JP2019161742A - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
JP2019161742A
JP2019161742A JP2018042035A JP2018042035A JP2019161742A JP 2019161742 A JP2019161742 A JP 2019161742A JP 2018042035 A JP2018042035 A JP 2018042035A JP 2018042035 A JP2018042035 A JP 2018042035A JP 2019161742 A JP2019161742 A JP 2019161742A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
injection hole
forming member
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018042035A
Other languages
English (en)
Inventor
章伸 寺田
Akinobu Terada
章伸 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018042035A priority Critical patent/JP2019161742A/ja
Priority to CN201920248012.4U priority patent/CN210075001U/zh
Publication of JP2019161742A publication Critical patent/JP2019161742A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】 従来の装置に比べてより簡素な構造で、冷媒ぬれ面積を増加させて冷却性能を向上させることができる冷却装置を提供することを目的とする。【解決手段】 冷却対象に向けて冷媒を噴射し、冷却対象を冷却する冷却装置が提供される。冷媒が流れる冷媒通路10bを含み、冷却対象であるコイルエンド6bに向けて冷媒を噴射可能な位置に設けられたパイプ本体10aと、パイプ本体10aに穿設され、冷却対象を臨む位置に設けられた冷媒噴射孔であって、冷媒を冷却対象に向けて噴射する冷媒噴射孔11とを備え、冷媒噴射孔11は、縦方向の一端11aから他端11bに向かって横方向幅LWが「0」から徐々に増加し、最大幅LWMAXに達したのちの徐々に減少し、他端11bにおいて「0」となる形状を有し、一端11aから他端11bまでの縦方向長さLLに対する最大幅LWMAXの比率RLWは所定比率RLWTH以下である。【選択図】 図3

Description

本発明は、冷却対象(例えば回転電機を構成する部材)に向けて冷媒を噴射して、冷却対象を冷却する冷却装置に関する。
特許文献1は、回転電機のステータの上方にモータの回転軸方向に設けられた冷却パイプであって、冷媒を様々な角度で噴射可能な噴射孔を複数備える冷却パイプによって、冷媒をステータのコイルエンドに噴射する冷却装置を開示する。この装置によれば、コイルエンドの広範囲に亘って冷媒を噴射することができる。
特許文献2は、回転電機のステータコアの周方向に延在する管部材に2カ所以上の冷媒噴射部を備え、ステータコアに巻回されたコイルの両端部(コイルエンド)に向けて冷媒を噴射する回転電機の冷却装置を開示する。この装置によれば、コイルエンドの周方向を均一に冷却することができる。
特開2016−134972号公報 特開2016−129438号公報
上記従来の冷却装置は、冷媒を噴射する噴射部(噴射孔)の設置数を増加させることによって、冷却対象の表面において冷媒に接触する領域の面積である冷媒ぬれ面積を増加させ、冷却能力を高めるものであるが、構造をより簡素化してコストを低減する上で改善の余地があった。
本発明はこの点に着目してなされたものであり、従来の装置に比べてより簡素な構造を用いて冷媒ぬれ面積を増加させ、冷却能力を向上させることができる冷却装置を提供することを目的とする。
上記目的を達成するため請求項1に記載の発明は、冷却対象(6)に向けて冷媒を噴射し、前記冷却対象(6)を冷却する冷却装置において、前記冷媒が流れる冷媒通路(10b)を含み、前記冷却対象(6)に向けて前記冷媒を噴射可能な位置に設けられた通路形成部材(10a)と、前記通路形成部材(10a)に穿設され、前記冷却対象(6)を臨む位置に設けられた噴射孔であって、前記冷媒通路(10b)内の冷媒を前記冷却対象(6)に向けて噴射する噴射孔(11)とを備え、前記噴射孔(11)は、縦方向の一端(11a)から他端(11b)に向かって横方向幅(LW)が「0」から徐々に増加し、最大幅(LWMAX)に達したのちの徐々に減少し、前記他端(11b)において「0」となる形状を有し、前記一端(11a)から他端(11b)までの縦方向長さ(LL)に対する前記最大幅(LWMAX)の比率(RLW)が所定比率(RLWTH)以下であることを特徴とする。
この構成によれば、噴射孔の縦方向に、冷媒が扇状に広がって噴射されるので、簡単な構成で冷媒ぬれ面積を増加させることが可能となり、従来の円形の噴射孔の場合と比べて冷却能力を向上させることができる。また単純なスリット形状(長辺に比べて短辺が非常に短い矩形)の噴射孔の場合には、冷媒の圧力が低いときには、表面張力の影響が大きくなって冷媒がスリットの両端部に集中して噴射されるという課題があるが、本発明の噴射孔では冷媒圧力が低圧であっても扇状の冷媒噴射流(縦方向の流量分布がほぼ一定の噴射流)を得ることができる。
請求項2に記載の発明は、請求項1に記載の冷却装置において、前記噴射孔(11)は、断面がV字形であるV溝であって、前記通路形成部材(10a)が延びる方向に対して直角の方向に延びるV溝(12)を前記通路形成部材(10a)に穿設することによって形成されることを特徴とする。
この構成によれば、グラインダなどの工具によって、通路形成部材にV溝を穿設することができ、かつV溝を穿設することによって上記形状の噴射孔を容易に形成することができる。
請求項3に記載の発明は、請求項2に記載の冷却装置において、前記通路形成部材(10a)は円筒状のパイプであり、前記パイプの外径(DP)に対する前記冷媒通路の径(DC)の比率は、前記V溝が穿設されていない場合より小さく設定されることを特徴とする。
この構成によれば、パイプ外径に対する冷媒通路径の比率が、V溝が穿設されていない場合より小さく設定される、すなわち冷媒通路を画成する通路形成部材の厚さが大きく設定されるので、V溝の穿設することによる通路形成部材の強度の低下を抑制することができる。
請求項4に記載の発明は、請求項1に記載の冷却装置において、前記通路形成部材(40a)は樹脂製であり、前記噴射孔(41)の周囲に補強壁(42)が形成されていることを特徴とする。
この構成によれば、樹脂製の通路形成部材が使用され、噴射孔の周囲に補強壁が形成されるので、噴射孔周辺における通路形成部材の強度の低下を補強壁によって抑制することができる。
請求項5に記載の発明は、請求項1または2に記載の冷却装置において、前記通路形成部材は、その断面形状が三角形状、または三角形状の一辺が円弧状に形成されたパイプ(60a,50a)であることを特徴とする。
この構成によれば、断面形状が三角形状、または三角形状の一辺が円弧状に形成されたパイプによって通路形成部材が構成されるので、単純な円筒状のパイプに比べて、横方向から加わる力に対する強度(曲げ強度)が高くなるため、噴射孔の部分における強度の低下を抑制することができる。
請求項6に記載の発明は、請求項1から5の何れか1項に記載の冷却装置において、前記冷却対象は、回転電機(1)を構成するステータ(6)であり、前記回転電機(1)は回転軸(3)と、前記ステータ(6)の内側において前記回転軸(3)に固定され、前記ステータ(6)が生成する磁束によって回転するロータ(7)とを備え、前記通路形成部材(10a)は、前記回転軸(3)の軸方向に延びるように設けられていることを特徴とする。
この構成によれば、簡単な構成によって回転電機のステータの冷却能力を高めることができる。
本発明の一実施形態にかかる冷却装置を適用した回転電機の構成を示す断面図である。 図1に示す冷媒噴射パイプ(10)及びコイルエンド(6b)を側方からみた状態を説明するための図である。 図1に示す冷媒噴射パイプ(10)及び冷媒噴射孔(11)の構造を説明するための図である。 図3に示す構造をより詳細に説明するための図である。 噴射された冷却オイルの状態を説明するための図である。 図3に示す冷媒噴射孔の変形例を示す図ある。 図3に示す冷媒噴射パイプの変形例を示す図である。 図3に示す冷媒噴射パイプの他の変形例を示す図である。 冷媒噴射パイプの配置に関する変形例を示す図である。 冷媒噴射パイプに代えて適用可能な変形例を示す図である。 冷媒噴射パイプに代えて適用可能な変形例を示す図である。
以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる冷却装置を適用した回転電機の構成を示す断面図であり、回転電機1は、ケーシング2に固定され、磁束を生成するステータ6と、ケーシング2に軸受4及び5を介して回転可能に支持された回転軸3と、ステータ6の内側において回転軸3に固定され、ステータ6が生成する磁束によって回転する円柱状のロータ7と、ステータ6の上方に設けられ、冷媒としての冷却オイルを噴射する冷媒噴射パイプ10とを備えている。冷媒噴射パイプ10には、ケーシング2に設けられた冷媒通路9を介して冷却オイルが供給される。冷媒通路9には、図示しないオイルポンプ及びオイル通路を介して冷却オイルが供給される。オイルポンプは、例えば回転軸3の回転によって得られる駆動トルクの一部を用いて駆動される。
ステータ6は、ステータコア6aと、ステータコア6aに巻回されたステータコイル6bによって構成され、ステータ6の軸方向の両端部に位置する部分は通常「コイルエンド」と呼ばれるため、以下の説明では「コイルエンド6b」という。
冷媒噴射パイプ10は、回転軸3と平行に延びる(軸方向の延びる)ように設けられており、加圧された冷却オイルが冷媒通路9を介して冷媒噴射パイプ10に供給され、コイルエンド6bの上方に設けられた2つの冷媒噴射孔11からコイルエンド6bに向けて冷却オイルが噴射される。冷媒噴射パイプ10及び冷媒噴射孔11が本発明の冷却装置を構成する。
図2は、冷媒噴射パイプ10及びコイルエンド6bを側方からみた状態を説明するための図であり、ステータ6は取り付け部材15を介してケーシング2に固定されている。この図に示す角度範囲IRが冷媒噴射孔11から噴射される冷却オイルの噴射角度範囲を模式的に示しており、コイルエンド6bに向けて冷却オイルが扇状に広がって噴射される。噴射された冷却オイルは、太い破線で示すようにコイルエンド6bの外周面に沿って流れ下る。
図3は、冷媒噴射パイプ10及び冷媒噴射孔11の構造を説明するための図であり、同図(a)は冷媒噴射パイプ10を下方からみた図、同図(b)は冷媒噴射孔11を拡大して示す図、同図(c)及び(d)はそれぞれ冷媒噴射パイプ10の冷媒噴射孔11における横断面図及び縦断面図である。
冷媒噴射パイプ10は、パイプ本体10aと、冷却オイルが流れる冷媒通路10bと、冷媒通路10bから冷却オイルを外部に向けて噴射する2つの冷媒噴射孔11とによって構成される。図3(b)に縦方向DRL及び横方向DRWが矢印で示されており、冷媒噴射孔11は、縦方向DRLの一端11aから他端11bに向かって横方向幅LWが「0」から徐々に増加し、最大幅LWMAXに達したのちの徐々に減少し、他端11bにおいて「0」となる形状を有し、一端11aから他端11bまでの縦方向長さLLに対する最大幅LWMAXの比率RLWが所定比率RLWTH以下となるように、縦方向長さLL及び最大幅LWMAXが設定される。本実施形態の冷媒噴射孔11は、2つの円弧を交差させた2つの曲線によって画成される形状を有する。比率RLWは所定比率RLWTH以下とするが、必要な冷媒噴射量を確保可能な値に設定することはいうまでもない。
所定比率RLWTHは、使用する冷媒の粘性、使用時の冷媒温度、及び望ましい噴射角度範囲(目標噴射角度範囲)に応じて、実験によって決められた値に設定される。大まかには、冷媒の粘性が低下するほど、冷媒温度が高くなるほど、目標噴射角度範囲が広くなるほど、所定比率RLWTHはより小さな値に設定される。本実施形態では、比率RLWは例えば「0.125」に設定される。実験によれば、比率RLWを「0.17」程度より大きくすると、噴射角度範囲が小さくなるとともに、冷媒通路10b内を流れる冷媒の方向及び流量に依存して冷却対象に到達する位置が変化するという課題が発生する。
図3(e)は、比率RLWが大きい場合における冷媒到達位置の変化を説明するための図であり、矢印を付した線(以下「矢線」という)FMLが冷媒通路10b内の冷媒の流れを示し、矢線FIL1,FIL2が噴射された冷媒の流れを示す。冷媒通路10b内の冷媒流量FRが比較的大きいときには、実線の矢線FIL1で示す流れとなり、冷媒流量FRが低下すると、破線の矢線FIL2で示す流れに変化する。
上述した点を考慮して、所定比率RLWTHは例えば「0.17」程度に設定される。なお、比率RLWは所定比率RLWTH以下であって、下限値RLWLL(例えば「0.1」程度)以上とすることが望ましい。下限値RLWLLは、必要な冷媒噴射流量を確保可能な値として設定される。比率RLWの上記設定によれば、比較的広い噴射角度範囲が得られるとともに、冷媒はほぼ真下の向かって噴射されるので、冷却対象の目標位置に正確に噴射することができる。
冷媒噴射孔11は、縦方向が冷媒噴射パイプ10の延びる方向(回転軸方向)と直角となるように、コイルエンド6bを臨む位置に設けられている。冷却オイルは冷媒噴射孔11からコイルエンド6bに向けて噴射される。パイプ本体10aは例えばステンレススチールを用いて構成される。
冷媒噴射孔11は、具体的には、パイプ本体10aが延びる方向と垂直の方向に延びるV溝12をパイプ本体10aに穿設することによって形成される。図4に示すように、V溝12の深さをパラメータZで示すことにすると(以下「V溝深さパラメータZという)、V溝深さパラメータZは下記式(1)で示され、縦方向長さLLは、下記式(2)で示される。
Z=r×(1−cos(A/2)) (1)
LL=2×r×sin(A/2) (2)
ここで、Aは図4に示す吹き出し角度である。なお、図2に示す実際の噴射角度範囲IRは、通常図4に示す理論上の吹き出し角度Aより広がることが確認されている。
またV溝12を形成する2つの面がなす角度を図4に示すようにV溝角度Bと定義すると、V溝角度Bは、V溝深さパラメータZ及び最大幅LWMAXを用いて下記式(3)で示される。
B=2×tan-1((LWMAX/2)/Z) (3)
したがって、例えばV溝12を穿設する際に使用する工具の先端角度をV溝角度Bに設定することによって、望ましい吹き出し角度Aの冷媒噴射孔11をパイプ本体10aに設けることができる。なお、パイプ本体10aの外周面からのV溝12の深さDPTHは、パイプ本体10aの厚さ((DP-2r)/2)をDTとすると、(DT+Z)で示される。
グラインダなどの適当な工具を用いることによって、円筒状のパイプ本体10aにV溝12を穿設することができ、かつV溝12を穿設することによって図3に示すような形状の冷媒噴射孔11を容易に形成することができる。
図5は、噴射された冷却オイルの状態を説明するための図であり、同図(a)は本実施形態の冷媒噴射パイプ10に対応し、同図(b)は従来の円形の冷媒噴射孔を備える冷媒噴射パイプ10Xに対応する。同図(c)は冷媒噴射孔を矩形スリット形状(短辺が長辺に比べて非常に短い長方形)とする冷媒噴射パイプ10Yに対応する。同図(d)は、同図(c)に示す冷媒噴射パイプ10Yを下方からみた図である。
円形の冷媒噴射孔の場合は、噴射孔とほぼ同一の径を有する円筒状の冷却オイル流が噴射されるのに対し、本実施形態の冷媒噴射パイプ10によれば、縦方向DRL(図3(b)参照)に扇状に広がった平面状の冷却オイル流が噴射される。したがって、噴射された冷却オイルが直接到達する領域の面積が増加し、さらに図2に太い破線で示すように、冷却オイルが冷却対象であるコイルエンド6bの外周面を広がって流れ下るので、冷却能力を高めることができる。
また同図(c)に示す矩形スリット形状の場合には、本実施形態と同様に扇状に広がった冷却オイル流が得られるが、冷媒の圧力が低下すると表面張力の影響が大きくなるため、広がった冷却オイル流の両端部の流量が多くなり、中心部の流量が少なくなる(または「0」となる)課題があるが、本実施形態の冷媒噴射孔11は、中心部の開口幅が広くなる形状を有するので、冷媒の圧力が低下した場合でも、広がった冷却オイル流の流量が全体的に均一となる効果が得られる。図5(c)では冷却オイル流を示す破線の間隔を広くして流量が減少することを示している。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、冷媒噴射パイプ10は図6に示す冷媒噴射パイプ20に代えてもよい。冷媒噴射パイプ20は、菱形の形状を有する冷媒噴射孔21と、その周縁部に設けられたV溝22とを備えるものである。この変形例においても、縦方向長さLLに対する横方向の最大幅LWMAXとの比率RLWを所定比率RLWTH以下とする。
また冷媒噴射パイプ10はV溝12を設けることで、横方向から力が加わった場合に変形し易くなる。そこでその点を改善するために、冷媒噴射パイプ10を図7に示す冷媒噴射パイプ30または40に代えてもよい。
図7(a)に示す冷媒噴射パイプ30は、パイプ本体30aと、冷媒通路30bと、冷媒噴射孔31とを備え、冷媒噴射孔31はパイプ本体30aにV溝32を穿設することによって形成されている。この変形例では、パイプ本体30aの外径DPに対する内径DCの比率(DC/DP)が、上述した実施形態より小さく設定されている。換言すればパイプ本体30aの厚さDTが相対的に大きく設定されており、V溝32を穿設することによる強度の低下を抑制することができる。
図7(b)に示す冷媒噴射パイプ40は、材質が樹脂であり、樹脂成形によってパイプ本体40a及び冷媒通路40bが形成され、パイプ本体40aには、冷媒噴射孔41が設けられるとともに、冷媒噴射孔41の周囲に補強壁42が形成されている。補強壁42によって冷媒噴射孔41の部分における強度の低下を抑制することができる。
図8は、冷媒噴射パイプ10の他の変形例を示す。同図(a)に示す冷媒噴射パイプ50は、パイプ本体50aと、冷媒通路50bとを備え、パイプ本体50aは、冷媒噴射孔54及びV溝55が形成された湾曲板部材51と、2つの平板部材52,53を接合して構成されている。湾曲板部材51は、冷媒噴射パイプ10のパイプ本体10aの下部に相当し、同一の円筒曲面形状に形成されている。したがって、冷媒噴射パイプ10のV溝12と同様に、V溝55を穿設して冷媒噴射孔54を形成することができる。
同図(b)に示す冷媒噴射パイプ60は、パイプ本体60aと、冷媒通路60bとを備え、パイプ本体60aは、3つの平板部材61〜63を接合して構成され、平板部材51に冷媒噴射孔64及びV溝65が形成されている。冷媒噴射パイプ10のV溝12を穿設する工具とは異なる工具を使用すれば、平板部材61にV溝65を穿設して、冷媒噴射孔11と同一形状の冷媒噴射孔64を形成することができる。
冷媒噴射パイプ50または60は、単純な円筒状のパイプに比べて、横方向から加わる力に対する強度(曲げ強度)が高くなるため、冷媒噴射孔の部分における強度の低下を抑制することができる。
なお、パイプ本体50aは、断面形状が三角形状の一辺を円弧状とすることによって形成されていればよく、例えば円筒状のパイプ(断面形状が円形状のパイプ)をプレス成形したパイプ、あるいはそのような断面形状を有する押し出しパイプによって構成するようにしてもよい。またパイプ本体60aは、断面形状が三角形状に形成されていればよく、パイプ本体50aと同様に円筒状のパイプをプレス成形したパイプ、あるいは三角形状の断面形状を有する押し出しパイプによって構成するようにしてもよい。
また上述した実施形態では、ステータ6の上方に1本の冷媒噴射パイプ10を設けるようにしたが、例えば図9に示すように、2本の冷媒噴射パイプ10A,10Bを設けるようにしてよい。このように冷媒噴射パイプの数を増加させることによって、さらに冷却能力を高めることができる。
また図10に示すようにケーシング102の内壁面と、通路カバー113とによって冷媒通路110を構成し、通路カバー113を構成する部材を冷媒噴射パイプ10と同一の外径の半円筒形状とすることによって、本発明の冷媒噴射孔11と同様の冷媒噴射孔111を設けるようにしてもよい。この変形例では、ケーシング102及び通路カバー113が通路形成部材に相当する。
また図11に示すように、ケーシング122そのものに、ドリルによる穿孔加工によって冷媒通路120を設け、上述した冷媒噴射孔11と同一形状の2つの冷媒噴射孔121をコイルエンド6bに対向する位置に設けるようにしてもよい。
また上述した実施形態では、冷媒噴射パイプ10は回転電機1の回転軸3の方向に延びるように設けたが、上記特許文献2に示されるように回転電機の軸方向の寸法が小さい場合には、冷媒噴射パイプ10をステータ(コイルエンド6b)の外周に沿う方向、または回転軸3と垂直の方向に直線状に延びるように設けてもよい。
また本発明にかかる冷却装置の冷却対象は、ステータ6のコイルエンド6bに限るものではなく、ステータ6全体を対象としてもよい。さらに本発明は例えば切削加工などの機械加工を行う場合において、高温になる加工対象物を冷却する冷却装置、あるいは電子計算機や制御装置に適用されるCPU(中央処理装置)を冷却する冷却装置などに適用可能である。また冷媒は、冷却オイルに限るものではなく、冷却水であってもよい。
1 回転電機
2 ケーシング
3 回転軸
6 ステータ
6b ステータコイル(コイルエンド)
7 ロータ
10 冷媒噴射パイプ(冷却装置)
10a パイプ本体(通路形成部材)
10b 冷媒通路
11 冷媒噴射孔

Claims (6)

  1. 冷却対象に向けて冷媒を噴射し、前記冷却対象を冷却する冷却装置において、
    前記冷媒が流れる冷媒通路を含み、前記冷却対象に向けて前記冷媒を噴射可能な位置に設けられた通路形成部材と、
    前記通路形成部材に穿設され、前記冷却対象を臨む位置に設けられた噴射孔であって、前記冷媒通路内の冷媒を前記冷却対象に向けて噴射する噴射孔とを備え、
    前記噴射孔は、縦方向の一端から他端に向かって横方向幅が「0」から徐々に増加し、最大幅に達したのちの徐々に減少し、前記他端において「0」となる形状を有し、前記一端から他端までの縦方向長さに対する前記最大幅の比率が所定比率以下であることを特徴とする冷却装置。
  2. 前記噴射孔は、断面がV字形であるV溝であって、前記通路形成部材が延びる方向に対して直角の方向に延びるV溝を前記通路形成部材に穿設することによって形成されることを特徴とする請求項1に記載の冷却装置。
  3. 前記通路形成部材は円筒状のパイプであり、前記パイプの外径に対する前記冷媒通路の径の比率は、前記V溝が穿設されていない場合より小さく設定されることを特徴とする請求項2に記載の冷却装置。
  4. 前記通路形成部材は樹脂製であり、前記噴射孔の周囲に補強壁が形成されていることを特徴とする請求項1に記載の冷却装置。
  5. 前記通路形成部材は、その断面形状が三角形状、または三角形状の一辺が円弧状に形成されたパイプであることを特徴とする請求項1または2に記載の冷却装置。
  6. 前記冷却対象は、回転電機を構成するステータであり、前記回転電機は回転軸と、前記ステータの内側において前記回転軸に固定され、前記ステータが生成する磁束によって回転するロータとを備え、前記通路形成部材は、前記回転軸の軸方向に延びるように設けられていることを特徴とする請求項1から5の何れか1項に記載の冷却装置。
JP2018042035A 2018-03-08 2018-03-08 冷却装置 Pending JP2019161742A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018042035A JP2019161742A (ja) 2018-03-08 2018-03-08 冷却装置
CN201920248012.4U CN210075001U (zh) 2018-03-08 2019-02-27 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018042035A JP2019161742A (ja) 2018-03-08 2018-03-08 冷却装置

Publications (1)

Publication Number Publication Date
JP2019161742A true JP2019161742A (ja) 2019-09-19

Family

ID=67993657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018042035A Pending JP2019161742A (ja) 2018-03-08 2018-03-08 冷却装置

Country Status (2)

Country Link
JP (1) JP2019161742A (ja)
CN (1) CN210075001U (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337106A (zh) * 2022-03-08 2022-04-12 天津松正汽车部件有限公司 一种多孔型油冷电机散热结构及电机
WO2022107372A1 (ja) * 2020-11-19 2022-05-27 日本電産株式会社 回転電機、および駆動装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107372A1 (ja) * 2020-11-19 2022-05-27 日本電産株式会社 回転電機、および駆動装置
CN114337106A (zh) * 2022-03-08 2022-04-12 天津松正汽车部件有限公司 一种多孔型油冷电机散热结构及电机
CN114337106B (zh) * 2022-03-08 2022-06-17 天津松正汽车部件有限公司 一种多孔型油冷电机散热结构及电机

Also Published As

Publication number Publication date
CN210075001U (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6507393B2 (ja) すべり軸受及びポンプ
JP2019161742A (ja) 冷却装置
EP2541737A2 (en) Electrical machine
WO2012070191A1 (ja) ステータ冷却装置
JP2015027173A (ja) モータ
JP2009291056A (ja) モータの冷却構造
JP6168716B2 (ja) 接触式給電装置
US10184515B2 (en) Anti-friction bearing
JP5129436B2 (ja) 排出洗浄ガイドブッシュ
JP2016215329A (ja) 流体を流動させるための貫通孔が形成された主軸構造、電動機、および工作機械
JP2019170082A (ja) 回転電機及びこれを備えた車両
JP2014064433A (ja) 回転電機のロータ軸
US20160241113A1 (en) Rotor having flow path of cooling fluid and electric motor including the rotor
CN106664003A (zh) 直线电机
JP2006129696A (ja) 流体動圧軸受モータ及びこのモータが使用するファン
JP2017085829A (ja) 回転電機
US9618010B2 (en) Fan systems
JP5531716B2 (ja) モータ
JP6877315B2 (ja) 回転電機の冷却構造
JP2016134972A (ja) モータ冷却構造
US6935787B2 (en) Oil-circulating structure for fan
JP2019161739A (ja) 冷却装置
JP6968627B2 (ja) 流量調節弁
JP6726071B2 (ja) モータの冷却機構
JP6581948B2 (ja) 回転電機