JP2019161239A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2019161239A
JP2019161239A JP2019112422A JP2019112422A JP2019161239A JP 2019161239 A JP2019161239 A JP 2019161239A JP 2019112422 A JP2019112422 A JP 2019112422A JP 2019112422 A JP2019112422 A JP 2019112422A JP 2019161239 A JP2019161239 A JP 2019161239A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting device
sealing member
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019112422A
Other languages
Japanese (ja)
Other versions
JP6825648B2 (en
Inventor
山田 元量
Motokazu Yamada
元量 山田
有一 山田
Yuichi Yamada
有一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Publication of JP2019161239A publication Critical patent/JP2019161239A/en
Application granted granted Critical
Publication of JP6825648B2 publication Critical patent/JP6825648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

To provide a light emitting device which enables batwing light distribution, in which color unevenness of light distribution is improved, without using a secondary lens.SOLUTION: A light emitting device includes: a base substance 101 having conductor wiring 102; a light emitting element 105 placed on the base substance 101 and electrically connected with the conductor wiring 102; and a translucent sealing member 108 covering the light emitting element 105. The sealing member 108 has a protruding shape. A height of the sealing member 108 is longer than a width of a bottom surface of the sealing member 108 when viewed in an optical axis L direction. Further, the sealing member 108 includes a light diffusion material.SELECTED DRAWING: Figure 1

Description

本発明は、発光装置に関する。   The present invention relates to a light emitting device.

近年、様々な電子部品が提案され、また実用化されており、これらに求められる性能も高くなっている。特に、電子部品には、厳しい使用環境下でも長時間性能を維持することが求められている。このような要求は、発光ダイオード(LED:Light Emitting Diode)をはじめとする半導体発光素子を利用した発光装置についても例外ではない。すなわち、一般照明分野や車載照明分野において、発光装置に要求される性能は日増しに高まっており、更なる高出力(高輝度)化や高信頼性が要求されている。さらに、これらの高い性能を維持しつつ、低価格で供給することも要求されている。
特に液晶テレビに使用されるバックライトや一般照明器具等では、デザイン製が重要視され、薄型化の要望が高い。
In recent years, various electronic components have been proposed and put into practical use, and the performance required for them has been increased. In particular, electronic components are required to maintain long-term performance even under severe usage environments. Such a requirement is no exception for a light emitting device using a semiconductor light emitting element such as a light emitting diode (LED). That is, in the general lighting field and the in-vehicle lighting field, the performance required for the light emitting device is increasing day by day, and further higher output (high luminance) and higher reliability are required. Furthermore, it is also required to supply at a low price while maintaining these high performances.
Especially for backlights and general lighting fixtures used in liquid crystal televisions, the importance of design is emphasized, and there is a strong demand for thinning.

例えば特許文献1には、二次光学レンズをLEDと組み合わせることでバットウイング型の配光特性を実現し、短い照射距離で光を均一に拡散させることが出来、結果として器具の薄型化が可能となることが開示されている。
また特許文献2には、モールド形状を工夫してバットウイング配光を実現することが開示されている。
For example, Patent Document 1 realizes a batwing-type light distribution characteristic by combining a secondary optical lens with an LED, and can uniformly diffuse light over a short irradiation distance, resulting in a thinner instrument. Is disclosed.
Patent Document 2 discloses that a batwing light distribution is realized by devising a mold shape.

特開2006−114863号公報JP 2006-114863 A 特開2012−231036号公報JP 2012-231036 A

しかしながら、特許文献1に記載される二次レンズと組み合わせる方法では、二次レンズへの入射時および二次レンズからの出射時に表面反射によるフレネルロスが発生し、光利用効率が低下する。また、レンズ費用と、レンズの実装費用が発生しコストが上昇する。
特許文献2に記載の方式では、蛍光体含有層の厚みが角度により異なり、配光色ムラが生じるため、色ムラの改善が望まれていた。
However, in the method combined with the secondary lens described in Patent Document 1, Fresnel loss due to surface reflection occurs at the time of incidence to the secondary lens and at the time of emission from the secondary lens, and the light utilization efficiency decreases. In addition, the cost of the lens and the mounting cost of the lens are generated, and the cost increases.
In the method described in Patent Document 2, since the thickness of the phosphor-containing layer varies depending on the angle and light distribution color unevenness occurs, improvement in color unevenness has been desired.

本発明に係る実施形態は、かかる事情に鑑みてなされたものであり、二次レンズを使用することなく、配光色ムラの改善されたバットウイング配光を可能とする発光装置を提供する。   Embodiments according to the present invention have been made in view of such circumstances, and provide a light-emitting device that enables batwing light distribution with improved light distribution color unevenness without using a secondary lens.

本実施形態に係る発光装置は、導体配線を有する基体と、前記基体上に載置され、前記導体配線と電気的に接続された発光素子と、前記発光素子を被覆する透光性の封止部材と、を備え、前記封止部材は凸形状であり、その光軸方向の高さが、前記封止部材の底面の幅よりも長く、かつ、光拡散材を含有する。   The light-emitting device according to the present embodiment includes a base body having conductor wiring, a light-emitting element placed on the base body and electrically connected to the conductor wiring, and a translucent sealing covering the light-emitting element. The sealing member has a convex shape, the height in the optical axis direction is longer than the width of the bottom surface of the sealing member, and contains a light diffusing material.

本発明に係る実施形態によれば、二次レンズを使用することなく、配光色ムラの改善されたバットウイング配光を可能とする発光装置を提供することができる。   According to the embodiment of the present invention, it is possible to provide a light emitting device that enables batwing light distribution with improved light distribution color unevenness without using a secondary lens.

本実施形態の発光装置の一例を示す上面図及び断面図である。It is the top view and sectional drawing which show an example of the light-emitting device of this embodiment. 本実施形態の発光装置の配光特性を示す図である。It is a figure which shows the light distribution characteristic of the light-emitting device of this embodiment. 本実施形態の発光装置の一例を示す断面図である。It is sectional drawing which shows an example of the light-emitting device of this embodiment. 本実施形態の発光装置の一例を示す断面図である。It is sectional drawing which shows an example of the light-emitting device of this embodiment. 本実施形態の発光装置の一例を示す断面図である。It is sectional drawing which shows an example of the light-emitting device of this embodiment. 本実施形態の発光装置の一例を示す上面図である。It is a top view which shows an example of the light-emitting device of this embodiment. 実施例3〜5の発光装置の封止部材の形状の例を示す図である。It is a figure which shows the example of the shape of the sealing member of the light-emitting device of Examples 3-5. 実施例3〜5の発光装置の配光特性を示す図である。It is a figure which shows the light distribution characteristic of the light-emitting device of Examples 3-5. 実施例3〜5の発光装置の輝度分布を示す図である。It is a figure which shows the luminance distribution of the light-emitting device of Examples 3-5. 実施例3〜5の輝度分布図である。It is a luminance distribution figure of Examples 3-5.

以下、本発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置は、技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、一つの実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。
さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea, and the present invention is not limited to the following unless otherwise specified. In addition, the contents described in one embodiment and example can be applied to other embodiments and examples.
Further, in the following description, the same name and reference sign indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are configured by the same member and the plurality of elements are shared by one member. It can also be realized by sharing.

[第1実施形態]
図1(A)および図1(B)は、第1実施形態の発光装置の一例を示す概略構造図であり、図1(A)は上面図、図1(B)は図1(A)のI−I線における断面図である。
図1に示されるように、本実施形態における基体101は、基体の表面に設けられた一対の導体配線102に跨がるように、接続部材103を介してフリップチップ実装により発光素子105が実装されている。導体配線102の上面のうち、発光素子105との電気的に接続される領域は、絶縁部材104から露出されている。
[First Embodiment]
1A and 1B are schematic structural views showing an example of the light-emitting device of the first embodiment. FIG. 1A is a top view, and FIG. 1B is FIG. It is sectional drawing in the II line | wire.
As shown in FIG. 1, the light emitting element 105 is mounted on the base 101 in this embodiment by flip chip mounting via a connecting member 103 so as to straddle a pair of conductor wirings 102 provided on the surface of the base. Has been. A region electrically connected to the light emitting element 105 on the upper surface of the conductor wiring 102 is exposed from the insulating member 104.

発光素子105の下部(すなわち発光素子105の下面と基体101の間)および発光素子105の側面には、アンダーフィル106が形成され、その上部に光拡散材を含有した封止部材108が形成されている。   An underfill 106 is formed under the light emitting element 105 (that is, between the lower surface of the light emitting element 105 and the base 101) and the side surface of the light emitting element 105, and a sealing member 108 containing a light diffusing material is formed thereon. ing.

封止部材108は、凸形状(例えば略半長球状、略円錐状、略円柱状、きのこ型等)であり、その光軸(L)方向の高さAが封止部材108の底面の幅Cよりも長くなるよう形成されている。なお、本明細書中の説明において、発光素子105の中心を通る法線を光軸Lという。このような構成とすることで、発光素子105から発した光が光拡散材で散乱され、発光装置100から発せられる光強度は、封止部材108の見かけ面積比に略比例する。結果として、図2に示すようなバットウイング型の配光特性を実現することができる。つまり、本実施形態の発光装置100は、発光素子105を点灯して光軸方向から観察したときに、中心部が外周部よりも暗くなるような配光特性を示す。   The sealing member 108 has a convex shape (for example, a substantially hemispherical shape, a substantially conical shape, a substantially cylindrical shape, a mushroom shape, etc.), and the height A in the optical axis (L) direction is the width of the bottom surface of the sealing member 108. It is formed to be longer than C. In the description in this specification, a normal line passing through the center of the light emitting element 105 is referred to as an optical axis L. With such a configuration, the light emitted from the light emitting element 105 is scattered by the light diffusing material, and the light intensity emitted from the light emitting device 100 is substantially proportional to the apparent area ratio of the sealing member 108. As a result, the bat wing type light distribution characteristic as shown in FIG. 2 can be realized. That is, the light emitting device 100 according to the present embodiment exhibits a light distribution characteristic such that the center part becomes darker than the outer peripheral part when the light emitting element 105 is turned on and observed from the optical axis direction.

封止部材108は、上面視においてその外形が円形もしくは楕円形となるように形成されており、楕円形の場合、底面の半径Bは長半径と短半径が存在するが、本明細書では短半径を半径Bと定義する。   The sealing member 108 is formed so that its outer shape is circular or elliptical when viewed from above. In the case of an elliptical shape, the bottom surface radius B has a major radius and a minor radius. The radius is defined as radius B.

図2は、本実施形態に係る発光装置の配光特性を示した図である。図2に示すように、本実施形態の発光装置は、配光角が0°のときよりも50〜60°付近の相対光度が強くなり、配光が広くなる、いわゆるバットウイング型の配光特性を持つ。
図2では、光軸方向の封止部材の高さAを、封止部材の底面の半径Bで割ったアスペクト比(A/B)を、2.8、3.2、3.5とする場合をそれぞれ示している。アスペクト比が大きいほど0°付近の相対光度が低下し、配光が広がっていることがわかる。光を均一に拡散させるために、アスペクト比は2.0以上であることが好ましい。
FIG. 2 is a diagram illustrating the light distribution characteristics of the light emitting device according to the present embodiment. As shown in FIG. 2, the light-emitting device of this embodiment has a so-called batwing type light distribution in which the relative luminous intensity near 50 to 60 ° becomes stronger and the light distribution becomes wider than when the light distribution angle is 0 °. Has characteristics.
In FIG. 2, the aspect ratio (A / B) obtained by dividing the height A of the sealing member in the optical axis direction by the radius B of the bottom surface of the sealing member is 2.8, 3.2, and 3.5. Each case is shown. It can be seen that the greater the aspect ratio, the lower the relative luminous intensity near 0 °, and the wider the light distribution. In order to diffuse light uniformly, the aspect ratio is preferably 2.0 or more.

発光素子105は、直接封止部材108で被覆されているため、二次レンズを使用する場合に比べて、フレネルロスを低減し、光取り出し効率を向上することができる。
また、発光素子105は、基体の上面から0.5mm以内の高さに配置されることが好ましい。
Since the light emitting element 105 is directly covered with the sealing member 108, the Fresnel loss can be reduced and the light extraction efficiency can be improved as compared with the case where a secondary lens is used.
The light emitting element 105 is preferably disposed at a height within 0.5 mm from the upper surface of the substrate.

また、本実施形態の発光装置100は、光拡散材の濃度を増やしていくと、発光素子105を点灯して光軸方向から観察したときに、中心部が外周部よりも暗い輝度分布を示す。
これは発光素子105から観て光軸方向の光路長が光軸の垂直方向の光路長より長いため発光素子105からの光が散乱し減衰していくからである。
よって光拡散材の濃度を調整する事で、アスペクト比をそれほど大きくしなくても光軸方向の光量を下げてバットウイング配光にすることが可能となり、樹脂量も少なく済み生産性が向上する。
In addition, when the concentration of the light diffusing material is increased, the light emitting device 100 according to the present embodiment exhibits a luminance distribution in which the central portion is darker than the outer peripheral portion when the light emitting element 105 is turned on and observed from the optical axis direction. .
This is because when viewed from the light emitting element 105, the optical path length in the optical axis direction is longer than the optical path length in the direction perpendicular to the optical axis, the light from the light emitting element 105 is scattered and attenuated.
Therefore, by adjusting the concentration of the light diffusing material, it is possible to reduce the amount of light in the direction of the optical axis and achieve batwing light distribution without increasing the aspect ratio. .

以下、本実施の形態に係る発光装置100の好ましい形態について説明する。
(基体101)
基体101は、発光素子105を載置するための部材である。基体101はその表面に、発光素子105に電力を供給するための導体配線102を有している。
基体101の材料としては、例えば、セラミックス、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)、ポリエチレンテレフタレート(PET)等の樹脂が挙げられる。なかでも、低コストと、成型容易性の点から、樹脂を絶縁性材料に選択することが好ましい。あるいは、耐熱性及び耐光性に優れた発光装置とするためには、セラミックスを基体101の材料として選択することが好ましい。
Hereinafter, the preferable form of the light-emitting device 100 which concerns on this Embodiment is demonstrated.
(Substrate 101)
The base 101 is a member on which the light emitting element 105 is placed. The substrate 101 has a conductor wiring 102 for supplying power to the light emitting element 105 on the surface thereof.
Examples of the material of the substrate 101 include resins such as ceramics, phenol resin, epoxy resin, polyimide resin, BT resin, polyphthalamide (PPA), and polyethylene terephthalate (PET). Among these, it is preferable to select a resin as an insulating material from the viewpoint of low cost and ease of molding. Alternatively, ceramics is preferably selected as the material of the substrate 101 in order to obtain a light emitting device having excellent heat resistance and light resistance.

セラミックスとしては、例えば、アルミナ、ムライト、フォルステライト、ガラスセラミックス、窒化物系(例えば、AlN)、炭化物系(例えば、SiC)等が挙げられる。なかでも、アルミナからなる又はアルミナを主成分とするセラミックスが好ましい。
また、基体101を構成する材料に樹脂を用いる場合は、ガラス繊維や、SiO、TiO、Al等の無機フィラーを樹脂に混合し、機械的強度の向上、熱膨張率の低減、光反射率の向上等を図ることもできる。また、基体101としては、一対の導体配線102を絶縁分離できるものであればよく、金属部材に絶縁層を形成している、いわゆる金属基板を用いてもよい。
Examples of ceramics include alumina, mullite, forsterite, glass ceramics, nitrides (for example, AlN), carbides (for example, SiC), and the like. Among these, ceramics made of alumina or mainly composed of alumina is preferable.
In the case of using a resin material constituting the substrate 101, and a glass fiber, an inorganic filler such as SiO 2, TiO 2, Al 2 O 3 were mixed in a resin, the improvement of mechanical strength, reduction in coefficient of thermal expansion In addition, the light reflectance can be improved. The substrate 101 may be any substrate as long as the pair of conductor wirings 102 can be insulated and separated, and a so-called metal substrate in which an insulating layer is formed on a metal member may be used.

(導体配線102)
導体配線102は、発光素子105の電極と電気的に接続され、外部からの電流(電力)を供給するための部材である。すなわち、外部から通電させるための電極またはその一部としての役割を担うものである。通常、正と負の少なくとも2つに離間して形成される。
(Conductor wiring 102)
The conductor wiring 102 is a member that is electrically connected to the electrode of the light emitting element 105 and supplies a current (electric power) from the outside. That is, it plays a role as an electrode for energizing from the outside or a part thereof. Usually, it is formed to be separated into at least two of positive and negative.

導体配線102は、発光素子105の載置面となる基体の、少なくとも上面に形成される。導体配線102の材料は、基体101として用いられる材料や製造方法等によって適宜選択することができる。例えば、基体101の材料としてセラミックを用いる場合は、導体配線102の材料は、セラミックスシートの焼成温度にも耐え得る高融点を有する材料が好ましく、例えば、タングステン、モリブデンのような高融点の金属を用いるのが好ましい。さらに、その上に鍍金やスパッタリング、蒸着などにより、ニッケル、金、銀など他の金属材料にて被覆してもよい。   The conductor wiring 102 is formed on at least the upper surface of the base body on which the light emitting element 105 is placed. The material of the conductor wiring 102 can be appropriately selected depending on the material used for the substrate 101, the manufacturing method, and the like. For example, when ceramic is used as the material of the substrate 101, the material of the conductor wiring 102 is preferably a material having a high melting point that can withstand the firing temperature of the ceramic sheet. For example, a high melting point metal such as tungsten or molybdenum is used. It is preferable to use it. Furthermore, you may coat | cover with other metal materials, such as nickel, gold | metal | money, and silver, by plating, sputtering, vapor deposition, etc. on it.

また、基体101の材料としてガラスエポキシ樹脂を用いる場合は、導体配線102の材料は、加工し易い材料が好ましい。また、射出成型されたエポキシ樹脂を用いる場合には、導体配線102の材料は、打ち抜き加工、エッチング加工、屈曲加工などの加工がし易く、かつ、比較的大きい機械的強度を有する部材が好ましい。具体例としては、銅、アルミニウム、金、銀、タングステン、鉄、ニッケル等の金属、または、鉄−ニッケル合金、りん青銅、鉄入り銅、モリブデン等の金属層やリードフレーム等が挙げられる。また、その表面を、さらに金属材料で被覆してもよい。この材料は特に限定されないが、例えば、銀のみ、あるいは、銀と、銅、金、アルミニウム、ロジウム等との合金、または、これら、銀や各合金を用いた多層膜とすることができる。また、金属材料の配置方法は、鍍金法の他にスパッタ法や蒸着法などを用いることができる。   Further, when glass epoxy resin is used as the material of the base 101, the material of the conductor wiring 102 is preferably a material that can be easily processed. When using an injection-molded epoxy resin, the material of the conductor wiring 102 is preferably a member that can be easily processed by stamping, etching, bending, and has a relatively large mechanical strength. Specific examples include metals such as copper, aluminum, gold, silver, tungsten, iron, and nickel, or metal layers such as iron-nickel alloys, phosphor bronze, iron-containing copper, and molybdenum, lead frames, and the like. Moreover, you may coat | cover the surface with a metal material further. Although this material is not specifically limited, For example, it can be set as the multilayer film using only silver, the alloy of silver, copper, gold | metal | money, aluminum, rhodium, etc., or these, silver, or each alloy. Further, as a method for arranging the metal material, a sputtering method or a vapor deposition method can be used in addition to the plating method.

(接続部材103)
接続部材103は、発光素子105を基体101または導体配線102に固定するための部材である。絶縁性の樹脂や導電性の部材が挙げられ、図1Bに示すようなフリップチップ実装の場合は導電性の部材が用いられる。具体的にはAu含有合金、Ag含有合金、Pd含有合金、In含有合金、Pb−Pd含有合金、Au−Ga含有合金、Au−Sn含有合金、Sn含有合金、Sn−Cu含有合金、Sn−Cu−Ag含有合金、Au−Ge含有合金、Au−Si含有合金、Al含有合金、Cu−In含有合金、金属とフラックスの混合物等を挙げることができる。
(Connection member 103)
The connection member 103 is a member for fixing the light emitting element 105 to the base body 101 or the conductor wiring 102. An insulating resin or a conductive member can be used. In the case of flip chip mounting as shown in FIG. 1B, a conductive member is used. Specifically, Au-containing alloy, Ag-containing alloy, Pd-containing alloy, In-containing alloy, Pb-Pd-containing alloy, Au-Ga-containing alloy, Au-Sn-containing alloy, Sn-containing alloy, Sn-Cu-containing alloy, Sn- Cu-Ag containing alloy, Au-Ge containing alloy, Au-Si containing alloy, Al containing alloy, Cu-In containing alloy, the mixture of a metal and a flux, etc. can be mentioned.

接続部材103としては、液状、ペースト状、固体状(シート状、ブロック状、粉末状、ワイヤー状)のものを用いることができ、組成や基体の形状等に応じて、適宜選択することができる。また、これらの接続部材103は、単一部材で形成してもよく、あるいは、数種のものを組み合わせて用いてもよい。   As the connection member 103, a liquid, paste, or solid (sheet, block, powder, wire) can be used, and can be appropriately selected depending on the composition, the shape of the substrate, and the like. . Further, these connection members 103 may be formed as a single member or may be used in combination of several kinds.

(絶縁部材104)
導体配線102は、発光素子105や他材料と電気的に接続する部分以外は絶縁部材104で被覆されている事が好ましい。すなわち、各図に示されるように、基体上には、導体配線102を絶縁被覆するためのレジストが配置されていても良く、絶縁部材104はレジストとして機能させることができる。
(Insulating member 104)
The conductor wiring 102 is preferably covered with an insulating member 104 except for portions that are electrically connected to the light emitting element 105 and other materials. That is, as shown in each drawing, a resist for insulatingly covering the conductor wiring 102 may be disposed on the base, and the insulating member 104 can function as a resist.

絶縁部材104を配置させる場合には、導体配線102の絶縁を行う目的だけでなく、以下に述べるアンダーフィル材料と同様な白色系のフィラーを含有させることにより、光の漏れや吸収を防いで、発光装置100の光取り出し効率を上げることもできる。
絶縁部材104の材料は、発光素子からの光の吸収が少ない材料であり、絶縁性であれば特に限定されない。例えば、エポキシ、シリコーン、変性シリコーン、ウレタン樹脂、オキセタン樹脂、アクリル、ポリカーボネイト、ポリイミド等を用いることができる。
In the case of disposing the insulating member 104, not only the purpose of insulating the conductor wiring 102 but also the inclusion of a white filler similar to the underfill material described below prevents light leakage and absorption, The light extraction efficiency of the light emitting device 100 can also be increased.
The material of the insulating member 104 is a material that absorbs less light from the light emitting element and is not particularly limited as long as it is insulating. For example, epoxy, silicone, modified silicone, urethane resin, oxetane resin, acrylic, polycarbonate, polyimide, or the like can be used.

(発光素子105)
基体に搭載される発光素子105は、特に限定されず、公知のものを利用できるが、本形態においては、発光素子105として発光ダイオードを用いるのが好ましい。
発光素子105は、任意の波長のものを選択することができる。例えば、青色、緑色の
発光素子としては、ZnSeや窒化物系半導体(InAlGa1−x−yN、0≦X、0≦Y、X+Y≦1)、GaPを用いたものを用いることができる。また、赤色の発光素子としては、GaAlAs、AlInGaPなどを用いることができる。さらに、これ以外の材料からなる半導体発光素子を用いることもできる。用いる発光素子の組成や発光色、大きさや、個数などは目的に応じて適宜選択することができる。
(Light emitting element 105)
The light-emitting element 105 mounted on the base is not particularly limited, and a known light-emitting element 105 can be used. However, in the present embodiment, it is preferable to use a light-emitting diode as the light-emitting element 105.
A light emitting element 105 having an arbitrary wavelength can be selected. For example, as blue and green light-emitting elements, those using ZnSe, nitride-based semiconductors (In x Al y Ga 1-xy N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1), or GaP are used. be able to. As the red light emitting element, GaAlAs, AlInGaP, or the like can be used. Furthermore, a semiconductor light emitting element made of a material other than this can also be used. The composition, emission color, size, number, and the like of the light emitting element to be used can be appropriately selected according to the purpose.

半導体層の材料やその混晶度によって発光波長を種々選択することができる。同一面側に正負の電極を有するものであってもよいし、異なる面に正負の電極を有するものであってもよい。   Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. It may have positive and negative electrodes on the same surface side, or may have positive and negative electrodes on different surfaces.

本実施形態の発光素子105は、透光性の基板と、その基板の上に積層された半導体層を有する。この半導体層には、順にn型半導体層、活性層、p型半導体層が形成されており、n型半導体層にn型電極が形成されており、p型半導体層にp型電極が形成されている。   The light-emitting element 105 of this embodiment includes a light-transmitting substrate and a semiconductor layer stacked over the substrate. In this semiconductor layer, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer are formed in this order, an n-type electrode is formed on the n-type semiconductor layer, and a p-type electrode is formed on the p-type semiconductor layer. ing.

発光素子105の電極は、図1に示すように、接続部材103を介して基体101の表面の導体配線102にフリップチップ実装されており、電極の形成された面と対向する面、すなわち透光性基板の主面を光取り出し面としている。発光素子105は、正と負に絶縁分離された2つの導体配線102に跨るように配置されており、導電性の接続部材103によって電気的に接続され、機械的に固定されている。この発光素子105の実装方法は、半田ペーストを用いた実装方法の他、例えばバンプを用いた実装方法とすることができる。また、発光素子105としては発光素子が樹脂等で封止された小型のパッケージ品を用いることも可能であり、特に形状や構造を限定する物では無い。   As shown in FIG. 1, the electrode of the light emitting element 105 is flip-chip mounted on the conductor wiring 102 on the surface of the base 101 via the connection member 103, and is a surface opposite to the surface on which the electrode is formed, that is, translucent light. The main surface of the conductive substrate is the light extraction surface. The light emitting element 105 is disposed so as to straddle two conductor wirings 102 that are positively and negatively insulated and separated, and is electrically connected by a conductive connecting member 103 and mechanically fixed. The mounting method of the light emitting element 105 can be, for example, a mounting method using bumps in addition to a mounting method using solder paste. Further, as the light emitting element 105, a small package product in which the light emitting element is sealed with resin or the like can be used, and the shape and structure are not particularly limited.

なお、後述するように、波長変換部材を備えた発光装置とする場合には、その波長変換部材109を効率良く励起できる短波長が発光可能な窒化物半導体(InAlGa1−x−yN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。 As will be described later, when a light emitting device including a wavelength conversion member is used, a nitride semiconductor (In x Al y Ga 1-x − capable of emitting a short wavelength capable of efficiently exciting the wavelength conversion member 109 can be used. yN , 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) are preferable.

(アンダーフィル106)
発光素子105をフリップチップ実装する場合には、発光素子105と基体101の間にアンダーフィル106が形成されていることが好ましい。アンダーフィル106は、発光素子105からの光を効率よく反射できるようにすることと、熱膨張率を発光素子105に近づけることを目的として、フィラーを含有している。
アンダーフィル106の材料は、発光素子からの光の吸収が少ない材料であれば、特に限定されない。例えば、エポキシ、シリコーン、変性シリコーン、ウレタン樹脂、オキセタン樹脂、アクリル、ポリカーボネイト、ポリイミド等を用いることができる。
(Underfill 106)
In the case where the light emitting element 105 is flip-chip mounted, an underfill 106 is preferably formed between the light emitting element 105 and the substrate 101. The underfill 106 contains a filler for the purpose of efficiently reflecting light from the light emitting element 105 and bringing the coefficient of thermal expansion close to that of the light emitting element 105.
The material of the underfill 106 is not particularly limited as long as the material does not absorb light from the light emitting element. For example, epoxy, silicone, modified silicone, urethane resin, oxetane resin, acrylic, polycarbonate, polyimide, or the like can be used.

アンダーフィル106に含有するフィラーとしては、白色系のフィラーであれば、光がより反射され易くなり、光の取り出し効率の向上を図ることができる。また、フィラーとしては、無機化合物を用いるのが好ましい。ここでの白色とは、フィラー自体が透明であった場合でもフィラーの周りの材料と屈折率差がある場合に散乱で白色に見えるものも含む。   If the filler contained in the underfill 106 is a white filler, light is more easily reflected, and the light extraction efficiency can be improved. Moreover, it is preferable to use an inorganic compound as a filler. The white here includes those that appear white due to scattering when there is a difference in refractive index from the material surrounding the filler even when the filler itself is transparent.

ここで、フィラーの反射率は、発光波長の光に対して50%以上であることが好ましく、70%以上であることがより好ましい。このようにすれば、発光装置100の光の取り出し効率を向上させることができる。また、フィラーの粒径は、1nm以上10μm以下が好ましい。フィラーの粒径をこの範囲とすることで、アンダーフィルとしての樹脂流動性が良くなり、狭い隙間でも問題なく被覆することができる。なお、フィラーの粒径は、好ましくは、100nm以上5μm以下、さらに好ましくは200nm以上2μm以下である。また、フィラーの形状は、球形でも鱗片形状でもよい。   Here, the reflectance of the filler is preferably 50% or more, and more preferably 70% or more with respect to the light having the emission wavelength. In this way, the light extraction efficiency of the light emitting device 100 can be improved. The particle size of the filler is preferably 1 nm or more and 10 μm or less. By setting the particle size of the filler within this range, the resin fluidity as an underfill is improved, and even a narrow gap can be coated without any problem. The particle size of the filler is preferably 100 nm to 5 μm, more preferably 200 nm to 2 μm. Further, the shape of the filler may be spherical or scaly.

なお、フィラーの粒径やアンダーフィルの材料を適宜選択および調整することにより、発光素子の側面が、アンダーフィルによって被覆されないようにすることが好ましい。発光素子の側面を光取り出し面として確保するためである。   In addition, it is preferable that the side surface of the light-emitting element is not covered with the underfill by appropriately selecting and adjusting the particle size of the filler and the material of the underfill. This is for securing the side surface of the light emitting element as a light extraction surface.

(封止部材108)
封止部材108は、発光素子105を外部環境から保護するとともに、発光素子から出力される光を光学的に制御するため、発光素子105を被覆するように基体上に配置させる部材である。本実施形態においては、発光素子105は封止部材108で直接被覆されている。
(Sealing member 108)
The sealing member 108 is a member disposed on the base so as to cover the light emitting element 105 in order to protect the light emitting element 105 from the external environment and optically control light output from the light emitting element. In the present embodiment, the light emitting element 105 is directly covered with the sealing member 108.

封止部材108の材料としては、エポキシ樹脂やシリコーン樹脂あるいはそれらを混合させた樹脂や、ガラスなどの透光性材料を用いることができる。これらのうち、耐光性および成形のしやすさを考慮して、シリコーン樹脂を選択することが好ましい。   As a material of the sealing member 108, an epoxy resin, a silicone resin, a resin obtained by mixing them, or a translucent material such as glass can be used. Among these, it is preferable to select a silicone resin in consideration of light resistance and ease of molding.

封止部材108は、発光素子105からの光を拡散させるための光拡散材を含有する。光拡散材を有することで、発光素子105から光軸L方向に出射された光が光拡散材によって全包囲に拡散される。   The sealing member 108 contains a light diffusing material for diffusing light from the light emitting element 105. By having the light diffusing material, the light emitted from the light emitting element 105 in the direction of the optical axis L is diffused to the entire enclosure by the light diffusing material.

なお封止部材108には、光拡散材に加え、発光素子105からの光を吸収して発光素子からの出力光とは異なる波長の光を発する蛍光体等の波長変換部材や、発光素子の発光色に対応させて、着色剤を含有させることもできる。   In addition to the light diffusing material, the sealing member 108 absorbs light from the light emitting element 105 and emits light having a wavelength different from that of the output light from the light emitting element. A colorant can also be included corresponding to the emission color.

封止部材108は、発光素子105を被覆するように圧縮成型や射出成型によって形成することができる。その他、封止部材108の材料の粘度を最適化して、発光素子105の上に滴下もしくは描画して、材料自体の表面張力によって、各図に示されるような形状を形成することができる。   The sealing member 108 can be formed by compression molding or injection molding so as to cover the light emitting element 105. In addition, the viscosity of the material of the sealing member 108 can be optimized, dropped or drawn on the light emitting element 105, and the shape as shown in each figure can be formed by the surface tension of the material itself.

後者の形成方法による場合には、金型を必要とすることなく、より簡便な方法で封止部材を形成することができる。また、このような形成方法による封止部材の材料の粘度を調整する手段として、その材料本来の粘度の他、上述したような光拡散材、波長変換部材、着色剤を利用して所望の粘度に調整することもできる。   When the latter forming method is used, the sealing member can be formed by a simpler method without requiring a mold. Further, as a means for adjusting the viscosity of the material of the sealing member by such a forming method, in addition to the inherent viscosity of the material, a desired viscosity using the light diffusing material, the wavelength conversion member, and the colorant as described above. It can also be adjusted.

(光拡散材)
光拡散材としては、具体的には、SiO、Al、Al(OH)、MgCO、TiO、ZrO、ZnO、Nb、MgO、Mg(OH)、SrO、In、TaO、HfO、SeO、Y、CaO、NaO、Bなどの酸化物、SiN、AlN、AlONなどの窒化物、MgFのようなフッ化物などが挙げられる。これらは、単独で用いてもよいし、混合して用いてもよい。あるいは、複数の層に分けてこれらを積層させるようにしてもよい。
(Light diffusing material)
Specifically, as the light diffusing material, SiO 2 , Al 2 O 3 , Al (OH) 3 , MgCO 3 , TiO 2 , ZrO 2 , ZnO, Nb 2 O 5 , MgO, Mg (OH) 2 , SrO , Oxides such as In 2 O 3 , TaO 2 , HfO, SeO, Y 2 O 3 , CaO, Na 2 O, B 2 O 3 , nitrides such as SiN, AlN, AlON, fluorides such as MgF 2 Etc. These may be used alone or in combination. Alternatively, these may be laminated in a plurality of layers.

また、光拡散材として有機フィラーを用いてもよい。例えば各種樹脂を粒子状としたものが挙げられる。この場合、各種樹脂としては例えば、シリコーン樹脂、ポリカーボネイト樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリテトラフルオロエチレン樹脂、エポキシ樹脂、シアナート樹脂、フェノール樹脂、アクリル樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、ポリビニルアセタール樹脂、ポリメタクリル酸メチル樹脂、ウレタン樹脂及びポリエステル樹脂などが挙げられる。   Moreover, you may use an organic filler as a light-diffusion material. For example, what made various resin the particle form is mentioned. In this case, examples of various resins include silicone resin, polycarbonate resin, polyethersulfone resin, polyarylate resin, polytetrafluoroethylene resin, epoxy resin, cyanate resin, phenol resin, acrylic resin, polyimide resin, polystyrene resin, polypropylene resin. , Polyvinyl acetal resin, polymethyl methacrylate resin, urethane resin and polyester resin.

光拡散材は、実質的に発光素子からの光を波長変換しない材料であることが好ましい。これにより、波長変換部材含有層の厚みが角度により異なることによる、配光色ムラを抑制することができる。   The light diffusing material is preferably a material that does not substantially convert the wavelength of light from the light emitting element. Thereby, the light distribution color nonuniformity by the thickness of the wavelength conversion member content layer changing with angles can be suppressed.

光拡散材の含有量は、光が拡散される程度であればよく、例えば0.01〜30wt%程度、好ましくは2〜20wt%程度である。また、光拡散材のサイズも同様に光が拡散される程度であればよく、例えば0.01〜30μm程度、好ましくは0.5〜10μm程度である。形状は、球形でも鱗片形状でもよいが、均一に拡散させるために球状であることが好ましい。ただし光拡散材濃度は封止材との屈折率差や厚みにより相対的に変化する物であり、上述の数字はあくまでも目安である。
例えば、発光素子自体は、通常、光軸方向への光強度が最も強くなる。そのため拡散材の濃度が低すぎると、発光素子を点灯して光軸方向から観察したときに、中心部が外周部よりも暗い輝度分布にならない場合がある。よって、中心部が外周部よりも暗い輝度分布になるように、拡散材の濃度を調整することが好ましい。
The content of the light diffusing material only needs to be such that light is diffused, and is, for example, about 0.01 to 30 wt%, preferably about 2 to 20 wt%. Similarly, the size of the light diffusing material may be such that light is diffused, for example, about 0.01 to 30 μm, preferably about 0.5 to 10 μm. The shape may be spherical or scaly, but is preferably spherical for uniform diffusion. However, the concentration of the light diffusing material is a material that changes relatively depending on the refractive index difference and thickness with respect to the sealing material, and the above-mentioned numbers are only a guide.
For example, the light emitting element itself usually has the highest light intensity in the optical axis direction. For this reason, when the concentration of the diffusing material is too low, there is a case where the luminance distribution at the center portion is not darker than the outer peripheral portion when the light emitting element is turned on and observed from the optical axis direction. Therefore, it is preferable to adjust the concentration of the diffusing material so that the center portion has a darker luminance distribution than the outer peripheral portion.

また、封止部材108中の光拡散材の濃度を制御することで、発光装置100を光軸上から観測して、中心部を暗くして外周を明るくすることが出来る。この様な構成とすることで、より光軸方向の光量を抑制しバットウイング型の配光特性を得ることができる。   Further, by controlling the concentration of the light diffusing material in the sealing member 108, the light emitting device 100 can be observed from the optical axis, and the center can be darkened and the outer periphery can be brightened. By adopting such a configuration, the amount of light in the optical axis direction can be further suppressed, and a batwing type light distribution characteristic can be obtained.

本実施形態の発光装置では、二次レンズを用いることなく広配光を実現することができるため、発光素子105が基体101上に複数載置されている場合に、隣接する発光素子の間隔が20mm以上であっても、短い照射距離で光を均一に拡散させることができる。これにより、複数の発光素子を用いて輝度ムラの抑制された面光源を実現することができる。ここで隣接する発光素子の間隔とは、図6の距離Fで示すように、隣接する2つの発光素子105の最短距離のことをいうものとする。   In the light emitting device of the present embodiment, wide light distribution can be realized without using a secondary lens. Therefore, when a plurality of light emitting elements 105 are mounted on the base 101, the interval between adjacent light emitting elements is small. Even if it is 20 mm or more, light can be uniformly diffused at a short irradiation distance. Thereby, the surface light source by which the brightness nonuniformity was suppressed using a some light emitting element is realizable. Here, the interval between the adjacent light emitting elements means the shortest distance between the two adjacent light emitting elements 105 as shown by a distance F in FIG.

[第2実施形態]
図3は、第2実施形態の発光装置の一例を示す断面図である。
本実施形態では、発光素子105に接して波長変換部材109が配置されており、波長変換部材109を被覆するように光拡散材の含有された封止部材108が形成されている。
[Second Embodiment]
FIG. 3 is a cross-sectional view illustrating an example of the light emitting device of the second embodiment.
In this embodiment, the wavelength conversion member 109 is disposed in contact with the light emitting element 105, and the sealing member 108 containing the light diffusing material is formed so as to cover the wavelength conversion member 109.

上述したように、封止部材108の全部に波長変換部材を含有する場合には、波長変換部材含有層の厚みが角度により異なり、配光色ムラが生じる。そのため、本実施形態では、波長変換部材109を発光素子105の周囲に形成し、その上から光学性能を持たせた封止部材108を形成する。これにより、波長変換が行われる領域(波長変換部材109)と、光学性能が付与される領域(封止部材108)を分けて形成することができるため、所望の配光特性を実現させつつ、配光色ムラが抑制される。   As described above, when the wavelength conversion member is contained in the entire sealing member 108, the thickness of the wavelength conversion member-containing layer varies depending on the angle, and light distribution color unevenness occurs. Therefore, in this embodiment, the wavelength conversion member 109 is formed around the light emitting element 105, and the sealing member 108 having optical performance is formed thereon. Thereby, since the region where the wavelength conversion is performed (the wavelength conversion member 109) and the region where the optical performance is imparted (the sealing member 108) can be formed separately, while realizing the desired light distribution characteristics, Light distribution color unevenness is suppressed.

(波長変換部材109)
波長変換部材としては、例えば、窒化物系半導体を発光層とする発光素子からの光を吸収し、異なる波長の光に波長変換するものであればよい。蛍光物質は、例えば、Eu、Ce等のランタノイド系元素で主に賦活される、窒化物系蛍光体、酸窒化物系蛍光体を用いることができる。より具体的には、大別して下記(D1)〜(D3)にそれぞれ記載された中から選ばれる少なくともいずれか1以上であることが好ましい。
(D1)Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活される、アルカリ土類ハロゲンアパタイト、アルカリ土類金属ホウ酸ハロゲン、アルカリ土類金属アルミン酸塩、アルカリ土類金属硫化物、アルカリ土類金属チオガレート、アルカリ土類金属窒化ケイ素、ゲルマン酸塩等の蛍光体
(D2)Ce等のランタノイド系元素で主に賦活される、希土類アルミン酸塩、希土類ケイ酸塩、アルカリ土類金属希土類ケイ酸塩等の蛍光体
(D3)Eu等のランタノイド系元素で主に賦活される、有機または有機錯体等の蛍光体
(Wavelength conversion member 109)
As the wavelength conversion member, for example, any member that absorbs light from a light emitting element having a nitride semiconductor as a light emitting layer and converts the light into light having a different wavelength may be used. As the fluorescent material, for example, a nitride-based phosphor or an oxynitride-based phosphor that is mainly activated by a lanthanoid element such as Eu or Ce can be used. More specifically, it is preferably at least any one or more selected from the groups described in the following (D1) to (D3).
(D1) Alkaline earth halogen apatite, alkaline earth metal borate, alkaline earth metal aluminate, alkaline earth metal, mainly activated by lanthanoids such as Eu and transition metal elements such as Mn Fluorescent substance such as sulfide, alkaline earth metal thiogallate, alkaline earth metal silicon nitride, germanate, etc. (D2) Rare earth aluminate, rare earth silicate, alkali mainly activated by lanthanoid elements such as Ce Phosphors such as earth metal rare earth silicates (D3) Phosphors such as organic or organic complexes mainly activated by lanthanoid elements such as Eu

中でも、前記(D2)のCe等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体であるYAG(Yttrium Aluminum Garnet)系蛍光体が好ましい。YAG系蛍光体は、次の(D21)〜(D24)などの組成式で表される。
(D21)YAl12:Ce
(D22)(Y0.8Gd0.2Al12:Ce
(D23)Y(Al0.8Ga0.212:Ce
(D24)(Y,Gd)(Al,Ga)12:Ce
Among these, a YAG (Yttrium Aluminum Garnet) phosphor, which is a rare earth aluminate phosphor mainly activated by a lanthanoid element such as Ce in (D2), is preferable. The YAG phosphor is represented by the following composition formula (D21) to (D24).
(D21) Y 3 Al 5 O 12 : Ce
(D22) (Y 0.8 Gd 0.2 ) 3 Al 5 O 12: Ce
(D23) Y 3 (Al 0.8 Ga 0.2) 5 O 12: Ce
(D24) (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce

また、例えば、Yの一部または全部をTb、Lu等で置換してもよい。具体的には、TbAl12:Ce、LuAl12:Ce等でもよい。さらに、前記した蛍光体以外の蛍光体であって、同様の性能、作用、効果を有する蛍光体も使用することができる。 For example, part or all of Y may be substituted with Tb, Lu, or the like. Specifically, Tb 3 Al 5 O 12: Ce, Lu 3 Al 5 O 12: may be Ce or the like. Furthermore, phosphors other than the above-described phosphors having the same performance, function, and effect can be used.

このような蛍光体の粒径としては、例えば2.5〜30μm程度とすることが好ましい。
なお、本明細書で「粒径」とする場合は、平均粒径のことを指すものとし、その値は、空気透過法又はF.S.S.S.No(Fisher−SubSieve−Sizers−No.)によるものとする(いわゆるDバー(Dの上にバー)で表される値)。
The particle size of such a phosphor is preferably about 2.5 to 30 μm, for example.
In the present specification, the term “particle size” refers to an average particle size, and the value is determined by the air permeation method or F.I. S. S. S. No (Fisher-SubSieve-Sizers-No.) (A value represented by a so-called D bar (bar above D)).

波長変換部材は、例えば、いわゆるナノクリスタル、量子ドットと称される発光物質でもよい。このような材料としては、半導体材料、例えば、II−VI族、III−V族、IV−VI族、I−III−VI族の半導体、具体的には、CdSe、コアシェル型のCdSSe1−X/ZnS、GaP、InAs、InP、GaN、PbS、PbSe、Cu(In,Ga)S、Ag(In,Ga)S等のナノサイズの高分散粒子を挙げることができる。このような量子ドットは、例えば、粒径1〜100nm、好ましくは1〜20nm程度(原子が10〜50個程度)とすることができる。このような粒径の量子ドットを用いることにより、内部散乱を抑制することができ、波長変換領域での光の散乱を抑制することができる。 The wavelength conversion member may be, for example, a so-called nanocrystal or a luminescent material called a quantum dot. Examples of such materials include semiconductor materials such as II-VI, III-V, IV-VI, and I-III-VI semiconductors, specifically CdSe, core-shell CdS X Se 1. Nano-sized highly dispersed particles such as —X 2 / ZnS, GaP, InAs, InP, GaN, PbS, PbSe, Cu (In, Ga) S 2 , and Ag (In, Ga) S 2 can be mentioned. Such quantum dots can have, for example, a particle size of 1 to 100 nm, preferably about 1 to 20 nm (about 10 to 50 atoms). By using quantum dots having such a particle size, internal scattering can be suppressed, and light scattering in the wavelength conversion region can be suppressed.

図3に示す発光装置200は、発光素子105の周囲に波長変換部材109を有している以外は第1実施形態の発光装置100と同様の構成を有してよい。
本実施形態では、波長変換部材109は、封止部材108と同様に、光軸L方向に凸形状とされている。発光素子から封止部材108へ至るまでの間に波長変換が行われるように発光素子105の表面が露出されている部分に波長変換部材109が接するように配置されている。図3に示す例では、波長変換部材109は発光素子105を被覆する略半球状に形成されている。
The light emitting device 200 shown in FIG. 3 may have the same configuration as the light emitting device 100 of the first embodiment except that the light emitting element 105 has a wavelength conversion member 109 around it.
In the present embodiment, the wavelength conversion member 109 has a convex shape in the optical axis L direction, like the sealing member 108. The wavelength conversion member 109 is disposed in contact with a portion where the surface of the light emitting element 105 is exposed so that the wavelength conversion is performed from the light emitting element to the sealing member 108. In the example shown in FIG. 3, the wavelength conversion member 109 is formed in a substantially hemispherical shape that covers the light emitting element 105.

波長変換部材109は、上面視においてその外形が円形もしくは楕円形となるよう形成されていることが好ましい。   The wavelength conversion member 109 is preferably formed so that its outer shape is circular or elliptical when viewed from above.

波長変換部材109の光軸(L)方向の高さ(D)は、封止部材108の光軸(L)方向の高さ(A)の1/2以下であることが好ましい。これにより封止部材108の厚みが確保でき色ムラの軽減が可能となる。   The height (D) of the wavelength conversion member 109 in the optical axis (L) direction is preferably ½ or less of the height (A) of the sealing member 108 in the optical axis (L) direction. Thereby, the thickness of the sealing member 108 can be ensured, and color unevenness can be reduced.

また、波長変換部材109の幅(E)は、封止部材108の幅(C)の4/5以下であることが好ましい。これにより封止部材108の厚みが確保でき色ムラの軽減が可能となる。   The width (E) of the wavelength conversion member 109 is preferably 4/5 or less of the width (C) of the sealing member 108. Thereby, the thickness of the sealing member 108 can be ensured, and color unevenness can be reduced.

なお、第2実施形態の発光装置の封止部材108に、さらに蛍光体等の波長変換部材を含有させてもよい。この場合、波長変換部材109の発光波長は、封止部材108に含有される蛍光体等の波長変換部材の発光波長よりも長波であることが好ましい。これにより波長変換部材109で波長変換された光が、封止部材に含有された波長変換部材に再度波長変換されることを抑制することができる。   Note that the sealing member 108 of the light emitting device of the second embodiment may further contain a wavelength conversion member such as a phosphor. In this case, the emission wavelength of the wavelength conversion member 109 is preferably longer than the emission wavelength of a wavelength conversion member such as a phosphor contained in the sealing member 108. Thereby, it can suppress that the light wavelength-converted by the wavelength conversion member 109 is wavelength-converted again by the wavelength conversion member contained in the sealing member.

[第2実施形態の変形例]
図4は、第2実施形態の発光装置200の変形例を示す断面図である。本変形例の発光装置300は、発光素子105として、発光素子に波長変換部材と反射部材203を備えた小型のLEDパッケージ品を用いたものである。具体的には、発光素子105の側面及び下面を反射部材203で被覆し、発光素子105の上面に波長変換部材109を備えたLEDパッケージ201を、基体101に載置している。LEDパッケージ201の端子204と、導体配線102が、接続部材103により電気的に接続されている。
[Modification of Second Embodiment]
FIG. 4 is a cross-sectional view showing a modification of the light emitting device 200 of the second embodiment. The light emitting device 300 according to this modification uses a small LED package product that includes a wavelength conversion member and a reflection member 203 in the light emitting element as the light emitting element 105. Specifically, the LED package 201 in which the side surface and the lower surface of the light emitting element 105 are covered with the reflection member 203 and the wavelength conversion member 109 is provided on the upper surface of the light emitting element 105 is mounted on the base 101. The terminal 204 of the LED package 201 and the conductor wiring 102 are electrically connected by the connecting member 103.

この変形例によっても、第2実施形態と同様に、波長変換が行われる領域と、光学性能が付与される領域を分けて形成することができるため、配光色ムラが抑制される。この様な構成とすることで予め色度を選別した光源を使用することができるため、製品の色度歩留まりを向上することが可能である。   Also according to this modification, similarly to the second embodiment, a region where wavelength conversion is performed and a region where optical performance is imparted can be formed separately, and thus light distribution color unevenness is suppressed. With such a configuration, it is possible to use a light source whose chromaticity has been selected in advance, so that the chromaticity yield of the product can be improved.

[第3実施形態]
図5は、第3実施形態の発光装置400の一例を示す断面図である。
本実施形態では、封止部材108と基体101とが接する領域(封止部材108の底面)の半径が、封止部材108の幅方向の最大半径よりも小さくなるよう形成されている。このように、封止部材108が基体101近傍において逆テーパー部205を有することにより、発光素子から光軸(L)に対して真横方向に出た光が、屈折により基体上面方向に向きが変わることで、基体に当たる事無く全面を照らす光量を増やすことができる。封止部材108が、基体101近傍において逆テーパー状となる以外は、第1実施形態の発光装置100または第2実施形態の発光装置200と同様の構成を有してよい。
[Third Embodiment]
FIG. 5 is a cross-sectional view illustrating an example of the light emitting device 400 of the third embodiment.
In the present embodiment, the radius of the region where the sealing member 108 and the base 101 are in contact (the bottom surface of the sealing member 108) is smaller than the maximum radius in the width direction of the sealing member 108. As described above, since the sealing member 108 has the inversely tapered portion 205 in the vicinity of the base 101, the light emitted from the light emitting element in the lateral direction with respect to the optical axis (L) is changed in direction toward the top surface of the base by refraction. Thus, the amount of light that illuminates the entire surface without hitting the substrate can be increased. The sealing member 108 may have a configuration similar to that of the light emitting device 100 of the first embodiment or the light emitting device 200 of the second embodiment, except that the sealing member 108 has a reverse taper shape in the vicinity of the base 101.

以下、実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
本実施例は、図1Aおよび図1Bに示すように、基体101としてガラスエポキシ基材を用い、導体配線として35μmのCu材を用いる。
発光素子は、平面視が1辺600μmの正方形で、厚みが150μmの窒化物系青色LEDを用い、絶縁部材104にはエポキシ系の白色ソルダーレジストを用いる。アンダーフィル106として、酸化チタンをフィラーとして30wt%含有したシリコーン樹脂を用い、発光素子105の下面及び側面をアンダーフィル106で被覆している。封止部材108は、光拡散材としてSiOフィラーを30wt%含有したシリコーン樹脂を用い、図1Aおよび図1Bに示すように、上面視の外形が円形である、略半長球状である。光軸方向の高さAが5.5mm、封止部材108の底面の半径Bは1.7mmとし、アスペクト比(A/B)が3.2である。
Hereinafter, although an example explains concretely, the present invention is not limited to these examples.
[Example 1]
In this embodiment, as shown in FIGS. 1A and 1B, a glass epoxy base material is used as the base 101, and a 35 μm Cu material is used as the conductor wiring.
The light emitting element is a nitride blue LED having a square shape with sides of 600 μm and a thickness of 150 μm in plan view, and an epoxy white solder resist is used for the insulating member 104. As the underfill 106, a silicone resin containing 30 wt% of titanium oxide as a filler is used, and the lower surface and side surfaces of the light emitting element 105 are covered with the underfill 106. The sealing member 108 uses a silicone resin containing 30 wt% of SiO 2 filler as a light diffusing material, and has a substantially hemispherical shape with an outer shape in a top view as shown in FIGS. 1A and 1B. The height A in the optical axis direction is 5.5 mm, the radius B of the bottom surface of the sealing member 108 is 1.7 mm, and the aspect ratio (A / B) is 3.2.

この様な構成とすることで、発光素子105から発した光が光拡散材であるSiOフィラーで散乱することにより、発光装置100から発せられる光強度は封止部材108の見かけ面積比に略比例する。結果として図2にアスペクト比3.2として示すような配光特性を実現することができる。この配光は、0°付近の相対光度よりも、50°〜60°付近の相対光度が高くなっており、バットウイング配光として制御することが可能となる。 With such a configuration, the light emitted from the light emitting device 105 is scattered by the SiO 2 filler that is a light diffusing material, so that the light intensity emitted from the light emitting device 100 is approximately equal to the apparent area ratio of the sealing member 108. Proportional. As a result, a light distribution characteristic as shown in FIG. 2 with an aspect ratio of 3.2 can be realized. This light distribution has a higher relative light intensity near 50 ° to 60 ° than a relative light intensity near 0 °, and can be controlled as a batwing light distribution.

[実施例2]
本実施例は、図3に示すように、波長変換部材109を含有する封止部材108が発光素子105の周囲に形成されている以外は実施例1と同様である。
本実施例の波長変換部材109はYAG系蛍光体を含有するシリコーン樹脂を使用し、封止部材108は光拡散材としてSiOフィラーを含有するシリコーン樹脂を使用している。
この様な構成とすることで、発光素子105の青色光と波長変換部材109で波長変換された黄色光とで白色光が合成され、封止部材108内で更に拡散されることにより全方向に色ムラの少ないバットウイング配光が得られる。
[Example 2]
This embodiment is the same as the first embodiment except that the sealing member 108 containing the wavelength conversion member 109 is formed around the light emitting element 105 as shown in FIG.
The wavelength conversion member 109 of this embodiment uses a silicone resin containing a YAG phosphor, and the sealing member 108 uses a silicone resin containing a SiO 2 filler as a light diffusing material.
With such a configuration, white light is synthesized by the blue light of the light emitting element 105 and the yellow light wavelength-converted by the wavelength conversion member 109, and further diffused in the sealing member 108 so as to be omnidirectional. A bat wing light distribution with little color unevenness is obtained.

実施例3〜5として、封止部材108の形状を変化させ、配光特性と輝度分布を確認した。実施例3の発光装置を図7(A)に、実施例4の発光装置を図7(B)に、実施例5の発光装置を図7(C)に示す。   As Examples 3 to 5, the shape of the sealing member 108 was changed, and the light distribution characteristics and the luminance distribution were confirmed. The light emitting device of Example 3 is shown in FIG. 7A, the light emitting device of Example 4 is shown in FIG. 7B, and the light emitting device of Example 5 is shown in FIG. 7C.

実施例3〜5の発光装置は、封止部材108が凸形状であり、その光軸方向の高さが、封止部材108の底面の幅よりも長く、かつ、光拡散材を含有している点、および封止部材108の上表面が曲率を有している点について共通している。
また、基体としてガラスエポキシ基材を用い、導体配線として35μmのCu材を用いる。発光素子は、平面視が1辺600μmの正方形で、厚みが150μmの窒化物系青色LEDを用い、絶縁部材にはエポキシ系の白色ソルダーレジストを用いる点が共通している。
In the light emitting devices of Examples 3 to 5, the sealing member 108 has a convex shape, the height in the optical axis direction is longer than the width of the bottom surface of the sealing member 108, and contains a light diffusing material. And the point that the upper surface of the sealing member 108 has a curvature.
Further, a glass epoxy base material is used as the substrate, and a 35 μm Cu material is used as the conductor wiring. The light emitting element is common in that a nitride blue LED having a square of 600 μm on a side and a thickness of 150 μm is used in plan view, and an epoxy white solder resist is used as an insulating member.

[実施例3]
実施例3の封止部材108は、図7(A)に示すように、光軸近傍の曲率が、その他の部分の曲率よりも大きく、円錐型に近い形状とされている。封止部材の側面も曲率を有している。実施例3では、図3で示したように、発光素子上に蛍光体を塗布する方式で蛍光体層を形成している。蛍光体はYAG系の蛍光体を用い、白色発光装置とされている。
[Example 3]
As shown in FIG. 7A, the sealing member 108 according to the third embodiment has a shape close to a conical shape with a curvature near the optical axis larger than that of other portions. The side surface of the sealing member also has a curvature. In Example 3, as shown in FIG. 3, the phosphor layer is formed by applying the phosphor on the light emitting element. The phosphor uses a YAG phosphor and is a white light emitting device.

[実施例4]
実施例4の封止部材108は、図7(B)に示すように、光軸近傍の曲率が、その他の部分の曲率よりも小さく、光軸近傍の表面が平坦に近い形状とされている。また、封止部材の側面に、基体の上面(発光素子の上面)に対して略垂直となる面を有しており、円柱状に近い形状とされている。
[Example 4]
As shown in FIG. 7B, the sealing member 108 of Example 4 has a curvature in the vicinity of the optical axis that is smaller than the curvature in other portions, and the surface in the vicinity of the optical axis is nearly flat. . In addition, the side surface of the sealing member has a surface that is substantially perpendicular to the upper surface of the substrate (the upper surface of the light emitting element), and has a shape close to a cylindrical shape.

このような形状は次のようにして形成することができる。
まず、ナノフィラーを添加して高チキソ化した樹脂に拡散材を分散させて調合した樹脂を用い、ディスペンサの上下方向(z方向)を制御して引き上げながら樹脂を塗布し、必要な高さまで引き上げたら引き上げを止めて、垂直断面が長方形に近い形になるまで樹脂を供給する。所望の形状になったら樹脂の供給を終了し、上面を擦りきるようにして樹脂の糸切りを行う。なお、ここでは、封止部材の上面が曲率を持った例を示したが、上面が平坦とされていてもよい。
実施例4では、実施例3と同様に発光素子上に蛍光体を塗布する方式で蛍光体層が形成されており、白色発光装置とされている。
Such a shape can be formed as follows.
First, using a resin prepared by dispersing a diffusing material in a highly thixotropic resin by adding nanofillers, the resin is applied while pulling up by controlling the vertical direction (z direction) of the dispenser, and then pulled up to the required height. Then, pulling up is stopped and the resin is supplied until the vertical cross section is close to a rectangle. When the desired shape is obtained, the supply of the resin is terminated, and the resin is trimmed so that the upper surface is rubbed. Here, an example in which the upper surface of the sealing member has a curvature is shown, but the upper surface may be flat.
In Example 4, as in Example 3, a phosphor layer is formed by a method of applying a phosphor on a light emitting element, and a white light emitting device is obtained.

[実施例5]
実施例5の封止部材108は、図7(C)に示すように、上部10と下部20とを有しており、上部10は、下部20の径Hよりも大きい径Gを有するきのこ型とされている。また、上部10において、実施例4と同様に光軸近傍の曲率がその他の部分の曲率よりも小さく、光軸近傍の表面が平坦に近い形状とされている。下部20の側面は、基体の上面(発光素子の上面)に対して略垂直となる面を有して略円柱状に形成されており、上部10は、略球状に形成されている。
また、封止部材の側面は、下方から上方にいくに従ってその径が大きくなり、径Gの点で最大となった後、さらに上方にいくに従って徐々に小さくなる。このように、発光装置を上面視したときに、上部10が下部20を包含するように重なることで、輝度が高くなる封止部材の底部の周囲が上面視した際に直接見えなくなるため、後述するように、均一性を向上させることができる。
実施例5では、図4で示したようなLEDパッケージ201を用いて蛍光体層を形成することで白色発光装置とされている。
[Example 5]
The sealing member 108 of Example 5 has an upper portion 10 and a lower portion 20 as shown in FIG. 7C, and the upper portion 10 has a mushroom type having a diameter G larger than the diameter H of the lower portion 20. It is said that. In addition, in the upper part 10, the curvature in the vicinity of the optical axis is smaller than the curvatures in the other parts as in the fourth embodiment, and the surface in the vicinity of the optical axis has a substantially flat shape. The side surface of the lower portion 20 has a surface that is substantially perpendicular to the upper surface of the substrate (the upper surface of the light emitting element) and is formed in a substantially cylindrical shape, and the upper portion 10 is formed in a substantially spherical shape.
Further, the side surface of the sealing member increases in diameter from the lower side to the upper side, becomes maximum at the point of the diameter G, and gradually decreases as it goes further upward. As described above, when the light emitting device is viewed from the top, the upper portion 10 overlaps with the lower portion 20 so that the periphery of the bottom portion of the sealing member that increases the brightness is not directly visible when viewed from the top. As a result, uniformity can be improved.
In Example 5, a white light emitting device is formed by forming a phosphor layer using the LED package 201 as shown in FIG.

(配向特性及び輝度分布)
図8に示すように、各発光装置の配光特性は、全てバットウイング配光となる。実施例5の発光装置は、実施例3及び実施例4の発光装置に比べて光軸近傍の明るさが平坦になっている以外は、略同じような配光特性を示す。
一方、図9は実施例3〜5の発光装置の封止部材108とその周囲の上面視の輝度分布を示すグラフであり、図10は上面視での面内輝度分布である。図10(A)は実施例3、図10(B)は実施例4、図10(C)は実施例5の輝度分布を示している。
図9及び図10の輝度分布をみると、実施例5の発光装置が最も均一性が良い結果となる。ここで、均一性とは、光軸近傍の最も暗い部分(暗部)の輝度と最も明るい部分(明部)の輝度の明暗比(暗部/明部)のことをいう。この値が大きいほど、明部と暗部の差が小さいということであり、均一性がよいものとする。なお、実施例3の明暗比は0.157、実施例4の明暗比は0.557、実施例5の明暗比は0.717である。
照射面である光拡散板等が発光装置に対して非常に近い場合、図8に示す配光特性には現れない発光装置自体の輝度分布の影響が現れるため、実施例3の発光装置では照射面に光軸上が暗く、その周囲が明るいドーナツ状の明暗形状が現れる。これに対し、実施例4および5では発光装置の輝度均一性が良いため、照射面光軸近傍の明暗形状の発生を抑制することが可能となるためである。
(Orientation characteristics and luminance distribution)
As shown in FIG. 8, the light distribution characteristics of the light emitting devices are all batwing light distribution. The light-emitting device of Example 5 exhibits substantially the same light distribution characteristics as the light-emitting devices of Examples 3 and 4 except that the brightness near the optical axis is flat.
On the other hand, FIG. 9 is a graph showing the luminance distribution in the top view of the sealing member 108 of the light emitting device of Examples 3 to 5 and the periphery thereof, and FIG. 10 is the in-plane luminance distribution in the top view. 10A shows the luminance distribution of the third embodiment, FIG. 10B shows the luminance distribution of the fourth embodiment, and FIG. 10C shows the luminance distribution of the fifth embodiment.
9 and 10, the light emitting device of Example 5 has the best uniformity. Here, the uniformity means the brightness / darkness ratio (dark part / bright part) of the brightness of the darkest part (dark part) near the optical axis and the brightness of the brightest part (bright part). The larger this value is, the smaller the difference between the bright part and the dark part, and the better the uniformity. The light / dark ratio of Example 3 is 0.157, the light / dark ratio of Example 4 is 0.557, and the light / dark ratio of Example 5 is 0.717.
When the light diffusing plate or the like, which is the irradiation surface, is very close to the light emitting device, the influence of the luminance distribution of the light emitting device itself that does not appear in the light distribution characteristics shown in FIG. The surface is dark on the optical axis, and a bright donut-like shape appears around it. On the other hand, in Examples 4 and 5, since the luminance uniformity of the light emitting device is good, it is possible to suppress the occurrence of bright and dark shapes near the irradiation surface optical axis.

実施例3及び4の結果から、封止部材108の光軸近傍の曲率がその他の部分の曲率よりも小さい場合には、光軸上とその周囲における封止部材内での光路長の差が小さくなるため光軸方向へ抜ける光量差が小さくなり、均一性が向上する。
また、実施例5の発光装置で均一性が最も良い理由は、実施例4において最も輝度の高い、封止部材底部周囲の白色ソルダーレジストからの反射光を、封止部材自体によって遮蔽、散乱させるためだと考えられる。
この時の上部10と下部20の直径の差は、例えば下部20の直径に対して上部10の直径が1.1〜2.0倍程度、好ましくは1.2〜1.5倍程度である。なお、この直径比は封止部材のアスペクト比や配光特性によって変化するため、前述の範囲に限定されるものではない。
From the results of Examples 3 and 4, when the curvature in the vicinity of the optical axis of the sealing member 108 is smaller than the curvature of other portions, there is a difference in the optical path length in the sealing member on and around the optical axis. Since it becomes small, the difference in the amount of light passing through in the optical axis direction becomes small, and the uniformity is improved.
The reason why the uniformity of the light emitting device of Example 5 is the best is that the reflected light from the white solder resist around the bottom of the sealing member having the highest luminance in Example 4 is shielded and scattered by the sealing member itself. This is probably because of this.
The difference in diameter between the upper portion 10 and the lower portion 20 at this time is, for example, that the diameter of the upper portion 10 is about 1.1 to 2.0 times, preferably about 1.2 to 1.5 times the diameter of the lower portion 20. . In addition, since this diameter ratio changes with the aspect ratio and light distribution characteristic of a sealing member, it is not limited to the above-mentioned range.

本発明の発光装置は、液晶ディスプレイのバックライト光源、各種照明器具などに利用することができる。   The light emitting device of the present invention can be used for a backlight light source of a liquid crystal display, various lighting fixtures, and the like.

100、200、300、400 発光装置
101 基体
102 導体配線
103 接続部材
104 絶縁部材
105 発光素子
106 アンダーフィル
108 封止部材
109 波長変換部材
L 光軸
201 LEDパッケージ
203 反射部材
204 端子
205 逆テーパー部
100, 200, 300, 400 Light emitting device 101 Base body 102 Conductor wiring 103 Connection member 104 Insulating member 105 Light emitting element 106 Underfill 108 Sealing member 109 Wavelength converting member L Optical axis 201 LED package 203 Reflecting member 204 Terminal 205 Reverse taper portion

Claims (13)

導体配線を有する基体と、
前記基体上に載置され、前記導体配線と電気的に接続された発光素子と、
前記発光素子を被覆する透光性の封止部材と、を備え、
前記封止部材は凸形状であり、その光軸方向の高さが、前記封止部材の底面の幅よりも長く、かつ、光拡散材を含有することを特徴とする発光装置。
A substrate having conductor wiring;
A light emitting element placed on the substrate and electrically connected to the conductor wiring;
A translucent sealing member that covers the light emitting element,
The light emitting device characterized in that the sealing member has a convex shape, the height in the optical axis direction is longer than the width of the bottom surface of the sealing member, and contains a light diffusing material.
前記光軸方向の高さを、前記封止部材の底面の半径で割ったアスペクト比が2.0以上である請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein an aspect ratio obtained by dividing the height in the optical axis direction by the radius of the bottom surface of the sealing member is 2.0 or more. 前記発光素子を点灯して前記光軸方向から観察したときに、中心部が外周部よりも暗い配光特性を示す請求項1または2に記載の発光装置。   The light-emitting device according to claim 1, wherein when the light-emitting element is turned on and observed from the optical axis direction, the light-emitting device exhibits a light distribution characteristic that is darker at the center than at the outer periphery. 前記発光素子を点灯して前記光軸方向から観察したときに、中心部が外周部よりも暗い輝度分布を示す請求項1〜3のいずれか1項に記載の発光装置。   The light-emitting device according to claim 1, wherein when the light-emitting element is turned on and observed from the optical axis direction, the center portion exhibits a luminance distribution that is darker than the outer peripheral portion. 前記発光素子が、前記基体から0.5mm以内の高さに配置される請求項1〜4のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the light emitting element is disposed at a height within 0.5 mm from the base. 前記封止部材に被覆された前記発光素子が前記基体に複数載置されており、隣接する前記発光素子の間隔が20mm以上とされている請求項1〜5のいずれか1項に記載の発光装置。   The light emitting device according to any one of claims 1 to 5, wherein a plurality of the light emitting elements covered with the sealing member are mounted on the base, and an interval between adjacent light emitting elements is set to 20 mm or more. apparatus. 前記発光素子の周囲に波長変換部材を有する請求項1〜6のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, further comprising a wavelength conversion member around the light emitting element. 前記波長変換部材の前記光軸方向の高さが、前記封止部材の光軸方向の高さの1/2以下である請求項7に記載の発光装置。   The light emitting device according to claim 7, wherein a height of the wavelength conversion member in the optical axis direction is ½ or less of a height of the sealing member in the optical axis direction. 前記波長変換部材の幅が、前記封止部材の幅の4/5以下である請求項7または8に記載の発光装置。   The light emitting device according to claim 7 or 8, wherein a width of the wavelength conversion member is 4/5 or less of a width of the sealing member. 前記封止部材は、前記基体と接する領域の半径が、前記封止部材の幅方向の最大半径よりも小さい請求項1〜9のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the sealing member has a radius of a region in contact with the base that is smaller than a maximum radius in a width direction of the sealing member. 前記封止部材が蛍光体を含有する請求項1〜10のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the sealing member contains a phosphor. 前記封止部材が蛍光体を含有しており、前記波長変換部材の発光波長が、前記蛍光体の発光波長よりも長波である請求項7〜9のいずれか1項に記載の発光装置。   The light emitting device according to any one of claims 7 to 9, wherein the sealing member contains a phosphor, and the emission wavelength of the wavelength conversion member is longer than the emission wavelength of the phosphor. 前記凸形状は、光軸近傍の曲率がその他の部分の曲率よりも小さい、請求項1〜12のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the convex shape has a curvature in the vicinity of the optical axis that is smaller than the curvature of other portions.
JP2019112422A 2014-12-26 2019-06-18 Light emitting device Active JP6825648B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014266765 2014-12-26
JP2014266765 2014-12-26
JP2015025503 2015-02-12
JP2015025503 2015-02-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015128516A Division JP6544076B2 (en) 2014-12-26 2015-06-26 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021001772A Division JP7096512B2 (en) 2014-12-26 2021-01-08 Luminescent device

Publications (2)

Publication Number Publication Date
JP2019161239A true JP2019161239A (en) 2019-09-19
JP6825648B2 JP6825648B2 (en) 2021-02-03

Family

ID=56760614

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015128516A Active JP6544076B2 (en) 2014-12-26 2015-06-26 Light emitting device
JP2019112422A Active JP6825648B2 (en) 2014-12-26 2019-06-18 Light emitting device
JP2021001772A Active JP7096512B2 (en) 2014-12-26 2021-01-08 Luminescent device
JP2022099362A Pending JP2022121517A (en) 2014-12-26 2022-06-21 Light source and light emitting device with light source

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015128516A Active JP6544076B2 (en) 2014-12-26 2015-06-26 Light emitting device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021001772A Active JP7096512B2 (en) 2014-12-26 2021-01-08 Luminescent device
JP2022099362A Pending JP2022121517A (en) 2014-12-26 2022-06-21 Light source and light emitting device with light source

Country Status (1)

Country Link
JP (4) JP6544076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068913A (en) * 2014-12-26 2021-04-30 日亜化学工業株式会社 Light emitting device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152463A (en) * 2017-03-13 2018-09-27 スタンレー電気株式会社 Semiconductor light-emitting device
JP6971705B2 (en) * 2017-03-17 2021-11-24 スタンレー電気株式会社 Manufacturing method of resin molded body and light emitting device and light emitting device
JP7014948B2 (en) 2017-06-13 2022-02-02 日亜化学工業株式会社 Manufacturing method of light emitting device and light emitting device
EP3534416B1 (en) 2018-02-28 2022-06-22 Nichia Corporation Method of manufacturing light emitting device and light emitting device
KR20220036681A (en) 2020-09-16 2022-03-23 삼성전자주식회사 Display appartus and manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531956A (en) * 1998-11-30 2002-09-24 ゼネラル・エレクトリック・カンパニイ Light emitting device having phosphor composition
JP2004266148A (en) * 2003-03-03 2004-09-24 Toyoda Gosei Co Ltd Light emitting device and manufacturing method thereof
US20080246044A1 (en) * 2007-04-09 2008-10-09 Siew It Pang LED device with combined Reflector and Spherical Lens
WO2009157166A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Light emitting apparatus, planar light emitting apparatus and display apparatus
JP2012231036A (en) * 2011-04-27 2012-11-22 Panasonic Corp Light-emitting device and luminaire using the same
JP2013239712A (en) * 2013-06-03 2013-11-28 Nichia Chem Ind Ltd Light emitting device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876685B2 (en) * 2005-04-15 2012-02-15 旭硝子株式会社 Manufacturing method of glass-sealed light emitting device
JP2008159707A (en) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd Light-emitting device
JP2008270144A (en) * 2007-03-22 2008-11-06 Furukawa Electric Co Ltd:The Light box
JP5689225B2 (en) * 2009-03-31 2015-03-25 日亜化学工業株式会社 Light emitting device
JP2010278246A (en) * 2009-05-28 2010-12-09 Toshiba Lighting & Technology Corp Light emitting module and method of manufacturing the same
US8431423B2 (en) * 2009-07-16 2013-04-30 Koninklijke Philips Electronics N.V. Reflective substrate for LEDS
US20110049545A1 (en) * 2009-09-02 2011-03-03 Koninklijke Philips Electronics N.V. Led package with phosphor plate and reflective substrate
JP5962285B2 (en) * 2012-07-19 2016-08-03 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2014090052A (en) * 2012-10-30 2014-05-15 Nichia Chem Ind Ltd Light-emitting element, light-emitting device and light-emitting device manufacturing method
CN103791252B (en) * 2012-10-30 2017-05-03 欧司朗股份有限公司 Light-emitting module and illuminating apparatus and lamp box including light-emitting module
JP2014093311A (en) * 2012-10-31 2014-05-19 Nichia Chem Ind Ltd Light-emitting device and manufacturing method thereof
JP2014146661A (en) * 2013-01-28 2014-08-14 Panasonic Corp Light emitting module, illumination device and luminaire
JP6155827B2 (en) * 2013-05-11 2017-07-05 日亜化学工業株式会社 Method for manufacturing light emitting device
JP6544076B2 (en) * 2014-12-26 2019-07-17 日亜化学工業株式会社 Light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531956A (en) * 1998-11-30 2002-09-24 ゼネラル・エレクトリック・カンパニイ Light emitting device having phosphor composition
JP2004266148A (en) * 2003-03-03 2004-09-24 Toyoda Gosei Co Ltd Light emitting device and manufacturing method thereof
US20080246044A1 (en) * 2007-04-09 2008-10-09 Siew It Pang LED device with combined Reflector and Spherical Lens
WO2009157166A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Light emitting apparatus, planar light emitting apparatus and display apparatus
JP2012231036A (en) * 2011-04-27 2012-11-22 Panasonic Corp Light-emitting device and luminaire using the same
JP2013239712A (en) * 2013-06-03 2013-11-28 Nichia Chem Ind Ltd Light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068913A (en) * 2014-12-26 2021-04-30 日亜化学工業株式会社 Light emitting device
JP2022121517A (en) * 2014-12-26 2022-08-19 日亜化学工業株式会社 Light source and light emitting device with light source

Also Published As

Publication number Publication date
JP2022121517A (en) 2022-08-19
JP2021068913A (en) 2021-04-30
JP6825648B2 (en) 2021-02-03
JP2016154204A (en) 2016-08-25
JP6544076B2 (en) 2019-07-17
JP7096512B2 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
US11031532B2 (en) Light emitting device
JP7096512B2 (en) Luminescent device
JP6524904B2 (en) Light emitting device
US11201269B2 (en) Backlight including light emitting module and light reflective members
TWI794311B (en) Light-emitting module and integrated light-emitting module
TWI780180B (en) Light-emitting device, integrated light-emitting device, and light-emitting module
JP2018107279A (en) Light-emitting device and integration type light-emitting device
WO2016139954A1 (en) Light emitting device
JP6693044B2 (en) Light emitting device and manufacturing method thereof
CN108963056B (en) Light emitting device
JP2011138815A (en) Light-emitting device
CN107408610B (en) Light emitting device
JP2014093311A (en) Light-emitting device and manufacturing method thereof
JP6985615B2 (en) Luminescent device
JP6326830B2 (en) Light emitting device and lighting device including the same
JP2013065641A (en) Light-emitting device
JP7007606B2 (en) Light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6825648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250