JP2019174158A - 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法 - Google Patents

抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法 Download PDF

Info

Publication number
JP2019174158A
JP2019174158A JP2018059780A JP2018059780A JP2019174158A JP 2019174158 A JP2019174158 A JP 2019174158A JP 2018059780 A JP2018059780 A JP 2018059780A JP 2018059780 A JP2018059780 A JP 2018059780A JP 2019174158 A JP2019174158 A JP 2019174158A
Authority
JP
Japan
Prior art keywords
conductive film
probes
film
unit
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018059780A
Other languages
English (en)
Other versions
JP6985196B2 (ja
Inventor
大樹 森光
Daiki Morimitsu
大樹 森光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2018059780A priority Critical patent/JP6985196B2/ja
Priority to KR1020207027456A priority patent/KR102375416B1/ko
Priority to US17/041,155 priority patent/US11789053B2/en
Priority to CN201880090994.7A priority patent/CN111819450B/zh
Priority to PCT/JP2018/046375 priority patent/WO2019187393A1/ja
Priority to TW108100962A priority patent/TWI805675B/zh
Publication of JP2019174158A publication Critical patent/JP2019174158A/ja
Application granted granted Critical
Publication of JP6985196B2 publication Critical patent/JP6985196B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/52Means for observation of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07392Multiple probes manipulating each probe element or tip individually
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • G01R31/002Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing where the device under test is an electronic circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Physical Vapour Deposition (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】対向型の非接触式表面測定装置を用いて、導電性フィルムの幅方向に移動しながらシート抵抗を測定する際に、測定精度を向上させることができる抵抗測定装置、フィルム製造装置、および、導電性フィルムの製造方法を提供すること。【解決手段】抵抗測定装置4は、間隔を隔てて対向配置される2つのプローブ34と、2つのプローブ34を幅方向に走査させる走査ユニット32と、2つのプローブ34により測定される電圧に基づいて導電性フィルム2のシート抵抗を算出する演算ユニット33とを備え、演算ユニット33は、導電性フィルム2を介在しないで2つのプローブ34を幅方向に走査して測定した参照電圧を記憶するメモリ37を有し、導電性フィルム2を介在させて2つのプローブ34を幅方向に走査させて測定した実電圧を、参照電圧に基づいて補正する。【選択図】図1

Description

本発明は、抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法に関する。
従来から、ロールトゥロール方式により、基材フィルムの上に導電膜を積層して、導電性フィルムを製造している。製造された導電性フィルムは、その表面抵抗(シート抵抗)が所望の範囲内であることが要求されるため、表面抵抗を測定して、表面抵抗の品質不良を発見する必要がある。その方法として、導電性フィルムを巻き取る前に、非接触式抵抗測定装置を用いて、導電性フィルムの表面抵抗を測定することが知られている(例えば、特許文献1参照。)。
特許文献1の非接触式表面抵抗測定装置は、渦電流発生部および渦電流検出部とからなる渦電流センサーと、渦電流センサーおよび導電膜の距離を検出する離隔距離センサーとを備える。
特許文献1の装置では、離隔距離センサーが渦電流センサーと導電膜との距離を検出して、その検出結果に応じた補正値を考慮して、導電性フィルムの表面抵抗を算出している。このため、導電性フィルムの搬送中において、渦電流センサーと導電膜との距離のばらつきに起因する測定誤差を低減することができる。
特開2003−197034号公報
ところで、非接触式抵抗測定装置には、プローブの観点から、両面プローブタイプおよび片面プローブタイプの2種類がある。両面プローブタイプ(プローブ対向型)は、導電性フィルムの両側(上側および下側)に、導電性フィルムと接触しないように、間隔を隔てて対向配置される2つのプローブを備える。一方、片面プローブタイプは、導電性フィルムの一方側のみ(上側)に、導電性フィルムと接触しないように、間隔を隔てて配置される1つのプローブを備える。一般的に、片面プローブタイプは、両面プローブタイプと比較して、導電性フィルムに非常に近接した位置に、プローブを配置する必要がある。そのため、導電性フィルムの搬送時の上下方向のばたつきによりプローブが導電性フィルムに接触するおそれがある。そのため、両面プローブタイプを採用することが検討される。
また、抵抗測定装置には、測定位置の可変の観点から、固定式およびトラバース式の2種類がある。固定式は、プローブの位置を固定して、導電性フィルムを測定する。トラバース式は、プローブを導電性フィルムの幅方向(搬送方向と交差する直交方向)に移動させながら、導電性フィルムを測定する。トラバース方式では、導電性フィルムの搬送方向の任意の箇所に加えて、幅方向の任意の箇所も測定できる点で、優位である。
これらの点を総合して、両面プローブタイプかつトラバース式の抵抗測定装置で導電性フィルムを測定する方法が検討される。
しかしながら、この方法では、対向配置される2つのプローブのそれぞれを、ガイドなどの移動器具で幅方向に移動する際に、2つのプローブの上下方向距離が僅かにずれる不具合が生じる。移動器具は、互いの上下方向距離が一定となるよう設計されているが、非接触式抵抗測定装置は、移動器具の公差(例えば、0.1mm未満)以内のごく僅かな上下方向距離のばらつきにも敏感に反応する。そのため、得られる表面抵抗に誤差が生じ、測定精度が低下する。
この点に対して、特許文献1に記載の離隔距離センサーを用いる方法が検討される。しかしながら、この方法では、導電膜と一方側のプローブとの距離を測定することはできるが、2つのプローブ間の距離を測定することはできないため、上記不具合を解消できない。
本発明は、プローブ対向型の非接触式表面測定装置を用いて、導電性フィルムの幅方向に移動しながらシート抵抗を測定する際に、測定精度を向上させることができる抵抗測定装置、フィルム製造装置、および、導電性フィルムの製造方法を提供することにある。
本発明[1]は、一方向に長尺な導電性フィルムのシート抵抗を測定する抵抗測定装置であって、前記導電性フィルムと接触せず、前記導電性フィルムが介在可能なように、間隔を隔てて対向配置される2つのプローブと、前記2つのプローブを前記一方向と交差する交差方向に走査させる走査ユニットと、前記2つのプローブにより測定される電圧に基づいて前記導電性フィルムのシート抵抗を算出する演算ユニットとを備え、前記演算ユニットは、前記導電性フィルムを介在しないで前記2つのプローブを前記交差方向に走査させて測定した参照電圧を記憶するメモリを有し、前記導電性フィルムを介在させて前記2つのプローブを前記交差方向に走査させて測定した実電圧を、前記参照電圧に基づいて補正する、抵抗測定装置を含む。
この抵抗測定装置では、まず、2つのプローブを、導電性フィルムを介在しないで交差方向に走査させて測定した参照電圧を記憶する。すなわち、走査時において、プローブ間の上下方向距離のずれによって生じる電圧の変化を参照電圧として、記憶しておく。そして、記憶した参照電圧に基づいて、導電性フィルムの実電圧を補正して、シート抵抗を算出する。
このため、プローブ間の上下方向距離のずれの影響を考慮した導電性フィルムのシート抵抗を算出することができ、導電性フィルムのシート抵抗の測定精度(測定の正確さ)を向上させることができる。
本発明[2]は、前記2つのプローブ間の距離が、可変である、[1]または[2]に記載の抵抗測定装置を含む。
この抵抗測定装置では、プローブ間の距離を変化させることができるため、導電性フィルムの厚みに応じて、プローブ間の上下方向距離を、最適な距離に調整することができる。そのため、抵抗測定装置の設定の調整が容易である。また、プローブ間の距離を変更しても、参照電圧に基づいて実電圧を補正するため、プローブ間の距離にかかわらず、正確なシート抵抗を得ることができる。
本発明[3]は、一方向に長尺な導電性フィルムを製造するフィルム製造装置であって、前記一方向に長尺な基材フィルムに導電層を積層して、導電性フィルムを作製する積層ユニットと、前記導電性フィルムを搬送する搬送ユニットと、前記搬送ユニットにより搬送される前記導電性フィルムのシート抵抗を測定する[1]または[2]に記載の抵抗測定装置とを備える、フィルム製造装置を含む。
このフィルム製造装置では、上記の抵抗測定装置を備えるため、シート抵抗の不良を正確に検知することができる。よって、不良なシート抵抗を備える導電性フィルムを確実に考慮することができる。そのため、より均一なシート抵抗を備える導電性フィルムを製造することができる。
本発明[4]は、一方向に長尺な導電性フィルムを製造する方法であって、前記一方向に長尺な基材フィルムに導電層を積層して、導電性フィルムを作製する積層工程と、前記導電性フィルムを前記一方向に搬送しながら、前記導電性フィルムのシート抵抗を測定する抵抗測定工程とを備え、前記抵抗測定工程は、間隔を隔てて対向配置される2つのプローブの間に、前記導電性フィルムを介在させずに、前記2つのプローブを前記一方向と交差する交差方向に走査させて、参照電圧を測定する参照電圧測定工程と、前記2つのプローブの間に、前記導電性フィルムと前記2つのプローブとが接触せずに前記導電性フィルムを介在させて、前記2つのプローブを前記交差方向に走査させながら、前記導電性フィルムの実電圧を測定する実電圧測定工程と、前記実電圧を前記参照電圧に基づいて補正して、前記導電性フィルムのシート抵抗を算出する算出工程とを備える、導電性フィルムの製造方法を含む。
この導電性フィルムの製造方法では、まず、2つのプローブを、導電性フィルムを介在しないで交差方向に走査させて参照電圧を測定する。すなわち、走査時において、プローブ間の上下方向距離によって生じる電圧の変化を参照電圧として、測定しておく。そして、測定した参照電圧に基づいて、導電性フィルムの実電圧を補正して、シート抵抗を算出する。
このため、プローブ間の上下方向距離のずれの影響を考慮した導電性フィルムのシート抵抗を算出することができ、導電性フィルムのシート抵抗の測定精度(測定の正確さ)が向上している。したがって、導電性フィルムのシート抵抗の不良を正確に検知することができ、不良なシート抵抗を備える導電性フィルムを確実に考慮することができる。その結果、均一なシート抵抗を備える導電性フィルムを製造することができる。
本発明の抵抗測定装置によれば、導電性フィルムのシート抵抗の測定精度向上させることができる。
本発明のフィルム製造装置および導電性フィルムの製造方法によれば、均一なシート抵抗を備える導電性フィルムを製造することができる。
図1は、本発明のフィルム製造装置の一実施形態を示す。 図2は、図1に示すフィルム製造装置に含まれる抵抗測定装置の正面図を示す。 図3Aおよび図3Bは、導電性フィルム搬送時における図2に示す抵抗測定装置の動作説明図であって、図3Aは、正面図、図3Bは、平面図を示す。 図4は、本発明の導電性フィルムの製造方法の一実施形態における抵抗測定工程のフローチャートを示す。 図5は、参照電圧と幅方向位置との関係、および、プローブギャップ変位と幅方向位置との関係を重ね合わせたグラフを示す。
図1において、紙面左右方向は、搬送方向(第1方向、長尺方向、一方向)であり、紙面右側が搬送方向下流側(第1方向一方側、長尺方向一方側)、紙面左側が搬送方向上流側(第1方向他方側、長尺方向他方側)である。紙厚方向は、幅方向(第1方向に直交する第2方向)であり、紙面手前側が幅方向一方側(第2方向一方側)、紙面奥側が幅方向他方側(第2方向他方側)である。紙面上下方向は、上下方向(第1方向および第2方向に直交する第3方向、厚み方向)であり、紙面上側が上側(第3方向一方側、厚み方向一方側)、紙面下側が下側(第3方向他方側、厚方向他方側)である。図1以外の図面についても図1の方向に準拠する。
<一実施形態>
1.フィルム製造装置
図1〜図3を参照して、本発明の一実施形態のフィルム製造装置1を説明する。図1に示すフィルム製造装置1は、搬送方向(一方向)に長尺な導電性フィルム2を製造するための装置であり、積層搬送装置3と、抵抗測定装置4とを備える。
[積層搬送装置]
積層搬送装置3は、図1に示すように、送出ユニット5と、積層ユニットの一例としてのスパッタユニット6と、巻取ユニット7とを備える。
送出ユニット5は、送出ロール11と、第1ガイドロール12と、送出チャンバー13とを備える。
送出ロール11は、基材フィルム10を送出するための回転軸を有する円柱部材である。送出ロール11は、積層搬送装置3の搬送方向最上流に配置されている。送出ロール11は、送出ロール11を回転させるためのモータ(図示せず)が接続されている。
第1ガイドロール12は、送出ロール11から送出される基材フィルム10をスパッタユニット6にガイドする回転部材である。第1ガイドロール12は、送出ロール11の搬送方向下流側かつ第2ガイドロール14(後述)の搬送方向上流側に配置されている。
送出チャンバー13は、送出ロール11および第1ガイドロール12を収容するケーシングである。送出チャンバー13には、内部を真空可能とする真空ユニットが設けられている。
スパッタユニット6は、送出ユニット5から搬送される基材フィルム10にスパッタリング法により導電層22(後述)を積層する。スパッタユニット6は、送出ユニット5の搬送方向下流側かつ巻取ユニット7の搬送方向上流側に、これらと隣接するように配置されている。スパッタユニット6は、第2ガイドロール14と、成膜ロール15と、ターゲット16と、第3ガイドロール17と、成膜チャンバー18とを備える。
第2ガイドロール14は、送出ユニット5から搬送される基材フィルム10を成膜ロール15にガイドする回転部材である。第2ガイドロール14は、第1ガイドロール12の搬送方向下流側かつ成膜ロール15の搬送方向上流側に配置されている。
成膜ロール15は、基材フィルム10に導電層22を積層するための回転軸を有する円柱部材である。成膜ロール15は、基材フィルム10を成膜ロール15の周面に沿ってその周方向に搬送する。成膜ロール15は、第2ガイドロール14の搬送方向下流側かつ第3ガイドロール17の搬送方向上流側に配置されている。
ターゲット16は、導電層22の材料から形成されている。ターゲット16は、成膜ロール15の付近に配置されている。具体的には、ターゲット16は、成膜ロール15の下側に、成膜ロール15と間隔を隔てて対向配置されている。
第3ガイドロール17は、成膜ロール15から搬送される導電性フィルム2を、抵抗測定装置4を介して、巻取ユニット7にガイドする回転部材である。第3ガイドロール17は、第2ガイドロール14の搬送方向下流側かつ第4ガイドロール19(後述)の搬送方向上流側に配置されている。
成膜チャンバー18は、第2ガイドロール14、成膜ロール15、ターゲット16、第3ガイドロール17および抵抗測定装置4(後述)を収容するケーシングである。成膜チャンバー18には、内部を真空可能とする真空ユニットが設けられている。
巻取ユニット7は、第4ガイドロール19と、巻取ロール20と、巻取チャンバー21とを備える。巻取ユニット7は、スパッタユニット6の搬送方向下流側に、スパッタユニット6と隣接するように配置されている。
第4ガイドロール19は、スパッタユニット6から搬送される導電性フィルム2を巻取ロール20にガイドする回転部材である。第4ガイドロール19は、第3ガイドロール17の搬送方向下流側かつ巻取ロール20の搬送方向上流側に配置されている。
巻取ロール20は、導電性フィルム2を巻き取るための回転軸を有する円柱部材である。巻取ロール20は、基材フィルム10の搬送方向最下流に配置されている。巻取ロール20は、巻取ロール20を回転させるためのモータ(図示せず)が接続されている。
巻取チャンバー21は、巻取ロール20および第4ガイドロール19を収容するケーシングである。巻取チャンバー21には、内部を真空可能とする真空ユニットが設けられている。
送出ロール11および巻取ロール20が、搬送ユニット8の一例を構成する。
[抵抗測定装置]
抵抗測定装置4は、図1に示すように、スパッタユニット6内部に配置されている。具体的には、成膜ロール15および第3ガイドロール17の搬送下流側、かつ、第4ガイドロール19および巻取ロール20の搬送方向上流側に配置されている。
抵抗測定装置4は、図2および図3A〜図3Bに示すように、プローブ対向型の非接触型抵抗測定ユニット31(以下、測定ユニット31とも略する。)と、走査ユニット32と、演算ユニット33とを備える。
測定ユニット31は、導電性フィルム2(測定対象)と接触しない状態で、導電性フィルム2のシート抵抗を測定するユニットであり、具体的には、渦電流式測定ユニットである。測定ユニット31は、導電性フィルム2に磁界を印加することにより導電性フィルム2内に渦電流を発生させ、渦電流の影響によってコイル36に流れる電流の変化を利用して、導電性フィルム2のシート抵抗を測定する。
測定ユニット31は、2つのプローブ34と、測定回路ユニット35とを備える。
2つのプローブ34は、導電性フィルム2からの情報(磁界など)を受け取るユニットである。具体的には、2つのプローブ34は、磁界を導電性フィルム2に印加するとともに、導電性フィルム2の渦電流による反磁界を電流に変換する。
2つのプローブ34は、間隔を隔てて対向配置されている。2つのプローブ34は、導電性フィルム2と間隔を隔てて導電性フィルム2の上側に配置される上側プローブ34aと、導電性フィルム2と間隔を隔てて導電性フィルム2の下側に配置される下側プローブ34bとを備える。2つのプローブ34の上下方向距離は、可変である。すなわち、後述する上側走査ユニット32aおよび下側走査ユニット32bの少なくとも一方が、上下方向に移動および固定可能である。
2つのプローブ34は、それぞれ、コイル36を備える。上側プローブ34a内に配置されるコイル36と、下側プローブ34b内に配置されるコイル36とは、上下方向に投影したときに、略同一形状となるように設けられている。
コイル36のそれぞれは、平面視略円環状を有し、その直径は、例えば、100mm以下、好ましくは、80mm以下、より好ましくは、40mm以下であり、また、例えば、10mm以上である。コイル36の直径が上記上限以下であれば、プローブ34がシート抵抗を検知できる測定スポット29(後述)の最小面積を小さくすることができ、幅方向の感度(分解能)を向上させることができる。
2つのプローブ34の上下方向距離D(プローブギャップ)は、例えば、5mm以上、好ましくは、10mm以上であり、また、例えば、30mm以下、好ましくは、15mm以下である。
測定回路ユニット35は、2つのコイル36と電気的に接続されている電気回路を備えるユニットである。測定回路ユニット35は、例えば、高周波発振器、コンデンサ、電圧計、電流計、I/V変換回路などの測定ユニット31を駆動するために必要な素子を備える。
走査ユニット32は、2つのプローブ34を幅方向(直交方向:交差方向の一例)に移動させるユニットである。走査ユニット32は、2つのプローブ34の相対配置(対向配置)を維持しながら、搬送領域25(後述)の幅方向一端部26から幅方向他端部27までの間を往復移動させる。
走査ユニット32は、上側走査ユニット32aと、下側走査ユニット32bとを備える。
上側走査ユニット32aは、その下面(厚み方向他方面)に上側プローブ34aを保持するスライダ39と、搬送領域25の両端縁を幅方向に跨ぐ直線状のガイド軸(トラバース軸)40とを備える。上側走査ユニット32aでは、スライダ39がガイド軸40にスライド可能に嵌合しており、図示しないモータからの駆動力により、スライダ39がガイド軸40に沿って搬送領域25を幅方向に横切るように直線移動する。
下側走査ユニット32bは、その上面(厚み方向一方面)に下側プローブ34bを保持するスライダ39と、搬送領域25の両端縁を幅方向に跨ぐ直線状のガイド軸(トラバース軸)40とを備える。これらは、上側走査ユニット32aのスライダ39およびガイド軸40と同様である。
演算ユニット33は、メモリ37と、CPU38とを備える。
メモリ37は、測定ユニット31により測定される参照電圧のデータを記憶する。具体的には、メモリ37は、参照電圧と、参照電圧が測定されたプローブ34の幅方向位置との関係を示したプロファイルを記憶する。
また、メモリ37は、測定ユニット31により測定される導電性フィルム2の実電圧のデータや、実電圧のデータおよび参照電圧のデータに基づいて導電性フィルム2のシート抵抗を演算する演算プログラムなどを記憶する。
CPU38は、上記した演算プログラムを実行して、参照電圧に基づいて実電圧を補正し、その補正された実電圧(補正電圧)を用いて公知の計算式によりシート抵抗を算出する。
2.フィルムの製造方法
フィルム製造装置1を用いて導電性フィルム2を製造する方法の一実施形態を説明する。導電性フィルム2の製造方法は、積層工程、抵抗測定工程および選別工程を備える。
[積層工程]
積層工程では、基材フィルム10を搬送しながら、基材フィルム10に導電層22を積層する。具体的には、基材フィルム10を搬送しながら、スパッタリング法により基材フィルム10の表面に導電層22を形成する(図1の拡大図参照)。
まず、搬送方向に長尺な基材フィルム10を送出ロール11に配置する。すなわち、長尺な基材フィルム10がロール状に巻回されたロール体を、送出ロール11に装着する。
基材フィルム10としては、例えば、高分子フィルムが挙げられる。高分子フィルムの材料としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマーなどのオレフィン樹脂、例えば、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂などが挙げられる。
基材フィルム10の幅方向長さ(すなわち、搬送領域25の幅方向長さ)は、例えば、100mm以上、好ましくは、200mm以上であり、また、例えば、5000mm以下、好ましくは、2000mm以下である。
次いで、送出ロール11および巻取ロール20をモータにより回転駆動させて、基材フィルム10を送出ロール11から送り出し、第1ガイドロール12、第2ガイドロール14、成膜ロール15、第3ガイドロール17および第4ガイドロール19を順に搬送して、巻取ロール20により巻き取る。
基材フィルム10の搬送速度(導電性フィルム2の搬送速度)は、例えば、10mm/秒以上、好ましくは、100mm/秒以上であり、また、例えば、500mm/秒以下、好ましくは、300mm/秒以下である。
これにより、基材フィルム10が、ロールトゥロール方式にて、送出ロール11から巻取ロール20まで搬送方向に搬送される(搬送工程)。
次いで、スパッタリングを実施する。すなわち、スパッタユニット6を作動させて、基材フィルム10に導電層22を形成する。
具体的には、真空下の成膜チャンバー18の内部にガス(アルゴンなど)を供給するとともに、電圧を印加して、ガスをターゲット16に衝突させる。その結果、成膜ロール15の下方において、搬送方向上流側から搬送されてくる基材フィルム10の下面に、ターゲット16からはじき出されたターゲット材料が付着され、導電層22が形成される。
ターゲット16の材料、すなわち、導電層22の材料は、例えば、インジウムスズ複合酸化物、アンチモンスズ複合酸化物などの金属酸化物、例えば、窒化アルミニウム、窒化チタン、窒化タンタル、窒化クロム、窒化ガリウムおよびこれらの複合窒化物などの金属窒化物、例えば、金、銀、銅、ニッケルおよびこれらの合金などの金属などが挙げられる。
これにより、成膜ロール15の下側において、基材フィルム10と、その下面に積層された導電層22とを備える導電性フィルム2が作製される(導電層形成工程)。
その後、成膜ロール15の下側で作製された導電性フィルム2は、成膜ロール15および第3ガイドロール17により、搬送方向下流側の抵抗測定装置4に向かって搬送される。
[抵抗測定工程]
抵抗測定工程では、導電性フィルム2を搬送方向に搬送しながら、導電性フィルム2のシート抵抗を測定する。抵抗測定工程は、図4のフローチャートに示すように、参照電圧測定工程、実電圧測定工程および算出工程を備える。
(参照電圧測定工程)
参照電圧測定工程では、図2に示すように、2つのプローブ34の間に導電性フィルム2を介在させない状態で、2つのプローブ34を幅方向に走査しながら、電圧を測定する。
参照電圧測定は、導電性フィルム2が搬送される前に実施する。基材フィルム10が搬送される前、すなわち、空気空間に対して実施する。または、スパッタユニット6を作動する前、すなわち、導電層22が積層されていない基材フィルム10に対して実施する。
2つのプローブ34は、走査ユニット32の幅方向一端部から幅方向他端部まで走査する。すなわち、2つのプローブ34は、搬送領域25の幅方向一端部26から幅方向他端部27まで移動する。
搬送領域25は、上下方向(厚み方向)に投影したときに、搬送される導電性フィルム2と重なる領域であり、その幅方向長さは、導電性フィルム2の幅方向長さと一致する。
電圧の測定は、測定ユニット31を作動させることにより実施される。すなわち、2つのプローブ34の間に磁界を印加させ、測定回路ユニット35に流れる電流の電圧を検知する。
これにより、導電性フィルム2がない状態(空状態)の電圧のデータ、すなわち、参照電圧のデータが測定される。具体的には、プローブ34の幅方向位置(横軸)と、その幅方向位置における空電圧(縦軸)との関係を示すプロファイル(グラフ)が得られる(図5参照)。
次いで、参照電圧のデータから、公知の方法を使用して、近似式を作製する(図5参照)。
プロファイルおよび近似式を含む参照電圧のデータは、演算ユニット33によって、メモリ37に記憶される。
(実電圧測定工程)
実電圧測定工程では、図3Aおよび図3Bに示すように、2つのプローブ34を幅方向に走査させながら、導電性フィルム2の実際の電圧(実電圧)を測定する。
具体的には、2つのプローブ34の間に、導電性フィルム2と2つのプローブ34とが接触せずに導電性フィルム2を介在させた状態で、測定を実施する。すなわち、搬送されてくる導電性フィルム2が2つのプローブ34の間を通過する際に、その電圧を測定する。
2つのプローブ34の幅方向の走査は、測定を実施している間、継続する。2つのプローブ34は、搬送領域25の幅方向一端部26から幅方向他端部27まで往復移動する。
プローブ34によって測定される導電性フィルム2の測定スポット29は、それぞれ、コイル36よりも大きい平面視略円形状を有する。すなわち、測定スポット29の直径は、コイル36の直径よりも大きい。
複数の測定スポット29の集合体からなるパターン(測定パターン)は、図3Bに示すように、平面視において、搬送方向に進む波形状を有する。複数の測定スポット29のうち、最も幅方向一方側に配置される測定スポット29の幅方向一方端縁は、搬送領域25の幅方向一方端縁と一致し、最も幅方向他方側に配置される測定スポット29の幅方向他方端縁は、搬送領域25の幅方向他方端縁と一致する。
プローブ34の走査速度は、例えば、10mm/秒以上、好ましくは、100mm/秒以上であり、また、例えば、500mm/秒以下、好ましくは、300mm/秒以下である。
これにより、実電圧が測定され、実電圧のデータがメモリ37に記憶される。具体的には、測定時間(または測定位置)(横軸)と、その時間における実電圧(縦軸)との関係を示すプロファイルが得られる。
なお、測定時間に、導電性フィルム2の搬送速度および走査ユニット32の走査速度を考慮することにより、導電性フィルム2の測定位置が算出される。
(算出工程)
算出工程は、実電圧を参照電圧に基づいて補正して、導電性フィルム2のシート抵抗を算出する。
すなわち、実電圧を、参照電圧に基づいて加減乗除などにより補正して、公知の算出方法を用いて、シート抵抗を算出する。例えば、下記計算式を用いて、シート抵抗を算出する。
Figure 2019174158
式中、Pcは、高周波電力値を示し、Etは、高周波電圧値を示し、Ioは、測定対象(導電性フィルム2)が存在しない場合の電流値を示し、Ieは、渦電流検出電流値を示し、ρsは、シート抵抗を示し、Kは、コイル結合係数を示し、Rは、I/V変換回路の抵抗値を示し、Veは、渦電流検出電圧値を示し、Voは、測定対象(導電性フィルム2)が存在しない場合の電圧値を示し、Vαは、参照電圧値を示す。
なお、上記高周波電圧値Etは、渦電流発生によって変化するが、供給電圧との誤差から一定になるように制御されている。IeおよびIoは、I/V変換回路(抵抗R)により電圧値(実電圧)VeおよびVoに変換している。また、導電性フィルム2を測定する前にVoを0[V]となるようにキャリブレーションを実施し、Veのみでシート抵抗の算出を実施している。このVoを参照電圧値Vαによって補正し、シート抵抗を算出している。
必要に応じて、参照電圧以外の電圧(例えば、測定ユニット31の機器特性に起因する一定電圧、コイル温度による電圧変化分など)を考慮して、実電圧をさらに補正してもよい。
この際、ある測定時間(または、ある測定位置)のシート抵抗の算出において、実電圧のデータおよび測定位置(走査速度、搬送速度など)に関するデータに基づいて、その測定時間(または、その測定位置)における実電圧値および幅方向位置を特定する。そして、参照電圧のデータ(または近似式)に基づいて、その幅方向位置における参照電圧値Vαを選択して、シート抵抗を算出する。
これにより、シート抵抗のデータが得られる。具体的には、測定時間(または測定位置)と、その測定時間におけるシート抵抗との関係を示すプロファイルが得られる。
[選別工程]
選別工程では、シート抵抗のプロファイルに基づいて、導電性フィルム2を選別する。
具合的には、プロファイルに基づいて、所定範囲から外れるシート抵抗の値(不良値)を示すプロットを検知した場合、不良値を示す測定位置を特定する。次いで、その位置における導電性フィルム2に所望の処置(導電性フィルム2の排除;導電層22の加工;ガスや電力などの成膜プロセスパラメータのフィードバック制御など)を実施する。
これにより、シート抵抗が所望の範囲内である均一な導電性フィルム2が製造される。
3.作用効果
抵抗測定装置4は、導電性フィルム2と接触せず、導電性フィルム2が介在可能なように、間隔を隔てて対向配置される2つのプローブ34と、2つのプローブ34を幅方向に走査させる走査ユニット32と、2つのプローブ34により測定される電圧に基づいて導電性フィルム2のシート抵抗を算出する演算ユニット33とを備える。また、演算ユニット33は、導電性フィルム2を介在しないで2つのプローブ34を幅方向に走査させて測定した参照電圧を記憶するメモリ37を有する。また、演算ユニット33は、導電性フィルム2を介在させて2つのプローブ34を幅方向に走査させて測定した実電圧を、参照電圧に基づいて補正する。
この抵抗測定装置では、導電性フィルム2を介在しないで2つのプローブ34を幅方向に走査させて測定した参照電圧を記憶する。すなわち、走査時において、2つのプローブ34間の上下方向距離(プローブギャップ)のずれによって生じる電圧の変化を参照電圧として、測定および記憶しておく。そして、記憶した参照電圧に基づいて、導電性フィルム2の実電圧を補正して、シート抵抗を算出する。
このため、プローブ34間の上下方向距離のずれの影響を考慮した導電性フィルム2のシート抵抗を算出することができ、導電性フィルム2のシート抵抗の測定精度(測定の正確さ)を向上させることができる。
また、抵抗測定装置4は、導電性フィルム2と接触せず、対向配置される2つのプローブ34を備える。すなわち、抵抗測定装置4は、プローブ対向型(両面プローブタイプ)である。このため、抵抗測定装置4は、片面プローブタイプと比較して、導電性フィルム2とプローブ34との距離を広く設定することができる。よって、搬送時の導電性フィルム2のばたつきによるプローブ34との接触を抑制することができる。
また、抵抗測定装置4は、2つのプローブ34を幅方向に走査させながらシート抵抗を測定することができる。すなわち、抵抗測定装置4は、トラバース式である。このため、抵抗測定装置4は、導電性フィルム2の搬送方向の任意の箇所に加えて、幅方向の任意の箇所も測定できる。
また、抵抗測定装置4では、2つのプローブ34間の上下方向距離が、可変である。
このため、導電性フィルム2の厚みに応じて、プローブ34間の上下方向距離を、最適な距離に調整することができる。そのため、抵抗測定装置4の設定の調整が容易である。また、プローブ34間の距離を変更しても、参照電圧に基づいて実電圧を補正するため、プローブ34間の距離にかかわらず、正確なシート抵抗を得ることができる。
また、フィルム製造装置1は、搬送方向に長尺な基材フィルム10に導電層22を積層するスパッタユニット6と、導電性フィルム2を搬送する搬送ユニット8と、上記の抵抗測定装置4とを備える。
このため、シート抵抗の不良を正確に検知することができる。よって、不良なシート抵抗を備える導電性フィルム2を確実に考慮または排除することができる。そのため、より均一なシート抵抗を備える導電性フィルム2を製造することができる。
この導電性フィルム2の製造方法は、長尺な基材フィルム10に導電層22を積層して、導電性フィルム2を作製する積層工程と、導電性フィルム2を搬送方向に搬送しながら、導電性フィルム2のシート抵抗を測定する抵抗測定工程とを備える。また、抵抗測定工程は、2つのプローブ34の間に、導電性フィルム2を介在させずに、2つのプローブを幅方向に走査させて、参照電圧を測定する参照電圧測定工程と、2つのプローブ34の間に、導電性フィルム2と2つのプローブ34とが接触せずに導電性フィルム2を介在させて、2つのプローブ34を幅方向に走査させながら、導電性フィルム2の実電圧を測定する実電圧測定工程と、実電圧を参照電圧に基づいて補正して、導電性フィルム2のシート抵抗を算出する算出工程とを備える。
この導電性フィルム2の製造方法では、実電圧測定の前に、参照電圧を測定する。すなわち、走査時において、プローブ34間の上下方向距離によって生じる電圧の変化を参照電圧として、測定しておく。そして、測定した参照電圧に基づいて、導電性フィルムの実電圧を補正して、シート抵抗を算出する。
このため、プローブ34間の上下方向距離のずれの影響を考慮した導電性フィルム2のシート抵抗を算出することができ、導電性フィルム2のシート抵抗の測定精度(測定の正確さ)を向上させることができる。したがって、導電性フィルム2のシート抵抗の不良を正確に検知することができ、不良なシート抵抗を備える導電性フィルム2を確実に考慮または排除することができる。その結果、均一なシート抵抗を備える導電性フィルム2を製造することができる。
4.変形例
図1に示す実施形態では、積層ユニットとしてスパッタユニットが設備されているが、これに代えて、例えば、積層ユニットとして、真空蒸着ユニット、化学蒸着ユニットなどを設備することもできる。この場合、積層ユニットは、ターゲット16の代わりに、導電層22の材料からなる蒸着源を備える。また、積層ユニットは、塗布ユニット、印刷ユニットなどであってもよい。
図1に示す実施形態では、コイル36は、平面視略円環状であるが、例えば、図示しないが、平面視略矩形枠状とすることもできる。この場合、その一辺の長さは、上記した直径と同様である。
5.検証
図1〜図3Bに示す装置を用いて、測定を実施した。具体的には、測定ユニット31として、非接触式シート抵抗測定モジュール(両面プローブタイプ、ナプソン社製、品番「NC−700V」)を用い、プローブ34間の距離Dを10mm、コイルの直径35mm、基材フィルム10の幅を400mm、基材フィルム10の搬送速度を170mm/秒、走査ユニット32の走査速度を100mm/秒に設定した。
プローブ34を幅方向に走査しながら、導電性フィルム2を介在しない状態で、電圧(空電圧)を測定して、プローブ34の幅方向位置と、その位置における電圧との関係を示す参照電圧のデータを取得した。このとき、電圧は、プローブ34を幅方向に一往復させ、往路の電圧と復路の電圧との平均値を採用した。このデータを第1プロットとして、図5のグラフに示す。また、参照電圧のデータについて、測定ユニット内のプロブラムを用いて、近似式(例えば、1次式以上、6次式以下)を作製し、図5のグラフに示す。図5中の式は、近似式(5次式)を示す。
また、ダイヤルゲージを用いて、幅方向一端部26のプローブ間の距離を基準として、上下方向距離の変位(プローブギャップ変位)を幅方向に測定して、プロ―ブ34の幅方向位置と、プローブギャップ変位とのデータを取得した。このデータを第2プロットとして、図5のグラフに示す。
図5から、参照電圧のデータ(第1プロット)とプローブギャップ変位のデータ(第2プロット)とは、互いに近似した挙動を示し、相関性があることが分かる。すなわち、参照電圧値に基づいて、電圧値を補正することにより、プローブギャップ変位のばらつきによる電圧のばらつきを補正することができ、その結果、プローブギャップ変位のばらつきの影響を低減することができることが分かる。
1 フィルム製造装置
2 導電性フィルム
4 抵抗測定装置
6 スパッタユニット
10 基材フィルム
11 送出ロール
20 巻取ロール
22 導電層
25 搬送領域
32 走査ユニット
33 演算ユニット
34 プローブ
36 コイル
37 メモリ

Claims (4)

  1. 一方向に長尺な導電性フィルムのシート抵抗を測定する抵抗測定装置であって、
    前記導電性フィルムと接触せず、前記導電性フィルムが介在可能なように、間隔を隔てて対向配置される2つのプローブと、
    前記2つのプローブを前記一方向と交差する交差方向に走査させる走査ユニットと、
    前記2つのプローブにより測定される電圧に基づいて前記導電性フィルムのシート抵抗を算出する演算ユニットと
    を備え、
    前記演算ユニットは、前記導電性フィルムを介在しないで前記2つのプローブを前記交差方向に走査して測定した参照電圧を記憶するメモリを有し、
    前記導電性フィルムを介在させて前記2つのプローブを前記交差方向に走査させて測定した実電圧を、前記参照電圧に基づいて補正することを特徴とする、抵抗測定装置。
  2. 前記2つのプローブ間の距離が、可変であることを特徴とする、請求項1または2に記載の抵抗測定装置。
  3. 一方向に長尺な導電性フィルムを製造するフィルム製造装置であって、
    前記一方向に長尺な基材フィルムに導電層を積層して、導電性フィルムを作製する積層ユニットと、
    前記導電性フィルムを搬送する搬送ユニットと、
    前記搬送ユニットにより搬送される前記導電性フィルムのシート抵抗を測定する請求項1または2に記載の抵抗測定装置と
    を備えることを特徴とする、フィルム製造装置。
  4. 一方向に長尺な導電性フィルムを製造する方法であって、
    前記一方向に長尺な基材フィルムに導電層を積層して、導電性フィルムを作製する積層工程と、
    前記導電性フィルムを前記一方向に搬送しながら、前記導電性フィルムのシート抵抗を測定する抵抗測定工程と
    を備え、
    前記抵抗測定工程は、
    間隔を隔てて対向配置される2つのプローブの間に、前記導電性フィルムを介在させずに、前記2つのプローブを前記一方向と交差する交差方向に走査させて、参照電圧を測定する参照電圧測定工程と、
    前記2つのプローブの間に、前記導電性フィルムと前記2つのプローブとが接触せずに前記導電性フィルムを介在させて、前記2つのプローブを前記交差方向に走査させながら、前記導電性フィルムの実電圧を測定する実電圧測定工程と、
    前記実電圧を前記参照電圧に基づいて補正して、前記導電性フィルムのシート抵抗を算出する算出工程と
    を備えることを特徴とする、導電性フィルムの製造方法。

JP2018059780A 2018-03-27 2018-03-27 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法 Active JP6985196B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018059780A JP6985196B2 (ja) 2018-03-27 2018-03-27 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法
KR1020207027456A KR102375416B1 (ko) 2018-03-27 2018-12-17 저항 측정 장치, 필름 제조 장치 및 도전성 필름의 제조 방법
US17/041,155 US11789053B2 (en) 2018-03-27 2018-12-17 Resistance measurement device, film manufacturing apparatus, and manufacturing method of electrically conductive film
CN201880090994.7A CN111819450B (zh) 2018-03-27 2018-12-17 电阻测量装置、膜制造装置以及导电性膜的制造方法
PCT/JP2018/046375 WO2019187393A1 (ja) 2018-03-27 2018-12-17 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法
TW108100962A TWI805675B (zh) 2018-03-27 2019-01-10 電阻測定裝置、膜製造裝置、及導電性膜之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059780A JP6985196B2 (ja) 2018-03-27 2018-03-27 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法

Publications (2)

Publication Number Publication Date
JP2019174158A true JP2019174158A (ja) 2019-10-10
JP6985196B2 JP6985196B2 (ja) 2021-12-22

Family

ID=68058682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059780A Active JP6985196B2 (ja) 2018-03-27 2018-03-27 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法

Country Status (6)

Country Link
US (1) US11789053B2 (ja)
JP (1) JP6985196B2 (ja)
KR (1) KR102375416B1 (ja)
CN (1) CN111819450B (ja)
TW (1) TWI805675B (ja)
WO (1) WO2019187393A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113208644A (zh) * 2021-02-08 2021-08-06 首都医科大学附属北京天坛医院 一种医学超声扫描探头的包覆装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220082887A (ko) * 2019-10-17 2022-06-17 램 리써치 코포레이션 기판 표면들의 인-시츄 모니터링 (in-situ monitoring)
TW202217034A (zh) * 2020-09-24 2022-05-01 新加坡商Aes 全球公司 塗佈基板感測及裂紋減緩
DE102021110394A1 (de) * 2021-04-23 2022-10-27 Thyssenkrupp Steel Europe Ag Beschichtungsanlage zum Beschichten eines Bands und Verfahren zum Beschichten eines Bands
JP2022179065A (ja) * 2021-05-21 2022-12-02 富士フイルムビジネスイノベーション株式会社 シート電気抵抗測定器
KR102429423B1 (ko) * 2022-05-25 2022-08-04 주식회사 에너피아 히팅필름 전용 저항 측정장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249067A (ja) * 1984-05-24 1985-12-09 Teijin Ltd 導電性フイルムの特性測定装置
JP2000074634A (ja) * 1998-08-28 2000-03-14 Mitsui Chemicals Inc 高分子フィルムの厚み測定方法および測定装置
JP2000314754A (ja) * 1999-04-28 2000-11-14 Sharp Corp シート抵抗測定器
JP2012073132A (ja) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd 表面抵抗計測装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313189B2 (ja) * 1993-06-14 2002-08-12 株式会社中埜酢店 レトルトパウチ包装材のシール不良検出装置
JP3512632B2 (ja) 1998-04-16 2004-03-31 シャープ株式会社 薄膜形成装置
JP3922109B2 (ja) 2001-10-17 2007-05-30 東洋紡績株式会社 透明導電性フィルムロールの製造方法
EP1775594A1 (en) * 2005-10-17 2007-04-18 Capres A/S Eliminating in-line positional errors for four-point resistance measurement
WO2010064493A1 (ja) * 2008-12-03 2010-06-10 キヤノンアネルバ株式会社 プラズマ処理装置、磁気抵抗素子の製造装置、磁性薄膜の成膜方法及び成膜制御プログラム
US7863106B2 (en) * 2008-12-24 2011-01-04 International Business Machines Corporation Silicon interposer testing for three dimensional chip stack
JP2010223934A (ja) * 2009-02-27 2010-10-07 Fujitsu Ltd 電界感知プローブ、電界の検出方法及び回路基板の製造方法
JP2011185797A (ja) * 2010-03-09 2011-09-22 Panasonic Corp 薄膜抵抗測定装置及び薄膜抵抗測定方法
JP6606448B2 (ja) * 2016-03-17 2019-11-13 株式会社Screenホールディングス 塗膜検査装置、塗膜検査方法および膜・触媒層接合体の製造装置
FR3060741B1 (fr) * 2016-12-21 2018-12-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif et procede d'evaluation d'au moins une condition de fonctionnement d'un echangeur de chaleur
JP6983093B2 (ja) * 2018-03-27 2021-12-17 日東電工株式会社 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249067A (ja) * 1984-05-24 1985-12-09 Teijin Ltd 導電性フイルムの特性測定装置
JP2000074634A (ja) * 1998-08-28 2000-03-14 Mitsui Chemicals Inc 高分子フィルムの厚み測定方法および測定装置
JP2000314754A (ja) * 1999-04-28 2000-11-14 Sharp Corp シート抵抗測定器
JP2012073132A (ja) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd 表面抵抗計測装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113208644A (zh) * 2021-02-08 2021-08-06 首都医科大学附属北京天坛医院 一种医学超声扫描探头的包覆装置

Also Published As

Publication number Publication date
KR20200135958A (ko) 2020-12-04
WO2019187393A1 (ja) 2019-10-03
JP6985196B2 (ja) 2021-12-22
KR102375416B1 (ko) 2022-03-18
CN111819450A (zh) 2020-10-23
TW201942582A (zh) 2019-11-01
TWI805675B (zh) 2023-06-21
US11789053B2 (en) 2023-10-17
CN111819450B (zh) 2022-07-19
US20210011065A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2019187393A1 (ja) 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法
WO2019187395A1 (ja) 抵抗測定装置、フィルム製造装置および導電性フィルムの製造方法
US20160069662A1 (en) Inductive position detection
JP2007302929A (ja) 被覆層の厚み計量機構およびそれを用いた被覆層形成装置
KR102626038B1 (ko) 화학 기계적 연마장치
US10775470B2 (en) Magnetic detection apparatus
US11384424B2 (en) Film manufacturing apparatus and manufacturing method of double-sided laminated film
KR101051909B1 (ko) 와전류를 이용하여 박막 기판신호를 분리하는 시스템, 방법및 장치
JPWO2016170639A1 (ja) 紙葉類の厚み検出センサ及び紙幣鑑別ユニット
JP4292612B2 (ja) 表面抵抗測定装置
JP2003084020A (ja) 非接触式表面抵抗測定装置
JP2012073132A (ja) 表面抵抗計測装置
KR101260344B1 (ko) 롤투롤 다층 인쇄 패턴의 단락 검출 방법 및 장치
JP2017138125A (ja) 分光反射率測定装置、分光反射率測定方法
JP2018169338A (ja) 検査装置、検査方法、および、検査装置用のプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211125

R150 Certificate of patent or registration of utility model

Ref document number: 6985196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150