JP2019161910A - 電力伝送装置 - Google Patents

電力伝送装置 Download PDF

Info

Publication number
JP2019161910A
JP2019161910A JP2018047139A JP2018047139A JP2019161910A JP 2019161910 A JP2019161910 A JP 2019161910A JP 2018047139 A JP2018047139 A JP 2018047139A JP 2018047139 A JP2018047139 A JP 2018047139A JP 2019161910 A JP2019161910 A JP 2019161910A
Authority
JP
Japan
Prior art keywords
voltage
power
resonance circuit
current
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018047139A
Other languages
English (en)
Other versions
JP6959168B2 (ja
Inventor
英児 野村
Hideji Nomura
英児 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2018047139A priority Critical patent/JP6959168B2/ja
Publication of JP2019161910A publication Critical patent/JP2019161910A/ja
Application granted granted Critical
Publication of JP6959168B2 publication Critical patent/JP6959168B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】受電側からの情報を必要とせずに結合状態に応じた電力伝送が可能な電力伝送装置を提供する。【解決手段】電力伝送装置1は、直流電源11の出力を変換して第1の直流電力を出力する直流電圧変換部12と、直流電圧変換部の出力に並列に接続された第1のコンデンサ13と、第1の直流電力を交流電力に変換するインバータ部14と、インバータ部から交流電力が供給される第1の共振回路15と、磁気的に結合されて第1の共振回路から交流電力を受け取る第2の共振回路16と、第2の共振回路から供給された交流電力を第2の直流電力に変換して負荷19に供給する整流部17と、第1の共振回路に流れる電流を検出する電流検出器21と、電流検出器が検出した電流に基づいて直流電圧変換部12に電圧指令を出力する制御部31と、を備え、制御部は電圧指令が電圧制限値に達したか否かに基づいて結合状態を判定する。【選択図】図1

Description

本発明は電力伝送装置に関する。
近年、ケーブルを用いずに電力を給電できる電力伝送装置が注目されている。
例えば磁界の共振を用いた方式(磁界共振結合方式)は、数m程度の距離であれば離れたところから給電ができる。磁界共振結合方式の電力伝送装置は、例えば電気自動車の充電等に適用可能である。
磁界共振結合方式では、回路の共振が利用されている。そのため、送電側コイルと受電側コイルとの位置関係によって、これらのコイル間の相互インダクタンスが変化する。相互インダクタンスの数値が大きい程、送電側コイルと受電側コイルとの結合度合いを示す結合係数は大きくなる。磁界共振結合方式において、効率的な電力伝送のためには、結合係数を大きくすることが必要である。
例えば、特許文献1は、結合係数が最大となり、受電側コイルに流れる電流(誘導電流)が最大となる位置を磁気センサ、光センサまたはCCDカメラ等を用いて検出する。
特開平8−33112号公報
しかし、送電側コイルと受電側コイルとが結合していない状態(つまり、電力伝送ができない程度に両コイルの位置関係にずれが生じた状態)では、受電側コイルに電流が流れない。そのため、受電側コイルに流れる電流が最大となる受電側コイルの位置を検出する特許文献1に記載の技術は、送電側コイルと受電側コイルとが結合していない状態で使用できない。また、送電側コイルと受電側コイルとが結合していない状態で、送電側コイルに共振周波数の電圧が印加されると、送電側コイルに大きな共振電流が流れる可能性がある。
かかる事情に鑑みてなされた本発明の目的は、受電側からの情報を必要とせずに、送電側コイルおよび受電側コイルの結合状態に応じた電力伝送が可能な電力伝送装置を提供することにある。
前記課題を解決するため、本発明の実施形態に係る電力伝送装置は、直流電源の出力を変換して第1の直流電力を出力する直流電圧変換部と、前記直流電圧変換部の出力に並列に接続された第1のコンデンサと、前記第1の直流電力を交流電力に変換するインバータ部と、第2のコンデンサと第1のコイルとを有し、前記インバータ部から前記交流電力が供給される第1の共振回路と、第3のコンデンサと第2のコイルとを有し、前記第1の共振回路と磁気的に結合されて、前記第1の共振回路から前記交流電力を受け取る第2の共振回路と、前記第2の共振回路から供給された前記交流電力を第2の直流電力に変換して負荷に供給する整流部と、前記第1の共振回路に流れる電流を検出する電流検出器と、前記電流検出器が検出した電流に基づいて前記直流電圧変換部に電圧指令を出力する制御部と、を備え、前記制御部は、前記電流検出器が検出した前記電流の実効値を演算する実効値演算部と、前記第1のコイルと前記第2のコイルとの相互インダクタンスに応じて変化する前記第1の直流電力の電圧と前記実効値との対応関係を記憶し、前記第1の共振回路と前記第2の共振回路との結合の限界を示す前記相互インダクタンスの前記対応関係において電圧の基準値に対する前記実効値である電流指令を定める相互インダクタンス特性テーブルと、前記実効値演算部からの前記実効値が、前記電流指令と一致するように原電圧指令を演算する電圧指令演算部と、電圧制限値を、前記基準値または前記直流電圧変換部が出力できる最大電圧に設定する電圧制限切替部と、前記原電圧指令を前記電圧制限値で制限して、前記電圧指令を出力する電圧指令制限部と、を備え、前記電圧指令が前記電圧制限値に達したか否かに基づいて、前記第1の共振回路と前記第2の共振回路との結合状態を判定する。
また、上記課題を解決するため、本発明の実施形態に係る電力伝送装置は、前記制御部が、前記結合状態が非結合と判定した場合に、前記電流を抑制するように、前記直流電圧変換部への電圧指令を出力してもよい。
また、上記課題を解決するため、本発明の実施形態に係る電力伝送装置は、前記制御部が、前記結合状態が結合と判定した場合に、前記インバータ部が出力する交流電力が最大となるように、前記直流電圧変換部への電圧指令を出力してもよい。
また、上記課題を解決するため、本発明の実施形態に係る電力伝送装置は、前記制御部が、前記結合状態が非結合と判定した場合に、所定時間、前記結合状態についての新たな判定を実行してもよい。
本発明の実施形態によれば、受電側からの情報を必要とせずに、送電側および受電側の共振回路の結合状態に応じた電力伝送が可能な電力伝送装置を提供できる。
本発明の一実施形態に係る電力伝送装置を例示するブロック図である。 本発明の一実施形態に係る電力伝送装置の制御部を例示するブロック図である。 相互インダクタンスの特性を例示する図である。 結合状態の判定に関する制御部の制御方法を例示するフローチャートである。 結合状態の判定に関する制御部の制御方法を例示する別のフローチャートである。 結合状態の判定に関する制御部の制御方法を例示するさらに別のフローチャートである。 図4、5および6を組み合わせた制御部の制御方法を例示するフローチャートである。 相互インダクタンス等の時間変化を例示する図である。
(電力伝送装置の構成)
図1は本実施形態に係る電力伝送装置1のブロック図である。
電力伝送装置1は、直流電源11と、直流電圧変換部12と、第1のコンデンサ13と、インバータ部14と、第1の共振回路15(送電側共振回路)と、第2の共振回路16(受電側共振回路)と、整流部17と、負荷19と、電流検出器21と、制御部31と、を備える。また、図1に示すように、電力伝送装置1は、さらに電圧検出器131を備えてもよい。電力伝送装置1は、整流部17からの直流電力を負荷19に供給する。負荷19は、例えば二次電池であるが、特に限定されるものではない。また、図1に示すように、整流部17からの電圧を平滑して直流電圧を出力する平滑コンデンサ18が電力伝送装置1に接続される。
直流電源11は直流電力を供給する。直流電源11は例えば二次電池である。直流電源11は例えば鉛蓄電池であってもよい。また、直流電源11は例えばニッケルカドミウム電池のようなアルカリ二次電池であってもよい。また、直流電源11は例えばリチウムイオン電池のようなリチウム二次電池であってもよい。また、代替例として、直流電源11は一次電池でもよい。
直流電圧変換部12は直流電源11の出力(直流電源11からの直流電力)を受け取る。そして、直流電圧変換部12は、直流電源11の出力を変換して、第1の直流電力を出力する。直流電圧変換部12は、第1の直流電力の電圧Vdc1が、制御部31からの電圧指令Vdc1と等しくなるように変換する。直流電圧変換部12は、例えば降圧チョッパ回路、昇圧チョッパ回路または昇降圧チョッパ回路で構成されてもよい。
第1のコンデンサ13は直流電圧変換部12の出力に並列に接続される。第1のコンデンサ13の端子間電圧は電圧Vdc1となる。
電圧検出器131は第1のコンデンサ13の端子間電圧(電圧Vdc1)を検出して制御部31に出力する。電圧検出器131は例えば電圧センサである。上記のように、直流電圧変換部12は、電圧Vdc1が電圧指令Vdc1と等しくなるように変換する。以下において、電圧Vdc1と電圧指令Vdc1とは交換可能であるとする。例えば、第1のコイル152と第2のコイル162との相互インダクタンスの特性(図3参照)で、パラメータとして用いられる電圧Vdc1は、電圧指令Vdc1に置き換えることが可能である。
インバータ部14は、直流電圧変換部12が出力した第1の直流電力を交流電力に変換する。本実施形態において、インバータ部14によって変換された交流電力は、矩形波の電圧形状を有する。インバータ部14からの交流電力は、第1の共振回路15に供給される。ここで、インバータ部14は例えば複数のスイッチング素子で構成されたブリッジ回路で構成されてもよい。スイッチング素子は例えば絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)であるが、特に限定されるものではない。
第1の共振回路15は、インバータ部14からの交流電力を伝送する。本実施形態において、第1の共振回路15は、磁界を用いた共振現象を利用してワイヤレス伝送を行う。第1の共振回路15は、送電側の共振回路であって、第2のコンデンサ151と第1のコイル152(送電側コイル)とを有している。第2のコンデンサ151と第1のコイル152とは直列に接続される。第1のコイル152と接続されていない方の第2のコンデンサ151の端子は、インバータ部14に接続される。また、第2のコンデンサ151と接続されていない方の第1のコイル152の端子は、インバータ部14に接続される。
第2の共振回路16は、第1の共振回路15からワイヤレス伝送された交流電力を受け取る。第2の共振回路16は、受電側の共振回路であって、第3のコンデンサ161と第2のコイル162(受電側コイル)とを有している。第3のコンデンサ161と第2のコイル162とは直列に接続される。第2のコイル162と接続されていない方の第3のコンデンサ161の端子は、整流部17に接続される。また、第3のコンデンサ161と接続されていない方の第2のコイル162の端子は、整流部17に接続される。第2のコイル162は、第1のコイル152と磁気的に結合し、第1のコイル152から第2のコイル162にワイヤレス電力伝送が行われる。ここで、第1の共振回路15と第2の共振回路16とが結合する(結合状態が「結合」である)、とは、第1のコイル152と第2のコイル162とが結合して電力伝送が可能であることを意味する。また、第1の共振回路15と第2の共振回路16とが結合しない(結合状態が「非結合」である)、とは、電力伝送ができない状態であることを意味する。
整流部17は、第2の共振回路16から供給された交流電力を整流し、第2の直流電力に変換する。整流部17は、第2の直流電力を負荷19に供給する。整流部17は、例えばダイオード整流器で構成されてもよいが、特に限定されるものではない。
電流検出器21は、第1の共振回路15に流れる電流Ipを検出して制御部31に出力する。電流検出器21は例えば電流センサである。
制御部31は、電流検出器21が検出した電流Ipに基づいて直流電圧変換部12に電圧指令Vdc1を出力する。詳細には、制御部31は、電流Ip、後述する相互インダクタンスM1および後述する電圧値K1に基づいて、電圧指令Vdc1を演算する。
図2は本実施形態に係る電力伝送装置1の制御部31のブロック図である。
制御部31は、実効値演算部311と、相互インダクタンス特性テーブル312と、電圧指令演算部313と、電圧制限切替部314と、電圧指令制限部315と、を備える。
実効値演算部311は、電流Ipの実効値である電流実効値Iprmsを演算して出力する。
相互インダクタンス特性テーブル312は、相互インダクタンスM、電圧Vdc1、及び電流Ipをパラメータとするデータ(相互インダクタンス特性)を記憶する。そして、相互インダクタンス特性テーブル312は、相互インダクタンスM1および電圧値K1に基づいて、電流指令Ipを演算して出力する。
電圧指令演算部313は、電流実効値Iprmsおよび電流指令Ipに基づいて、原電圧指令Vdc1**を演算する。ここで、電圧指令演算部313は、例えばPI制御を用いて、電流実効値Iprmsが電流指令Ipと一致するように、原電圧指令Vdc1**を演算してもよい。
電圧制限切替部314は、電圧制限値Vlimを設定する。本実施形態において、電圧制限切替部314は、例えば電圧値K1と、直流電圧変換部12が出力できる最大電圧であるKmaxと、を切り替えて電圧制限値Vlimを出力する。
電圧指令制限部315は、原電圧指令Vdc1**を電圧制限値Vlimで制限して、電圧指令Vdc1を演算する。電圧指令制限部315は、演算した電圧指令Vdc1を直流電圧変換部12に出力する。
図3は相互インダクタンスの特性を示す図である。図3に示す特性曲線は、横軸に示される第1の直流電力の電圧Vdc1と、縦軸に示される電流実効値Iprmsとの関係を、相互インダクタンスの値に応じて示したものである。図3に示す特性曲線は、第1のコイル152と第2のコイル162との組み合わせで定まる。相互インダクタンスが大きい程、第1のコイル152と第2のコイル162との結合度合いも大きい。図3の「相互インダクタンス最小時の特性」は、第1のコイル152と第2のコイル162とが完全に離れている場合の特性曲線である。また、図3の「相互インダクタンス最大時の特性」は、第1のコイル152と第2のコイル162とが最も強く磁気的に結合している場合の特性曲線である。また、図3の「相互インダクタンスM1時の特性」は、第1のコイル152と第2のコイル162とが電力伝送が可能である限界の結合度合い(閾値の結合度合い)を有する場合の特性曲線である。また、図3の「相互インダクタンスM2時の特性」は、第1のコイル152と第2のコイル162とが電力伝送ができない非結合状態である場合の特性曲線の例である。ここで、電力伝送が可能であるとは、実用的な伝送効率でワイヤレス電力伝送ができることを意味する。電力伝送ができない状態は、ワイヤレス電力伝送ができないこと、または、ワイヤレス電力伝送ができても実用的な伝送効率でないことを意味する。
図3の例において、相互インダクタンスがM1から最大の場合に、第1の共振回路15の第1のコイル152と第2の共振回路16の第2のコイル162とは「結合」している。つまり、第1の共振回路15と第2の共振回路16との間で電力伝送が可能である。また、図3の例において、相互インダクタンスが最小からM1未満の場合に、第1の共振回路15の第1のコイル152と第2の共振回路16の第2のコイル162とは「非結合」である。つまり、第1の共振回路15と第2の共振回路16との間で電力伝送ができない状態である。
図3に示すように、相互インダクタンスが減少すると、同じ電流実効値Iprmsに対応する電圧Vdc1が小さくなる。例えば、相互インダクタンスがM1からM2へと減少すると、電流実効値Iprmsの一つの値であるY1に対応する電圧Vdc1は、K1からK2へと小さくなる。つまり、電流実効値Iprmsの一つの値に対する電圧Vdc1の変化(または電圧指令Vdc1の変化)によって、第1の共振回路15と第2の共振回路16との結合状態の変化を把握可能である。ここで、第1の共振回路15と第2の共振回路16との「結合」または「非結合」の境界となる(「結合」の限界を示す)特性曲線において、電圧Vdc1の基準値と、対応する電流実効値Iprmsの値を定めると、結合状態の変化が更に容易に把握可能になる。
図3の例では、結合の限界を示す特性曲線は「相互インダクタンスM1時の特性」である。また、電圧Vdc1の基準値は「K1」である。また、基準値に対応する電流実効値Iprmsの値は「Y1」である。例えば、第1の共振回路15と第2の共振回路16との結合状態が変化して相互インダクタンスがM1からM2に変化すると、電流実効値IprmsのY1に対応する電圧Vdc1の値はK1からK2に変化する。制御部31は、電圧Vdc1が基準値である「K1」より小さくなったことから、相互インダクタンスが減少して第1の共振回路15と第2の共振回路16との結合状態が「非結合」となったことを容易に把握できる。また、電流実効値Iprmsおよび電圧Vdc1(または電圧指令Vdc1)は送電側だけで得られる情報である。つまり、上記の結合判定において、受電側からの情報は必要ない。
ここで、制御部31は、相互インダクタンス特性テーブル312に図3の特性曲線を示すデータを有する。つまり、相互インダクタンス特性テーブル312は、相互インダクタンスに応じて変化する第1の直流電力の電圧Vdc1と電流実効値Iprmsとの対応関係を定める。上記のように、相互インダクタンス特性テーブル312は、相互インダクタンスM1(結合の限界を示す特性曲線を指定するための値)および電圧値K1を受け取る。相互インダクタンス特性テーブル312は、相互インダクタンスがM1である特性曲線の電圧Vdc1がK1である場合の電流実効値Iprmsの値(図3の例ではY1)を、電流指令Ipとして出力する。
(第1の制御方法)
図4は、第1の共振回路15と第2の共振回路16との結合状態の判定に関する制御部31の制御方法(第1の制御方法)を示すフローチャートである。第1の制御方法は、第1の共振回路15と第2の共振回路16とが非結合状態から結合状態に変化する場合に実行される制御方法である。
制御部31は、相互インダクタンスM1を設定する(ステップS11)。上記のように、相互インダクタンスM1は、第1の共振回路15と第2の共振回路16とが結合した場合の限界の相互インダクタンスを示す。相互インダクタンスM1は、例えば第1のコイル152および第2のコイル162の材質、線径、巻き方、構造、距離、位置関係等に応じて定められる。制御部31は、例えば第1のコイル152および第2のコイル162の材質、線径、巻き方、構造、距離、位置関係等のデータに基づいて、相互インダクタンスM1を演算で求める。また、別の例として、制御部31は、電力伝送装置1を含むシステム全体の制御装置から相互インダクタンスM1を受け取ってもよい。
制御部31は、電流指令Ipを設定する(ステップS12)。また、制御部31は、電圧制限値Vlimを設定する(ステップS13)。制御部31は、結合の限界を示す特性曲線における電流実効値Iprmsと対応する電圧Vdc1と、をそれぞれ、電流指令Ipと電圧制限値Vlimとして設定する。例えば、図3の例では、結合の限界を示す特性曲線は「相互インダクタンスM1時の特性」である。電流指令Ipとして設定される電流実効値Iprmsの値は「Y1」である。また、電圧制限値Vlimは「K1」である。
ここで、図2に示すように、電圧制限値Vlimは電圧制限切替部314によってK1またはKmaxから選択される。第1の制御方法においては、電圧制限値Vlimは電圧制限切替部314によってK1に設定される。ここで、K1はKmaxよりも低い電圧であって、一例として100[V]である。また、Kmaxは一例として600[V]である。
制御部31は、電流実効値Iprmsが電流指令Ipと等しくなるように制御する(ステップS14)。つまり、制御部31は、電流実効値Iprmsが電流指令Ipと等しくなるまで、電圧指令Vdc1を上昇させる(例えばゼロから電圧制限値VlimであるK1まで変化させる)。
制御部31は、電圧Vdc1(または電圧指令Vdc1)が電圧制限値Vlimに達した場合に(ステップS15のYes)、第1の共振回路15と第2の共振回路16との結合状態が「結合」であると判定する(ステップS16)。電流実効値Iprmsが電流指令Ipと等しくならずに、電圧Vdc1は電圧制限値Vlimに達している。そのため、現在の結合状態の相互インダクタンスの特性曲線において、電流指令Ip(例えばY1)に対応する電圧Vdc1の値は電圧制限値Vlim(例えばK1)以上である。よって、第1の共振回路15と第2の共振回路16との結合状態が「結合」であると判定される。
一方、制御部31は、電圧Vdc1(または電圧指令Vdc1)が電圧制限値Vlimに達していない場合に(ステップS15のNo)、第1の共振回路15と第2の共振回路16との結合状態が「非結合」であると判定する(ステップS17)。つまり、現在の結合状態の相互インダクタンスの特性曲線において、電流指令Ip(例えばY1)に対応する電圧Vdc1の値は電圧制限値Vlim(例えばK1)未満である。そのため、第1の共振回路15と第2の共振回路16との結合状態が「非結合」であると判定される。そして、制御部31はステップS14の処理に戻る。
このように、制御部31は、第1の制御方法を実行することによって、第1の共振回路15と第2の共振回路16とが「非結合」から「結合」に変化する場合に結合状態を適切に判定できる。
(第2の制御方法)
図5は、第1の共振回路15と第2の共振回路16との結合状態の判定に関する制御部31の制御方法(第2の制御方法)を示すフローチャートである。第2の制御方法は、第1の制御方法の後に(第1の共振回路15と第2の共振回路16との結合状態が「結合」であると判定された後に)、実行される制御方法である。
制御部31は、電圧制限値Vlimを変更する(ステップS21)。ここで、図2に示すように、電圧制限値Vlimは電圧制限切替部314によってK1またはKmaxから選択される。例えば、制御部31は、電圧制限値VlimをK1(一例として100[V])からKmax(一例として600[V])に変更する。
制御部31は、電流実効値Iprmsが電流指令Ipと等しくなるように制御する(ステップS22)。つまり、制御部31は、電流実効値Iprmsが電流指令Ipと等しくなるまで、電圧指令Vdc1を上昇させる(例えばK1から電圧制限値VlimであるKmaxまで変化させる)。
このように、制御部31は、結合状態が「結合」であると判定された後に電圧指令Vdc1を最大値まで上げることによって、インバータ部14が出力する交流電力(受電側に伝送される電力)を最大にする。制御部31は、第2の制御方法を実行することによって、結合状態にある第1の共振回路15と第2の共振回路16との間で伝送される電力を最大化することが可能である。
(第3の制御方法)
図6は、第1の共振回路15と第2の共振回路16との結合状態の判定に関する制御部31の制御方法(第3の制御方法)を示すフローチャートである。第3の制御方法は、第2の制御方法の後に実行される制御方法である。第3の制御方法は、結合状態から非結合状態への変化を検出可能にする。
制御部31は、電圧制限下限値VlimLを設定する(ステップS31)。制御部31は、電圧制限下限値VlimLを「K1」に設定してもよい。また、制御部31は、ヒステリシスを設けて、電圧制限下限値VlimLを「K1」よりも低い電圧値に設定してもよい。
制御部31は、電流実効値Iprmsが電流指令Ipと等しくなるように制御する(ステップS32)。つまり、制御部31は、電流実効値Iprmsが電流指令Ipと等しくなるまで、電圧指令Vdc1を低下させる(例えば電圧制限値VlimであるKmaxから電圧制限下限値VlimLであるK1まで変化させる)。
制御部31は、電圧Vdc1(または電圧指令Vdc1)が電圧制限下限値VlimLに達した場合に(ステップS33のYes)、第1の共振回路15と第2の共振回路16との結合状態が「非結合」であると判定する(ステップS34)。電流実効値Iprmsが電流指令Ipと等しくならずに、電圧Vdc1は電圧制限下限値VlimLに達している。現在の結合状態の相互インダクタンスの特性曲線において、電流指令Ip(例えばY1)に対応する電圧Vdc1の値は電圧制限下限値VlimL(例えばK1)未満である。そのため、第1の共振回路15と第2の共振回路16との結合状態が「非結合」であると判定される。
一方、制御部31は、電圧Vdc1(または電圧指令Vdc1)が電圧制限下限値VlimLに達していない場合に(ステップS33のNo)、第1の共振回路15と第2の共振回路16との結合状態が「結合」であると判定する(ステップS35)。つまり、現在の結合状態の相互インダクタンスの特性曲線において、電流指令Ip(例えばY1)に対応する電圧Vdc1の値は電圧制限下限値VlimL(例えばK1)以上である。そのため、第1の共振回路15と第2の共振回路16との結合状態が「結合」であると判定される。そして、制御部31はステップS32の処理に戻る。
このように、制御部31は、第3の制御方法を実行することによって、第1の共振回路15と第2の共振回路16とが「結合」から「非結合」に変化する場合に結合状態を適切に判定できる。
(第4の制御方法)
制御部31は、上記の第1〜第3の制御方法のそれぞれを個別に実行可能である。ここで、制御部31は、上記の第1〜第3の制御方法のうちの複数を組み合わせて実行してもよい。図7は、上記の第1〜第3の制御方法を組み合わせた一つの制御方法(第4の制御方法)を示すフローチャートである。
制御部31は、ステップS11〜S17の処理を実行する。ステップS11〜S17は、第1の制御方法の同じ符号の処理と同一内容であるため説明を省略する。
制御部31は、ステップS16の後に(つまり、第1の共振回路15と第2の共振回路16との結合状態が「結合」であると判定した後に)、ステップS21およびステップS31〜S35の処理を実行する。ステップS21は、第2の制御方法の同じ符号の処理と同一内容であるため説明を省略する。また、ステップS31〜S35は、第3の制御方法の同じ符号の処理と同一内容であるため説明を省略する。
制御部31は、ステップS17またはS34の後に(つまり、第1の共振回路15と第2の共振回路16との結合状態が「非結合」であると判定した後に)、電流指令Ipをゼロに設定する(ステップS41)。また、制御部31は電圧Vdc1をゼロにする(ステップS42)。よって、第1の共振回路15と第2の共振回路16との結合状態が「非結合」である場合に、第1のコイル152(送電側コイル)に流れる電流Ipを最小にできる。
制御部31は所定時間経過するまで待機する(ステップS43のNo)。つまり、制御部31は、所定時間、結合状態についての新たな判定を実行しない。制御部31は所定時間が経過すると(ステップS43のYes)、ステップS11の処理に戻る。所定時間は、例えば第1のコイル152および第2のコイル162の距離、位置関係等を調整可能な長さに設定されてもよい。所定時間は、例えば10秒であってもよいし、1分であってもよい。
このように、制御部31は、第4の制御方法を実行することによって、第1〜第3の制御方法の効果に加えて、非結合時の電流Ipを最小にできる。
図8は、制御部31が第4の制御方法を実行した場合における、第1のコイル152および第2のコイル162の相互インダクタンスM等の時間変化を例示する図である。図8の例では、制御部31は、時刻t1において、電圧Vdc1が電圧制限値Vlimに達したために、結合状態が「結合」であると判定している。また、図8の例では、制御部31は、時刻t2において、電圧Vdc1が電圧制限下限値VlimLに達したために、結合状態が「非結合」であると判定している。
以上のように、本実施形態に係る電力伝送装置1は、電圧Vdc1(または電圧指令Vdc1)が電圧制限値Vlim(または電圧制限下限値VlimL)に達したか否かに基づいて結合状態を判定する。つまり、電力伝送装置1は、受電側からの情報を必要とせずに適切な「結合」または「非結合」の判定を行う。そのため、電力伝送装置1は、送電側コイルおよび受電側コイルの結合状態に応じた電力伝送が可能である。また、本実施形態において、電力伝送装置1は、結合状態が「非結合」であると判定した場合に、第1のコイル152(送電側コイル)に流れる電流Ipを抑制することができる。つまり、電力伝送装置1は、結合状態が「非結合」であると判定した場合に、電圧指令Vdc1に制限(例えばK1)を設けることによって、または、電圧指令Vdc1をゼロにすることによって、電流Ipを抑制することができる。
本発明を諸図面および実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。従って、これらの変形および修正は本発明の範囲に含まれることに留意されたい。
例えば、上記の実施形態において、結合状態の判定は制御部31の全体で実行される。そして、結合状態についての情報は、制御部31を構成する各機能ブロックで共有される。ここで、制御部31のうちの特定の機能ブロックが結合状態の判定を実行してもよい。例えば、電圧指令制限部315が電圧指令Vdc1と電圧制限値Vlimとの比較に基づいて結合状態を判定してもよい。そして、電圧指令制限部315が結合状態に応じた信号を生成して、結合状態に応じた信号は電圧指令制限部315以外の機能ブロックに出力されてもよい。例えば、電圧制限切替部314は、結合状態に応じた信号に基づいて、電圧制限値Vlimを選択してもよい。
1 電力伝送装置
11 直流電源
12 直流電圧変換部
13 第1のコンデンサ
14 インバータ部
15 第1の共振回路
16 第2の共振回路
17 整流部
18 平滑コンデンサ
19 負荷
21 電流検出器
31 制御部
131 電圧検出器
151 第2のコンデンサ
152 第1のコイル
161 第3のコンデンサ
162 第2のコイル
311 実効値演算部
312 相互インダクタンス特性テーブル
313 電圧指令演算部
314 電圧制限切替部
315 電圧指令制限部

Claims (4)

  1. 直流電源の出力を変換して第1の直流電力を出力する直流電圧変換部と、
    前記直流電圧変換部の出力に並列に接続された第1のコンデンサと、
    前記第1の直流電力を交流電力に変換するインバータ部と、
    第2のコンデンサと第1のコイルとを有し、前記インバータ部から前記交流電力が供給される第1の共振回路と、
    第3のコンデンサと第2のコイルとを有し、前記第1の共振回路と磁気的に結合されて、前記第1の共振回路から前記交流電力を受け取る第2の共振回路と、
    前記第2の共振回路から供給された前記交流電力を第2の直流電力に変換して負荷に供給する整流部と、
    前記第1の共振回路に流れる電流を検出する電流検出器と、
    前記電流検出器が検出した電流に基づいて前記直流電圧変換部に電圧指令を出力する制御部と、を備え、
    前記制御部は、
    前記電流検出器が検出した前記電流の実効値を演算する実効値演算部と、
    前記第1のコイルと前記第2のコイルとの相互インダクタンスに応じて変化する前記第1の直流電力の電圧と前記実効値との対応関係を記憶し、前記第1の共振回路と前記第2の共振回路との結合の限界を示す前記相互インダクタンスの前記対応関係において電圧の基準値に対する前記実効値である電流指令を定める相互インダクタンス特性テーブルと、
    前記実効値演算部からの前記実効値が、前記電流指令と一致するように原電圧指令を演算する電圧指令演算部と、
    電圧制限値を、前記基準値または前記直流電圧変換部が出力できる最大電圧に設定する電圧制限切替部と、
    前記原電圧指令を前記電圧制限値で制限して、前記電圧指令を出力する電圧指令制限部と、を備え、
    前記電圧指令が前記電圧制限値に達したか否かに基づいて、前記第1の共振回路と前記第2の共振回路との結合状態を判定する、電力伝送装置。
  2. 前記制御部は、
    前記結合状態が非結合と判定した場合に、前記電流を抑制するように、前記直流電圧変換部への電圧指令を出力する、請求項1に記載の電力伝送装置。
  3. 前記制御部は、
    前記結合状態が結合と判定した場合に、前記インバータ部が出力する交流電力が最大となるように、前記直流電圧変換部への電圧指令を出力する、請求項1または2に記載の電力伝送装置。
  4. 前記制御部は、
    前記結合状態が非結合と判定した場合に、所定時間、前記結合状態についての新たな判定を実行しない、請求項1から3のいずれか一項に記載の電力伝送装置。
JP2018047139A 2018-03-14 2018-03-14 電力伝送装置 Active JP6959168B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047139A JP6959168B2 (ja) 2018-03-14 2018-03-14 電力伝送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047139A JP6959168B2 (ja) 2018-03-14 2018-03-14 電力伝送装置

Publications (2)

Publication Number Publication Date
JP2019161910A true JP2019161910A (ja) 2019-09-19
JP6959168B2 JP6959168B2 (ja) 2021-11-02

Family

ID=67992689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047139A Active JP6959168B2 (ja) 2018-03-14 2018-03-14 電力伝送装置

Country Status (1)

Country Link
JP (1) JP6959168B2 (ja)

Also Published As

Publication number Publication date
JP6959168B2 (ja) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6361818B2 (ja) ワイヤレス受電装置及びワイヤレス電力伝送装置
JP6497614B2 (ja) 送電装置及び無線電力伝送システム
US20180351391A1 (en) Wireless power transfer system and driving method therefor
US10381879B2 (en) Wireless power transmission system and driving method therefor
US20180138756A1 (en) Wireless power transmission system and method for driving same
JP5978905B2 (ja) 非接触受電装置および非接触電力伝送システム
JP2014060840A (ja) 非接触給電システム、端末装置、非接触給電装置および非接触給電方法
JP7102944B2 (ja) 非接触給電装置
WO2014010518A1 (ja) 受電機器及び電力伝送システム
JP2014143776A (ja) ワイヤレス受電装置、ワイヤレス送電装置、およびワイヤレス給電装置
JP6037022B2 (ja) 送電装置、ワイヤレス電力伝送システム及び電力伝送判別方法
JP2018102054A (ja) 非接触受電装置及び非接触電力伝送システム
JP6264467B2 (ja) 受電器、及び、電力伝送システム
JP6699883B2 (ja) 非接触電力伝送システム、および、送電装置
JP6094204B2 (ja) ワイヤレス電力伝送システム
US20170133888A1 (en) Power receiver
KR101996966B1 (ko) 무전전력전송 시스템 및 이의 구동 방법.
JP2016034214A (ja) 非接触給電装置及びそれを用いた非接触給電システム
JP6959168B2 (ja) 電力伝送装置
JP6565809B2 (ja) 送電装置及び電力伝送システム
JP2016220316A (ja) 非接触電力伝送装置及び受電機器
JP2019103231A (ja) 非接触送電装置及び電力伝送システム
WO2016006470A1 (ja) 送電機器及び非接触電力伝送装置
JP2021035266A (ja) 非接触給電装置及び送電装置
JP6369792B2 (ja) 非接触給電装置及び非接触給電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R150 Certificate of patent or registration of utility model

Ref document number: 6959168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150