unit is recovered. Established,
The said hot water flow path is arrange | positioned so that hot water can collect | recover the heat | fever stored in the said low temperature side thermal storage part, the said intermediate temperature side thermal storage part, and the said high temperature side thermal storage part in order of the description. Heat supply system.
前記受熱部は、熱源機にて発生する排ガスの排熱を回収するものであり、
前記中温側蓄熱部に充填される中温側潜熱蓄熱材の融点が、前記熱源機から排出される前記排ガスの下限温度未満に設定されている請求項4〜7の何れか一項に記載の熱供給システム。
The heat receiving part collects exhaust heat of exhaust gas generated in a heat source machine,
The heat according to any one of claims 4 to 7, wherein a melting point of the intermediate temperature side latent heat storage material filled in the intermediate temperature side heat storage unit is set to be lower than a lower limit temperature of the exhaust gas discharged from the heat source unit. Supply system.
前記受熱部は、燃料電池にて発生する排ガスと前記熱媒循環路の熱媒とを熱交換させ、排ガスに含まれる水蒸気を凝縮させる凝縮器であり、
前記低温側蓄熱部に充填される低温側潜熱蓄熱材の融点が、前記排ガスに含まれる水蒸気を凝縮させる凝縮温度未満に設定されている請求項2〜8の何れか一項に記載の熱供給システム。
The heat receiving unit is a condenser that causes heat exchange between the exhaust gas generated in the fuel cell and the heat medium in the heat medium circulation path, and condenses water vapor contained in the exhaust gas,
The heat supply according to any one of claims 2 to 8, wherein a melting point of the low-temperature side latent heat storage material filled in the low-temperature side heat storage unit is set to be lower than a condensation temperature for condensing water vapor contained in the exhaust gas. system.
JP2013269739A 2013-01-09 2013-12-26 Heat supply system Expired - Fee Related JP6188570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013269739A JP6188570B2 (en) 2013-01-09 2013-12-26 Heat supply system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013001996 2013-01-09
JP2013001996 2013-01-09
JP2013269739A JP6188570B2 (en) 2013-01-09 2013-12-26 Heat supply system

Publications (2)

Publication Number Publication Date
JP2014149147A true JP2014149147A (en) 2014-08-21
JP6188570B2 JP6188570B2 (en) 2017-08-30

Family

ID=51572254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013269739A Expired - Fee Related JP6188570B2 (en) 2013-01-09 2013-12-26 Heat supply system

Country Status (1)

Country Link
JP (1) JP6188570B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200122564A (en) * 2019-04-18 2020-10-28 한국에너지기술연구원 Apparatus of Recovering Materials using Phase Change
WO2021187937A1 (en) * 2020-03-20 2021-09-23 주식회사 월드원하이테크 Heat pump system and cooling/heating system using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791755A (en) * 1993-06-07 1995-04-04 Samsung Electronics Co Ltd Plurality of heat accumulator of heat accumulation/cold accumulation system
JP2005016766A (en) * 2003-06-24 2005-01-20 Rinnai Corp Heat accumulating device
JP2005172342A (en) * 2003-12-10 2005-06-30 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Heat exchanging system and heat exchanging method using heat storage material
JP2005241092A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006234310A (en) * 2005-02-25 2006-09-07 Osaka Gas Co Ltd Heat storage device
JP2007064616A (en) * 2005-08-05 2007-03-15 Takenaka Komuten Co Ltd Heat storage air-conditioning system
JP2011521192A (en) * 2008-05-16 2011-07-21 サンアンプ リミテッド Energy storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791755A (en) * 1993-06-07 1995-04-04 Samsung Electronics Co Ltd Plurality of heat accumulator of heat accumulation/cold accumulation system
JP2005016766A (en) * 2003-06-24 2005-01-20 Rinnai Corp Heat accumulating device
JP2005172342A (en) * 2003-12-10 2005-06-30 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Heat exchanging system and heat exchanging method using heat storage material
JP2005241092A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006234310A (en) * 2005-02-25 2006-09-07 Osaka Gas Co Ltd Heat storage device
JP2007064616A (en) * 2005-08-05 2007-03-15 Takenaka Komuten Co Ltd Heat storage air-conditioning system
JP2011521192A (en) * 2008-05-16 2011-07-21 サンアンプ リミテッド Energy storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200122564A (en) * 2019-04-18 2020-10-28 한국에너지기술연구원 Apparatus of Recovering Materials using Phase Change
KR102257422B1 (en) * 2019-04-18 2021-05-31 한국에너지기술연구원 Apparatus of Recovering Materials using Phase Change
WO2021187937A1 (en) * 2020-03-20 2021-09-23 주식회사 월드원하이테크 Heat pump system and cooling/heating system using same
CN115335648A (en) * 2020-03-20 2022-11-11 世界之一高科技有限公司 Heat pump system and refrigeration and heating system using same

Also Published As

Publication number Publication date
JP6188570B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP5418529B2 (en) Fuel cell system
JP4776391B2 (en) Waste heat utilization system
JP6488416B2 (en) Fuel cell system
JP4994731B2 (en) Fuel cell power generation system
JP2015002093A (en) Fuel cell system
KR101022010B1 (en) Fuel Cell System
JP2010257644A (en) Method of controlling fuel cell system
CN113793947B (en) Fuel cell waste heat utilization system and energy system
JP2012155978A (en) Fuel cell system
JP2013058337A (en) Fuel cell system
JP6188570B2 (en) Heat supply system
KR101910126B1 (en) System for fuel cell
JP2014182923A (en) Fuel cell system and operation method thereof
JP5283556B2 (en) Fuel cell system control program
JP5092960B2 (en) Fuel cell cogeneration system
JP3743254B2 (en) Fuel cell power generator
JP5502521B2 (en) Fuel cell system
JP4781655B2 (en) Fuel cell system and control method of fuel cell system
JP2015121370A (en) Cogeneration System
JP4704733B2 (en) Fuel cell system
JPH0817455A (en) Exhaust heat recovery device for fuel cell generating unit
JP5643731B2 (en) Fuel cell system
JP2005085598A (en) Chemical heat-storage hydrogen-storage device
JP2005071834A (en) Exhaust heat recovery system of fuel cell system
KR101589176B1 (en) Heating Apparatus using Fuel Cell with Improved Thermal Efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170801

R150 Certificate of patent or registration of utility model

Ref document number: 6188570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees