JP2019172517A - Cement-based solidifying material composition - Google Patents

Cement-based solidifying material composition Download PDF

Info

Publication number
JP2019172517A
JP2019172517A JP2018063326A JP2018063326A JP2019172517A JP 2019172517 A JP2019172517 A JP 2019172517A JP 2018063326 A JP2018063326 A JP 2018063326A JP 2018063326 A JP2018063326 A JP 2018063326A JP 2019172517 A JP2019172517 A JP 2019172517A
Authority
JP
Japan
Prior art keywords
cement
particle size
solidifying material
fluidity
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018063326A
Other languages
Japanese (ja)
Other versions
JP7134668B2 (en
Inventor
清田正人
Masato Kiyota
神谷雄三
Yuzo Kamiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018063326A priority Critical patent/JP7134668B2/en
Publication of JP2019172517A publication Critical patent/JP2019172517A/en
Application granted granted Critical
Publication of JP7134668B2 publication Critical patent/JP7134668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

To provide a cement-based solidifying material composition that solves the problem that the conventional cement-based solidifying material determines the fluidity using the average particle size as an indicator, but the fluidity of the solidifying material slurry cannot be appropriately evaluated only by the average particle size.SOLUTION: Provided is a cement-based solidifying material composition which is a mixture or mixed pulverized product of cement, blast furnace slag fine powder, and gypsum, and in which, by evaluating the fluidity of the cement-based solidifying material slurry using different parameters in the cumulative ratio of particle size distribution as indicators, the particle size distribution ratio D50/D10% is made to be 4.0 or more and/or the particle size curvature distribution ratio D50/D10×D70% is made to be 2.5 or more.SELECTED DRAWING: Figure 1

Description

本発明は、深層から表層の地盤改良に広く用いられるセメント系固化材について、そのスラリーの粘度が低くて流動性の高いスラリーを製造することができ、優れた施工性を有するセメント系固化材組成物に関する。   The present invention is a cement-based solidified material widely used for improving the ground layer from the deep layer to the cement-based solidified material composition, which can produce a slurry with low slurry viscosity and high fluidity, and has excellent workability. Related to things.

セメント系固化材を用いた地盤改良において、深層から表層の地盤改良には、セメント系固化材と水を練り混ぜたセメント系固化材スラリーにし、これを深層や表層の土と混合する工法が広く採用されている。このセメント系固化材スラリーを用いた地盤改良工法において、改良後の地盤強度を高めるなどのために、水とセメント系固化材の比率(水セメント比)を50%以上〜150%以下という比較的低い範囲で練り混ぜたスラリーを用いることがある。しかし、このような水セメント比の低いスラリーを用いると、夏場の高温環境下の施工では、セメントやセメント系固化材の水和反応が早急に進み、スラリーの流動性が悪くなり、ミキサーやポンプの箇所で凝集や固結を生じて施工に支障をきたすことがある。   In the ground improvement using cement-based solidification material, there is a wide range of methods for improving the ground from the deep layer to the surface layer, using cement-based solidification material slurry mixed with cement-based solidification material and water, and mixing this with the soil in the deep layer or surface layer. It has been adopted. In the ground improvement method using this cement-based solidifying material slurry, in order to increase the ground strength after the improvement, the ratio of water and cement-based solidifying material (water-cement ratio) is relatively 50% to 150%. A slurry kneaded in a low range may be used. However, if such a slurry with a low water-cement ratio is used, the hydration reaction of cement and cement-based solidified material will proceed rapidly in the construction under high temperature environment in summer, and the fluidity of the slurry will be deteriorated. This may cause cohesion and consolidation at the location, which may hinder construction.

これの対策として、現場では、水セメント比を高くしてスラリー濃度を下げる対策を行っている。しかし、水セメント比を高くすると、セメント量が少なくなるので、改良地盤の強度不足を招くことがある。このため、目標の強度を得るためにはセメントやセメント系固化材の添加量を多くする必要があり、材料コストや建設コストの上昇を招くことになる。   As measures against this, on-site measures are taken to increase the water-cement ratio and lower the slurry concentration. However, when the water-cement ratio is increased, the amount of cement decreases, which may lead to insufficient strength of the improved ground. For this reason, in order to obtain the target strength, it is necessary to increase the amount of cement or cement-based solidifying material added, leading to an increase in material costs and construction costs.

一方、セメントやセメント系固化材のスラリーの流動性を事前に予測する方法として、セメントやセメント系固化材のブレーン比表面積で判断することが知られている。一般にセメントやセメント系固化材のブレーン比表面積が大きいほど材料が細かいので、スラリーの流動性が低下する傾向がある。しかし、ブレーン比表面積は材料の細かさを示すが、スラリーの流動性を直接的に表わす指標ではない。そのため、ブレーン比表面積が同様のセメントやセメント系固化材でも、スラリーの流動性は大きく異なる場合がある。また、単純にスラリーの流動性を高めるためにブレーン比表面積を低くすると、同一のセメント系固化材の添加量において改良地盤の強度が低下するという問題もある。   On the other hand, as a method for predicting the fluidity of a slurry of cement or cement-based solidified material in advance, it is known to make a judgment based on the brain specific surface area of cement or cement-based solidified material. In general, the larger the Blaine specific surface area of cement or cement-based solidified material, the finer the material, and the fluidity of the slurry tends to decrease. However, although the Blaine specific surface area indicates the fineness of the material, it is not a direct indicator of the fluidity of the slurry. Therefore, the fluidity of the slurry may vary greatly even with cement or cement-based solidified material having the same Blaine specific surface area. Further, if the Blaine specific surface area is lowered in order to simply increase the fluidity of the slurry, there is also a problem that the strength of the improved ground is lowered with the same amount of cement-based solidifying material added.

これらの対策として、特開2000−7400(特許文献1)には、水セメント比が低くても流動性が良く、高い硬化体強度が得られるセメント混和用微粉末として、粒度分布に基づく重量平均粒径が2μm以下の微粉末を用いることが提案されている。また、特開2007−126304号(特許文献2)では、0.05〜0.5μmの平均粒径を有し、この平均粒径が重量累積粒度分布の50%径である鉱物の微粒子をセメントに混合して用いることによって、セメントペースト、モルタル、コンクリートの流動性と硬化体強度を高めることが提案されている。   As measures against these problems, JP 2000-7400 (Patent Document 1) discloses a weight average based on the particle size distribution as a fine powder for cement admixture that has good fluidity even when the water cement ratio is low and provides a high cured body strength. It has been proposed to use a fine powder having a particle size of 2 μm or less. In Japanese Patent Application Laid-Open No. 2007-126304 (Patent Document 2), mineral fine particles having an average particle diameter of 0.05 to 0.5 μm and having an average particle diameter of 50% of the weight cumulative particle size distribution are cemented. It has been proposed to increase the fluidity and hardened body strength of cement paste, mortar, and concrete by using the mixture.

特開2000−7400号公報JP 2000-7400 A 特開2007−126304号公報JP 2007-126304 A

従来の上記技術は、何れも固化材の平均粒径の範囲を限定することによって流動性を高めることを意図している。しかし、従来の上記技術は材料の平均粒径だけを指標にして流動性を評価しているが、セメント、石膏、高炉スラグ微粉末などの複数の材料の混合物であるセメント系固化材では、その粒度分布のヒストグラムに複数のピークができる場合があり、平均粒径だけでは固化材スラリーの流動性を適切に評価することができない。   All of the conventional techniques are intended to enhance fluidity by limiting the range of the average particle size of the solidified material. However, the above-mentioned conventional technology evaluates fluidity using only the average particle diameter of the material as an index. There may be a plurality of peaks in the histogram of the particle size distribution, and the fluidity of the solidified slurry cannot be properly evaluated only by the average particle size.

本発明は、従来の上記課題を解決したものであり、セメント系固化材について、粒度分布の累積率における異なったパラメーターを指標にして該固化材スラリーの流動性を評価し、流動性を高める粒度分布の最適範囲を定めたものである。このような本発明のセメント系固化材組成物は、そのスラリーの粘度が低く、流動性が高いので、優れた施工性を有している。   The present invention solves the above-mentioned conventional problems, and for cement-based solidified material, the fluidity of the solidified material slurry is evaluated by using different parameters in the cumulative ratio of particle size distribution as an index, and the particle size for improving the fluidity. It defines the optimal range of distribution. Such a cement-based solidifying material composition of the present invention has excellent workability because the slurry has low viscosity and high fluidity.

本発明は、以下の構成によって上記課題を解決したセメント系固化材組成物に関する。
〔1〕セメント、高炉スラグ微粉末、および石膏の混合物または混合粉砕物であり、その粒度分布率(粒径累積率50%の粒径/粒径累積率10%の粒径)が4.0以上であり、および/または、その粒度曲率分布率(粒径累積率50%の粒径の2乗/粒径累積率10%の粒径×粒径累積率70%の粒径)が2.5以上であることを特徴とするセメント系固化材組成物。
〔2〕セメント30〜86質量%、高炉スラグ微粉末10〜50質量%、石膏4〜20質量%である上記[1]に記載するセメント系固化材組成物。
〔3〕ブレーン比表面積が2500〜5000cm/gである上記[1]または上記[2]に記載するセメント系固化材組成物。
〔4〕水を加えてスラリーにしたセメント系固化材組成物であって、該組成物粉体100質量%に対し水50質量%〜300質量%を加えてなる上記[1]〜上記[3]の何れかに記載するセメント系固化材組成物。
The present invention relates to a cement-based solidifying material composition that has solved the above problems by the following constitution.
[1] It is a mixture or mixed pulverized product of cement, blast furnace slag fine powder, and gypsum, and its particle size distribution rate (particle size with a particle size accumulation rate of 50% / particle size with a particle size accumulation rate of 10%) is 4.0. And / or the particle size curvature distribution ratio (the square of the particle size with a particle size cumulative rate of 50% / the particle size with a particle size cumulative rate of 10% × the particle size with a particle size cumulative rate of 70%) is 2. A cement-based solidifying material composition characterized by being 5 or more.
[2] The cement-based solidifying material composition according to [1], wherein the cement is 30 to 86% by mass, blast furnace slag fine powder is 10 to 50% by mass, and gypsum is 4 to 20% by mass.
[3] The cement-based solidifying material composition according to the above [1] or [2], wherein the Blaine specific surface area is 2500 to 5000 cm 2 / g.
[4] A cement-based solidifying material composition obtained by adding water to a slurry, wherein 50% by mass to 300% by mass of water is added to 100% by mass of the composition powder. ] The cement-type solidification material composition as described in any of these.

本発明のセメント系固化材組成物は、例えば、水セメント比60%で練り混ぜたセメント系固化材スラリーにおいて、夏場での35℃の環境温度下で、マーシュファネル流下時間が練り上がり15分後で100秒以下と流動性が良好である。また、セメント固化材スラリー中に、ダマの発生もなく、施工装置の閉塞などのトラブルも軽減できる。さらに、改良土の強度発現性も良好であり、流動性が良いので改良土に均一に分散し、改良土の強度のばらつきが少ない。   The cement-based solidified material composition of the present invention is, for example, a cement-based solidified material slurry kneaded at a water-cement ratio of 60%. The fluidity is good at 100 seconds or less. Further, there is no occurrence of lumps in the cement solidifying material slurry, and troubles such as blockage of construction equipment can be reduced. Further, the improved soil has good strength development and good fluidity, so that it is uniformly dispersed in the improved soil, and there is little variation in the strength of the improved soil.

〔具体的な説明〕
以下に本発明を具体的に説明する。
本発明のセメント系固化材組成物(以下、セメント系固化材とも云う)は、セメント、高炉スラグ微粉末、および石膏の混合物またはこれらの混合粉砕物からなり、以下の(イ)ないし(ロ)の何れか又は両方の特徴を有する。
(イ)粒度分布率(粒径累積率50%の粒径/粒径累積率10%の粒径)が4.0以上である。
(ロ)粒度曲率分布率(粒径累積率50%の粒径の2乗/粒径累積率10%の粒径×粒径累積率70%の粒径)が2.5以上である。
[Specific description]
The present invention will be specifically described below.
The cement-based solidified material composition of the present invention (hereinafter also referred to as cement-based solidified material) comprises a mixture of cement, blast furnace slag fine powder, and gypsum, or a mixed pulverized product thereof. It has either or both of the characteristics.
(A) The particle size distribution rate (particle size with 50% cumulative particle size / particle size with 10% cumulative particle size) is 4.0 or more.
(B) The particle size curvature distribution ratio (the square of the particle size with a particle size accumulation rate of 50% / the particle size with a particle size accumulation rate of 10% x the particle size with a particle size accumulation rate of 70%) is 2.5 or more.

セメント系固化材スラリーにおいて、図1に示すように、粒度分布率D50/D10(粒径累積率50%の粒径/粒径累積率10%の粒径)が4.0未満であると、該スラリーの流下時間が100秒以上であり、スラリーの流動性が低い。一方、粒度分布率D50/D10が4.0以上では、該スラリーの流下時間が80秒以下であり、スラリーは高い流動性を示す。   In the cement-based solidifying material slurry, as shown in FIG. 1, when the particle size distribution ratio D50 / D10 (particle diameter accumulation ratio 50% particle diameter / particle diameter accumulation ratio 10% particle diameter) is less than 4.0, The flowing time of the slurry is 100 seconds or more, and the fluidity of the slurry is low. On the other hand, when the particle size distribution ratio D50 / D10 is 4.0 or more, the flow time of the slurry is 80 seconds or less, and the slurry exhibits high fluidity.

また、図2に示すように、粒度分布率D50/D10・D70(粒径累積率50%の粒径の2乗/粒径累積率10%の粒径×粒径累積率70%の粒径)が2.5未満であると、該スラリーの流下時間が100秒以上であり、スラリーの流動性が低い。一方、粒度分布率D50/D10・D70が2.5以上では、該スラリーの流下時間が80秒以下であり、スラリーは高い流動性を示す。 In addition, as shown in FIG. 2, the particle size distribution rate D50 2 / D10 · D70 (the particle size square of 50% cumulative particle size / the particle size of 10% cumulative particle size × the particle size cumulative rate of 70% When the (diameter) is less than 2.5, the flow time of the slurry is 100 seconds or more, and the fluidity of the slurry is low. On the other hand, when the particle size distribution ratio D50 2 / D10 · D70 is 2.5 or more, the flow time of the slurry is 80 seconds or less, and the slurry exhibits high fluidity.

〔固化材の材料〕
本発明のセメント系固化材はセメント、高炉スラグ微粉末、および石膏の混合物またはこれらの混合粉砕物からなる。また、本発明のセメント系固化材には、混和材料としてフライアッシュ、改質石炭灰、石灰石微粉末、石粉などを用いることができる。これらの混和材料は、セメント系固化材を混合または混合粉砕にて製造する際に添加することができる。さらに、セメント系固化材組成物に水を加えて練り混ぜてスラリーにするときに発生する粉塵を低減するために、ジエチレングルコール、有機短繊維を混合時に少量添加しても良い。さらに、セメント系固化材に早期硬化性が要求される場合は、アルミナセメント、カルシウムアルミネート系速硬材を添加することができる。
[Material of solidification material]
The cement-based solidifying material of the present invention comprises a mixture of cement, blast furnace slag fine powder, and gypsum, or a mixed pulverized product thereof. In addition, fly ash, modified coal ash, fine limestone powder, stone powder and the like can be used as an admixture for the cement-based solidified material of the present invention. These admixtures can be added when the cement-based solidifying material is produced by mixing or mixing and grinding. Further, in order to reduce dust generated when water is added to the cement-based solidifying material composition and kneaded to form a slurry, diethylene glycol and organic short fibers may be added in a small amount during mixing. Furthermore, when early hardening is required for the cement-based solidified material, alumina cement or calcium aluminate-based quick-hardening material can be added.

本発明のセメント系固化材のセメント成分として、ポルトランドセメントまたは混合セメントが用いられる。ポルトランドセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、または低熱ポルトランドセメントを用いることができる。これらのクリンカーを粉砕混合して用いても良い。また、混合セメントとして、高炉セメント、フライアッシュセメント、シリカフュームセメントなどを用いることができる。   Portland cement or mixed cement is used as the cement component of the cement-based solidifying material of the present invention. As Portland cement, normal Portland cement, early-strength Portland cement, moderately hot Portland cement, or low heat Portland cement can be used. These clinker may be pulverized and mixed. Moreover, blast furnace cement, fly ash cement, silica fume cement, etc. can be used as mixed cement.

上記セメントのブレーン比表面積は2500〜5000cm/gの範囲が好ましい。このブレーン比表面積が2500cm/gより低いと、固化改良土の強度が不足する傾向がある。一方、このブレーン比表面積が5000cm/gより高いと、セメント系固化材全体のブレーン比表面積が高くなるのでスラリーの流動性が低下する傾向がある。 The cement specific surface area of the cement is preferably in the range of 2500 to 5000 cm 2 / g. If this Blaine specific surface area is lower than 2500 cm 2 / g, the strength of the solidified improved soil tends to be insufficient. On the other hand, if the specific surface area of the brane is higher than 5000 cm 2 / g, the fluidity of the slurry tends to decrease because the specific surface area of the cement-based solidified material becomes high.

本発明のセメント系固化材に用いる高炉スラグ微粉末はブレーン比表面積が3000〜6000cm/gのものが好ましい。高炉スラグ微粉末を混合粉砕する場合には、未粉砕の高炉スラグでもよい。本発明のセメント系固化材に用いる石膏は無水石膏、二水石膏、半水石膏の何れか/または両方でも良い。 The blast furnace slag fine powder used for the cement-based solidified material of the present invention preferably has a Blaine specific surface area of 3000 to 6000 cm 2 / g. When mixing and pulverizing blast furnace slag fine powder, unground blast furnace slag may be used. The gypsum used in the cement-based solidifying material of the present invention may be anhydrous gypsum, dihydrate gypsum, or hemihydrate gypsum.

上記セメント系固化材の材料配合は、全体100質量%において、セメント30〜86質量%、高炉スラグ微粉末10〜50質量%、石膏4〜20質量%の範囲が好ましい。   The material composition of the cement-based solidifying material is preferably in the range of 30 to 86% by mass of cement, 10 to 50% by mass of blast furnace slag fine powder, and 4 to 20% by mass of gypsum in 100% by mass.

本発明のセメント系固化材には、混和材料としてフライアッシュ、改質石炭灰、石灰石微粉末、石粉などを加えることができる。これらの混和材料は、セメント系固化材を混合または混合粉砕して製造する際に添加することができる。フライアッシュは規格(JIS A 6201:コンクリート用フライアッシュのII種)に適合するものが好ましい。   Fly ash, modified coal ash, fine limestone powder, stone powder and the like can be added to the cement-based solidified material of the present invention as an admixture. These admixtures can be added when the cement-based solidifying material is mixed or mixed and pulverized. The fly ash preferably conforms to the standard (JIS A 6201: Class II of fly ash for concrete).

本発明のセメント系固化材において、早期硬化性が要求されるときに用いられる速硬材は、C12などのカルシウムアルミネート粉砕物と無水石膏の混合物、超速硬セメント、アルミナセメントなどを用いることができる。カルシウムアルミネート粉砕物と無水石膏の混合物からなる速硬材は、カルシウムアルミネート粉砕物と無水石膏が概ね40:60〜60:40質量比含まれているものを用いることができる。市販品としては、例えば三菱マテリアル社製のコーカエーススーパー(商品名)などを用いることできる。 In the cement-based solidified material of the present invention, the quick-hardening material used when early curability is required is a mixture of calcium aluminate pulverized material such as C 12 A 7 and anhydrous gypsum, super-fast-hardening cement, alumina cement, or the like. Can be used. As the quick hardwood made of a mixture of the calcium aluminate pulverized product and the anhydrous gypsum, a material containing the calcium aluminate pulverized product and the anhydrous gypsum in a mass ratio of about 40:60 to 60:40 can be used. As a commercially available product, for example, Caucer Ace Super (trade name) manufactured by Mitsubishi Materials Corporation can be used.

スラリー調製時の粉塵発生を抑制するために添加する有機短繊維としては、パルプなどの天然繊維、ポリプロピレン繊維、ポリアミド繊維、ポリビニルアルコール繊維などを用いることができる。これらの繊維はセメント系固化材スラリーの流動性を阻害しない観点から、繊維長は1mm〜6mmのものをセメント系固化材に対して0.01質量%〜0.2質量%添加すると良い。   As the organic short fibers to be added in order to suppress dust generation during slurry preparation, natural fibers such as pulp, polypropylene fibers, polyamide fibers, polyvinyl alcohol fibers, and the like can be used. From the viewpoint of not impeding the fluidity of the cement-based solidifying material slurry, those fibers having a fiber length of 1 mm to 6 mm are preferably added in an amount of 0.01% to 0.2% by mass with respect to the cement-based solidifying material.

本発明のセメント系固化材は、(イ)粒度分布率(粒径累積率50%の粒径/粒径累積率10%の粒径)が4.0以上になるように、および/または、(ロ)粒度曲率分布率(粒径累積率50%の粒径の2乗/粒径累積率10%の粒径×粒径累積率70%の粒径)が2.5以上になるように、あらかじめセメント、高炉スラグ微粉末、および石膏の粉体について、その粒度および配合量が選定され、これらを混合して調製することができる。混合装置としてはV型混合機、プローシアミキサー、ヘンシェル混合機、リボン型混合機など一般の混合装置を用いることができる。   The cement-based solidified material of the present invention has (a) a particle size distribution rate (particle size cumulative particle size 50% particle size / particle size cumulative rate 10% particle size) of 4.0 or more and / or (B) The particle size curvature distribution ratio (the square of the particle size with a particle size accumulation rate of 50% / the particle size with a particle size accumulation rate of 10% × the particle size with a particle size accumulation rate of 70%) is 2.5 or more. The particle size and blending amount of the cement, blast furnace slag fine powder, and gypsum powder are selected in advance and can be prepared by mixing them. As the mixing device, a general mixing device such as a V-type mixer, a Proscia mixer, a Henschel mixer, or a ribbon-type mixer can be used.

本発明のセメント系固化材は、セメントクリンカー、高炉スラグ微粉末または高炉スラグ未粉砕物、および石膏を粉砕混合して調製することができる。これを粉砕機に投入し、上記(イ)ないし(ロ)の粒度構成になるように、閉回路粉砕システムにより所定の分級点を基準にして分級と粉砕を繰り返すことによって調製することができる。粉砕機としては、ボールミル、縦型ミル、振動ミルなどを用いることができる。   The cement-based solidified material of the present invention can be prepared by pulverizing and mixing cement clinker, blast furnace slag fine powder or unground blast furnace slag, and gypsum. This is put into a pulverizer, and can be prepared by repeating classification and pulverization based on a predetermined classification point by a closed circuit pulverization system so as to have the above-mentioned particle size constitutions (a) to (b). As the pulverizer, a ball mill, a vertical mill, a vibration mill or the like can be used.

本発明のセメント系固化材は水を加えて練り混ぜ、スラリーにして用いられる。このスラリーは、水セメント比が比較的低い範囲、具体的には50%〜150%の範囲で良好な効果を発揮し、また水セメント比が150%〜300%の範囲では高温環境下での優位性は減少するものの有効に使用することができる。なお、セメントスラリーの流動性は、欧州規格(EN445:Grout for prestressing tendons. Test methods)に規定されるマーシュファネルコーンを用いた流動性試験において、流下時間が100秒以下であれば良好と判定される。   The cement-based solidified material of the present invention is used as a slurry by adding water and kneading. This slurry exhibits a good effect in a range where the water cement ratio is relatively low, specifically in the range of 50% to 150%, and in a range where the water cement ratio is in the range of 150% to 300%, Although the advantage is reduced, it can be used effectively. The fluidity of the cement slurry is determined to be good if the flow time is 100 seconds or less in a fluidity test using a Marsh funnel cone specified in European standard (EN445: Grout for prestressing tendons. Test methods). The

本発明は、セメント系固化材を用いた地盤改良において、深層から表層の地盤改良に広く用いられるセメント系固化材スラリーによる改良に用いられるセメント系固化材に関して、夏期の温度が高い施工条件下においても、当該スラリーの粘度を低めた、流動性の高いスラリーを製造することができ、施工性を改善することが可能となる。   The present invention relates to a cement-based solidified material used for improvement by a cement-based solidified material slurry widely used for ground improvement from the deep layer to the ground layer using a cement-based solidified material, under construction conditions with high summer temperatures. However, it is possible to produce a slurry having a low fluidity and a high fluidity, thereby improving the workability.

実施例1のD50/D10に対する流下時間を示すグラフ。The graph which shows the flow time with respect to D50 / D10 of Example 1. FIG. 実施例1のD50/D10・D70に対する流下時間を示すグラフ。Graph showing the flow time for D50 2 / D10 · D70 of Example 1.

以下、本発明の実施例を示す。本発明の範囲は以下の実施例に限定されない。実施例では材料を混合粉砕しているが、粉砕した各々の材料を混合しても良い。   Examples of the present invention will be described below. The scope of the present invention is not limited to the following examples. In the embodiment, the materials are mixed and pulverized, but each pulverized material may be mixed.

〔実施例1〕
ポルトランドセメントクリンカー(記号:A、三菱マテリアル社製品)、高炉スラグ(記号:BFS、新日鉄住金鹿島製品)、無水石膏(記号:Gyp、セントラル硝子社製品)をそれぞれ試験用ボールミルで粉砕条件(鉄球の直径)を変更して粉砕し、表1に示すように粒径累積率の異なる試料を調製した。なお、目標ブレーン比表面積は、ポルトランドセメントクリンカー粉砕物は4420±20cm/g、高炉スラグ粉砕物は4380±20cm/g、無水石膏粉砕物は4380±20cm/gとした。
調製したセメント組成物の粒度分布は、レーザー回折式粒度分布測定装置(日機装株式会社製マクロトラック)を用いて測定した。また、ブレーン比表面積はブレーン測定装置で測定した。なお、粒度分布の粒径累積率10%をD10、粒径累積率30%をD30、粒径累積率50%をD50、粒径累積率70%をD70として示した。表1に4種類のポルトランドセメント粉砕物、3種類の高炉スラグ粉砕物および3種類の無水石膏粉砕物のブレーン比表面積と粒径累積率を示す。
調製したポルトランドセメント粉砕物と高炉スラグ粉砕物と無水石膏粉砕物を、表2に示す組み合わせとし、ポルトランドセメント粉砕物100質量%に対し、高炉スラグ粉砕物80質量%、無水石膏粉砕物25質量%の割合で混合したセメント系固化材組成物を得た。また、得られたセメント系固化材組成物について、上記方法によりブレーン比表面積、および粒度分布を測定し、粒度分布率(D50/D10)、粒度曲率分布率D50/D10・D70を算出した。
このセメント系固化材組成物について、材料温度を35℃とし、W/C=60%のセメントスラリーを調製した。このスラリーについて、マーシュファネル粘度計を用いて15分後の流動性を測定した。試験結果を表3に示す。この流下時間が100秒以下であれば流動性が良好であると評価される。表3に示すように、粒度分布率D50/D10が4.0以上、または、粒度曲率分布率D50/D10・D70が2.5以上の試料は流下時間が80秒以下であり、良好な流動性を示している。
[Example 1]
Portland cement clinker (symbol: A, manufactured by Mitsubishi Materials Corporation), blast furnace slag (symbol: BFS, Nippon Steel & Sumikin Kashima products), and anhydrous gypsum (symbol: Gyp, products manufactured by Central Glass Co., Ltd.) were each pulverized with a test ball mill (iron balls) The samples were pulverized with different diameters), and samples having different particle size accumulation ratios were prepared as shown in Table 1. The target Blaine specific surface area, Portland cement clinker grind 4420 ± 20cm 2 / g, blast furnace slag pulverized material 4380 ± 20cm 2 / g, anhydrite pulverized product was 4380 ± 20cm 2 / g.
The particle size distribution of the prepared cement composition was measured using a laser diffraction type particle size distribution measuring device (Macrotrack manufactured by Nikkiso Co., Ltd.). Further, the specific surface area of the brain was measured with a brain measuring device. In the particle size distribution, the particle size cumulative rate of 10% is shown as D10, the particle size cumulative rate of 30% as D30, the particle size cumulative rate of 50% as D50, and the particle size cumulative rate of 70% as D70. Table 1 shows the Blaine specific surface area and particle size cumulative ratio of four types of Portland cement pulverized product, three types of blast furnace slag pulverized product, and three types of anhydrous gypsum pulverized product.
The prepared Portland cement pulverized product, blast furnace slag pulverized product and anhydrous gypsum pulverized product are combined as shown in Table 2, and 80% by mass of blast furnace slag pulverized product and 25% by mass of anhydrous gypsum crushed product with respect to 100% by mass of Portland cement pulverized product. A cement-based solidifying material composition mixed at a ratio of Further, the obtained cement solidifying material composition, Blaine specific surface area by the above method, and the particle size distribution was measured, the particle size distribution index (D50 / D10), were calculated the particle size curvature distribution ratio D50 2 / D10 · D70.
About this cement type solidification material composition, material temperature was 35 degreeC and the cement slurry of W / C = 60% was prepared. The slurry was measured for fluidity after 15 minutes using a Marsh Funnel viscometer. The test results are shown in Table 3. If the flow time is 100 seconds or less, it is evaluated that the fluidity is good. As shown in Table 3, a sample having a particle size distribution ratio D50 / D10 of 4.0 or more or a particle size curvature distribution ratio D50 2 / D10 · D70 of 2.5 or more has a flow-down time of 80 seconds or less, which is good. Shows fluidity.

Figure 2019172517
Figure 2019172517

Figure 2019172517
Figure 2019172517

Figure 2019172517
Figure 2019172517

〔実施例2〕
実施例1で調製したセメントクリンカー粉砕物(A1、A4)、高炉スラグ粉砕物(BFS1、BFS3)、無水石膏粉砕物(Gyp1、Gyp3)を用いて、表4に示す質量比でセメント系固化材組成物を調製した。実施例1と同様に、材料温度を35℃とし、W/C=60%のセメントスラリーを作製した。このスラリーについて、マーシュファネル粘度計を用いて15分後の流動性を測定した。試験結果を表5に示す。この流下時間が100秒以下であれば流動性が良好と評価できる。表5に示すように、セメントクリンカー粉砕物、高炉スラグ粉砕物、無水石膏粉砕物の配合比率を変化させた場合でも、粒度分布における粒度分布率D50/D10が4.0以上または、粒度曲率分布率D50/D10・D70が2.5以上の試料は何れも良好な流動性を示している。
[Example 2]
Using the cement clinker pulverized product (A1, A4), blast furnace slag pulverized product (BFS1, BFS3), and anhydrous gypsum pulverized product (Gyp1, Gyp3) prepared in Example 1, the cement-based solidified material at a mass ratio shown in Table 4 A composition was prepared. Similarly to Example 1, the material temperature was set to 35 ° C., and a cement slurry with W / C = 60% was produced. The slurry was measured for fluidity after 15 minutes using a Marsh Funnel viscometer. The test results are shown in Table 5. If this flow-down time is 100 seconds or less, it can be evaluated that the fluidity is good. As shown in Table 5, the particle size distribution ratio D50 / D10 in the particle size distribution is 4.0 or more or the particle size curvature distribution even when the blending ratio of the pulverized cement clinker, pulverized blast furnace slag, and crushed anhydrous gypsum is changed. All samples having a ratio D50 2 / D10 · D70 of 2.5 or more show good fluidity.

Figure 2019172517
Figure 2019172517

Figure 2019172517
Figure 2019172517

〔実施例3〕
ポルトランドセメントクリンカー(記号:B、三菱マテリアル社製品)、高炉スラグ(記号:BFS、新日鉄住金鹿島製品)、無水石膏(記号:Gyp、セントラル硝子社製品)をそれぞれテストミルで粉砕時間を変更して粉砕して、表6に示すように粒径累積率が一定でブレーン比表面積の異なる試料を調製した。なお、目標ブレーン比表面積は、ポルトランドセメントクリンカー粉砕物は3100±20cm/g、高炉スラグ粉砕物は3080±20cm/g、無水石膏粉砕物は3080±20cm/gとした。調製したセメント組成物の粒度分布は、レーザー回折式粒度分布測定装置(日機装株式会社製マクロトラック)を用いて測定した。また、ブレーン比表面積はブレーン測定装置で測定した。なお、粒度分布の粒径累積率10%をD10、粒径累積率30%をD30、粒径累積率50%をD50、粒径累積率70%をD70として示した。表6にポルトランドセメント粉砕物、高炉スラグ粉砕物および無水石膏粉砕物のブレーン比表面積と粒径累積率を示す。ポルトランドセメント粉砕物と高炉スラグ粉砕物と無水石膏粉砕物を、表2に示す組み合わせとし、
調製したポルトランドセメント粉砕物と高炉スラグ粉砕物と無水石膏粉砕物を、ポルトランドセメント粉砕物100質量%に対し、高炉スラグ粉砕物80質量%、無水せっこう粉砕物25質量%の割合で混合したセメント系固化材組成物(試料No.16)を得た。また、得られたセメント系固化材組成物について、上記の方法によりブレーン比表面積、および粒度分布を測定し、粒度分布率(D50/D10)、粒度曲率分布率D50/D10・D70を算出した。このセメント系固化材組成物を用い、実施例1と同様に、材料温度を35℃とし、W/C=60%のセメント系固化材スラリーを作製した、このスラリーについてマーシュファネル粘度計を用いて15分後の流動性を測定した。試験結果を表7に示す。この流下時間が100秒以下であれば流動性が良好と評価できる。表7に示すように、セメント組成物のブレーンが3100cm/g程度と低い場合でも、粒度分布における粒度分布率D50/D10が4.0以上であり、粒度曲率分布率D50/D10・D10が2.5以上であるので、流下時間は39秒と短く、良好な流動性を示している。
Example 3
Portland cement clinker (symbol: B, manufactured by Mitsubishi Materials Corporation), blast furnace slag (symbol: BFS, Nippon Steel & Sumikin Kashima products), and anhydrous gypsum (symbol: Gyp, products manufactured by Central Glass Co., Ltd.) were each pulverized using a test mill. Then, as shown in Table 6, samples having a constant particle size accumulation ratio and different brain specific surface areas were prepared. The target Blaine specific surface area, Portland cement clinker grind 3100 ± 20cm 2 / g, blast furnace slag pulverized material 3080 ± 20cm 2 / g, anhydrite pulverized product was 3080 ± 20cm 2 / g. The particle size distribution of the prepared cement composition was measured using a laser diffraction type particle size distribution measuring device (Macrotrack manufactured by Nikkiso Co., Ltd.). Further, the specific surface area of the brain was measured with a brain measuring device. In the particle size distribution, the particle size cumulative rate of 10% is shown as D10, the particle size cumulative rate of 30% as D30, the particle size cumulative rate of 50% as D50, and the particle size cumulative rate of 70% as D70. Table 6 shows the Blaine specific surface area and the particle size accumulation ratio of the Portland cement pulverized product, the blast furnace slag pulverized product and the anhydrous gypsum pulverized product. Portland cement ground material, blast furnace slag ground material and anhydrous gypsum ground material are combined as shown in Table 2,
Cement in which the prepared Portland cement pulverized product, blast furnace slag pulverized product and anhydrous gypsum pulverized product were mixed at a ratio of 80% by mass of blast furnace slag pulverized product and 25% by mass of anhydrous gypsum crushed product to 100% by mass of Portland cement pulverized product. A system solidifying material composition (Sample No. 16) was obtained. Further, for the obtained cement-based solidified material composition, the Blaine specific surface area and the particle size distribution were measured by the above method, and the particle size distribution rate (D50 / D10) and the particle size curvature distribution rate D50 2 / D10 · D70 were calculated. . Using this cement-based solidifying material composition, similarly to Example 1, the material temperature was set to 35 ° C., and a cement-based solidifying material slurry with W / C = 60% was prepared. The fluidity after 15 minutes was measured. The test results are shown in Table 7. If this flow-down time is 100 seconds or less, it can be evaluated that the fluidity is good. As shown in Table 7, even when the brane of the cement composition is as low as about 3100 cm 2 / g, the particle size distribution D50 / D10 in the particle size distribution is 4.0 or more, and the particle size curvature distribution D50 2 / D10 · D10 Is 2.5 or more, the flow-down time is as short as 39 seconds, indicating good fluidity.

Figure 2019172517
Figure 2019172517

Figure 2019172517
Figure 2019172517

Claims (4)

セメント、高炉スラグ微粉末、および石膏の混合物または混合粉砕物であり、その粒度分布率(粒径累積率50%の粒径/粒径累積率10%の粒径)が4.0以上であり、および/または、その粒度曲率分布率(粒径累積率50%の粒径の2乗/粒径累積率10%の粒径×粒径累積率70%の粒径)が2.5以上であることを特徴とするセメント系固化材組成物。 It is a mixture or mixed pulverized product of cement, blast furnace slag fine powder, and gypsum, and its particle size distribution rate (particle size cumulative particle size 50% / particle size cumulative particle size 10%) is 4.0 or more. And / or the particle size curvature distribution ratio (square of particle diameter of 50% cumulative particle size / particle diameter of 10% cumulative particle diameter × particle diameter of 70% cumulative particle diameter) is 2.5 or more. A cement-based solidifying material composition characterized by comprising: セメント30〜86質量%、高炉スラグ微粉末10〜50質量%、石膏4〜20質量%である請求項1に記載するセメント系固化材組成物。 The cement-based solidifying material composition according to claim 1, which is 30 to 86% by mass of cement, 10 to 50% by mass of blast furnace slag fine powder, and 4 to 20% by mass of gypsum. ブレーン比表面積が2500〜5000cm/gである請求項1または請求項2に記載するセメント系固化材組成物。 The cement-based solidifying material composition according to claim 1 or 2, wherein the specific surface area of the brane is 2500 to 5000 cm2 / g. 水を加えてスラリーにしたセメント系固化材組成物であって、該組成物粉体100質量%に対し水50質量%〜300質量%を加えてなる請求項1〜請求項3の何れかに記載するセメント系固化材組成物。


A cement-based solidifying material composition that is made into a slurry by adding water, wherein 50% by mass to 300% by mass of water is added to 100% by mass of the composition powder. A cement-based solidifying material composition to be described.


JP2018063326A 2018-03-28 2018-03-28 Cement-based solidifying material composition Active JP7134668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018063326A JP7134668B2 (en) 2018-03-28 2018-03-28 Cement-based solidifying material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063326A JP7134668B2 (en) 2018-03-28 2018-03-28 Cement-based solidifying material composition

Publications (2)

Publication Number Publication Date
JP2019172517A true JP2019172517A (en) 2019-10-10
JP7134668B2 JP7134668B2 (en) 2022-09-12

Family

ID=68169219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063326A Active JP7134668B2 (en) 2018-03-28 2018-03-28 Cement-based solidifying material composition

Country Status (1)

Country Link
JP (1) JP7134668B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206346A (en) * 1987-02-18 1988-08-25 日鐵セメント株式會社 Injection material for repairing concrete structure
JPH10259042A (en) * 1997-03-19 1998-09-29 Nittetsu Cement Co Ltd Cement-based injection material
JP2011207952A (en) * 2010-03-29 2011-10-20 Ube Industries Ltd Method for producing cement-based solidifying material, method for solidifying soil, and method for reducing elusion amount of hexavalent chromium from solidified soil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63206346A (en) * 1987-02-18 1988-08-25 日鐵セメント株式會社 Injection material for repairing concrete structure
JPH10259042A (en) * 1997-03-19 1998-09-29 Nittetsu Cement Co Ltd Cement-based injection material
JP2011207952A (en) * 2010-03-29 2011-10-20 Ube Industries Ltd Method for producing cement-based solidifying material, method for solidifying soil, and method for reducing elusion amount of hexavalent chromium from solidified soil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"粒度分布が高炉セメントの諸特性におよぼす影響", セメント・コンクリート論文集, JPN7021002527, 1971, pages 88 - 92, ISSN: 0004547414 *

Also Published As

Publication number Publication date
JP7134668B2 (en) 2022-09-12

Similar Documents

Publication Publication Date Title
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP6947501B2 (en) Cement composition
KR20130048482A (en) Binder composition for concrete comprising bottom ash
JP2004345898A (en) Grout composition
JP2012144406A (en) High-strength mortar composition
TW201904910A (en) Concrete composition and method of manufacturing same
JP2018100204A (en) Method of producing cement composition
CN105948542B (en) A kind of concrete gel material, preparation method and applications
JP2004203733A (en) Method of producing mortar/concrete, and cement used for producing mortar/concrete
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
JP2019131433A (en) Method for producing cement composition
JP2009149475A (en) Method for producing cement premix composition
JP6234739B2 (en) Method for producing hardened cement and hardened cement
JP5160762B2 (en) Cement mortar composition for grout
JP2014129210A (en) Expansive admixture
JP2020001954A (en) Cement composition
JP2019172517A (en) Cement-based solidifying material composition
Belas et al. Enhancing the value of dam dredged sediments as a component of a self compacting concrete
JP2014009127A (en) High strength mortar composition
JP7079157B2 (en) Blast furnace slag powder, cement composition and mortar composition containing blast furnace slag powder, and method for predicting fluidity of cement composition.
JP2012144407A (en) High-strength paste composition
JP2007269607A (en) Method for manufacturing cement for high strength concrete and cement for high strength concrete obtained thereby
CN106517930B (en) A kind of production technology of PFA High Performance Concrete of High Replacement Levels
JP6867801B2 (en) Cement composition
JP7503680B1 (en) Admixtures and cement compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220602

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7134668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150