JP2014129210A - Expansive admixture - Google Patents
Expansive admixture Download PDFInfo
- Publication number
- JP2014129210A JP2014129210A JP2012289159A JP2012289159A JP2014129210A JP 2014129210 A JP2014129210 A JP 2014129210A JP 2012289159 A JP2012289159 A JP 2012289159A JP 2012289159 A JP2012289159 A JP 2012289159A JP 2014129210 A JP2014129210 A JP 2014129210A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- expansive
- particles
- expansion
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004567 concrete Substances 0.000 claims abstract description 101
- 239000000463 material Substances 0.000 claims abstract description 71
- 239000002245 particle Substances 0.000 claims abstract description 35
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000004568 cement Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000000292 calcium oxide Substances 0.000 claims abstract description 16
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 16
- 239000012615 aggregate Substances 0.000 claims description 15
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 16
- 239000000843 powder Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- 239000002893 slag Substances 0.000 description 12
- 239000003638 chemical reducing agent Substances 0.000 description 11
- 238000010304 firing Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000010881 fly ash Substances 0.000 description 5
- 238000006703 hydration reaction Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 235000011116 calcium hydroxide Nutrition 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000004088 foaming agent Substances 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000011150 reinforced concrete Substances 0.000 description 3
- 229910021487 silica fume Inorganic materials 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 239000011044 quartzite Substances 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- -1 silifume Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 239000011396 hydraulic cement Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000036314 physical performance Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、膨張材に関する。より詳しくは、温度依存性が少なく、10〜30℃において使用しても混和したコンクリートの膨張率が安定し且つ膨張材無添加のコンクリートに比べて強度低下が起こり難い、膨張材が得られる。 The present invention relates to an expansion material. More specifically, there is little temperature dependency, and even if it is used at 10 to 30 ° C., the expansion rate of the mixed concrete is stable and the strength is hardly lowered as compared with the concrete without the addition of the expansion material, and an expansion material can be obtained.
コンクリートは、硬化後にセメントの水和反応や表面からの蒸発により、内部の水分が減少すると収縮が起こる。収縮による応力が大きくなるとひび割れが発生する。コンクリート構造物の多くはその内部に鉄筋や鉄骨等の鋼材を内在する。このような鋼材を内在するコンクリート構造物にひび割れが発生し、ひび割れが鋼材付近まで達すると、コンクリート構造物が劣化し易くなる。このため、コンクリートに膨張材を混和することで予め膨張させ、収縮により発生する応力を小さくすることでひび割れの発生を防ぐことが広く行われている。このようにコンクリートに使用される膨張材として、石灰系膨張材がある。この石灰系膨張材は、生石灰又はCaO結晶(フリーライム)を主要成分とする焼成物を粒度調整されたものである(例えば特許文献1参照。)。 In concrete, shrinkage occurs when the moisture content in the concrete decreases after hardening due to the hydration reaction of the cement and evaporation from the surface. Cracks occur when the stress due to shrinkage increases. Most concrete structures contain steel such as reinforcing bars and steel frames inside. When a crack is generated in a concrete structure containing such a steel material and the crack reaches the vicinity of the steel material, the concrete structure is easily deteriorated. For this reason, it is widely practiced to prevent the occurrence of cracks by reducing the stress generated by shrinkage by preliminarily expanding by adding an expansion material to concrete. As such an expansion material used for concrete, there is a lime-based expansion material. This lime-based expansion material is obtained by adjusting the particle size of a baked product containing quick lime or CaO crystals (free lime) as a main component (see, for example, Patent Document 1).
ところで、膨張材の反応は、セメントの水和反応と同様に温度依存性があるため、既往の技術では温度が異なるとコンクリートの膨張に過不足が生じる虞、又は圧縮強度が不足する虞がある。このため、温度依存性が少ない膨張材が望まれていた。 By the way, since the reaction of the expansion material is temperature-dependent like the cement hydration reaction, if the temperature is different in the existing technology, the expansion of the concrete may be excessive or insufficient, or the compressive strength may be insufficient. . For this reason, the expansion | swelling material with little temperature dependence was desired.
本発明は、温度依存性が少ない膨張材、即ち、10〜30℃において使用しても混和したコンクリートの膨張率が安定し且つ膨張材無添加のコンクリートに比べて強度低下が起こり難い膨張材を提供することを目的とする。また、本発明は、10〜30℃において使用しても膨張率が安定し且つ膨張材無添加のコンクリートに比べて強度低下が起こり難い膨張コンクリートを提供することを目的とする。 The present invention relates to an expansion material having a low temperature dependency, that is, an expansion material in which the expansion rate of the mixed concrete is stable even when used at 10 to 30 ° C. and the strength is not easily lowered as compared with the concrete without the addition of the expansion material. The purpose is to provide. Another object of the present invention is to provide an expanded concrete that has a stable expansion rate and is less likely to experience a decrease in strength when compared with concrete containing no expansion material even when used at 10 to 30 ° C.
本発明者は、前記課題解決のため鋭意検討した結果、本発明は、特定粒度の遊離生石灰を含有する膨張性焼成物を含有することにより、前記課題を解決することを見出し本発明を完成させた。本発明は、以下の(1)又は(2)で表す膨張材、並びに(3)で表す膨張コンクリートである。
(1)遊離生石灰を含有する膨張性焼成物を含有し、該膨張性焼成物が、10μm以下の粒子の含有率が10〜30%、40〜70μmの粒子の含有率が19〜30%、70〜100μmの粒子の含有率が8〜25%、100〜150μmの粒子の含有率が5〜15%である膨張材。
(2)更に、10μm以下の粒子の含有率をL1、40〜70μmの粒子の含有率をM1、70〜100μmの粒子の含有率M2および100〜150μmの粒子の含有率H1が、下記式(1)及び式(2)を充足する上記(1)の膨張材。
1.0≦M1/L1≦1.5 ・・・・(1)
0.8≦M2/H1≦2.5 ・・・・(2)
(3)上記(1)又は(2)の膨張材、セメント、骨材及び水を含有する膨張コンクリート。
As a result of intensive investigations for solving the above problems, the present inventors have found that the present invention solves the above problems by containing an expansive calcined product containing free quick lime having a specific particle size, thereby completing the present invention. It was. The present invention is an expanded material represented by the following (1) or (2) and expanded concrete represented by (3).
(1) It contains an expansive calcined product containing free quick lime, and the expansive calcined product has a content of particles of 10 μm or less of 10 to 30%, a content of particles of 40 to 70 μm of 19 to 30%, An expansion material having a content of 70 to 100 μm particles of 8 to 25% and a content of 100 to 150 μm particles of 5 to 15%.
(2) Furthermore, the content rate of particles of 10 μm or less is L1, the content rate of particles of 40 to 70 μm is M1, the content rate M2 of particles of 70 to 100 μm and the content rate H1 of particles of 100 to 150 μm are the following formula ( 1) and the expansion material of the above (1) that satisfies the formula (2).
1.0 ≦ M1 / L1 ≦ 1.5 (1)
0.8 ≦ M2 / H1 ≦ 2.5 (2)
(3) Expanded concrete containing the expansion material, cement, aggregate and water of (1) or (2) above.
本発明によれば、温度依存性が少ない膨張材が得られる。即ち、10〜30℃において使用しても混和したコンクリートの膨張率が安定し且つ膨張材無添加のコンクリートに比べて強度低下が起こり難い膨張材が得られる。本発明によれば、10〜30℃において使用しても混和したコンクリートの拘束膨張率が150〜250μと土木学会基準の収縮補償用コンクリートの拘束膨張率を満足するという優れた膨張性能を発現し、且つ膨張材無添加のコンクリートに対する材齢28日における圧縮強度比が0.95以上と強度低下が起こり難い膨張材が得られる。また、本発明によれば、20℃におけるコンクリートの拘束膨張率に対する10〜30℃におけるコンクリートの拘束膨張率の変化率が±10%以内の範囲である、混和したコンクリートの膨張率が安定している膨張材が得られる。 According to the present invention, an expanded material with less temperature dependency can be obtained. That is, even if it is used at 10 to 30 ° C., an expanded material in which the expansion rate of the mixed concrete is stable and the strength is not easily lowered as compared with the concrete without the expanded material is obtained. According to the present invention, even if it is used at 10 to 30 ° C., the concrete expansion coefficient of the mixed concrete is 150 to 250 μm, and the excellent expansion performance that satisfies the restriction expansion coefficient of the concrete for shrinkage compensation specified by the Japan Society of Civil Engineers is exhibited. In addition, an expansion material in which the strength reduction is less than 0.95 at a material age of 28 days with respect to concrete to which no expansion material is added can be obtained. Further, according to the present invention, the rate of change of the constrained expansion rate of the concrete at 10 to 30 ° C. with respect to the constrained expansion rate of the concrete at 20 ° C. is within ± 10%, and the expansion rate of the mixed concrete is stable. An inflatable material is obtained.
本発明によれば、温度依存性が少ない膨張コンクリートが得られる。即ち、10〜30℃において使用しても膨張率が安定し且つ膨張材無添加のコンクリートに比べて強度低下が起こり難い膨張コンクリートが得られる。本発明によれば、10〜30℃において使用してもコンクリートの拘束膨張率が150〜250μと土木学会基準の収縮補償用コンクリートの拘束膨張率を満足するという優れた膨張性能を発現し、且つ膨張材無添加のコンクリートに対する材齢28日における圧縮強度比が0.95以上と強度低下が起こり難い膨張コンクリートが得られる。また、本発明によれば、20℃におけるコンクリートの拘束膨張率に対する10〜30℃におけるコンクリートの拘束膨張率の変化率が±10%以内の範囲である、拘束膨張率が安定している膨張コンクリートが得られる。 According to the present invention, it is possible to obtain an expanded concrete having little temperature dependency. That is, even when used at 10 to 30 ° C., an expanded concrete is obtained in which the expansion rate is stable and the strength is not easily lowered as compared with the concrete without the addition of the expansion agent. According to the present invention, even when used at 10 to 30 ° C., the concrete expansion coefficient is 150 to 250 μm, and the excellent expansion performance of satisfying the limited expansion coefficient of the shrinkage compensation concrete of the Japan Society of Civil Engineers is exhibited, and The compressive strength ratio at the age of 28 days with respect to the concrete to which no expansive material is added is 0.95 or more, and an expansive concrete in which the strength is hardly lowered is obtained. In addition, according to the present invention, the expansion rate of the concrete with a restricted expansion rate is within a range of ± 10% within the range of the change rate of the restricted expansion rate of the concrete at 10 to 30 ° C. with respect to the restricted expansion rate of the concrete at 20 ° C. Is obtained.
本発明の膨張材は、遊離生石灰を含有する膨張性焼成物を含有し、該膨張性焼成物が、10μm以下の粒子の含有率(L1)が10〜30%、40〜70μmの粒子の含有率(M1)が19〜30%、70〜100μmの粒子の含有率(M2)が8〜25%、100〜150μmの粒子の含有率(H1)が5〜15%である。含有率の%は、何れも質量%である。L1、M1、M2又はH1の何れかがこれらの範囲から外れると、10〜30℃の何れかの温度での使用において、混和したコンクリートの拘束膨張率が150〜250μから外れる虞、或いは且つ膨張材無添加のコンクリートに対する材齢28日における圧縮強度比が0.9未満となる虞がある。但し、10℃についての拘束膨張率は材齢14日の値で、20〜30℃は材齢7日の値である。好ましい粒度範囲は、L1が15〜25%、M1が19〜30%、M2が8〜24%、H1が5〜15%とする。更に、L1に対するM1の比(M1/L1)が1.0〜1.5且つH1に対するM2の比(M2/H1)が0.8〜2.5であると、20℃におけるコンクリートの拘束膨張率に対する10〜30℃におけるコンクリートの拘束膨張率の変化率が、20℃におけるコンクリートの拘束膨張率に対し10%以内の範囲と、混和したコンクリートの膨張率が安定していることからより好ましい。また、150μmを超える粒子の含有率(H2)が3%未満であること、硬化コンクリートの表面に膨張材の水和により生じた消石灰による斑点や膨らみが目視で分かり難いことから好ましい。なお、本発明において、20℃におけるコンクリートの拘束膨張率(EX20℃)に対するT℃におけるコンクリートの拘束膨張率(EXT℃)の変化率(REX)は、次式(3)により求められるものである。
REX=(EXT℃−EX20℃)÷EX20℃×100 (%) ・・・・・ (3)
The intumescent material of the present invention contains an expansive calcined product containing free quick lime, and the expansive calcined product has a particle content of 10 μm or less (L1) of 10 to 30% and 40 to 70 μm. The rate (M1) is 19 to 30%, the content rate (M2) of particles of 70 to 100 μm is 8 to 25%, and the content rate (H1) of particles of 100 to 150 μm is 5 to 15%. All percentages of content are mass%. If any of L1, M1, M2 or H1 is out of these ranges, the mixed concrete may have a restricted expansion rate of 150 to 250 μm when used at a temperature of 10 to 30 ° C., or expansion. There is a possibility that the compressive strength ratio at the age of 28 days with respect to the concrete to which no material is added is less than 0.9. However, the constrained expansion rate at 10 ° C. is the value of the material age 14 days, and 20-30 ° C. is the value of the material age 7 days. The preferable particle size ranges are 15 to 25% for L1, 19 to 30% for M1, 8 to 24% for M2, and 5 to 15% for H1. Furthermore, when the ratio of M1 to L1 (M1 / L1) is 1.0 to 1.5 and the ratio of M2 to H1 (M2 / H1) is 0.8 to 2.5, the constrained expansion of concrete at 20 ° C. The rate of change of the constrained expansion coefficient of the concrete at 10 to 30 ° C. with respect to the rate is more preferably within a range of 10% or less with respect to the constrained expansion coefficient of the concrete at 20 ° C., because the expansion coefficient of the mixed concrete is stable. Moreover, it is preferable since the content rate (H2) of the particle | grains exceeding 150 micrometers is less than 3%, and the spot and swelling by the slaked lime which arose by the hydration of the expansion material on the surface of hardened concrete are hard to understand visually. In the present invention, the rate of change (R EX ) of the constrained expansion coefficient (EX T ° C. ) of the concrete at T ° C. relative to the constrained expansion coefficient (EX 20 ° C. ) of the concrete at 20 ° C. is obtained by the following equation (3). Is.
R EX = (EXT T ° C.− EX 20 ° C. ) ÷ EX 20 ° C. × 100 (%) (3)
L1、M1、M2及びH1は、各粒度範囲に応じた目開きの篩を用いた減圧吸引式乾式篩い分け装置(エアージェットシーブ)による篩い分け試験により求めることができる。例えば、L1であれば目開き10μmの篩を用い、M1であれば目開き40μm及び70μmの篩を用い、M2であれば目開き70μm及び100μmの篩を用い、H1であれば目開き100μm及び150μmの篩を用い、エアージェットシーブによる篩い分け試験により、各篩を用いたときの残量率を求め、L1、M1、M2及びH1を算出する。 L1, M1, M2 and H1 can be obtained by a screening test using a vacuum suction type dry screening device (air jet sieve) using a sieve having openings corresponding to each particle size range. For example, if L1, a sieve with an opening of 10 μm is used, if M1, sieves of an opening of 40 μm and 70 μm are used, if M2, sieves of an opening of 70 μm and 100 μm are used, and if it is H1, an opening of 100 μm and Using a sieve of 150 μm, a remaining rate when each sieve is used is obtained by a sieving test using an air jet sieve, and L1, M1, M2, and H1 are calculated.
本発明における遊離生石灰(CaO)を含有する膨張性焼成物は、炭酸カルシウム、消石灰、生石灰等のカルシウム質原料を含む焼成原料を焼成することにより得られる焼成物である。焼成原料には、カルシウム質原料以外に、シリカ質原料、アルミナ質原料、酸化鉄原料等を添加しても良い。シリカ質原料としては例えば珪藻土,珪石粉,シリフューム,フライアッシュ,高炉スラグ,バンド頁岩,銅スラグ,粘土鉱物等が挙げられ、アルミナ質原料としては例えばボーキサイト,アルミナ,フライアッシュ,高炉スラグ,アルミ灰,アルミドロス,バンド頁岩,粘土鉱物等が挙げられ、酸化鉄原料としては例えば酸化鉄,鉄鉱石,銅スラグ,製鋼スラグ等が挙げられる。焼成原料を焼成するときの焼成温度は1100〜1500℃とすることが好ましく、より好ましくは1200〜1350℃とする。焼成温度が1100℃より低いと焼結性が低く、遊離生石灰の結晶も充分に成長しないため良好な膨張性能が得られ難い。また、焼成温度が1500℃を超えると、燃料消費量が増え、焼成コストが高まる上、過度に焼結性が高まり良好な膨張性能が得られ難い。また、焼成には、ロータリーキルンや電気炉等の温度調節可能な炉を用いることが好ましい。 The expansive calcined product containing free quick lime (CaO) in the present invention is a calcined product obtained by calcining a calcined raw material containing calciumaceous raw materials such as calcium carbonate, slaked lime and quick lime. In addition to the calcium raw material, a siliceous raw material, an alumina raw material, an iron oxide raw material, or the like may be added to the firing raw material. Examples of siliceous materials include diatomaceous earth, quartzite powder, silifume, fly ash, blast furnace slag, band shale, copper slag, clay minerals, and alumina materials include, for example, bauxite, alumina, fly ash, blast furnace slag, aluminum ash , Aluminum dross, band shale, clay mineral and the like, and examples of the iron oxide raw material include iron oxide, iron ore, copper slag, steelmaking slag and the like. The firing temperature when firing the firing raw material is preferably 1100 to 1500 ° C, more preferably 1200 to 1350 ° C. When the firing temperature is lower than 1100 ° C., the sinterability is low, and the crystals of free quick lime do not grow sufficiently, so that it is difficult to obtain good expansion performance. On the other hand, when the firing temperature exceeds 1500 ° C., the fuel consumption increases, the firing cost increases, and the sinterability is excessively increased, and it is difficult to obtain good expansion performance. For firing, it is preferable to use a temperature adjustable furnace such as a rotary kiln or an electric furnace.
遊離生石灰を含有する膨張性焼成物を上記粒度とするには、上記粒度となるように分級しながら粉砕する方法、分級により異なる粒度分布の粉末を2以上作製し上記粒度になるような調合割合で混合する方法、粉砕により異なる粒度分布の粉末を2以上作製し、上記粒度になるような調合割合で混合する方法等が好ましい例として挙げられる。粉砕、分級及び混合は、乾式、即ち粉末のまま行うことが、乾燥工程を必要としないことから好ましい。粉砕、分級及び混合は、機械を用いることが好ましい。粉砕には、例えば、ロッドミル、ボールミル、竪型ローラーミル、ハンマーミル、ジョークラッシャー、ジェットミル等の各種粉砕機を用いることができる。また、分級には、例えば、超音波篩を含む振動篩、回転篩(トロンメル)、エアセパレータ、遠心分離機等の各種分級機を用いることができる。また、混合には、V型混合機や可傾式コンクリートミキサ等の重力式ミキサ、ヘンシェル式ミキサ、リボンミキサ、パン型コンクリートミキサ、パグミル型ミキサ、ハンドミキサ等の各種混合機(ミキサ)を用いることができる。 In order to make the expansive calcined product containing free quick lime into the above-mentioned particle size, a method of pulverizing while classifying so as to obtain the above particle size, a blending ratio such that two or more powders having different particle size distributions are produced by classification and the above particle size is obtained. Preferred examples include a method of mixing at 2), a method of preparing two or more powders having different particle size distributions by pulverization, and mixing at a blending ratio so as to obtain the above particle size. The pulverization, classification and mixing are preferably carried out in a dry manner, that is, in the form of powder because a drying step is not required. It is preferable to use a machine for pulverization, classification and mixing. For pulverization, for example, various pulverizers such as a rod mill, a ball mill, a vertical roller mill, a hammer mill, a jaw crusher, and a jet mill can be used. For classification, for example, various classifiers such as a vibration sieve including an ultrasonic sieve, a rotary sieve (Trommel), an air separator, and a centrifugal separator can be used. For mixing, various mixers (mixers) such as a V-type mixer and a gravitational mixer such as a tiltable concrete mixer, a Henschel mixer, a ribbon mixer, a pan-type concrete mixer, a pug mill mixer, and a hand mixer are used. be able to.
本発明の膨張材には、本発明の効果を実質失わない範囲で、例えばモルタルやコンクリートに使用できる他の成分(混和材料)を含有するものであっても良い。このような成分として、具体的には、繊維、減水剤(分散剤、高性能減水剤、AE減水剤、高性能AE減水剤等を含む。)、収縮低減剤、シリカフュームやフライアッシュ等のポゾラン、高炉スラグ粉末、セメント、石膏、石灰石粉末等の石粉、凝結促進剤、凝結遅延剤、急結剤(材)、急硬剤(材)、増粘剤、保水剤、防錆剤、空気連行剤、消泡剤、起泡剤、防水材、撥水剤、白華防止剤、顔料、セメント用ポリマー、発泡剤、水中不分離性混和剤などが例示される。膨張コンクリートの強度が高いことから、ポゾラン、高炉スラグ粉末、セメント及び石膏から選ばれる1種又は2種以上が含まれることが好ましく、石膏を用いる場合は無水石膏が好ましい。 The expansion material of the present invention may contain other components (admixtures) that can be used for, for example, mortar and concrete as long as the effects of the present invention are not substantially lost. Specific examples of such components include fibers, water reducing agents (including dispersants, high performance water reducing agents, AE water reducing agents, high performance AE water reducing agents, etc.), shrinkage reducing agents, pozzolans such as silica fume and fly ash. , Blast furnace slag powder, cement powder, gypsum, limestone powder, etc., setting accelerator, setting retarder, quick setting agent (material), quick hardening agent (material), thickener, water retention agent, rust preventive agent, air entrainment Examples thereof include agents, antifoaming agents, foaming agents, waterproofing agents, water repellents, anti-whitening agents, pigments, polymers for cement, foaming agents, and non-separable admixtures in water. Since the strength of the expanded concrete is high, it is preferable to include one or more selected from pozzolans, blast furnace slag powder, cement and gypsum, and anhydrous gypsum is preferable when gypsum is used.
本発明の膨張コンクリートは、上記膨張材、セメント、骨材及び水を含有する。膨張材の配合量(単位膨張材量)は、20±10kg/m3とすることが膨張率が安定し易く且つ張材無添加のコンクリートに比べて強度低下が起こり難いことから好ましく、より好ましくは20±5kg/m3とする。 The expanded concrete of the present invention contains the expanded material, cement, aggregate, and water. The amount of the expansion material (unit expansion material amount) is preferably 20 ± 10 kg / m 3 , since the expansion rate is easy to stabilize and the strength is less likely to decrease compared to concrete without the addition of a tension material, and more preferably. Is 20 ± 5 kg / m 3 .
本発明に使用するセメントは、水硬性セメントであればよく、例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、並びにこれらのポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ粉末、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「スーパージェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント等が挙げられ、これらの一種又は二種以上を使用することができる。ワービリティを損ない難く可使時間が長く確保し易いことから、各種ポルトランドセメント、エコセメント及び各種混合セメントから選ばれる一種又は二種以上を使用することが好ましい。 The cement used in the present invention may be a hydraulic cement. For example, ordinary, early strength, very early strength, low heat and moderate heat Portland cement, eco cement, and portland cement or eco cement, fly ash is used. , Blast furnace slag powder, various mixed cements mixed with silica fume, fine powder of limestone, etc., super fast cement such as "Super Jet Cement" (trade name) manufactured by Taiheiyo Cement Co., Ltd. and "Jet Cement" (trade name) manufactured by Sumitomo Osaka Cement Co., Ltd. , Alumina cement, and the like, and one or more of these can be used. It is preferable to use one or two or more selected from various Portland cements, eco-cements, and various mixed cements because it is difficult to impair the workability and it is easy to ensure a long pot life.
本発明に使用する骨材としては、モルタルやコンクリートに使用可能な骨材であればよく、例えば、川砂、海砂、山砂、砕砂、人工細骨材、スラグ細骨材、再生細骨材、スラグ細骨材、珪砂、石粉、川砂利、陸砂利、砕石、人工粗骨材、再生粗骨材、スラグ粗骨材等が挙げられ、これらの一種又は二種以上の使用が可能である。一般的には規格JIS A 5005「コンクリート用砕石及び砕砂」又はJIS A 5308「レディーミクストコンクリート」の附属書1に規定される物理的性能を概ね備えたものであれば好ましく。これらの何れかの規格に適合する骨材がより好ましい。骨材の配合量は、1500〜1900kg/m3が好ましく、さらに1600〜1800kg/m3とすることが、ワーカービリティーの確保点で好ましい。 The aggregate used in the present invention may be any aggregate that can be used for mortar and concrete. For example, river sand, sea sand, mountain sand, crushed sand, artificial fine aggregate, slag fine aggregate, recycled fine aggregate Slag fine aggregate, quartz sand, stone powder, river gravel, land gravel, crushed stone, artificial coarse aggregate, recycled coarse aggregate, slag coarse aggregate, etc., one or more of these can be used . Generally, it is preferable if it is generally provided with the physical performance defined in Annex 1 of the standard JIS A 5005 “Crumble and sand for concrete” or JIS A 5308 “Ready mixed concrete”. Aggregates that meet any of these standards are more preferred. The amount of aggregate is preferably 1500~1900kg / m 3, to be further 1600~1800kg / m 3, preferably in the securing point of the worker capability over.
本発明に使用する水は、特に限定されるものではなく、混和材料に含まれる水を用いてもよい。水の配合量は、セメント100質量部に対し、30〜65質量部とすることが好ましい。30質量部未満ではコンクリートのコンシステンシー(スランプ)が小さくコンクリートにジャンカ等の充填不良が起こり易い、65質量部を超えるとコンクリートが材料分離を起こす虞が高まる。コンクリートが充填不良になり難く且つ材料分離が起こる虞が低いことから、水の含有量は、セメント100質量部に対し、35〜60質量部とすることがより好ましい。 The water used in the present invention is not particularly limited, and water contained in the admixture may be used. The blending amount of water is preferably 30 to 65 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 30 parts by mass, the concrete consistency (slump) is small and the concrete is likely to be poorly filled with junkers or the like. If the amount exceeds 65 parts by mass, the possibility that the concrete will cause material separation increases. It is more preferable that the content of water is 35 to 60 parts by mass with respect to 100 parts by mass of cement because concrete is less likely to be poorly filled and material separation is unlikely.
本発明の膨張コンクリートは、本発明の効果を実質損なわない範囲で、モルタルやコンクリートに使用できる上記膨張材以外の一種又は二種以上の混和材料を併用することができる。このような混和材料としては、例えば有機繊維や金属繊維等の繊維、セメント分散剤(減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤等を含む。)、収縮低減剤、シリカフュームやフライアッシュ等のポゾラン、高炉スラグ粉末、凝結促進剤、凝結遅延剤、増粘剤、保水剤、防錆剤、空気連行剤、消泡剤、発泡剤、起泡剤、高強度混和材、防水材、撥水剤、白華防止剤、顔料、急結剤(材)、セメント用ポリマー、石膏、石灰石粉末等の石粉、水中不分離性混和剤などが挙げられる。 The expanded concrete of the present invention can be used in combination with one or two or more admixtures other than the above expandable material that can be used for mortar and concrete as long as the effects of the present invention are not substantially impaired. Examples of such admixtures include fibers such as organic fibers and metal fibers, cement dispersants (including water reducing agents, high performance water reducing agents, AE water reducing agents, high performance AE water reducing agents, fluidizing agents, etc.), shrinkage. Reducing agent, pozzolanes such as silica fume and fly ash, blast furnace slag powder, setting accelerator, setting retarder, thickener, water retention agent, rust preventive agent, air entraining agent, antifoaming agent, foaming agent, foaming agent, high Examples thereof include strength admixtures, waterproofing materials, water repellents, anti-whitening agents, pigments, quick-setting agents (materials), polymer for cement, stone powder such as gypsum and limestone powder, and non-separable admixtures in water.
本発明の膨張コンクリートは、ミキサ等により混練し製造する。混練に用いる器具や混練装置も特に限定されないが、ミキサを用いることが量を多く混練できるので好ましい。用いることのできるミキサとしては連続式ミキサでもバッチ式ミキサでも良く、例えばパン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、ハンドミキサ、左官ミキサ等が挙げられる。また、材料を一度にミキサに入れ混練してもよく、また材料を2以上に分けて混練したものを合わせて更に混練し製造してもよい。 The expanded concrete of the present invention is produced by kneading with a mixer or the like. An apparatus and a kneading apparatus used for kneading are not particularly limited, but it is preferable to use a mixer because a large amount can be kneaded. The mixer that can be used may be a continuous mixer or a batch mixer, such as a pan concrete mixer, a pug mill concrete mixer, a gravity concrete mixer, a grout mixer, a hand mixer, and a plaster mixer. In addition, the materials may be put into a mixer at a time and kneaded, or the materials kneaded in two or more may be further kneaded and manufactured.
[実施例1]
珪石、バン土頁岩、酸化鉄、無水石膏及び工業用生石灰の混合物を1400℃で、電気炉を用いて焼成した焼成物を粉砕し、遊離生石灰を50質量%含有する膨張性焼成物を作製した。この膨張性焼成物に含まれる遊離生石灰以外の主な鉱物は、珪酸三石灰(3CaO・SiO2)、無水石膏(CaSO4)である。作製した膨張性焼成物をボールミルで粉砕後、目開き10μm、40μm、70μm、100μm及び150μmの篩を用いて、減圧吸引式乾式篩い分け装置(エアージェットシーブ)による篩い分け(分級)を行った。分級した膨張性焼成物を表1に示した割合となるように調整し、この調整した膨張性焼成物80質量部とII型無水石膏(ブレーン比表面積7000cm2/g)20質量部を、混合することにより膨張材(No.1〜23)を作製した。
[Example 1]
A fired product obtained by firing a mixture of quartzite, bangshale shale, iron oxide, anhydrous gypsum and industrial quicklime at 1400 ° C. using an electric furnace was pulverized to produce an expansive fired product containing 50% by mass of free quicklime. . Main minerals other than the free quick lime contained in the expansive calcined product are trilime silicate (3CaO · SiO 2 ) and anhydrous gypsum (CaSO 4 ). The produced expansive fired product was pulverized with a ball mill, and sieved (classified) with a vacuum suction type dry sieving device (air jet sieve) using sieves with openings of 10 μm, 40 μm, 70 μm, 100 μm and 150 μm. . The classified expansive fired product was adjusted so as to have the ratio shown in Table 1, and 80 parts by weight of the adjusted expansible fired product and 20 parts by weight of type II anhydrous gypsum (Brain specific surface area of 7000 cm 2 / g) were mixed. By doing so, the expansion material (No. 1-23) was produced.
作製した膨張材(No.1〜23)を用いて膨張コンクリート(No.1〜23)を作製した。また、同様に市販の膨張材を用いて膨張コンクリート(No.24)を作製した。作製した膨張コンクリートは、水セメント比50.0%、単位水量168kg/m3、単位膨張材量20kg/m3、目標スランプ15.0±2.0cm、目標空気量4.5±1.0%とした。環境温度及び材料温度は、10℃、20℃及び30℃で膨張コンクリートを作製した。膨張コンクリートに用いた材料を表2に、膨張コンクリートの配合を表3に示した。また、コンクリートの練り混ぜは、固体の材料(セメント、骨材及び膨張材)をコンクリートミキサに投入後30秒間混合(空練り)し、その後液体の材料(水、AE減水剤及びAE助剤)をミキサ内に投入し、合計120秒間混合(本練り)した。本練りは、60秒間混合後、一度ミキサを止めてミキサに付着したセメントを掻き落とした後、更に60秒間混合することとした。 The expanded concrete (No. 1-23) was produced using the produced expanded material (No. 1-23). Similarly, an expanded concrete (No. 24) was produced using a commercially available expandable material. The produced expanded concrete has a water cement ratio of 50.0%, a unit water amount of 168 kg / m 3 , a unit expansion material amount of 20 kg / m 3 , a target slump of 15.0 ± 2.0 cm, and a target air amount of 4.5 ± 1.0. %. Expanded concrete was produced at an environmental temperature and a material temperature of 10 ° C, 20 ° C, and 30 ° C. Table 2 shows the materials used for the expanded concrete, and Table 3 shows the composition of the expanded concrete. For concrete mixing, solid materials (cement, aggregate and expansion material) are added to the concrete mixer and mixed for 30 seconds (empty kneading), then liquid materials (water, AE water reducing agent and AE auxiliary agent). Was put into a mixer and mixed (mainly kneaded) for a total of 120 seconds. In this kneading, after mixing for 60 seconds, the mixer was once stopped and the cement adhering to the mixer was scraped off, and then mixed for another 60 seconds.
作製した膨張コンクリートの評価試験として、以下に示す通り、膨張率試験、圧縮強度試験および肌面評価試験を行った。試験結果を表4(膨張率試験結果)及び表5(圧縮強度試験結果及び肌面評価試験結果)に示した。
<品質試験方法>
・膨張率試験
JIS A 6202「コンクリート用膨張材」のA法に準じて試験を行い、拘束膨張率を求めた。また、20℃におけるコンクリートの拘束膨張率(EX20℃)に対するT℃におけるコンクリートの拘束膨張率(EXT℃)の変化率(REX)を求めた。但し、10℃におけるコンクリートの拘束膨張率(EX10℃)は材齢14日におけるもので、20℃及び30℃における拘束膨張率(EX20℃及びEX30℃)は何れも材齢7日におけるものである。
・圧縮強度試験
JIS A 1180「コンクリートの圧縮強度試験方法」に準拠して試験を行い、材齢28日の圧縮強度を求め、膨張材を混和せずに膨張材の代わりに普通ポルトランドセメントを添加したコンクリートの圧縮強度に対する圧縮強度比を求めた。コンクリートは、材齢1日で脱型後、試験材齢まで各環境温度の水中で養生した。
・肌面評価試験
圧縮強度試験における供試体の表面を、目視と指触により、膨張材の水和により生じた消石灰による斑点や膨らみの有無を確認した。当該斑点や膨らみが見られたものを×、見られなかったものを○と評価した。
As an evaluation test of the produced expanded concrete, an expansion coefficient test, a compressive strength test, and a skin surface evaluation test were performed as shown below. The test results are shown in Table 4 (expansion coefficient test results) and Table 5 (compressive strength test results and skin surface evaluation test results).
<Quality test method>
-Expansion coefficient test A test was conducted in accordance with method A of JIS A 6202 "Expanding material for concrete" to obtain a restricted expansion coefficient. Moreover, the rate of change (R EX ) of the concrete expansion coefficient (EX T ° C. ) at T ° C. relative to the concrete expansion coefficient (EX 20 ° C. ) at 20 ° C. was determined. However, the constrained expansion rate of concrete at 10 ° C (EX 10 ° C ) is at the age of 14 days, and the constrained expansion rates at 20 ° C and 30 ° C (EX 20 ° C and EX 30 ° C ) are both at the age of 7 days. Is.
・ Compressive strength test Tested in accordance with JIS A 1180 “Compressive strength test method for concrete” to determine the compressive strength at 28 days of age, and ordinary portland cement is added instead of the expanded material without mixing the expanded material. The ratio of compressive strength to compressive strength of the concrete was determined. Concrete was demolded at a material age of 1 day, and then cured in water at various environmental temperatures until the test material age.
-Skin surface evaluation test The surface of the specimen in the compressive strength test was visually and finger touched to confirm the presence or absence of spots or swelling due to slaked lime generated by hydration of the expansion material. The case where the spot or bulge was seen was evaluated as x, and the case where the spot was not seen was evaluated as ◯.
本発明の実施例に当たる膨張材(配合No.2〜4,6,7,9〜11,14〜16,18,19,22)を用いた膨張コンクリート(配合No.2〜4,6,7,9〜11,14〜16,18,19,22)は、何れも10〜30℃において使用してもコンクリートの拘束膨張率が150〜250μと土木学会基準の収縮補償用コンクリートの拘束膨張率を満足するという優れた膨張性能を発現し、且つ膨張材無添加のコンクリートに対する材齢28日における圧縮強度比が0.95以上と強度低下が起こらず、温度依存性が少なかった。また、これらの膨張コンクリートは、硬化コンクリートの表面に膨張材の水和により生じた消石灰による斑点や膨らみが目視で分からず、その表面(肌面)は滑らか(肌面評価は全て「○」)であった。 Expanded concrete (mixture No. 2-4, 6, 7) using the expansion material (mixture No. 2-4, 6, 7, 9-11, 14-16, 18, 19, 22) corresponding to the examples of the present invention. , 9-11, 14-16, 18, 19, 22), the concrete expansion coefficient of concrete is 150-250μ even when used at 10-30 ° C. The compression performance ratio at the age of 28 days with respect to the concrete containing no expansion material was 0.95 or more, and the strength did not decrease, and the temperature dependency was small. In addition, these expansive concretes have no visible spots or swelling due to slaked lime generated by the hydration of the expansive material on the surface of the hardened concrete, and the surface (skin surface) is smooth (all skin surface evaluations are “○”). Met.
それに対し、本発明の実施例ではない膨張材(配合No.1,5,8,12,13,17,20,21,23,24)を用いた膨張コンクリート(配合No.1,5,8,12,13,17,20,21,23,24)は、10℃,20℃又は30℃の少なくとも1水準において、コンクリートの拘束膨張率が150〜250μから外れた。また、その一部の配合の膨張コンクリート(配合No.8,12,20,23)は、膨張材無添加のコンクリートに対する材齢28日における圧縮強度比が0.95未満で強度低下が大きかった。 On the other hand, expanded concrete (formulation No. 1, 5, 8) using an expansion material (formulation No. 1, 5, 8, 12, 13, 17, 20, 21, 23, 24) that is not an example of the present invention. , 12, 13, 17, 20, 21, 23, 24), the constrained expansion coefficient of concrete deviated from 150 to 250 μm at at least one level of 10 ° C., 20 ° C. or 30 ° C. In addition, some of the blended concrete (mixture Nos. 8, 12, 20, and 23) had a large strength reduction at a compression strength ratio of less than 0.95 at 28 days of age with respect to the concrete without the expansion agent. .
また、上記式(1)及び式(2)を満たす、即ち、L1に対するM1の比(M1/L1)が1.0〜1.5且つH1に対するM2の比(M2/H1)が0.8〜2.5である膨張材(配合No.2,3,6,7,10,11,14,15,18,19,22)を用いた膨張コンクリート(配合No.2,3,6,7,10,11,14,15,18,19,22)は、何れも、20℃におけるコンクリートの拘束膨張率(EX20℃)に対する10〜30℃におけるコンクリートの拘束膨張率の変化率(REX)が±10%以内の範囲と、膨張コンクリートの膨張率が安定していた。 Further, the above expressions (1) and (2) are satisfied, that is, the ratio of M1 to L1 (M1 / L1) is 1.0 to 1.5, and the ratio of M2 to H1 (M2 / H1) is 0.8. Expanded concrete (mixing No. 2, 3, 6, 7) using an expansion material (mixing No. 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22) of ~ 2.5 , 10, 11, 14, 15, 18, 19, 22), the rate of change of the constrained expansion coefficient of concrete at 10 to 30 ° C. (R EX ) relative to the constrained expansion coefficient of concrete at 20 ° C. (EX 20 ° C. ). ) Is within ± 10%, and the expansion rate of the expanded concrete was stable.
本発明の膨張材及び膨張コンクリートは、鉄筋コンクリート製建物や鉄骨コンクリート製建物等の建築構造物、並びに、鉄筋コンクリート製道路床版や鉄筋コンクリート製橋脚等の土木構造物に使用することができる。 The expandable material and the expanded concrete of the present invention can be used for building structures such as reinforced concrete buildings and steel concrete buildings, and civil structures such as reinforced concrete road decks and reinforced concrete bridge piers.
Claims (3)
1.0≦M1/L1≦1.5 ・・・・(1)
0.8≦M2/H1≦2.5 ・・・・(2) Furthermore, the content rate of particles of 10 μm or less is L1, the content rate of particles of 40 to 70 μm is M1, the content rate M2 of particles of 70 to 100 μm and the content rate H1 of particles of 100 to 150 μm are the following formulas (1) and The inflatable material according to claim 1, which satisfies the formula (2).
1.0 ≦ M1 / L1 ≦ 1.5 (1)
0.8 ≦ M2 / H1 ≦ 2.5 (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012289159A JP6133596B2 (en) | 2012-12-28 | 2012-12-28 | Expanded material and expanded concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012289159A JP6133596B2 (en) | 2012-12-28 | 2012-12-28 | Expanded material and expanded concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014129210A true JP2014129210A (en) | 2014-07-10 |
JP6133596B2 JP6133596B2 (en) | 2017-05-24 |
Family
ID=51407993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012289159A Active JP6133596B2 (en) | 2012-12-28 | 2012-12-28 | Expanded material and expanded concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6133596B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020093940A (en) * | 2018-12-10 | 2020-06-18 | 太平洋マテリアル株式会社 | Cement admixture, and concrete using the same |
JP2021017376A (en) * | 2019-07-18 | 2021-02-15 | デンカ株式会社 | Expandable composition for cement, and cement composition |
US11390561B2 (en) | 2017-10-13 | 2022-07-19 | Gcp Applied Technologies Inc. | Controlled hydration of quicklime |
WO2022224986A1 (en) * | 2021-04-21 | 2022-10-27 | 株式会社トクヤマ | Unburnt carbon reduction method and heating method using ferric oxide |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007131484A (en) * | 2005-11-10 | 2007-05-31 | Denki Kagaku Kogyo Kk | Expanding material, cement composition, and cement concrete using it |
JP2007145670A (en) * | 2005-11-29 | 2007-06-14 | Taiheiyo Material Kk | Expansive admixture for resin-finished floor, and its use |
-
2012
- 2012-12-28 JP JP2012289159A patent/JP6133596B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007131484A (en) * | 2005-11-10 | 2007-05-31 | Denki Kagaku Kogyo Kk | Expanding material, cement composition, and cement concrete using it |
JP2007145670A (en) * | 2005-11-29 | 2007-06-14 | Taiheiyo Material Kk | Expansive admixture for resin-finished floor, and its use |
Non-Patent Citations (1)
Title |
---|
中村孝則: "27.膨張材によるセメント硬化体の膨張変形", セメント技術年報, vol. XXVI, JPN6016040583, 25 December 1982 (1982-12-25), pages 158 - 162, ISSN: 0003424945 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11390561B2 (en) | 2017-10-13 | 2022-07-19 | Gcp Applied Technologies Inc. | Controlled hydration of quicklime |
JP2020093940A (en) * | 2018-12-10 | 2020-06-18 | 太平洋マテリアル株式会社 | Cement admixture, and concrete using the same |
JP7181779B2 (en) | 2018-12-10 | 2022-12-01 | 太平洋マテリアル株式会社 | Cement admixture and concrete using it |
JP2021017376A (en) * | 2019-07-18 | 2021-02-15 | デンカ株式会社 | Expandable composition for cement, and cement composition |
JP7257278B2 (en) | 2019-07-18 | 2023-04-13 | デンカ株式会社 | EXPANSION COMPOSITION FOR CEMENT AND CEMENT COMPOSITION |
WO2022224986A1 (en) * | 2021-04-21 | 2022-10-27 | 株式会社トクヤマ | Unburnt carbon reduction method and heating method using ferric oxide |
Also Published As
Publication number | Publication date |
---|---|
JP6133596B2 (en) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4834574B2 (en) | Cement composition for high fluidity concrete and high fluidity concrete composition | |
KR100917117B1 (en) | Filler for Iron reinforcing rod joint and construction method for filling-up of iron reinforcing rod joint using the same | |
WO2014166875A1 (en) | Composition for use as a two component back filled grout comprising extracted silicate | |
JP6891041B2 (en) | Fast-strength ultra-high-strength grout composition | |
JP6133596B2 (en) | Expanded material and expanded concrete | |
JP2002308661A (en) | High-performance concrete | |
JP2014129211A (en) | Fast-curing mortar composition | |
JP6509671B2 (en) | Submersible concrete composition in water and its cured product | |
JP7141195B2 (en) | Polymer cement mortar composition and polymer cement mortar | |
JP3747988B2 (en) | Expandable material composition and expanded cement composition | |
JP6826456B2 (en) | Expansion material for inseparable concrete in water, inseparable concrete composition in water and its cured product | |
JP4979365B2 (en) | Concrete using concrete admixture | |
JP3970616B2 (en) | High performance concrete | |
JP2014009127A (en) | High strength mortar composition | |
JP7343284B2 (en) | Rapid hardening cement, cement mortar, cement concrete, road repair materials, and road repair methods | |
JP6837856B2 (en) | Expandable admixture for exposed concrete and exposed concrete containing it | |
JP6959151B2 (en) | Mortar composition and mortar | |
JP5592807B2 (en) | High toughness and high strength mortar composition | |
JP5592806B2 (en) | High toughness and high strength mortar composition | |
JP6084831B2 (en) | Cement composition and concrete | |
JP7158306B2 (en) | cement composite | |
JP2020093940A (en) | Cement admixture, and concrete using the same | |
JP2001278653A (en) | Ultrahigh strength concrete | |
JP7150405B2 (en) | Grout composition and grout | |
JP2022152360A (en) | Low autogenous shrinkage hydraulic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6133596 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |