JPS63206346A - Injection material for repairing concrete structure - Google Patents
Injection material for repairing concrete structureInfo
- Publication number
- JPS63206346A JPS63206346A JP3625087A JP3625087A JPS63206346A JP S63206346 A JPS63206346 A JP S63206346A JP 3625087 A JP3625087 A JP 3625087A JP 3625087 A JP3625087 A JP 3625087A JP S63206346 A JPS63206346 A JP S63206346A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- injection material
- water
- present
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002347 injection Methods 0.000 title claims description 32
- 239000007924 injection Substances 0.000 title claims description 32
- 239000000463 material Substances 0.000 title claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 11
- 239000011398 Portland cement Substances 0.000 claims description 9
- 239000002893 slag Substances 0.000 claims description 8
- 239000010440 gypsum Substances 0.000 claims description 6
- 229910052602 gypsum Inorganic materials 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims 1
- 239000013535 sea water Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 230000008439 repair process Effects 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000006703 hydration reaction Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 239000004568 cement Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000036571 hydration Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 229910052918 calcium silicate Inorganic materials 0.000 description 3
- 239000000378 calcium silicate Substances 0.000 description 3
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 241000272517 Anseriformes Species 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
Landscapes
- Working Measures On Existing Buildindgs (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明はコンクリート構造物の浮きモルタル部および微
細ひびわれに注入して、コンクリート構造物の補修を行
なうことにより、機能維持を計るための注入材に関する
ものである。[Detailed Description of the Invention] Industrial Application Field The present invention relates to an injection material for repairing concrete structures by injecting them into floating mortar parts and fine cracks in concrete structures to maintain their functionality. It is.
本発明の注入材の石膏は水利初期の溶解度な制御し、長
期にわたって強度を増進させ、収縮を小さくする目的で
あり、β半水石膏以外の石膏は使用できる。高性能減水
剤はプレミックスが原則であるが、現場使用時に添加し
て使用することができる。また、収縮低減剤(商品名テ
トラガード三洋化成製)を注入材に対して、1〜3%、
さらKは目的に応しボリマーを併用することもできる。The purpose of the gypsum in the injection material of the present invention is to control the solubility at the initial stage of water use, increase strength over a long period of time, and reduce shrinkage, and gypsum other than β-hemihydrate gypsum can be used. In principle, high-performance water reducing agents are premixed, but they can be added at the time of on-site use. In addition, a shrinkage reducing agent (trade name: Tetra Guard, manufactured by Sanyo Chemical Co., Ltd.) was added to the injection material at 1 to 3%.
Furthermore, polymers can be used in combination with K depending on the purpose.
最近、コンクリート構造物の老朽化、早期劣化により補
修をしなければならない構造物が増大してきている。特
に、コンクリート構造物のひびわれ、浮きの補修は必要
とされておυ、最適な補修方法として注入工法が用いら
れている。一般的な注入工法は、ポンプを用いて加圧に
よる注入が行なわれているが、コンクリート構造物に注
入する場合、構造物の耐力から低圧(2〜3勢−以下)
で行なわなければならなく、注入性の良い材料が必要で
ある。Recently, the number of structures that require repair has been increasing due to aging and early deterioration of concrete structures. In particular, there is a need to repair cracks and floating concrete structures, and the injection method is used as the optimal repair method. The general injection method is pressurized injection using a pump, but when injecting into concrete structures, the pressure is low (2 to 3 forces or less) due to the strength of the structure.
This requires a material with good injectability.
従来の技術
注入材料としては、エポキシ樹脂が用いられているが、
エポキシ樹脂は高価であり、大量注入では一層下経済で
ある。また、コンクリートのひびわれ内部に水隙が存在
すると長期的耐久性に問題があ、す、無機系材料が見直
されてきている。しかしながら、従来のセメント系材料
では1004mの粗大粒子を含むこと、ポルトランドセ
メント系では初期の急激な水和による粒子の凝集化と物
理的凝集による見掛粒子径の増大により注入性K111
度があり、ひびわれIll 2 m以上に適用されてい
るが、ひびわれ幅が大きいと体積変化KI[1題がある
など欠点も指摘されている。特に、微小ひびわれ(0,
3諺以下)K適応できるセメント系注入材は実用化され
ていない。Epoxy resin is used as a conventional injection material, but
Epoxy resins are expensive and even less economical when injected in large quantities. In addition, the presence of water gaps inside cracks in concrete poses problems in long-term durability, and inorganic materials are being reconsidered. However, conventional cement-based materials contain coarse particles of 1004 m in diameter, and Portland cement-based materials have injectable properties such as K111 due to particle agglomeration due to initial rapid hydration and an increase in apparent particle size due to physical aggregation.
Although it has been applied to cracks of Ill 2 m or more, it has been pointed out that there are drawbacks such as volume change KI [1 problem] when the crack width is large. In particular, microcracks (0,
3) Cement-based injection materials that can be applied to K have not been put to practical use.
コンクリートのひびわれ調査・補修・補強指針(案)K
よると、補修の要否に関するひびわれ幅の限度は、補修
を必要とする場合、゛防水性の点では0.2 m以と1
耐久性の点では種々の条件にもよるが0.4〜1. O
vm以上となりている。Concrete crack investigation, repair, and reinforcement guidelines (draft) K
According to the above, the crack width limit regarding whether or not repair is required is ``0.2 m or less and 1 m or less in terms of waterproofness'' if repair is required.
In terms of durability, it depends on various conditions, but it is 0.4 to 1. O
vm or more.
発明が解決しようとする問題点
本発明者等は、従来のセメント系注入材の種々の欠点を
克服せんと研究したところ次の知見な得た。Problems to be Solved by the Invention The present inventors conducted research to overcome the various drawbacks of conventional cement-based injection materials and obtained the following knowledge.
コンクリート構造物の微小ひびわれに注入するための注
入材は、注入材の粒子径を極力小さくし水注入材比を下
げても低粘性であることが好ましく、注入後は材料分離
のない均一な硬化体で、注入材スラリー全量が固化し、
長期的にはコンクリート構造物と一体化することが必要
である。ポルトランドセメントの粒子径を小さくすると
反応性が高まり、水に接することにより急激な反応、す
なわち初期水和反応による化学的凝集および低水比下に
よる物理凝集によシ注大の目的が達成できない。水利を
防く゛遅延剤等の添加剤があるが、ポルトランドセメン
トに含まれる初期水和に寄与するアルミン酸カルシウム
の水利を抑制するのが主であり、他の残分、けい酸カル
シウム等の抑制は出来なく、やや改善の効果があるもの
の実用に供しえない。For injection materials to be injected into micro-cracks in concrete structures, it is preferable that the particle size of the injection material is as small as possible and that it has low viscosity even when the water-to-injection material ratio is lowered, so that it hardens uniformly without material separation after injection. In the body, the entire injection material slurry solidifies,
In the long term, it will be necessary to integrate it with the concrete structure. Reducing the particle size of Portland cement increases its reactivity, and when it comes into contact with water, rapid reactions occur, namely chemical aggregation due to the initial hydration reaction and physical aggregation due to low water ratios, making it impossible to achieve the purpose of pouring. There are additives such as retardants that prevent water use, but they mainly suppress the water use of calcium aluminate, which contributes to the initial hydration contained in Portland cement, and do not suppress other residues such as calcium silicate. Although there is a slight improvement effect, it cannot be put to practical use.
問題を解決するための手段
高炉スラグ微粉末はポルトランドセメントの水和によつ
て遊離したOH−イオンおよび硫酸塩による刺激作用に
より硬化することはすでに広く知られていることである
。すなわち、高炉スラグな高微粉末化しても水と接する
ととくより急激な反応はなく、ポルトランドセメントの
初期水和および硫酸塩の溶解後に反応を生しることは粉
末度!!に関係がない。このことは、注入性を高めるた
めスラグな高微粉末化しても一定時間水和を抑制するこ
とを可能くし、粘性変化を防く゛ことkより、可使時間
を確保でき、コンクリートの微小クラックへの注入が可
能であり、材料分離が少なく、注入後便れた硬化特性を
有することがわかった。Means for Solving the Problem It is already widely known that pulverized blast furnace slag powder hardens due to the stimulating action of OH-ions and sulfates liberated by the hydration of Portland cement. In other words, even when blast furnace slag is highly pulverized, it does not react particularly rapidly when it comes into contact with water, and the reaction that occurs after the initial hydration of Portland cement and the dissolution of sulfate is due to its fineness! ! It has nothing to do with. This makes it possible to suppress hydration for a certain period of time even if it is made into a highly fine powder like slag in order to improve pourability, prevent viscosity changes, secure pot life, and prevent micro-cracks in concrete. It was found that it is possible to pour, has low material separation, and has good curing characteristics after pouring.
作 用
本発明において、注入材の粉末度をブレーン比表面4a
ではなく、最大粒径および2JIm以、下の残分量で規
定したのは、2μm以下の残分量によってブレーン比表
面積が大きく変化し、また含まれる石膏形態および量に
よつてもブレーン比表面積が変化するために1粒度で規
定することが合理的である。粒度測定はレーザーマイク
ロサイザー(セイシン企業製)で蒸留水を分散媒圧して
測定するものであり、その粒度管理はセメント協会市販
の標準試料で行なう。種々の実験例から、本発明品は注
入特性から最大粒径が16μm以下、2μm以下の質量
残分が30鴨以下で、高炉スラグは45〜97重量鴨と
し、石膏は凝結に必要な最小3fi量鴨から、硬化後の
収縮改善を考慮し!5重量鴨までとした。Function In the present invention, the fineness of the injection material is adjusted to the Blaine ratio surface 4a.
Rather, it was specified by the maximum particle size and the residual amount below 2 JIm, because the Blaine specific surface area changes greatly depending on the residual amount below 2 μm, and the Blaine specific surface area also changes depending on the form and amount of gypsum contained. Therefore, it is reasonable to specify a single grain size. Particle size is measured using a laser microsizer (manufactured by Seishin Enterprises) using a dispersion medium pressure in distilled water, and the particle size is controlled using standard samples commercially available from the Cement Association. From various experimental examples, it has been found that the product of the present invention has a maximum particle diameter of 16 μm or less, a mass residue of 2 μm or less is 30 μm or less, the blast furnace slag has a weight of 45 to 97 μm, and the gypsum has a minimum particle size of 3 fi required for coagulation. Considering shrinkage improvement after curing from quantity duck! Up to 5 weight ducks.
以下順を迫って実施例について説明する。Examples will be explained below in order.
第1表に示す試料を用いて各水注入付比のスラリーを調
整し、注入性、材料分離(ブリージング)について試験
を行なった。ひびわれへの注入性については、JI8等
の定まった試験方法がないため、注入プラグ、ロッドを
使用した実際の注入を想定し、鋼製のjl150X20
0■の円筒管(内容積400cO)(7)下部に幅0.
3■、0.5■、長さ38m(DXリットを設け、各水
注入付比の注入スラリーをミキサーで3分間攪拌後、ス
リットを閉し、400 CCのスラリーを円筒管に満し
たのち、スリットを開放し、各経過時間毎の流下スラリ
ー量をシリンダーで測定し注入性を比較した。粘性はフ
ァンネル粘性で、JAロート(内容積1000 CO)
で流下時間によつた。材料分離は土木学会規準ブレ・f
クトコンクリートの注入モルタルのブリージング率およ
び膨張率試験方法により測定した。Using the samples shown in Table 1, slurries with various water injection ratios were prepared and tested for injection properties and material separation (breathing). Regarding injection into cracks, there is no established test method such as JI8, so assuming actual injection using injection plugs and rods, steel JL150X20
0cm cylindrical tube (inner volume 400cO) (7) Width 0cm at the bottom.
3cm, 0.5cm, length 38m (a DX lit was installed, and after stirring the injection slurry of each water injection ratio with a mixer for 3 minutes, the slit was closed, and the cylindrical tube was filled with 400 CC of slurry, The slit was opened, and the amount of slurry flowing down at each elapsed time was measured using a cylinder to compare the injection properties.The viscosity was funnel viscosity, and the JA funnel (inner volume 1000 CO)
It depended on the flow time. Material separation is based on the Japan Society of Civil Engineers standard Bure・f
The breathing rate and expansion rate of concrete poured mortar were measured by the test method.
第2表 注入性および材料分離性比較表注入性、粘性お
よび材料分離性は第2表の如くであり、普通ポルトラン
ドセメントはスリット開放後、瞬時Kcn塞を生じ、ろ
過された水滴が落ちるのみで、この現象は圧力をかけて
も同じであり注入が不可能であることを確認した。また
、高微粉末化した比較量4は、普通ポルトランドセメン
トに比較して注入性は改善されるが、次第KvI4Mを
生じ、時間経過による粘性の増大もあり、本発明品に比
較して注入性が劣る。本発明品はスラグ微粉末の配合量
を少なくすることKより注入性は劣るものの実用に供し
える点で、本発明の特許請求の範囲に至った。また、本
発明品を用いれば可使時間は粘性変化で2秒のフローロ
スとした場合90分間保持できることが確認できた。Table 2 Comparison table of pourability and material separation The pourability, viscosity, and material separation are as shown in Table 2. Ordinary Portland cement causes instantaneous Kcn clogging after the slit is opened, and only filtered water droplets fall. It was confirmed that this phenomenon remained the same even when pressure was applied, making injection impossible. In addition, although Comparative Amount 4, which has been made into a highly fine powder, has improved pourability compared to ordinary Portland cement, it gradually generates KvI4M and increases in viscosity over time, and has better pourability than the product of the present invention. is inferior. Although the product of the present invention is inferior to K in pourability by reducing the blended amount of fine slag powder, it can be put to practical use, and has reached the scope of the claims of the present invention. Furthermore, it was confirmed that using the product of the present invention, the pot life could be maintained for 90 minutes when the flow loss was 2 seconds due to viscosity change.
次に、本発明品の強度をJIS R5201に準拠し、
4X4X16clRの供試体にて曲げおよび圧縮強さ試
験を行なった。Next, the strength of the product of the present invention was determined according to JIS R5201,
Bending and compressive strength tests were conducted on a 4X4X16clR specimen.
第3表 強度試験比較表
第3表から、本発明品は水比が大きいのくもがかわらず
、比較量に比べ高強度を示すことが判った。Table 3 Strength Test Comparison Table From Table 3, it was found that the products of the present invention exhibited higher strength than the comparative products, even though the water ratio was large.
本発明品では、スラグ微粉末の配合量を多くすると初期
強度は低いが、長期的には十分な高強度を発現する。本
発明品は、初期材令でカルシウムサルホアルミネートお
よびカルシウムシリケート水和物の生成が認められ、材
令7日よりポゾラン反応により、長期的には緻密なカル
シウムシリケート水和物が生成し、硬化体の緻密化が進
むため強度の発現および透水性の改4!に寄与している
ものと予想される。In the product of the present invention, when the blending amount of fine slag powder is increased, the initial strength is low, but sufficient high strength is developed in the long term. In the product of the present invention, the formation of calcium sulfoaluminate and calcium silicate hydrate was observed at the initial stage of the material, and from the 7th day of the material age, due to the pozzolanic reaction, dense calcium silicate hydrate was formed over the long term and hardened. As the body becomes more dense, strength develops and water permeability improves 4! It is expected that this will contribute to the
次に、接着強さと透水係数を試験した。接着強さはあら
かしめJISR5201Kより水比5o%のセメント砂
比1:2の被接着モルタルを作製、舘日間水中養生後、
カッターにて半切シにし、接着面をサンデングし、接着
厚さが1.0■になるようにスペーサーを挾みζ微振動
をかけながら注入材スラリーを注入し、1日湿空養生後
、所定材令まで養生し、JIS A 6024 Kよシ
測定した。透水係数はf!J5X10c1mの供試体に
ついて、三輪圧縮試験装置により定水位(2*/J )
法で行なった。Next, the adhesive strength and water permeability coefficient were tested. Adhesive strength was determined using JISR5201K, a mortar with a water ratio of 50% and a cement-sand ratio of 1:2 was prepared, and after curing in water for several days,
Cut it in half with a cutter, sand the adhesive surface, sandwich the spacer so that the adhesive thickness is 1.0μ, inject the injection material slurry while applying slight vibration, and after curing in a humid air for 1 day, It was cured to maturity and measured according to JIS A 6024K. The hydraulic conductivity is f! Regarding the J5×10c1m specimen, the constant water level (2*/J) was measured using a three-wheeled compression tester.
It was done by law.
その結果は第4表のとおシで接着強さも比較量を上回シ
、28日では本発明品1,2において50Ky / /
−を確保することができる。長期的にはモルタルから溶
出するアルカリとの反応によシ、より一〇の付着強度の
向丘が進むものと判断できる。As shown in Table 4, the results showed that the adhesive strength exceeded that of the comparative product, and on the 28th, it was 50 Ky for products 1 and 2 of the present invention.
− can be secured. In the long term, it can be judged that the adhesive strength of 10 will increase due to the reaction with the alkali eluted from the mortar.
る。Ru.
第4表 接着強度および透水係数比較表透水係数は本発
明の特長的水利反応により10711(〜做)オーダの
値が得られる。Table 4 Comparison Table of Adhesive Strength and Hydraulic Permeability Coefficient A value on the order of 10711 (~做) can be obtained for the hydraulic permeability coefficient due to the characteristic water use reaction of the present invention.
本発明品の耐薬品性と耐塩性鶏試験した。JI8R52
01によfi4X4X16cl11(7)供試体を作製
し、耐薬品性は材令14日で5%硫酸溶液Vc漫涜させ
、各漫潰期間毎の重量変化を測定し、耐塩性は5嘔Na
Cl溶液に漫潰し、28日、56日後K O,l N
AgNOs溶液を塗布し、AgC1!の生成した白色部
をCI!−の浸透深さとして測定した。その結果は第5
表のとお・りである。The chemical resistance and salt tolerance of the product of the present invention were tested on chickens. JI8R52
A fi4X4X16cl11 (7) specimen was prepared according to 01, and the chemical resistance was determined by exposing it to a 5% sulfuric acid solution Vc at 14 days of age, and measuring the weight change for each dilution period.
Smeared in Cl solution, 28 and 56 days later K O, l N
Apply AgNOs solution and AgC1! The white part generated by CI! - measured as the penetration depth. The result is the fifth
This is the table below.
第5表 耐薬品性および耐塩性比較表
発明の効果
第2〜4表の結果、および第5表の結果に示すように、
本発明品は耐硫酸溶液および耐塩性に優れている。この
ことは、本発明品の水和物の物理的、化学的特性に基因
している。コンクリート構造物は、硫酸根を含む温泉水
および鉱山水、C(を含む海塩粒子等により浸食、ひび
われを生じる例が多い。Table 5 Chemical resistance and salt resistance comparison table Effect of the invention As shown in the results of Tables 2 to 4 and the results of Table 5,
The product of the present invention has excellent resistance to sulfuric acid solutions and salts. This is due to the physical and chemical properties of the hydrate of the product of the present invention. Concrete structures often suffer from erosion and cracking due to hot spring water and mine water containing sulfate radicals, sea salt particles containing C, etc.
このことから、本発明品はこのような場合の補修にも極
めて有用であると言える。From this, it can be said that the product of the present invention is extremely useful for repairs in such cases.
補修用注入材に必要な特性の一つく1体積変化すなわち
乾燥収縮があるが、無収縮材を用いることくより改善さ
れ、20°CRH60%、材令28日で0.1〜0.2
鴨の範囲に収まる。この値は、一般的に用いられるコン
クリートの値、また土木学会規準プレパクトコンクリー
ト用注入モルタルの基準値(0,05%)から判断する
と大きいが、本発明品を適用するコンクリートのひびわ
れ幅が小さく、また補修後シールすることが多く、実際
には乾燥を受ける影響が極めて少ないこと、一定圧力下
で注入するために注入後は圧縮応力を受けており、収縮
が生しても応力緩和される利点がある。しかしながら、
成長過程のひびわれ補修圧ついては本発明品でも限界が
あると言わざるを得ない。One of the characteristics required for repair injection materials is volume change, that is, drying shrinkage, but this is improved by using non-shrinkage materials, and it is 0.1 to 0.2 at 20° CRH 60% and material age 28 days.
It falls within the range of ducks. This value is large when judged from the value of commonly used concrete and the standard value (0.05%) of poured mortar for prepact concrete according to the Japan Society of Civil Engineers, but the crack width of concrete to which the present invention is applied is small. Also, since it is often sealed after repair, the effect of drying is actually extremely small, and since it is injected under a constant pressure, it is subjected to compressive stress after injection, so even if shrinkage occurs, the stress is alleviated. There are advantages. however,
It must be said that even the product of the present invention has its limits in terms of crack repair pressure during the growth process.
種々の研究の結果、従来にないセメント系の高注入性注
入材が発明でき、種々の工法によりあらゆるコンクリー
ト構造物への適用が可能になり、経済性を含め、コンク
リート補修に果たす役割は大きいと予想される。As a result of various research, we were able to invent an unprecedented cement-based injection material with high pourability, which can be applied to all kinds of concrete structures through various construction methods, and is expected to play a major role in concrete repair, including its economic efficiency. is expected.
Claims (2)
カーからなる注入材で、当該注入材の粒度が最大粒径1
6μm以下、2μm以下の質量残分が30%以下からな
る高注入性、耐海水および耐薬品性を特徴とするコンク
リート構造物補修用注入材。(1) An injection material consisting of blast furnace slag, gypsum, and portland cement clinker, with a maximum particle size of 1
An injection material for repairing concrete structures characterized by high pourability, seawater resistance, and chemical resistance, consisting of 30% or less of mass residue of 6 μm or less and 2 μm or less.
%ポルトランドセメント0〜40重量%の範囲である注
入材に対し、高性能減水剤を固形換算で0〜3.0%を
含む、特許請求範囲第一項記載の組成物。(2) Contains 0 to 3.0% of a high performance water reducer in terms of solids for the injection material which is in the range of 45 to 97% by weight of blast furnace slag, 3 to 15% by weight of gypsum, and 0 to 40% by weight of Portland cement; A composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3625087A JPS63206346A (en) | 1987-02-18 | 1987-02-18 | Injection material for repairing concrete structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3625087A JPS63206346A (en) | 1987-02-18 | 1987-02-18 | Injection material for repairing concrete structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63206346A true JPS63206346A (en) | 1988-08-25 |
JPH0244269B2 JPH0244269B2 (en) | 1990-10-03 |
Family
ID=12464526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3625087A Granted JPS63206346A (en) | 1987-02-18 | 1987-02-18 | Injection material for repairing concrete structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63206346A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175647A (en) * | 1988-12-27 | 1990-07-06 | Mitsubishi Mining & Cement Co Ltd | Pour for repair of concrete |
JP2014214070A (en) * | 2013-04-30 | 2014-11-17 | 花王株式会社 | Hydraulic composition |
JP2019172517A (en) * | 2018-03-28 | 2019-10-10 | 三菱マテリアル株式会社 | Cement-based solidifying material composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0429181U (en) * | 1990-07-04 | 1992-03-09 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867781A (en) * | 1981-10-19 | 1983-04-22 | Sumitomo Cement Co Ltd | Preparation of grauting material based on ultrafine portland cement |
-
1987
- 1987-02-18 JP JP3625087A patent/JPS63206346A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867781A (en) * | 1981-10-19 | 1983-04-22 | Sumitomo Cement Co Ltd | Preparation of grauting material based on ultrafine portland cement |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02175647A (en) * | 1988-12-27 | 1990-07-06 | Mitsubishi Mining & Cement Co Ltd | Pour for repair of concrete |
JP2014214070A (en) * | 2013-04-30 | 2014-11-17 | 花王株式会社 | Hydraulic composition |
JP2019172517A (en) * | 2018-03-28 | 2019-10-10 | 三菱マテリアル株式会社 | Cement-based solidifying material composition |
Also Published As
Publication number | Publication date |
---|---|
JPH0244269B2 (en) | 1990-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Karatas et al. | The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures | |
US5151126A (en) | Cement-base injection grout for consolidating structures | |
Hung et al. | The influence of mixture variables for the alkali-activated slag concrete on the properties of concrete | |
Sha et al. | Development of effective microfine cement-based grouts (EMCG) for porous and fissured strata | |
Raj et al. | Evaluation and mix design for ternary blended high strength concrete | |
Courard et al. | Limestone powder | |
Nguyen-Tuan et al. | Experimental study on mechanical and hydraulic properties of porous geopolymer concrete | |
Dey et al. | An experimental study on strength and durability characteristics of self‐curing self‐compacting concrete | |
US10882788B2 (en) | Cement slurries, cured cement and methods of making and use of these | |
CN113307586A (en) | Preparation and application method of inorganic gelled oil-water well plugging material | |
Benkaddour et al. | Rheological, mechanical and durability performance of some North African commercial binary and ternary cements | |
CN108640609A (en) | A kind of modified basalt scale water-tight concrete and preparation method thereof | |
Mollamahmutoglu | Treatment of medium-to coarse-grained sands by fine-grained portland cement (FGPC) as an alternative grouting material to silicate-ester grouts | |
JPS63206346A (en) | Injection material for repairing concrete structure | |
Khan et al. | Experimental investigation of concrete properties using locally available coarse aggregates in Punjab, Pakistan | |
Anagnostopoulos | Physical and Mechanical Properties of Injected Sand with Latex—Superplasticized Grouts | |
Helmuth et al. | The nature of concrete | |
Muwashee et al. | Studying the effect of waterproofing admixtures on some properties of cement mortar | |
Fawzi et al. | Some Properties of Polymer Modified Self-Compacting Concrete Exposed to Kerosene and Gas Oil | |
Špak | Preparation of High-Performance Concrete for Adjusting of Possibility of its Usage in Building Practice | |
Amrutha et al. | EFFECT OF FINE PARTICLES IN THE FRESH PROPERTIES OF GROUT | |
OSEKE | Durability of concrete incorporating ground granulated blast-furnace slag for water infrastructures. | |
Ooviya et al. | Experimental Study on Flexible Concrete | |
Hama | Mechanical Properties of Concrete incorporating natural Pozzolanic Material Subjected to Crude Oil | |
SU1399296A1 (en) | Method of preparing concrete mix |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |