JP2019154738A - 医用画像処理装置、治療システム、および医用画像処理プログラム - Google Patents

医用画像処理装置、治療システム、および医用画像処理プログラム Download PDF

Info

Publication number
JP2019154738A
JP2019154738A JP2018044793A JP2018044793A JP2019154738A JP 2019154738 A JP2019154738 A JP 2019154738A JP 2018044793 A JP2018044793 A JP 2018044793A JP 2018044793 A JP2018044793 A JP 2018044793A JP 2019154738 A JP2019154738 A JP 2019154738A
Authority
JP
Japan
Prior art keywords
image
marker
processing apparatus
image processing
medical image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018044793A
Other languages
English (en)
Other versions
JP7113447B2 (ja
Inventor
隆介 平井
Ryusuke Hirai
隆介 平井
安則 田口
Yasunori Taguchi
安則 田口
幸辰 坂田
Koshin Sakata
幸辰 坂田
慶子 岡屋
Keiko Okaya
慶子 岡屋
森 慎一郎
Shinichiro Mori
慎一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
National Institutes for Quantum and Radiological Science and Technology
Original Assignee
Toshiba Energy Systems and Solutions Corp
National Institutes for Quantum and Radiological Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018044793A priority Critical patent/JP7113447B2/ja
Application filed by Toshiba Energy Systems and Solutions Corp, National Institutes for Quantum and Radiological Science and Technology filed Critical Toshiba Energy Systems and Solutions Corp
Priority to EP19767606.7A priority patent/EP3766541B1/en
Priority to PCT/JP2019/009134 priority patent/WO2019176734A1/ja
Priority to US16/978,103 priority patent/US20210042917A1/en
Priority to RU2020129466A priority patent/RU2020129466A/ru
Priority to KR1020207025046A priority patent/KR102579039B1/ko
Priority to CN201980018104.6A priority patent/CN111918697B/zh
Priority to TW108107745A priority patent/TWI721384B/zh
Publication of JP2019154738A publication Critical patent/JP2019154738A/ja
Application granted granted Critical
Publication of JP7113447B2 publication Critical patent/JP7113447B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/292Multi-camera tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • G06V10/225Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition based on a marking or identifier characterising the area
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/776Validation; Performance evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5223Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data generating planar views from image data, e.g. extracting a coronal view from a 3D image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/587Alignment of source unit to detector unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/589Setting distance between source unit and patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • A61N2005/1012Templates or grids for guiding the introduction of sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1051Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an active marker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1056Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam by projecting a visible image of the treatment field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Multimedia (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】放射線治療において放射線を照射中の患者の透視画像から、患者の体内に留置しておいたマーカーを自動で追跡することができる医用画像処理装置、治療システム、および医用画像処理プログラムを提供することである。【解決手段】実施形態の医用画像処理装置は、第1画像取得部と追跡部とを持つ。第1画像取得部は、患者の透視画像を第1画像として取得する。追跡部は、前記患者の体内に留置された被写体を複数の方向から観察して得られる複数の前記被写体の像である被写体像に共通する第1特徴に基づいて、前記第1画像に撮影された前記被写体を追跡する。【選択図】図2

Description

本発明の実施形態は、医用画像処理装置、治療システム、および医用画像処理プログラムに関する。
放射線治療は、放射線を患者の体内にある病巣に対して照射することによって、その病巣を破壊する治療方法である。このとき、放射線は、病巣の位置に正確に照射される必要がある。これは、患者の体内の正常な組織に放射線を照射してしまうと、その正常な組織にまで影響を与える場合があるからである。そのため、放射線治療を行う際には、まず、治療計画の段階において、予めコンピュータ断層撮影(Computed Tomography:CT)が行われ、患者の体内にある病巣の位置が3次元的に把握される。そして、把握した病巣の位置に基づいて、正常な組織への照射を少なくするように、放射線を照射する方向や照射する放射線の強度が計画される。その後、治療の段階において、患者の位置を治療計画の段階の患者の位置に合わせて、治療計画の段階で計画した照射方向や照射強度に従って放射線が病巣に照射される。
治療段階における患者の位置合わせでは、治療を開始する直前に患者を寝台に寝かせた状態で撮影した患者の体内の透視画像と、治療計画のときに撮影した3次元のCT画像から仮想的に透視画像を再構成したデジタル再構成X線写真(Digitally Reconstructed Radiograph:DRR)画像との画像照合が行われ、それぞれの画像の間での患者の位置のずれが求められる。そして、求めた患者の位置のずれに基づいて寝台が移動させられる。これにより、患者の体内の病巣や骨などの位置が、治療計画のときと合わせられる。
患者の位置のずれは、透視画像と最も類似するDRR画像が再構成されるように、CT画像中の位置を探索することによって求められる。患者の位置の探索をコンピュータによって自動化する方法は多数提案されている。しかし、最終的には、自動で探索した結果を利用者(医師など)が透視画像とDRR画像とを見比べることによって確認する。そして、利用者(医師など)による確認が取れ次第、放射線の照射を行う。
しかし、患者の体内の病巣は、肺や肝臓など、患者の呼吸や心拍の動きによって移動してしまう器官にある場合もある。この場合、放射線の照射中にも病巣の位置を特定しなければならない。病巣の位置を特定する方法として、放射線の照射中にも患者の透視動画を撮影し、透視画像に基づいて患者の体内の病巣を追跡する方法がある。また、患者の体内の病巣が透視画像に鮮明に写らない場合などにおいては、経皮的な手術によって患者の体内に留置しておいたマーカーを追跡することによって、間接的に病巣の位置を特定する方法もある。そして、放射線を照射する方法としては、病巣の位置を追尾して照射する追尾照射や、病巣が治療計画のときの位置に来たときに照射する待ち伏せ照射などがある。これらの放射線を照射する方法は、呼吸同期照射方法と呼ばれている。
患者の体内に留置するマーカーは、金属製であり、透視画像においては暗く写るため視認性が高い。これは、透視画像を撮影する際に用いるX線などは、金属に吸収されやすい性質があるからである。このため、マーカーの追跡では、予めマーカーを撮影した画像をテンプレートとして用意し、テンプレートマッチングによって治療段階において撮影した透視画像内のマーカーの位置を検出することが行われる。
ところで、患者の体内に留置するマーカーの形状には、球型や、棒型、楔型など、様々な形状がある。マーカーが球型である場合、透視画像内に写るマーカーの像は、マーカーの3次元空間内の姿勢によらずに円形となる。このため、球型のマーカーは、テンプレートマッチングによって容易に位置を検出することができる。ところが、球型のマーカーは、患者の日常の生活において移動してしまうことがある。つまり、マーカーが球型である場合、治療計画の段階のときの位置と、治療段階のときの位置とでずれてしまうことがある。マーカーの位置がずれてしまうと、治療段階において照射する放射線が、正確に病巣の位置に照射されないことになってしまう。このことから、近年では、患者の体内に留まりやすい、棒型や楔型のマーカーなどの球型ではないマーカーが採用される機会が増えている。しかし、マーカーが棒型や楔型である場合、透視画像内に写るマーカーの像は、マーカーの3次元空間内の姿勢によって様々な形に変化する。このため、テンプレートマッチングによる棒型や楔型のマーカーの位置の検出は、球型のマーカーの位置を検出するより難しくなる。
このため、透視画像内に写るマーカーを追跡する方法の一例として、例えば、特許文献1に開示されている方法がある。特許文献1に開示されている方法では、様々な角度から撮影したマーカーの像をテンプレートとして複数用意しておき、それぞれのテンプレートとのテンプレートマッチングによって、治療段階において撮影した透視画像内のマーカーの位置を検出する。しかしながら、特許文献1に開示されている方法では、多数のテンプレートと透視画像内のマーカーとの間の類似度の計算が必要になる。このため、特許文献1に開示されている方法では、マーカーの追跡のリアルタイム性が低くなってしまうという問題がある。また、特許文献1に開示されている方法では、実際のマーカーの像と大きく異なるテンプレートもテンプレートマッチングに使用されるため、透視画像に含まれるマーカー以外の像と類似度が高いテンプレートが存在してしまうことも考えられる。この場合、特許文献1に開示されている方法では、透視画像に含まれるマーカー以外の像をマーカーとして検出して追跡してしまう可能性が高くなってしまうとことが考えられる。
特開2016−131737号公報
本発明が解決しようとする課題は、放射線治療において放射線を照射中の患者の透視画像から、患者の体内に留置しておいたマーカーを自動で追跡することができる医用画像処理装置、治療システム、および医用画像処理プログラムを提供することである。
実施形態の医用画像処理装置は、第1画像取得部と追跡部とを持つ。第1画像取得部は、患者の透視画像を第1画像として取得する。追跡部は、前記患者の体内に留置された被写体を複数の方向から観察して得られる複数の前記被写体の像である被写体像に共通する第1特徴に基づいて、前記第1画像に撮影された前記被写体を追跡する。
本発明によれば、放射線治療において放射線を照射中の患者の透視画像から、患者の体内に留置しておいたマーカーを自動で追跡することができる医用画像処理装置、治療システム、および医用画像処理プログラムを提供することができる。
第1の実施形態の医用画像処理装置を備えた治療システムの概略構成を示すブロック図。 第1の実施形態の医用画像処理装置の概略構成を示すブロック図。 第1の実施形態の医用画像処理装置を構成する学習装置の動作の流れを示すフローチャート。 第1の実施形態の医用画像処理装置を構成する動体追跡装置の動作の流れを示すフローチャート。 第1の実施形態の医用画像処理装置を備えた治療システムにおける放射線の照射経路とマーカーとの関係を説明するための図。 第2の実施形態の医用画像処理装置の概略構成を示すブロック図。 第2の実施形態の医用画像処理装置を構成する学習装置の動作の流れを示すフローチャート。 第2の実施形態の医用画像処理装置を構成する学習装置において抽出するマーカーの像の一例の図。 第3の実施形態の医用画像処理装置の概略構成を示すブロック図。 第3の実施形態の医用画像処理装置が表示する情報を示す図。 第4の実施形態の医用画像処理装置の概略構成を示すブロック図。 第4の実施形態の医用画像処理装置を構成する動体追跡装置の動作の流れを示すフローチャート。 第4の実施形態の医用画像処理装置を構成する動体追跡装置においてマーカーの追跡に用いるテンプレートを示す図。 第5の実施形態の医用画像処理装置の概略構成を示すブロック図。
以下、実施形態の医用画像処理装置、治療システム、および医用画像処理プログラムを、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態の医用画像処理装置を備えた治療システムの概略構成を示すブロック図である。図1に示した治療システム1は、医用画像処理装置100と、治療装置10とを備える。
まず、治療システム1を構成する治療装置10について説明する。治療装置10は、治療台11と、2つの放射線源12(放射線源12−1および放射線源12−2)と、2つの放射線検出器13(放射線検出器13−1および放射線検出器13−2)と、治療ビーム照射門14とを備える。
なお、図1に示したそれぞれの符号に続いて付与した「−」とそれに続く数字は、対応関係を識別するためのものである。例えば、治療装置10における放射線源12と放射線検出器13との対応関係では、放射線源12−1と放射線検出器13−1とが対応して1つの組となっていることを示し、放射線源12−2と放射線検出器13−2とが対応してもう1つの組となっていることを示している。つまり、以下の説明においては、それぞれの符号に続いて付与した「−」とそれに続く数字が同じもの同士が対応していることを表している。なお、以下の説明において複数ある同じ構成要素を区別せずに表す場合には、「−」とそれに続く数字を示さずに表す。
治療台11は、放射線による治療を受ける被検体(患者)Pを固定する寝台である。
放射線源12−1は、患者Pの体内を透視するための放射線r−1を予め定めた角度から照射する。放射線源12−2は、患者Pの体内を透視するための放射線r−2を、放射線源12−1と異なる予め定めた角度から照射する。放射線r−1および放射線r−2は、例えば、X線である。図1においては、治療台11上に固定された患者Pに対して、2方向からX線撮影を行う場合を示している。なお、図1においては、放射線源12による放射線rの照射を制御する制御部の図示は省略している。
放射線検出器13−1は、放射線源12−1から照射されて患者Pの体内を通過して到達した放射線r−1を検出し、検出した放射線r−1のエネルギーの大きさに応じた患者Pの体内の透視画像を生成する。放射線検出器13−2は、放射線源12−2から照射されて患者Pの体内を通過して到達した放射線r−2を検出し、検出した放射線r−2のエネルギーの大きさに応じた患者Pの体内の透視画像を生成する。放射線検出器13は、2次元のアレイ状に検出器が配置され、それぞれの検出器に到達した放射線rのエネルギーの大きさをデジタル値で表したデジタル画像を、透視画像として生成する。放射線検出器13は、例えば、フラット・パネル・ディテクタ(Flat Panel Detector:FPD)や、イメージインテンシファイアや、カラーイメージインテンシファイアである。放射線検出器13は、生成した透視画像を医用画像処理装置100に出力する。なお、図1においては、放射線検出器13による透視画像の生成を制御する制御部の図示は省略している。
治療装置10では、放射線源12と放射線検出器13との組によって治療システム1における撮像装置を構成している。
なお、図1においては、2組の放射線源12と放射線検出器13、つまり、2つの撮像装置を備える治療装置10の構成を示した。しかし、治療装置10に備える撮像装置の数は、図1に示したように2つの撮像装置を備えた構成、つまり、放射線源12と放射線検出器13との組を2組備えた構成に限定されるのではない。例えば、治療装置10は、3つ以上の撮像装置(3組以上の放射線源12と放射線検出器13との組)を備える構成であってもよい。また、治療装置10は、1つの撮像装置(1組の放射線源12と放射線検出器13との組)を備える構成であってもよい。
治療ビーム照射門14は、患者Pの体内の治療する対象の部位である病巣を破壊するための放射線を治療ビームBとして照射する。治療ビームBは、例えば、X線、γ線、電子線、陽子線、中性子線、重粒子線などである。なお、図1においては、治療ビーム照射門14による治療ビームBの照射を制御する制御部の図示は省略している。
なお、図1においては、1つの治療ビーム照射門14を備える治療装置10構成を示した。しかし、治療装置10は、治療ビーム照射門14を1つのみ備える構成に限定されるのではなく、複数の治療ビーム照射門を備えてもよい。例えば、図1では、患者Pに垂直方向から治療ビームBを照射する治療ビーム照射門14を備えている治療装置10の構成を示したが、治療システム1は、患者Pに水平方向から治療ビームを照射する治療ビーム照射門をさらに備えてもよい。
医用画像処理装置100は、肺や肝臓など、患者Pの呼吸や心拍の動きによって移動してしまう器官に対して治療ビームBを照射する呼吸同期照射方法によって放射線治療を行う呼吸同期照射装置として用いられる。医用画像処理装置100は、放射線検出器13−1および放射線検出器13−2から出力された透視画像に基づいて、放射線治療において治療を行う患者Pの体内に留置されているマーカーを追跡する。これにより、医用画像処理装置100では、例えば、マーカーと病巣との相対的な位置の関係などから、放射線治療において治療を行う患者Pの体内の病巣を追跡することができる。医用画像処理装置100における病巣の追跡は、治療計画の段階など、放射線治療を行う前に学習したマーカーの像(以下、「マーカー像」という)の特徴に基づいて、現在の患者Pの透視画像に撮影されたマーカーの位置を追跡することによって行われる。そして、医用画像処理装置100は、患者Pの体内に留置されているマーカーを追跡した結果に基づいて、放射線治療において病巣に治療ビームBを照射するタイミングを自動で検知する。
なお、医用画像処理装置100と治療装置10に備えた放射線検出器13とは、LAN(Local Area Network)やWAN(Wide Area Network)によって接続されてもよい。
続いて、治療システム1を構成する医用画像処理装置100の構成について説明する。図2は、第1の実施形態の医用画像処理装置100の概略構成を示すブロック図である。図2に示した医用画像処理装置100は、学習装置110と、動体追跡装置120とを備える。また、学習装置110は、学習用画像取得部111と、学習部112と、パラメータ記憶部113とを備える。また、動体追跡装置120は、第1画像取得部121と、追跡部122とを備える。
学習装置110は、放射線治療を行う前に、医用画像処理装置100における学習用画像を取得し、取得した学習用画像からマーカー像を検出するための第1特徴を学習する。また、学習装置110は、学習した第1特徴に基づいて、マーカーの特徴を表す特徴抽出パラメータを計算してパラメータ記憶部113に記憶させておく。
学習用画像取得部111は、医用画像処理装置100における学習用画像を取得する。学習用画像取得部111は、取得した学習用画像を、学習部112に出力する。ここで、学習用画像は、放射線治療を行う際の治療計画の段階やその前の段階において作成される複数の画像である。学習用画像は、仮想的な3次元空間に配置した被写体であるマーカーの像を、放射線治療を行う部位の臨床画像に合成して作成される。より具体的には、学習用画像は、追跡する対象のマーカーが患者の体内に留置される際の様々な方向を模擬した模擬画像であるシミュレーション画像を、放射線治療を行う部位ごとの臨床画像に合成することによって作成される。なお、学習用画像を生成するための臨床画像は、治療計画のときに撮影した3次元のコンピュータ断層撮影(Computed Tomography:CT)画像から仮想的に透視画像を再構成したデジタル再構成X線写真(Digitally Reconstructed Radiograph:DRR)画像であってもよい。これにより、学習用画像は、患者の体内に留置されているマーカーが取り得るマーカー像のあらゆる方向を模擬した画像となる。なお、シミュレーション画像と臨床画像との合成は、例えば、アルファブレンドなどの既存の画像合成の技術によって行われる。
学習部112は、学習用画像取得部111から複数の学習用画像を取得し、取得した複数の学習用画像から、学習用画像内に被写体像として含まれるマーカー像に共通する第1特徴を学習する。ここで、学習部112は、複数の学習用画像から、マーカーをあらゆる方向から観察した場合に得られる複数の第1特徴を学習する。なお、学習部112におけるマーカーの第1特徴の学習は、例えば、既存の機械学習の技術を用いて行う。そして、学習部112は、学習によって得られた第1特徴に基づいて、マーカーの方向の特徴を表す特徴抽出パラメータを計算する。学習部112は、計算した特徴抽出パラメータを、パラメータ記憶部113に出力して記憶させる。
パラメータ記憶部113は、学習部112から出力された特徴抽出パラメータを記憶する記憶装置である。パラメータ記憶部113は、動体追跡装置120に備えた追跡部122からの要求に従って、記憶している特徴抽出パラメータを追跡部122に出力する。
動体追跡装置120は、放射線治療を行っているときに、医用画像処理装置100において追跡するマーカーが撮影された患者Pの透視画像である第1画像を取得し、学習装置110が学習したマーカーの第1特徴に基づいて、第1画像に撮影されたマーカーを追跡する。また、動体追跡装置120は、追跡しているマーカーの位置を表すマーカー位置信号を出力する。
第1画像取得部121は、治療中に撮影された患者Pの透視画像である第1画像を取得する。第1画像取得部121は、取得した第1画像を追跡部122に出力する。ここで、第1画像は、治療中に患者Pを治療台11に寝かせた状態で、予め定めた時間間隔ごとに撮影されている患者Pの体内の透視画像である。つまり、第1画像は、治療中(治療ビーム照射門14が治療ビームBを照射している状態であっても治療ビームBを照射していない状態であってもよい)に、放射線検出器13が、放射線源12が照射した放射線rに応じて生成した透視画像である。なお、第1画像取得部121は、治療装置10に備えた放射線検出器13と接続するためのインターフェースを含んでもよい。
追跡部122は、第1画像取得部121から出力された第1画像に被写体として撮影されたマーカーを追跡する。追跡部122は、マーカーの追跡を行う際に、学習装置110に備えたパラメータ記憶部113に記憶されている特徴抽出パラメータを取得する。そして、追跡部122は、取得した特徴抽出パラメータに基づいて、第1画像取得部121から出力された第1画像に被写体像として含まれるマーカー像の第1特徴と同様の特徴を算出(抽出)する。なお、以下の説明においては、説明を容易にするため、追跡部122が算出(抽出)する第1特徴と同様の特徴も「第1特徴」という。追跡部122は、算出した第1特徴に基づいて、第1画像に撮影されたマーカーを追跡する。そして、追跡部122は、追跡しているマーカーの位置を表すマーカー位置信号を出力する。
このような構成によって、医用画像処理装置100は、学習したマーカーの特徴に基づいて、現在の患者Pの体内にあるマーカーを追跡し、追跡しているマーカーの位置を表すマーカー位置信号を出力する。これにより、医用画像処理装置100は、患者Pの体内の病巣に治療ビームBを照射するタイミングを自動で検知することができる。このことにより、医用画像処理装置100を備えた治療システム1では、適切なタイミングで患者Pの体内の病巣に治療ビームBを照射することができる。なお、治療システム1では、追跡しているマーカーの位置、つまり、マーカーの位置から特定することができる患者Pの体内の病巣の位置が、予め定めた範囲内に位置するときに治療ビームBを照射するように制御する。言い換えれば、治療システム1では、患者Pの体内の病巣の位置が予め定めた範囲内に位置していないときには、治療ビームBの照射を停止するように制御する。
なお、上述した医用画像処理装置100に備えた機能部のうち一部は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などのプロセッサが記憶装置に記憶されたプログラムを実行することにより機能するソフトウェア機能部であってもよい。ここで、記憶装置は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリなどによって実現されてもよい。なお、CPUやGPUなどのプロセッサが実行するプログラムは、予め医用画像処理装置100の記憶装置に格納されていてもよいし、他のコンピュータ装置からネットワークを介してダウンロードされてもよい。また、可搬型記憶装置に格納されたプログラムが医用画像処理装置100にインストールされてもよい。また、上述した医用画像処理装置100に備えた機能部のうち一部または全部は、FPGA(Field Programmable Gate Array)やLSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)などによるハードウェア機能部であってもよい。
ここで、治療システム1を構成する医用画像処理装置100の動作の概略について説明する。まず、医用画像処理装置100を構成する学習装置110の動作の概略について説明する。図3は、第1の実施形態の医用画像処理装置100を構成する学習装置110の動作の流れを示すフローチャートの一例である。なお、医用画像処理装置100において学習装置110は、放射線治療を行う前に、特徴抽出パラメータをパラメータ記憶部113に記憶させておく。
学習装置110が動作を開始すると、学習用画像取得部111は、まず、学習用画像を取得する(ステップS100)。続いて、学習部112は、学習用画像取得部111から出力されたそれぞれの学習用画像に含まれるマーカー像に共通する第1特徴を学習する(ステップS101)。続いて、学習部112は、学習によって得られた第1特徴に基づいて特徴抽出パラメータを計算し、計算した特徴抽出パラメータをパラメータ記憶部113に出力して記憶させる(ステップS102)。
続いて、医用画像処理装置100を構成する動体追跡装置120の動作の概略について説明する。図4は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120の動作の流れを示すフローチャートの一例である。なお、医用画像処理装置100において動体追跡装置120は、放射線治療を行う際に、特徴抽出パラメータに基づいて実際に患者の体内に留置されているマーカーを追跡する。
動体追跡装置120が動作を開始すると、第1画像取得部121は、まず、第1画像を取得する(ステップS103)。続いて、追跡部122は、第1画像取得部121から出力された第1画像内のマーカーの位置を予測する(ステップS104)。続いて、追跡部122は、パラメータ記憶部113に記憶されている特徴抽出パラメータを取得し、取得した特徴抽出パラメータが表す第1特徴に基づいて、予測したマーカーの位置の尤度を計算する(ステップS105)。続いて、追跡部122は、計算した尤度に基づいて、第1画像に含まれるマーカーの位置を計算する(ステップS106)。
次に、治療システム1を構成する医用画像処理装置100の動作の詳細について説明する。まず、医用画像処理装置100を構成する学習装置110における学習用画像の取得方法について説明する。
なお、追跡部122が追跡する対象のマーカーの形状には、球型や、棒型、楔型、クリップ型など、様々な形状がある。より具体的には、マーカーとしては、例えば、直径が2mmの球形状の金属製の球型マーカーや、例えば、直径が0.5mmで長さが5mmや7mm、10mmの棒形状の金属製の棒型マーカーがある。患者Pの体内に留置されているマーカーが球型マーカーである場合には、放射線治療を行う際に撮影する患者Pの透視画像に撮影されるマーカー像は、マーカーの3次元空間内の姿勢によらずに円形となる。一方、患者Pの体内に留置されているマーカーが棒型マーカーである場合には、放射線治療を行う際に撮影する患者Pの透視画像に撮影されるマーカー像は、マーカーの3次元空間内の姿勢によって様々な形に変化する。以下の説明においては、学習用画像取得部111が、患者の体内に留置された球型マーカー以外のマーカーの学習用画像を取得するものとし、その一例として、棒型マーカーの学習用画像を取得する場合について説明する。
図5は、第1の実施形態の医用画像処理装置100を備えた治療システム1における放射線の照射経路とマーカー(棒型マーカー)との関係の一例を説明するための図である。図5は、図1に示した治療装置10における放射線源12−1と放射線検出器13−1との位置関係を抜粋した図である。図5に示したように、放射線源12−1と放射線検出器13−1との間の3次元空間において、棒型マーカーMの長さ方向が、放射線検出器13−1の撮影面に対する法線方向(放射線源12−1が照射する放射線r−1の照射経路の方向)に平行になるように患者Pの体内に留置されている場合、棒型マーカーMのマーカー像は円形となる。そして、図5に示した状態から、棒型マーカーMを傾けていくと、棒型マーカーMのマーカー像は、長さ方向の特徴が表れて、徐々に長くなる。なお、このようなマーカーの姿勢に応じてマーカー像の形が様々に変化する特徴は、棒型マーカーMのみにおける特徴ではなく、楔型のマーカーや、クリップ型のマーカー、つまり、球型のマーカー以外のマーカーにおいては同様である。
学習装置110では、マーカーの姿勢によって形が様々に変化するマーカー像を患者Pの体内の透視画像内から検出するために、それぞれのマーカー像に共通する特徴となる第1特徴を学習する。
なお、図5においては、放射線源12−1と放射線検出器13−1との組によって構成される撮像装置によって撮影される棒型マーカーMの一例を示した。しかし、図1に示したように、治療システム1では、2つの撮像装置を備えている。従って、学習装置110は、同じ棒型マーカーMを治療システム1に備える2つの撮像装置で同時に撮影することによって得られるそれぞれの透視画像からマーカー像を検出するための2つの第1特徴を1対の第1特徴として学習する。つまり、学習装置110は、放射線源12−1と放射線検出器13−1との組によって撮影される透視画像からマーカー像を検出するための第1特徴と、放射線源12−2と放射線検出器13−2との組によって撮影される透視画像からマーカー像を検出するための第1特徴とを1組の第1特徴として学習する。例えば、3次元空間において棒型マーカーMが図5に示したように患者Pの体内に留置されている場合、上述したように、放射線源12−1と放射線検出器13−1との組によって撮影される透視画像では、棒型マーカーMのマーカー像は円形となる。一方、この場合、放射線源12−2と放射線検出器13−2との組によって撮影される透視画像では、棒型マーカーMのマーカー像は長さが最も長い長方形となる。従って、学習装置110は、放射線源12−1と放射線検出器13−1との組によって撮影される円形のマーカー像と、放射線源12−2と放射線検出器13−2との組によって撮影される長方形のマーカー像との組を、患者Pの体内のそれぞれの透視画像内から検出するための第1特徴を学習する。
ここで、学習装置110に備えた学習用画像取得部111が、第1特徴を学習するために用いる学習用画像を取得する方法について説明する。学習用画像は、追跡する対象の棒型マーカーMが所定の領域内に撮影されている状態の複数の画像(以下、「正例画像」という)と、その他の状態の複数の画像(以下、「負例画像」という)とによって構成されている。なお、負例画像におけるその他の状態とは、例えば、棒型マーカーMが所定の領域に撮影されていない、棒型マーカーMが撮影されていないなど、棒型マーカーMが撮影されている状態が正例画像の状態以外のことである。
まず、学習用画像取得部111による正例画像の取得方法について説明する。ここでは、追跡の対象となる棒型マーカーMを、その姿勢を変えながら患者Pの透視画像である第1画像を撮影する放射線源12と放射線検出器13との間の位置に設置して撮影した画像の全体の領域から、棒型マーカーMの重心が画像の中心に位置するように予め定めた大きさ(範囲)の領域を切り出した画像を、正例画像とする。なお、上述したように、棒型マーカーMは金属製であるため、撮影した画像において棒型マーカーMのマーカー像は暗く撮影される。このため、学習用画像取得部111では、撮影した画像に含まれるそれぞれの画素の値(画素値)が低い画素の領域の中心位置を、棒型マーカーMの重心の位置として抽出する。
学習用画像取得部111は、撮像装置(放射線源12と放射線検出器13とのそれぞれの組)によって実際に撮影を行った画像から正例画像を取得してもよい。ここで、正例画像を取得するための画像は、例えば、人体を再現した撮影用の人体ファントム内に実際の棒型マーカーMを留置させた状態を実際の撮像装置で撮影した画像であってもよい。この場合、撮影のために照射する放射線rの放射線量(例えば、X線量)を変えながら撮影を行って、同じ姿勢の棒型マーカーMで放射線量が異なる場合の正例画像を取得するようにしてもよい。また、正例画像を取得するための画像は、棒型マーカーMが体内に留置されている患者Pを実際に撮像装置によって撮影した透視画像、つまり、以前に患者Pを撮影した透視画像であってもよい。
なお、撮像装置によって実際に撮影を行った画像から正例画像を取得する場合、患者Pの体内に留置されている棒型マーカーMが取り得る全ての姿勢に対応した正例画像を取得(収集)することができるとは限らない。このため、学習用画像取得部111は、放射線源12と放射線検出器13との間に位置する棒型マーカーMの姿勢を再現(模擬)する環境、すなわち、シミュレーション環境を計算機などによって構築し、仮想的に作成したシミュレーション画像から正例画像を取得するようにしてもよい。以下に、構築したシミュレーション環境によって仮想的に作成したシミュレーション画像から正例画像を取得する方法について説明する。
学習用画像取得部111が正例画像を取得するために構築するシミュレーション環境では、まず、治療システム1を構成する治療装置10に備えた撮像装置を再現する。より具体的には、図1に示したように、治療システム1を構成する治療装置10では、放射線源12と放射線検出器13との位置が固定されている。つまり、治療装置10では、放射線源12と放射線検出器13との組によって構成される撮像装置が撮影する方向が固定されている。このため、放射線源12と放射線検出器13とが設置された3次元空間内において所定の3次元座標を定義したとき、放射線源12と放射線検出器13との位置を、3軸の座標値で表すことができる。以下の説明においては、3軸の座標値の情報を、放射線源12と放射線検出器13との組によって構成される撮像装置のジオメトリ情報とよぶ。
学習用画像取得部111は、ジオメトリ情報を利用して、治療装置10に備えた撮像装置を再現する。なお、棒型マーカーMの3次元の形状に関する情報(以下、「形状情報」という)は、予めわかっている。このため、学習用画像取得部111は、ジオメトリ情報と形状情報とを利用して、図5に示したような、放射線源12−1と放射線検出器13−1との間に棒型マーカーMが置かれた3次元空間を再現する。ここで学習用画像取得部111が再現した3次元空間では、放射線源12−1から出力された放射線r−1が棒型マーカーMを通過することによって減衰するエネルギーを計算することができるため、学習用画像取得部111は、仮想的に撮像装置で撮影された棒型マーカーMのマーカー像を取得することができる。このとき、学習用画像取得部111は、棒型マーカーMを通過して減衰する放射線r−1のエネルギーを厳密に計算する必要はない。従って、学習用画像取得部111は、棒型マーカーMを通過した放射線r−1と通過していない放射線r−1とのそれぞれが到達した放射線検出器13−1の画素を区別したシミュレーション画像を仮想的に生成してもよい。このとき、学習用画像取得部111は、放射線r−1が棒型マーカーM内を通過した経路の長さに応じて濃淡をつけたシミュレーション画像を仮想的に生成してもよい。学習用画像取得部111は、このようにして生成したシミュレーション画像から正例画像を取得する。
なお、図1示した治療システム1では、同時に撮影することができる2つの撮像装置を備えている。従って、学習用画像取得部111は、それぞれの撮像装置に対応するシミュレーション画像を仮想的に生成し、生成した画像から正例画像を取得する。ここで、図5に示した放射線r−1の照射経路に直交する2軸に設定した3軸周りでの棒型マーカーMの回転量を(θ,φ,η)とした場合を考える。この場合、学習用画像取得部111は、棒型マーカーMにおける3つの回転量を棒型マーカーMの姿勢のパラメータ(以下、「姿勢パラメータ」という)とし、それぞれの姿勢パラメータを連続的に変更しながら仮想的に生成したシミュレーション画像から正例画像を取得する。なお、学習用画像取得部111は、それぞれの姿勢パラメータを連続的に変更するのではなく、例えば、15°間隔など、予め定めた間隔ごとに変更しながら仮想的に生成したシミュレーション画像から正例画像を取得してもよい。また、学習用画像取得部111は、仮想的に生成したシミュレーション画像と、治療前に撮影した患者Pの透視画像や臨床画像とを、例えば、アルファブレンドなどの既存の画像合成の技術で合成した画像、つまり、透視画像や臨床画像に含まれるノイズなども含めて再現した画像から正例画像を取得してもよい。なお、シミュレーション画像と透視画像や臨床画像との合成は、画像合成の技術を用いることに限定されるもではない。例えば、学習用画像取得部111は、透視画像や臨床画像において、シミュレーション画像に含まれる棒型マーカーMの位置に対応する画素の画素値を、マーカー像の画素値や予め定めた画素値(例えば、画素値=“0”など)に置き換えることによって、シミュレーション画像と透視画像とを合成してもよい。
続いて、学習用画像取得部111による負例画像の取得方法について説明する。ここでは、治療前に撮影した患者Pの透視画像の全体の領域から、正例画像において予め定めた大きさの領域と同じ大きさの領域を切り出した画像を、負例画像とする。つまり、負例画像は、正例画像において棒型マーカーMの重心が画像の中心に位置するように予め定めた領域と同じ大きさ(範囲)の領域を、透視画像の全体の領域から切り出した画像である。なお、人体ファントムの画像や、過去の臨床時に得られた臨床画像、つまり、実際の撮像装置で撮影した画像から正例画像と同じ大きさの領域を切り出した画像を、負例画像としてもよい。この場合、負例画像を得るための画像を撮影する際に照射する放射線rの放射線量(例えば、X線量)は、正例画像を得るための画像を撮影する際に照射した放射線rの放射線量(例えば、X線量)と同等であることが望ましい。また、負例画像は、棒型マーカーMの一部や全体が撮影されている画像であってもよい。ただし、正例画像と負例画像とでは、棒型マーカーMが撮影されている領域が異なる。より具体的には、正例画像では、上述したように、棒型マーカーMの重心が正例画像の中心に位置する領域内に撮影されている。これに対して、負例画像では、棒型マーカーMの重心が同じ領域以外に撮影されている。
学習用画像取得部111は、上述したような正例画像と負例画像とを、学習用画像として取得する。そして、学習用画像取得部111は、取得した学習用画像を、学習部112に出力する。
これにより、学習部112は、学習用画像取得部111から出力された複数の学習用画像に基づいて、棒型マーカーMのマーカー像に共通する第1特徴を学習する。学習部112では、学習用画像取得部111から出力された正例画像と負例画像とを識別する2クラス分類問題を解く、関数fの識別器が構成されている。学習部112では、任意の教師付き学習の識別器を、学習部112に構成する識別器として利用している。より具体的には、学習部112は、例えば、2クラスサポートベクターマシーンや、ニューラルネットワーク、ディープニューラルネットワーク、畳み込みニューラルネットワーク、決定木などを、識別器として構成している。なお、学習部112が利用する識別器の一例については、後述する追跡部122の動作と共に説明する。
学習部112は、学習によって得られた第1特徴から計算した特徴抽出パラメータを、パラメータ記憶部113に出力する。これにより、パラメータ記憶部113は、学習部112から出力された特徴抽出パラメータを記憶する。そして、パラメータ記憶部113は、追跡部122が棒型マーカーMを追跡する際に出力する特徴抽出パラメータの要求に応じて、記憶している特徴抽出パラメータを、追跡部122に出力する。
このようにして学習装置110は、図3に示した学習装置110の動作の流れを示したフローチャートの一例のそれぞれのステップにおいて、学習用画像(正例画像および負例画像)の取得と、棒型マーカーMのマーカー像に共通する第1特徴の学習および特徴抽出パラメータの計算を行い、計算した特徴抽出パラメータをパラメータ記憶部113に記憶させておく。
次に、医用画像処理装置100を構成する動体追跡装置120におけるマーカーの追跡方法について説明する。動体追跡装置120では、治療中に撮影された患者Pの第1画像(透視画像)に撮影された棒型マーカーMと追跡する。
なお、図1示したように、治療システム1を構成する治療装置10では、2つの撮像装置によって2方向から患者Pの第1画像を撮影する。このため、第1画像取得部121は、2つの撮像装置のそれぞれが撮影した2方向の第1画像、つまり、2枚の透視画像を取得する。
ここで、動体追跡装置120に備えた第1画像取得部121が、第1画像を取得する方法について説明する。患者Pに対して放射線治療を行う際には、まず、患者Pの体内の病巣や骨などの位置を、治療計画のときの位置と合わせるために、患者Pの位置決めを行う。より具体的には、図1に示したように患者Pを治療台11に寝かせた状態で、患者Pの体内の透視画像である第1画像を撮影する。そして、撮影した第1画像と治療計画のときに撮影した3次元のCT画像から作成したDRR画像との画像照合を行って、それぞれの画像の間での患者Pの位置のずれを求め、求めた患者の位置のずれに基づいて治療台11を移動させて、現在の患者Pの体内の病巣や骨などの位置を、治療計画のときの位置と合わせる。その後、棒型マーカーMを正しく追跡することができるか否か確認するため、数回の呼吸分の第1画像を撮影する。このとき、治療ビームBは、患者Pには照射していない。そして、棒型マーカーMを正しく追跡することができることが確認された後に、放射線治療を開始する。なお、放射線治療を行っている間、それぞれの撮像装置は、予め定めた時間の間隔ごとに、第1画像を撮影する。第1画像取得部121は、それぞれの撮像装置によって撮影された第1画像を、逐次取得する。そして、第1画像取得部121は、取得した2方向の第1画像のそれぞれを、追跡部122に出力する。
追跡部122は、第1画像取得部121から出力された2方向の第1画像に撮影された棒型マーカーMを追跡する。より具体的には、追跡部122は、第1画像取得部121から出力された第1画像に撮影されている棒型マーカーMのマーカー像を、パラメータ記憶部113から取得した特徴抽出パラメータが表す第1特徴に基づいて追跡する。なお、追跡部122は、治療装置10に備えたそれぞれの撮像装置のジオメトリ情報を利用して、放射線源12から照射された放射線rが通過して放射線検出器13に到達するまでの間に位置する棒型マーカーMの3次元座標内の位置を求める。つまり、追跡部122は、図5に示したように棒型マーカーMが留置されている場合における所定の3次元座標内の棒型マーカーMの位置を、射影行列として求める。このため、追跡部122では、それぞれの撮像装置に対応する射影行列をジオメトリ情報から予め求めておく。つまり、追跡部122は、それぞれの撮像装置ごとに射影行列を求めておく。そして、追跡部122は、2つの第1画像に撮影された棒型マーカーMの位置(2次元座標の位置)から、三角測量の原理を利用して、所定の3次元空間内にある棒型マーカーMの位置を表す3次元座標の座標値を計算する。これにより、追跡部122は、所定の3次元空間内にある棒型マーカーMが、患者Pの体内の透視画像(第1画像)内のいずれの位置に撮影されているのかを計算する。
ここで、動体追跡装置120に備えた追跡部122が、第1画像に撮影された棒型マーカーMを追跡する方法について説明する。追跡部122は、棒型マーカーMの追跡を開始すると、図4に示した動体追跡装置120の動作の流れを示したフローチャートの一例のステップS104において、まず、第1画像取得部121から出力された第1画像内の棒型マーカーMの位置を予測する。
上述したように、第1画像取得部121は、放射線治療を行っている間であっても、それぞれの撮像装置が予め定めた時間の間隔ごとに撮影した第1画像を逐次取得して追跡部122に出力する。ここで、第1画像取得部121から最初に出力された第1画像に対しては、追跡部122が棒型マーカーMを追跡する処理を開始した初期の段階であるため、棒型マーカーMの位置は未知である。このため、追跡部122は、患者Pの体内に留置されている棒型マーカーMの位置はほぼ移動しないことを利用し、例えば、患者Pの位置あわせを行った後に撮影した数回の呼吸分の第1画像、つまり、放射線治療を開始する前の第1画像(以下、「治療前第1画像」という)に撮影された棒型マーカーMの位置を計算する。
より具体的には、棒型マーカーMの追跡処理を開始した初期の段階の棒型マーカーMの位置の予測処理では、追跡部122は、ジオメトリ情報から予め求めておいた射影行列を用いて、治療前第1画像内に棒型マーカーMの位置を射影する。そして、追跡部122は、1呼吸周期分のそれぞれの治療前第1画像内に棒型マーカーMの位置の射影を完了した後、1つの治療前第1画像(例えば、患者Pの呼気または吸気のときの治療前第1画像)内に複数の棒型マーカーMの位置を指定する。なお、治療前第1画像内に指定した複数の棒型マーカーMの位置を内包する領域は、棒型マーカーMが必ず存在する領域である。追跡部122は、治療前第1画像内に指定した棒型マーカーMが必ず存在する領域を、治療中第1画像内で予測する棒型マーカーMの位置(予測位置)とする。
なお、マーカーの追跡を利用した呼吸同期照射方法による放射線治療では、患者Pの体内に棒型マーカーMを留置した後、治療計画を立案するために、CT画像を動画として撮影した4次元のCT画像を撮影することがある。この4次元のCT画像は、例えば、1呼吸周期分の長さの動画像である。4次元のCT画像では、棒型マーカーMの位置を、治療システム1を利用する放射線治療の実施者(医師など)が目視で確認することが容易である。そして、CT画像内の棒型マーカーMの位置(3次元座標)がわかれば、射影行列を用いて治療前第1画像内に棒型マーカーMの位置を射影することができる。このため、追跡部122は、治療システム1の利用者によって指定された4次元のCT画像内の領域を、棒型マーカーMが必ず存在する領域としてもよい。また、追跡部122は、患者Pの同じ病巣に対して行った以前の放射線治療において同じ棒型マーカーMを追跡したときの棒型マーカーMの位置の軌跡を内包する領域を、今回の放射線治療において棒型マーカーMが必ず存在する領域としてもよい。
そして、追跡部122は、治療前第1画像において指定した棒型マーカーMが必ず存在する領域に基づいて、放射線治療を開始した後に撮影された第1画像(以下、「治療中第1画像」という)に撮影される棒型マーカーMの位置を予測する。なお、治療前第1画像内に棒型マーカーMが必ず存在する領域を指定するときは、上述したように、追跡部122が棒型マーカーMの追跡処理を開始した初期の段階であるため、棒型マーカーMの位置は未知である。これに対して、以降の治療段階では、指定した領域内に棒型マーカーMが必ず存在する可能性が高い。なお、治療段階では、第1画像取得部121から治療中第1画像が呼吸周期に対して短い間隔で出力されてくる。そこで、追跡部122は、より高速で簡易な方法によって、治療段階における棒型マーカーMの位置の予測を行う。
より具体的には、追跡部122は、治療段階での棒型マーカーMの位置の予測処理において、治療前第1画像において予測した棒型マーカーMが必ず存在する領域を中心とした領域(範囲)を、治療中第1画像内で予測した棒型マーカーMの位置(予測位置)とする。ここで、治療段階における棒型マーカーMの予測位置は、治療中第1画像内の一部分の領域(部分領域)であってもよいし、3次元空間における一部分の空間(部分空間)であってもよい。つまり、治療段階における棒型マーカーMの予測位置は、2次元座標であってもよいし、3次元座標であってもよい。
なお、治療段階での棒型マーカーMの位置の予測処理において追跡部122は、過去に得た棒型マーカーMの位置の系列から、未来の棒型マーカーMの位置を予測する時系列フィルタを利用して、棒型マーカーMの予測位置としてもよい。ここで、時系列フィルタとしては、例えば、カルマンフィルタや、パーティクルフィルタなどが考えられる。
その後、追跡部122は、図4に示した動体追跡装置120の動作の流れを示したフローチャートの一例のステップS105において、パラメータ記憶部113に記憶されている特徴抽出パラメータを取得し、取得した特徴抽出パラメータが表す第1特徴に基づいて、予測した棒型マーカーMの位置の尤度を計算する。
ここで、追跡部122が計算する尤度とは、追跡部122が予測した治療中第1画像内の棒型マーカーMの位置に撮影されている像が、棒型マーカーMのマーカー像との類似性を表す値である。より具体的には、尤度は、棒型マーカーMのマーカー像との類似性が高ければ高い値(マーカー像である場合に最も高い値)になり、棒型マーカーMのマーカー像との類似性が低くなるにつれて低くなる値である。追跡部122は、下式(1)または下式(2)によって、棒型マーカーMの予測位置xの尤度l(x)を計算する。
Figure 2019154738
Figure 2019154738
上式(1)および上式(2)において、関数fは、学習部112に構成された、学習用画像取得部111から出力された正例画像と負例画像とを識別する2クラス分類問題を解く識別器を表す関数である。つまり、追跡部122には、学習部112に構成された識別器と同様の関数fの識別器が構成されている。また、上式(1)および上式(2)において、v(x)は、棒型マーカーMの予測位置xに基づいて定める治療中第1画像の画素値を並べたベクトルである。なお、v(x)は、棒型マーカーMの予測位置xに基づいて定める治療中第1画像の画素値を並べたベクトルを変換したものであってもよい。この場合の変換は、例えば、ソーベルフィルタなどの微分フィルタによる変換である。また、上式(1)および上式(2)において、wは、関数fの識別器を構成するパラメータであり、第1特徴を表す特徴抽出パラメータ、つまり、パラメータ記憶部113から取得した特徴抽出パラメータである。
なお、図1に示したように、治療システム1を構成する治療装置10では、同時に異なる2方向から同じ棒型マーカーMを撮影した2枚の治療中第1画像(透視画像)を生成する。このため、追跡部122は、それぞれの治療中第1画像における棒型マーカーMの予測位置から、上式(1)または上式(2)によってそれぞれの治療中第1画像に対応する尤度l(x)を計算することができる。このとき、追跡部122は、治療段階における棒型マーカーMの予測位置が3次元座標である場合には、同時に撮影された2枚の治療中第1画像のそれぞれに対応する尤度l(x)を計算し、計算した尤度l(x)の積を、棒型マーカーMの予測位置の尤度l(x)としてもよい。一方、追跡部122は、治療段階における棒型マーカーMの予測位置が2次元座標である場合には、エピポーラ拘束が成り立つ2枚の治療中第1画像の予測位置に対する尤度l(x)を計算すればよい。
また、追跡部122は、治療装置10において同時に生成した2枚の治療中第1画像のそれぞれにおける棒型マーカーMの予測位置xに基づいて定める画素値を並べたベクトルv(x)を、連結したベクトルとしてもよい。この場合の予測位置は、棒型マーカーMの予測位置を2枚の治療中第1画像のそれぞれに射影させた2次元座標の位置となる。この場合も、2次元座標の位置は、エピポーラ拘束が成り立つ2枚の治療中第1画像の予測位置である。
その後、追跡部122は、図4に示した動体追跡装置120の動作の流れを示したフローチャートの一例のステップS106において、計算した尤度l(x)に基づいて、治療中第1画像に含まれる棒型マーカーMの位置を計算する。
追跡部122は、計算した尤度l(x)に基づいて、下式(3)によって、棒型マーカーMの位置xを計算する。
Figure 2019154738
上式(3)からわかるように、追跡部122は、尤度l(x)を重み値とした重みつき平均を、棒型マーカーMの位置xとしている。なお、上式(3)において、Sは、棒型マーカーMの予測位置の集合である。
追跡部122は、計算した尤度l(x)に基づいて、下式(4)によって、棒型マーカーMの位置xを計算してもよい。
Figure 2019154738
上式(4)では、追跡部122は、尤度l(x)が最大となる予測位置を、棒型マーカーMの位置xとしている。
このようにして動体追跡装置120は、図4に示した動体追跡装置120の動作の流れを示したフローチャートの一例のそれぞれのステップにおいて、治療中第1画像内の棒型マーカーMの位置の予測、特徴抽出パラメータが表す第1特徴に基づいた棒型マーカーMの予測位置の尤度l(x)の計算、および治療中第1画像に含まれる棒型マーカーMの位置xの計算を行う。そして、動体追跡装置120は、計算した棒型マーカーMの位置xを表すマーカー位置信号を出力する。
上述したように、第1の実施形態の医用画像処理装置100では、学習装置110(より具体的には、学習用画像取得部111)が、患者Pの体内に留置されるときに棒型マーカーMが取り得るあらゆる方向を模擬したシミュレーション画像を学習用画像として取得する。そして、第1の実施形態の医用画像処理装置100では、学習装置110(より具体的には、学習部112)が、取得した複数の学習用画像から、学習用画像に撮影された棒型マーカーMに共通する第1特徴を学習し、学習によって得られた第1特徴に基づいて、棒型マーカーMの方向の特徴を表す特徴抽出パラメータを計算してパラメータ記憶部113に記憶させておく。そして、第1の実施形態の医用画像処理装置100では、動体追跡装置120(より具体的には、第1画像取得部121)が、治療中に撮影された患者Pの第1画像(透視画像)を取得する。そして、第1の実施形態の医用画像処理装置100では、動体追跡装置120(より具体的には、追跡部122)が、第1画像とパラメータ記憶部113から取得した特徴抽出パラメータが表す第1特徴と同様の特徴(第1の実施形態では、「第1特徴」としている)を算出(抽出)する。そして、第1の実施形態の医用画像処理装置100では、動体追跡装置120(より具体的には、追跡部122)が、算出した第1特徴に基づいて、第1画像に撮影された棒型マーカーMを追跡し、棒型マーカーMの位置を表すマーカー位置信号を出力する。
しかも、第1の実施形態の医用画像処理装置100では、棒型マーカーMの追跡を、従来の技術のようなテンプレートを用いたテンプレートマッチングによって行っていない。このため、第1の実施形態の医用画像処理装置100では、棒型マーカーMを追跡する際の計算を効率的に行い、棒型マーカーMの追跡のリアルタイム性の低下を抑えることができる。また、第1の実施形態の医用画像処理装置100では、従来のテンプレートマッチングにおいて棒型マーカーMに類似度が高いテンプレートが存在してしまうことによって発生することが考えられる、棒型マーカーMの誤追跡の可能性を低くすることができる。
これにより、第1の実施形態の医用画像処理装置100を備えた治療システム1では、患者Pの体内で追跡している棒型マーカーMの位置に基づいて、患者Pの呼吸や心拍などに連動して移動する病巣に対して治療ビームBを照射する適切なタイミングを自動で検知することができる。このことにより、第1の実施形態の医用画像処理装置100を備えた治療システム1では、患者Pの呼気や吸気に同期した適切なタイミングで、治療ビームBを安全に病巣に照射することができる。
なお、第1の実施形態の医用画像処理装置100では、追跡する対象のマーカーが、棒型マーカーMである場合について説明した。しかし、上述したように、追跡する対象のマーカーの形状には、様々な形状がある。従って、第1の実施形態の医用画像処理装置100が追跡する対象のマーカーは、棒型マーカーMに限定されるものではない。そして、第1の実施形態の医用画像処理装置100では、追跡する対象のマーカーが棒型マーカーM以外であっても、同様の考え方に基づいて、それぞれのマーカーが患者Pの体内に留置されるときに取り得るあらゆる方向を模擬したシミュレーション画像を学習用画像として取得することによって、同様に動作(処理)することができる。つまり、第1の実施形態の医用画像処理装置100では、追跡する対象のマーカーが、例えば、楔型のマーカーやクリップ型のマーカー、さらには、球型のマーカーであっても、図5に示した放射線の照射経路とマーカー(棒型マーカー)との関係の一例のようにして同様に取得したシミュレーション画像を学習用画像として学習することによって、棒型マーカーMと同様にそれぞれのマーカーの位置を追跡することができる。また、第1の実施形態の医用画像処理装置100による追跡は、マーカーのみではなく、例えば、カテーテルのシミュレーション画像を学習用画像として学習することによって、手術中に撮影する患者の透視画像に写るカテーテルの像を追跡することもできる。
上記説明したように、医用画像処理装置100は、患者Pの透視画像を第1画像として取得する第1画像取得部121と、患者Pの体内に留置された被写体(マーカー)を複数の方向から観察して得られる複数の被写体の像である被写体像(マーカー像)に共通する第1特徴に基づいて、第1画像に撮影された被写体を追跡する追跡部122と、を備える。
また、上記説明したように、医用画像処理装置100は、複数の被写体像のそれぞれに対応する複数の学習用画像を取得する学習用画像取得部111と、複数の学習用画像に含まれる被写体像のそれぞれに共通する第1特徴を学習する学習部112と、をさらに備えてもよい。
また、上記説明したように、学習用画像取得部111は、第1画像を撮影する撮像装置(放射線源12と放射線検出器13との組)のジオメトリ情報と、被写体の3次元の形状とに基づいて、被写体が第1画像に撮影されたときの被写体像を模擬したシミュレーション画像に基づいた学習用画像として取得してもよい。
また、上記説明したように、学習用画像は、シミュレーション画像と、第1画像とを合成した画像であってもよい。
また、上記説明したように、学習用画像は、シミュレーション画像と、第1画像と同じ範囲が撮影された臨床画像とを合成した画像であってもよい。
また、上記説明したように、学習用画像は、被写体像の重心が中心に位置するように予め定められた範囲の正例画像と、被写体像の重心が正例画像の状態以外である正例画像と同じ範囲の負例画像と、によって構成されていてもよい。
また、上記説明したように、被写体は、患者Pの体内に留置されたマーカー(例えば、棒型マーカーM)であってもよい。
また、上記説明したように、マーカーは、球型以外の形状(例えば、棒型)であってもよい。
また、上記説明したように、治療システム1は、医用画像処理装置100と、治療する対象の部位(病巣)に治療ビームBを照射する照射部(治療ビーム照射門14)と、被写体を撮影する撮像装置(放射線源12と放射線検出器13との組)とを具備した治療装置10と、追跡した被写体の位置の情報に基づいて、病巣に対する治療を制御する制御部と、を備えてもよい。
また、医用画像処理装置100は、CPUやGPUなどのプロセッサと、ROMやRAM、HDD、フラッシュメモリなどの記憶装置とを備え、記憶装置には、プロセッサを、患者Pの透視画像を第1画像として取得する第1画像取得部121と、患者Pの体内に留置された被写体(マーカー)を複数の方向から観察して得られる複数の被写体の像である被写体像(マーカー像)に共通する第1特徴に基づいて、第1画像に撮影された被写体を追跡する追跡部122として機能させるためのプログラムが記憶された装置であってもよい。
また、医用画像処理装置100は、CPUやGPUなどのプロセッサと、ROMやRAM、HDD、フラッシュメモリなどの記憶装置とを備え、記憶装置には、プロセッサを、複数の被写体像のそれぞれに対応する複数の学習用画像を取得する学習用画像取得部111と、複数の学習用画像に含まれる被写体像のそれぞれに共通する第1特徴を学習する学習部112として機能させるためのプログラムが記憶された装置であってもよい。
(第2の実施形態)
以下、第2の実施形態について説明する。なお、第2の実施形態の医用画像処理装置を備えた治療システムの構成は、図1に示した第1の実施形態の医用画像処理装置100を備えた治療システム1の構成において、医用画像処理装置100が第2の実施形態の医用画像処理装置(以下、「医用画像処理装置200」という)に代わった構成である。以下の説明においては、医用画像処理装置200を備えた治療システムを、「治療システム2」という。
なお、以下の説明においては、医用画像処理装置200を備えた治療システム2の構成要素において、第1の実施形態の医用画像処理装置100を備えた治療システム1の構成要素と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の医用画像処理装置100と異なる構成要素である医用画像処理装置200の構成、動作、および処理についてのみを説明する。
医用画像処理装置200は、第1の実施形態の医用画像処理装置100と同様に、放射線検出器13−1および放射線検出器13−2から出力された透視画像に基づいて、放射線治療において治療を行う患者Pの体内に留置されているマーカーを追跡する。これにより、医用画像処理装置200でも、第1の実施形態の医用画像処理装置100と同様に、放射線治療において治療を行う患者Pの体内の病巣を追跡することができる。また、医用画像処理装置200は、治療前に撮影された患者Pの透視画像から、留置されたマーカーのマーカー像を学習、または留置されたマーカーの姿勢を推定して学習することによって、学習するマーカー像を限定する。ここで、医用画像処理装置200において学習するマーカー像を限定する理由は、実際に患者Pに留置されたマーカーは、患者Pの呼吸や心拍などに連動して体内を移動したとしても、その姿勢は留置されたときの姿勢から大きく変化する可能性は低いと考えられるからである。そして、医用画像処理装置200は、第1の実施形態の医用画像処理装置100と同様に、患者Pの体内に留置されているマーカーを追跡した結果に基づいて、放射線治療において病巣に治療ビームBを照射するタイミングを自動で検知する。
以下、治療システム2を構成する医用画像処理装置200の構成について説明する。図6は、第2の実施形態の医用画像処理装置200の概略構成を示すブロック図である。図6に示した医用画像処理装置200は、学習装置210と、動体追跡装置120とを備える。また、学習装置210は、学習用画像取得部211と、学習部112と、パラメータ記憶部113と、第2画像取得部214と、オブジェクト抽出部215とを備える。また、動体追跡装置120は、第1画像取得部121と、追跡部122とを備える。
医用画像処理装置200は、第1の実施形態の医用画像処理装置100を構成する学習装置110が、学習装置210に代わった構成である。学習装置210は、第1の実施形態の医用画像処理装置100を構成する学習装置110に、第2画像取得部214とオブジェクト抽出部215とが追加された構成である。これに伴って、医用画像処理装置200では、第1の実施形態の医用画像処理装置100を構成する学習装置110に備えた学習用画像取得部111が、学習用画像取得部211に代わっている。なお、医用画像処理装置200に備えたその他の構成要素は、第1の実施形態の医用画像処理装置100に備えた構成要素と同じ構成要素である。従って、以下の説明においては、医用画像処理装置200の構成要素において、第1の実施形態の医用画像処理装置100に備えた構成要素と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の医用画像処理装置100と異なる構成要素についてのみを説明する。
学習装置210は、第1の実施形態の医用画像処理装置100を構成する学習装置110と同様に、放射線治療を行う前に、医用画像処理装置200における学習用画像を取得し、取得した学習用画像からマーカー像を検出するための第1特徴を学習し、学習した第1特徴に基づいて、マーカーの特徴を表す特徴抽出パラメータを計算してパラメータ記憶部113に記憶させておく。このとき、学習装置210は、治療前に撮影された患者Pの透視画像に基づいて、第1特徴を学習するためのマーカー像を限定する。
第2画像取得部214は、治療前に撮影された患者Pの透視画像である第2画像を取得する。第2画像取得部214は、取得した第2画像をオブジェクト抽出部215に出力する。ここで、第2画像は、マーカーが体内に留置された状態で治療台11に寝かせ、位置合わせをした後の患者Pの治療前の透視画像である。つまり、第2画像は、放射線治療を行う前(治療ビーム照射門14が治療ビームBを照射していない状態)に、放射線検出器13が、放射線源12が照射した放射線rに応じて生成した透視画像である。なお、第2画像取得部214は、治療装置10に備えた放射線検出器13と接続するためのインターフェースを含んでもよい。
なお、第2画像は、マーカーが体内に留置された状態の患者Pの治療前の透視画像であればよい。このため、第2画像は、放射線治療を行う際の治療計画の段階やその前の段階において撮影された患者Pの透視画像であればよい。例えば、治療計画のときに撮影した3次元のCT画像から作成したDRR画像を、第2画像として取得してもよい。また、放射線治療では、通常複数回にわたって治療が行われるため、例えば、患者Pの同じ病巣に対して行った以前の放射線治療において撮影した第1画像を、を第2画像として取得してもよい。また、マーカーの追跡を利用した呼吸同期照射方法による放射線治療では、患者Pの呼吸に同期して治療ビームBを照射するための予行(リハーサル)として、数回の呼吸分の第1画像を撮影することもある。この場合には、この予行(リハーサル)のときに撮影した3第1画像を、を第2画像として取得してもよい。また、放射線治療を開始する前に、治療システム2において患者Pを治療台11に寝かせ状態でCT撮影を行う場合には、このときに撮影した3次元のCT画像から作成したDRR画像を第2画像として取得してもよい。
オブジェクト抽出部215は、第2画像取得部214から第2画像を取得し、取得した第2画像内に被写体像として含まれるマーカー像を抽出する。オブジェクト抽出部215は、抽出したマーカー像を含む予め定めた一部分の領域(部分領域)の画像、または抽出したマーカー像を含む部分領域の画像からマーカーの姿勢を推定した結果の情報(画像)を学習用画像取得部211に出力する。ここで、オブジェクト抽出部215におけるマーカーの抽出は、第1の実施形態の医用画像処理装置100を構成する学習装置110に備えた学習部112や、動体追跡装置120に備えた追跡部122に備えた識別器と同様の処理によって行うことができる。ただし、オブジェクト抽出部215がマーカー像の抽出に用いる第2画像は、治療を開始する前に撮影された、患者Pの体内に留置されたマーカーを含む画像である。従って、第1の実施形態では、医用画像処理装置100が任意の姿勢のマーカーをリアルタイムに追跡するための構成として動体追跡装置120を備えていたが、オブジェクト抽出部215におけるマーカーの抽出には、リアルタイム性は求められない。このため、オブジェクト抽出部215は、第2画像からのマーカーの抽出を、例えば、既存のテンプレートマッチングによって行ってもよい。この場合、オブジェクト抽出部215は、テンプレートマッチングによって抽出したテンプレートの画像を、マーカー像を含む部分領域の画像として学習用画像取得部211に出力してもよい。また、オブジェクト抽出部215は、テンプレートマッチングによって抽出したテンプレートの画像が表すマーカーの姿勢に対応する姿勢パラメータを、マーカーの姿勢の推定結果の情報として学習用画像取得部211に出力してもよい。
なお、オブジェクト抽出部215は、第2画像から切り出したマーカーの重心が画像の中心に位置するように予め定めた大きさ(範囲)の部分領域を切り出した画像を、マーカー像を含む部分領域の正例画像として学習用画像取得部211に出力する場合、マーカー像が画像の中心の所定の範囲内に位置しない部分領域の画像を、負例画像として学習用画像取得部211に出力してもよい。
学習用画像取得部211は、第1の実施形態の医用画像処理装置100を構成する学習装置110に備えた学習用画像取得部111と同様に、医用画像処理装置200における学習用画像を取得し、取得した学習用画像を学習部112に出力する。また、学習用画像取得部211は、オブジェクト抽出部215から出力されたマーカー像を含む部分領域の画像(テンプレートの画像であってもよい)を取得する。この場合、学習用画像取得部211は、第1の実施形態の医用画像処理装置100を構成する学習装置110に備えた学習用画像取得部111におけるシミュレーション画像に代えて、オブジェクト抽出部215から出力されたマーカー像を含む部分領域の画像を臨床画像に合成した学習用画像(正例画像および負例画像)を学習部112に出力する。また、学習用画像取得部211は、オブジェクト抽出部215がマーカー像を含む部分領域の画像からマーカーの姿勢を推定した結果の情報を出力する場合、オブジェクト抽出部215から出力されたマーカーの姿勢の推定結果の情報(姿勢パラメータ)を取得する。この場合、学習用画像取得部211は、オブジェクト抽出部215から出力されたマーカーの姿勢の推定結果の情報(姿勢パラメータ)に対応するシミュレーション画像を臨床画像に合成した学習用画像(正例画像および負例画像)を学習部112に出力する。
なお、オブジェクト抽出部215が、マーカー像を含む部分領域の正例画像を出力する場合、学習用画像取得部211は、対応する負例画像を取得し、オブジェクト抽出部215から出力された正例画像と取得した負例画像とを学習用画像として学習部112に出力する。また、オブジェクト抽出部215が正例画像と負例画像とをマーカー像を含む部分領域の画像として出力する場合、学習用画像取得部211は、オブジェクト抽出部215から出力された正例画像と負例画像とからなる学習用画像を、学習部112に出力する。
なお、学習用画像取得部211におけるオブジェクト抽出部215から出力されたマーカー像を含む部分領域の画像やマーカーの姿勢の推定結果の情報を取得して学習用画像を学習部112に出力する機能は、第1の実施形態の医用画像処理装置100を構成する学習装置110に備えた学習用画像取得部111の機能に加えた機能であってもよいし、学習用画像取得部111の機能に代わる機能であってもよい。
このような構成によって、医用画像処理装置200では、実際に患者Pに留置されたマーカーの姿勢は患者Pの呼吸や心拍などに連動して大きく変化する可能性は低いという考え方に基づいて、学習するマーカー像を限定する。より具体的には、医用画像処理装置200では、治療前に撮影された患者Pの透視画像から留置されたマーカーのマーカー像を抽出、または留置されたマーカーの姿勢を推定する。そして、医用画像処理装置200では、抽出マーカー像、または推定したマーカー像の姿勢、つまり、限定したマーカー像に対応する学習用画像に基づいて、第1の実施形態の医用画像処理装置100と同様に、マーカー像に共通する第1特徴を学習する。これにより、医用画像処理装置200では、任意の姿勢のマーカーに対応する学習を行う第1の実施形態の医用画像処理装置100に対して、学習するマーカー像を限定することができる。そして、医用画像処理装置200でも、第1の実施形態の医用画像処理装置100と同様に、学習したマーカーの特徴に基づいて、治療中に撮影された患者Pの透視画像である第1画像に撮影されたマーカーを追跡し、追跡しているマーカーの位置を表すマーカー位置信号を出力する。しかも、医用画像処理装置200では、追跡する対象のマーカーを現在の患者Pの体内にあるマーカーに限定しているため、マーカーを追跡する際の精度を向上させることができる。これにより、医用画像処理装置200でも、第1の実施形態の医用画像処理装置100と同様に、患者Pの体内の病巣に治療ビームBを照射するタイミングを自動で検知することができる。このことにより、医用画像処理装置200を備えた治療システム2でも、第1の実施形態の医用画像処理装置100を備えた治療システム1と同様に、適切なタイミングで患者Pの体内の病巣に治療ビームBを照射することができる。
ここで、治療システム2を構成する医用画像処理装置200の動作の概略について説明する。ここでは、医用画像処理装置200を構成する学習装置210の動作の概略について説明する。図7は、第2の実施形態の医用画像処理装置200を構成する学習装置210の動作の流れを示すフローチャートの一例である。図7の(a)には、学習装置210が、第2画像から抽出したマーカー像に対応する学習用画像を取得する場合の動作の流れの一例を示している。また、図7の(b)には、学習装置210が、第2画像から抽出したマーカー像から推定したマーカーの姿勢に対応する学習用画像を取得する場合の動作の流れの一例を示している。医用画像処理装置200に備えた学習装置210では、図7の(a)に示した動作および図7の(b)に示した動作のいずれか一方の動作、または両方の動作を行って、学習用画像を取得する。なお、図7に示した学習装置210の動作の流れを示したフローチャートの一例では、学習用画像を取得した後に行う、第1の実施形態の医用画像処理装置100に備えた学習装置110と同様の第1特徴の学習および特徴抽出パラメータのパラメータ記憶部113への記憶の動作の流れに関しては省略している。
まず、図7の(a)を用いて、学習装置210が、第2画像から抽出したマーカー像に対応する学習用画像を取得する動作について説明する。学習装置210が動作を開始すると、第2画像取得部214は、まず、第2画像を取得する(ステップS210)。続いて、オブジェクト抽出部215は、第2画像取得部214から出力された第2画像内に含まれるマーカー像を抽出する(ステップS211)。続いて、学習用画像取得部211は、オブジェクト抽出部215から出力されたマーカー像を含む部分領域の画像(テンプレートの画像であってもよい)に対応する学習用画像を取得する(ステップS212)。以降、学習装置210は、図3に示した第1の実施形態の医用画像処理装置100に備えた学習装置110の動作の流れを示したフローチャートの一例のそれぞれのステップと同様に、学習用画像(正例画像および負例画像)の取得と、抽出したマーカーのマーカー像に共通する第1特徴の学習および特徴抽出パラメータの計算を行い、計算した特徴抽出パラメータをパラメータ記憶部113に出力して記憶させる。
続いて、図7の(b)を用いて、学習装置210が、第2画像から抽出したマーカー像から推定したマーカーの姿勢に対応する学習用画像を取得する動作について説明する。学習装置210が動作を開始すると、第2画像取得部214は、まず、第2画像を取得する(ステップS220)。続いて、オブジェクト抽出部215は、第2画像取得部214から出力された第2画像内に含まれるマーカー像を抽出し、抽出したマーカー像を含む部分領域の画像(テンプレートの画像であってもよい)からマーカーの姿勢を推定する(ステップS221)。続いて、学習用画像取得部211は、オブジェクト抽出部215から出力されたマーカーの姿勢の推定結果の情報(姿勢パラメータ)に対応する学習用画像を取得する(ステップS222)。以降、学習装置210は、図3に示した第1の実施形態の医用画像処理装置100に備えた学習装置110の動作の流れを示したフローチャートの一例のそれぞれのステップと同様に、学習用画像(正例画像および負例画像)の取得と、抽出したマーカーのマーカー像に共通する第1特徴の学習および特徴抽出パラメータの計算を行い、計算した特徴抽出パラメータをパラメータ記憶部113に出力して記憶させる。
次に、治療システム2を構成する医用画像処理装置200に備えた学習装置210の動作の詳細について説明する。まず、医用画像処理装置200を構成する学習装置210に備えたオブジェクト抽出部215が、図7に示した学習装置210の動作の流れを示したフローチャートの一例のステップS211またはステップS221において、第2画像内に含まれるマーカー像を抽出する方法について説明する。なお、オブジェクト抽出部215による第2画像からのマーカー像の抽出は、学習用画像を取得する前段階として行われるため、上述したように、リアルタイム性は求められない。
第2画像が治療計画のときに撮影した3次元のCT画像である場合、マーカーの視認性が高いため、治療システム2を利用する放射線治療の実施者(医師など)が目視で確認しながらマーカー像を指定することができる。この場合、オブジェクト抽出部215は、治療システム1の利用者によって指定されたCT画像内のマーカー像を、第2画像内に含まれるマーカー像として容易に抽出することができる。そして、オブジェクト抽出部215は、CT画像から抽出したマーカー像を含む予め定めた一部分の領域(部分領域)を切り出して、マーカー像を含む部分領域の画像として出力することができる。また、この場合、オブジェクト抽出部215は、治療システム1の利用者によって指定されたCT画像内のマーカー像の情報に基づいて、容易にマーカーの姿勢を推定することができる。なお、CT画像は3次元の画像であるため、オブジェクト抽出部215は、指定されたCT画像内のマーカー像の情報に基づいて、CT画像から作成した2次元のDRR画像内のマーカー像を含む一部分の領域を切り出して、マーカー像を含む部分領域の画像として出力してもよい。
また、第2画像が透視画像である場合、第1の実施形態の医用画像処理装置100に備えた学習装置110を構成する学習部112や、動体追跡装置120を構成する追跡部122に備えた識別器と同様の処理によってマーカーの位置を特定することができる。この場合、オブジェクト抽出部215は、特定したマーカーの位置の情報に基づいて、第2画像内に含まれるマーカー像を抽出することができる。また、この場合、オブジェクト抽出部215は、特定したマーカーの位置に表されたマーカー像から、マーカーの姿勢を推定することができる。
また、上述したように、オブジェクト抽出部215は、テンプレートマッチングによって、第2画像内に含まれるマーカーの位置を特定することができる。この場合、オブジェクト抽出部215は、テンプレートマッチングによって特定したマーカーの位置の情報に基づいて、第2画像内に含まれるマーカー像を抽出することができる。また、この場合、オブジェクト抽出部215は、治療システム1の利用者によって指定されたCT画像内のマーカー像の情報に基づいて、容易にマーカーの姿勢を推定することができる。また、この場合、オブジェクト抽出部215は、マーカーを特定するときに用いたテンプレートから、マーカーの姿勢を推定することができる。
ここで、医用画像処理装置200を構成する学習装置210に備えたオブジェクト抽出部215が、図7の(b)に示した学習装置210の動作の流れを示したフローチャートの一例のステップS221において、抽出したマーカー像からマーカーの姿勢を推定する方法について説明する。ここでは、オブジェクト抽出部215が、テンプレートマッチングによって第2画像内に含まれるマーカー像を抽出した場合におけるマーカーの姿勢の推定方法について説明する。なお、以下の説明においては、患者Pの体内に留置されたマーカーが、球型マーカー以外のマーカーであるものとし、その一例として、棒型マーカーMの姿勢を推定する場合について説明する。
図8は、第2の実施形態の医用画像処理装置200を構成する学習装置210において抽出するマーカーの像(棒型マーカーMのマーカー像)の一例の図である。なお、図8に示した棒型マーカーMのマーカー像は、第1の実施形態の医用画像処理装置100を構成する学習装置110に備えた学習用画像取得部111が取得する、仮想的に作成したシミュレーション画像でもある。また、図8に示した棒型マーカーMのマーカー像は、オブジェクト抽出部215がテンプレートマッチングによって棒型マーカーMのマーカー像を抽出する際に用いるテンプレートの画像としても利用することができる。図8には、治療システム2に備える2つの撮像装置のそれぞれで同時に2方向から撮影することができる棒型マーカーMのマーカー像の組を示している。図8では、それぞれの列の上段のマーカー像と下段のマーカー像とが、棒型マーカーMのそれぞれの姿勢における1つの組となっている。
図8に示したそれぞれの棒型マーカーMのマーカー像は、棒型マーカーMの姿勢を表す姿勢パラメータを順次変えながら作成したものであるため、棒型マーカーMのマーカー像と棒型マーカーMの姿勢パラメータとは対応している。このため、オブジェクト抽出部215では、図8に示したそれぞれの棒型マーカーMのマーカー像の組をテンプレートとし、それぞれのテンプレートの組とそれぞれの第2画像に撮影された棒型マーカーMのマーカー像との類似度を計算することができる。ここで、オブジェクト抽出部215における類似度の計算には、正規化相互相関や相互情報量などを利用することができる。そして、オブジェクト抽出部215では、類似度が最大となるテンプレートに対応した姿勢パラメータを特定することによって、第2画像に撮影された棒型マーカーMの姿勢を推定することができる。
このようにしてオブジェクト抽出部215は、治療前に撮影された患者Pの透視画像から、留置された棒型マーカーMのマーカー像を抽出し、抽出した棒型マーカーMのマーカー像を含む部分領域の画像、または抽出したマーカー像を含む部分領域の画像からマーカーの姿勢を推定した結果の情報(画像)を学習用画像取得部211に出力する。その後、医用画像処理装置200でも、学習装置210が、第1の実施形態の医用画像処理装置100に備えた学習装置110と同様に、学習用画像(正例画像および負例画像)の取得と、棒型マーカーMのマーカー像に共通する第1特徴の学習および特徴抽出パラメータの計算を行い、計算した特徴抽出パラメータをパラメータ記憶部113に記憶させておく。そして、医用画像処理装置200でも、動体追跡装置120が、治療中の第1画像内の棒型マーカーMの位置の予測、特徴抽出パラメータが表す第1特徴に基づいた棒型マーカーMの予測位置の尤度l(x)の計算、および治療中第1画像に含まれる棒型マーカーMの位置xの計算を行う。そして、医用画像処理装置200でも、動体追跡装置120が、計算した棒型マーカーMの位置xを表すマーカー位置信号を出力する。
上述したように、第2の実施形態の医用画像処理装置200では、学習装置210(より具体的には、オブジェクト抽出部215)が、実際に患者Pに留置されたマーカーの姿勢は患者Pの呼吸や心拍などに連動して大きく変化する可能性は低いという考え方に基づいて、治療前に撮影された患者Pの透視画像から留置された棒型マーカーMのマーカー像を抽出、または留置された棒型マーカーMの姿勢を推定する。これにより、第2の実施形態の医用画像処理装置200では、学習する棒型マーカーMのマーカー像を限定することができる。そして、第2の実施形態の医用画像処理装置200では、学習装置210(より具体的には、学習用画像取得部211)が、抽出マーカー像、または推定したマーカー像の姿勢、つまり、限定した棒型マーカーMのマーカー像に対応する学習用画像に基づいて、患者Pの体内に留置された姿勢が限定された棒型マーカーMのマーカー像に共通する第1特徴を学習する。その後、第2の実施形態の医用画像処理装置200でも、第1の実施形態の医用画像処理装置100と同様に、学習によって得られた第1特徴に基づいて、棒型マーカーMの方向の特徴を表す特徴抽出パラメータを計算してパラメータ記憶部113に記憶させておく。そして、第2の実施形態の医用画像処理装置200でも、第1の実施形態の医用画像処理装置100と同様に、動体追跡装置120が、治療中に撮影された患者Pの第1画像(透視画像)に撮影された棒型マーカーMを追跡し、棒型マーカーMの位置を表すマーカー位置信号を出力する。
これにより、第2の実施形態の医用画像処理装置200でも、第1の実施形態の医用画像処理装置100と同様に、棒型マーカーMを追跡する際の計算を効率的に行い、棒型マーカーMの追跡のリアルタイム性の低下を抑えることができる。また、第2の実施形態の医用画像処理装置200でも、第1の実施形態の医用画像処理装置100と同様に、従来のテンプレートマッチングにおいて棒型マーカーMに類似度が高いテンプレートが存在してしまうことによって発生することが考えられる、棒型マーカーMの誤追跡の可能性を低くすることができる。
これにより、第2の実施形態の医用画像処理装置200を備えた治療システム2でも、第1の実施形態の医用画像処理装置100を備えた治療システム1と同様に、患者Pの呼気や吸気に同期した適切なタイミングで、治療ビームBを安全に病巣に照射することができる。
しかも、第2の実施形態の医用画像処理装置200では、追跡する対象の棒型マーカーMを現在の患者Pの体内にある姿勢の棒型マーカーMに限定しているため、棒型マーカーMを追跡する際の精度を向上させることができる。
なお、第2の実施形態の医用画像処理装置200でも、追跡する対象のマーカーが棒型マーカーMである場合について説明したが、第1の実施形態の医用画像処理装置100と同様に、追跡する対象のマーカーは棒型マーカーMに限定されるものではない。
上記説明したように、医用画像処理装置200は、第1画像とは異なる時刻に撮影された透視画像を第2画像として取得する第2画像取得部214と、第2画像に撮影された被写体像(マーカー)を抽出するオブジェクト抽出部215と、をさらに備え、学習用画像取得部211は、第2画像に撮影された被写体の姿勢に対応する学習用画像を取得する。
また、上記説明したように、学習用画像は、第2画像から抽出された被写体像と、第2画像と同じ範囲が撮影された臨床画像とを合成した画像であってもよい。
(第3の実施形態)
以下、第3の実施形態について説明する。なお、第3の実施形態の医用画像処理装置を備えた治療システムの構成は、図1に示した第1の実施形態の医用画像処理装置100を備えた治療システム1の構成において、医用画像処理装置100が第3の実施形態の医用画像処理装置(以下、「医用画像処理装置300」という)に代わった構成である。以下の説明においては、医用画像処理装置300を備えた治療システムを、「治療システム3」という。
なお、以下の説明においては、医用画像処理装置300を備えた治療システム3の構成要素において、第1の実施形態の医用画像処理装置100を備えた治療システム1の構成要素と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の医用画像処理装置100と異なる構成要素である医用画像処理装置300の構成、動作、および処理についてのみを説明する。
医用画像処理装置300は、第1の実施形態の医用画像処理装置100と同様に、放射線検出器13−1および放射線検出器13−2から出力された透視画像に基づいて、放射線治療において治療を行う患者Pの体内に留置されているマーカーを追跡する。これにより、医用画像処理装置300でも、第1の実施形態の医用画像処理装置100と同様に、放射線治療において治療を行う患者Pの体内の病巣を追跡することができる。そして、医用画像処理装置300は、第1の実施形態の医用画像処理装置100と同様に、患者Pの体内に留置されているマーカーを追跡した結果に基づいて、放射線治療において病巣に治療ビームBを照射するタイミングを自動で検知する。また、医用画像処理装置300は、患者Pの体内に留置されているマーカーを追跡している様子を表示することによって、治療システム3を利用する放射線治療の実施者(医師など)が監視することができるようにしている。また、医用画像処理装置300は、追跡しているマーカーの位置から推測した病巣の位置なども表示することによって、治療システム3を利用する放射線治療の実施者(医師など)が、正常に治療が行われていることを確認することができるようにしている。
以下、治療システム3を構成する医用画像処理装置300の構成について説明する。図9は、第3の実施形態の医用画像処理装置300の概略構成を示すブロック図である。図9に示した医用画像処理装置300は、学習装置110と、動体追跡装置320と、表示部330とを備える。また、学習装置110は、学習用画像取得部111と、学習部112と、パラメータ記憶部113とを備える。また、動体追跡装置320は、第1画像取得部321と、追跡部122とを備える。
医用画像処理装置300は、第1の実施形態の医用画像処理装置100に表示部330が追加された構成である。これに伴って、医用画像処理装置300では、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120が動体追跡装置320に代わっている。また、動体追跡装置320では、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に備えた第1画像取得部121が第1画像取得部321に代わっている。なお、医用画像処理装置300に備えたその他の構成要素は、第1の実施形態の医用画像処理装置100に備えた構成要素と同じ構成要素である。従って、以下の説明においては、医用画像処理装置300の構成要素において、第1の実施形態の医用画像処理装置100に備えた構成要素と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の医用画像処理装置100と異なる構成要素についてのみを説明する。
動体追跡装置320は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120と同様に、放射線治療を行っているときに、医用画像処理装置300において追跡するマーカーが撮影された患者Pの透視画像である第1画像を取得し、学習装置110が学習したマーカーの第1特徴に基づいて、第1画像に撮影されたマーカーを追跡する。また、動体追跡装置320は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120と同様に、追跡しているマーカーの位置を表すマーカー位置信号を出力する。さらに、動体追跡装置320は、取得した第1画像とマーカー位置信号とを、表示部330にも出力する。
なお、動体追跡装置320は、追跡しているマーカーの第1画像内の範囲を表す情報を、マーカー位置信号と共に、表示部330に出力する構成にしてもよい。
第1画像取得部321は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に備えた第1画像取得部121と同様に、治療中に撮影された患者Pの透視画像である第1画像を取得し、取得した第1画像を追跡部122に出力する。また、第1画像取得部321は、取得した第1画像を表示部330にも出力する。
なお、第1画像取得部321の動作は、取得した第1画像を表示部330にも出力する以外は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に備えた第1画像取得部121の動作と同様である。そして、第1画像取得部321を備えた医用画像処理装置300の動作も、動体追跡装置120の動作と同様に考えることができる。つまり、第1画像取得部321を備えた医用画像処理装置300の動作は、図4に示した動体追跡装置120の動作の流れを示したフローチャートの一例のステップS101において、取得した第1画像を表示部330に出力することが異なる以外は、その他の動作は同様である。従って、動体追跡装置320の動作に関する詳細な説明は省略する。
表示部330は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)などの表示装置を備える表示ユーザーインターフェースである。表示部330は、動体追跡装置320から出力された第1画像とマーカー位置信号とを取得する。そして、表示部330は、取得したマーカー位置信号に基づいて、取得した第1画像内に、患者Pの体内に留置されているマーカーを追跡している様子や、追跡しているマーカーの位置から推測した病巣の位置などの情報を表示する。より具体的には、表示部330は、マーカー位置信号が表す追跡しているマーカーの位置の情報を、第1画像内に重畳して表示させるための画像を表示する。また、表示部330は、マーカー位置信号が表す追跡しているマーカーの位置の情報に基づいて、第1画像内に撮影されている病巣の位置を推測し、推測した病巣の位置の情報を、第1画像内に重畳して表示させるための画像を表示する。
なお、動体追跡装置320が、追跡しているマーカーの第1画像内の範囲を表す情報をマーカー位置信号と共に出力する構成である場合、表示部330は、追跡しているマーカーの第1画像内の範囲を表す情報も、マーカーの位置の情報と共に第1画像内に表示させるための画像を表示してもよい。
ここで、表示部330が、マーカー位置信号に基づいて第1画像内に撮影されている病巣の位置を推測する方法について説明する。ここでは、表示部330が、マーカー位置信号が表す追跡しているマーカーの位置が、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に備えた追跡部122が計算した棒型マーカーMの位置xである場合に、この棒型マーカーMの位置xに基づいて病巣の位置を推測する方法について説明する。
表示部330は、下式(5)によって、病巣の位置yを計算する。
Figure 2019154738
上式(5)において、Aは、2行×2列の行列である。また、上式(5)において、Tは、1行×2列のベクトルである。なお、行列AおよびベクトルTは、治療の前に得られた1つ以上の棒型マーカーMの位置と病巣の位置とから線形回帰によって求め、治療システム3を利用する放射線治療の実施者(医師など)が、表示部330に予め設定しておいたものである。ここで、行列AおよびベクトルTと求めるための棒型マーカーMの位置と病巣の位置とは、例えば、治療計画のときに撮影したCT画像に対して入力(設定)した病巣の範囲(領域)とマーカーの範囲(領域)とを利用して求めることができる。なお、CT画像は、3次元の画像であるため、CT画像からDRR画像を作成するときに射影した病巣の範囲(領域)の重心とマーカーの範囲(領域)の重心とから、回帰によって棒型マーカーMの位置と病巣の位置との関係を求めておくことができる。
このようにして表示部330は、動体追跡装置320から出力されたマーカー位置信号が表す追跡しているマーカーの位置の情報に基づいて、動体追跡装置320から出力された第1画像内に撮影されている病巣の位置を推測する。そして、表示部330は、推測した病巣の位置の情報を、第1画像内に重畳して表示させる。
ここで、表示部330が、患者Pの体内に留置されている棒型マーカーMを追跡している様子や、追跡している棒型マーカーMの位置から推測した病巣の位置などの情報を表示する一例について説明する。図10は、第3の実施形態の医用画像処理装置300に備えた表示部330が表示する情報を示す図である。図10には、医用画像処理装置300が患者Pの体内に留置されている棒型マーカーMを追跡している様子と、追跡している棒型マーカーMの位置から推測した病巣の位置の情報とを表示している表示部330の表示画面の一例を示している。
図10では、表示画面Dの上段に、治療装置10に備える撮像装置のそれぞれが撮影した第1画像に、医用画像処理装置300が患者Pの体内に留置されている棒型マーカーMを追跡している様子を表示している。より具体的には、図10に示した表示画面Dの上段の左側に表示した放射線源12−1と放射線検出器13−1との組によって構成される撮像装置(以下、「撮像装置−1」という)が撮影した第1画像TI−1に、棒型マーカーMと、棒型マーカーMを追跡している追跡範囲Ta−1とを示している。また、図10に示した表示画面Dの上段の右側に表示した放射線源12−2と放射線検出器13−2との組によって構成される撮像装置(以下、「撮像装置−2」という)が撮影した第1画像TI−2に、棒型マーカーMと、棒型マーカーMを追跡している追跡範囲Ta−2とを示している。
また、図10では、表示画面Dの下段に、治療装置10に備える撮像装置のそれぞれが撮影した第1画像に、医用画像処理装置300が追跡している棒型マーカーMの位置から推測した病巣の位置と、治療ビームBを照射する位置の情報とを表示している。より具体的には、図10に示した表示画面Dの下段の左側に表示した撮像装置−1が撮影した第1画像LI−1に、棒型マーカーMの位置から推測した病巣Fの位置と、病巣Fに対して治療ビームBを照射する照射位置Rp−1とを示している。また、図10に示した表示画面Dの下段の右側に表示した撮像装置−2が撮影した第1画像LI−2に、棒型マーカーMの位置から推測した病巣Fの位置と、病巣Fに対して治療ビームBを照射する照射位置Rp−2とを示している。
治療システム3を利用する放射線治療の実施者(医師など)は、図10に示した表示部330の表示画面Dの一例のような表示によって、患者Pの体内に留置されている棒型マーカーMを追跡している様子を監視することができ、追跡している棒型マーカーMの位置から推測した病巣Fに対して正常に治療が行われているか否かを確認することができる。
上述したように、第3の実施形態の医用画像処理装置300でも、第1の実施形態の医用画像処理装置100と同様に、学習装置110が、学習用画像に基づいて患者Pの体内に留置された棒型マーカーMのマーカー像に共通する第1特徴を学習し、学習によって得られた第1特徴に基づいて、棒型マーカーMを追跡するための特徴抽出パラメータを計算してパラメータ記憶部113に記憶させておく。そして、第3の実施形態の医用画像処理装置300でも、第1の実施形態の医用画像処理装置100と同様に、動体追跡装置320が、治療中に撮影された患者Pの第1画像(透視画像)に撮影された棒型マーカーMを追跡し、棒型マーカーMの位置を表すマーカー位置信号を出力する。
これにより、第3の実施形態の医用画像処理装置300でも、第1の実施形態の医用画像処理装置100と同様に、棒型マーカーMを追跡する際の計算を効率的に行い、棒型マーカーMの追跡のリアルタイム性の低下を抑えることができる。また、第3の実施形態の医用画像処理装置300でも、第1の実施形態の医用画像処理装置100と同様に、従来のテンプレートマッチングにおいて棒型マーカーMに類似度が高いテンプレートが存在してしまうことによって発生することが考えられる、棒型マーカーMの誤追跡の可能性を低くすることができる。
これにより、第3の実施形態の医用画像処理装置300を備えた治療システム3でも、第1の実施形態の医用画像処理装置100を備えた治療システム1と同様に、患者Pの呼気や吸気に同期した適切なタイミングで、治療ビームBを安全に病巣に照射することができる。
また、第3の実施形態の医用画像処理装置300では、表示部330が、動体追跡装置320から出力されたマーカー位置信号に基づいて、動体追跡装置320から出力された第1画像内に、患者Pの体内に留置されている棒型マーカーMを追跡している様子や、追跡している棒型マーカーMの位置から推測した病巣の位置などの情報を表示する。これにより、第3の実施形態の医用画像処理装置300を備えた治療システム3では、治療システム3を利用する放射線治療の実施者(医師など)が、患者Pの体内に留置されている棒型マーカーMを追跡している様子を監視することができる。また、第3の実施形態の医用画像処理装置300を備えた治療システム3では、治療システム3を利用する放射線治療の実施者(医師など)が、追跡しているマーカーの位置から推測した病巣に対して正常に治療が行われていることを確認することができるようにする。
なお、第3の実施形態の医用画像処理装置300でも、追跡する対象のマーカーが棒型マーカーMである場合について説明したが、第1の実施形態の医用画像処理装置100と同様に、追跡する対象のマーカーは棒型マーカーMに限定されるものではない。
なお、第3の実施形態の医用画像処理装置300では、図9に示した医用画像処理装置300の構成において、表示部330が、動体追跡装置320から出力された第1画像とマーカー位置信号とを取得し、マーカー位置信号に基づいて追跡している棒型マーカーMの位置から病巣Fの位置を推測して、第1画像内に重畳して表示させる構成である場合について説明した。しかし、追跡している棒型マーカーMの位置から病巣Fの位置を推測する構成要素は、表示部330に限定されるものではなく、例えば、動体追跡装置320に備えた追跡部122が、追跡している棒型マーカーMの位置から病巣Fの位置を推測し、推測した病巣Fの位置や大きさなどの情報を、表示部330に出力する構成にしてもよい。
なお、第3の実施形態の医用画像処理装置300では、図9に示した医用画像処理装置300の構成において、表示部330が、医用画像処理装置300に備えた構成要素である場合について説明した。しかし、表示部330は、医用画像処理装置300に備えた構成要素である構成に限定されるものではない。例えば、表示部330を医用画像処理装置300の外部に備える構成であってもよい。また、例えば、第3の実施形態の医用画像処理装置300を備えた治療システム3において、表示部330の機能、つまり、医用画像処理装置300を構成する動体追跡装置320から出力された第1画像とマーカー位置信号に基づいた情報や画像を表示する機能を、治療装置10に備える構成であってもよい。
上記説明したように、医用画像処理装置300は、追跡した被写体の位置の情報を表示する表示部330をさらに備える。
また、上記説明したように、医用画像処理装置300において、表示部330は、第1画像を表示させ、第1画像内で追跡した被写体の位置の情報を、表示させている第1画像内に重畳して表示させてもよい。
また、上記説明したように、医用画像処理装置300において、表示部330は、治療する対象の部位(病巣)の位置の情報を、表示させている第1画像内に重畳して表示させてもよい。
(第4の実施形態)
以下、第4の実施形態について説明する。なお、第4の実施形態の医用画像処理装置を備えた治療システムの構成は、図1に示した第1の実施形態の医用画像処理装置100を備えた治療システム1の構成において、医用画像処理装置100が第4の実施形態の医用画像処理装置(以下、「医用画像処理装置400」という)に代わった構成である。以下の説明においては、医用画像処理装置400を備えた治療システムを、「治療システム4」という。
なお、以下の説明においては、医用画像処理装置400を備えた治療システム4の構成要素において、第1の実施形態の医用画像処理装置100を備えた治療システム1の構成要素と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の医用画像処理装置100と異なる構成要素である医用画像処理装置400の構成、動作、および処理についてのみを説明する。
医用画像処理装置400は、第1の実施形態の医用画像処理装置100と同様に、放射線検出器13−1および放射線検出器13−2から出力された透視画像に基づいて、放射線治療において治療を行う患者Pの体内に留置されているマーカーを追跡する。これにより、医用画像処理装置400でも、第1の実施形態の医用画像処理装置100と同様に、放射線治療において治療を行う患者Pの体内の病巣を追跡することができる。なお、医用画像処理装置400では、第1の実施形態の医用画像処理装置100と同様の学習用画像に基づいた学習に加えて、患者Pの体内に留置されているマーカーの姿勢に対応したテンプレートを使用したテンプレートマッチングによるマーカーの追跡も行う。ただし、マーカーが取り得る全ての姿勢に対応したテンプレートを使用してテンプレートマッチングを行うと、マーカーの追跡のリアルタイム性の低下を引き起こす可能性がある。このため、医用画像処理装置400では、テンプレートマッチングによってマーカーを追跡する場合には、テンプレートマッチングにおいて使用するテンプレートを限定する。これにより、医用画像処理装置400では、マーカーの追跡を、よりロバストに行うことができるようにする。そして、医用画像処理装置400は、第1の実施形態の医用画像処理装置100と同様に、患者Pの体内に留置されているマーカーを追跡した結果に基づいて、放射線治療において病巣に治療ビームBを照射するタイミングを自動で検知する。
以下、治療システム4を構成する医用画像処理装置400の構成について説明する。図11は、第4の実施形態の医用画像処理装置400の概略構成を示すブロック図である。図11に示した医用画像処理装置400は、学習装置110と、動体追跡装置420とを備える。また、学習装置110は、学習用画像取得部111と、学習部112と、パラメータ記憶部113とを備える。また、動体追跡装置420は、第1画像取得部121と、追跡部422と、テンプレート取得部423と、姿勢検出部424と、テンプレート選択部425とを備える。
医用画像処理装置400は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120が、動体追跡装置420に代わった構成である。動体追跡装置420は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に、テンプレート取得部423と、姿勢検出部424と、テンプレート選択部425とが追加された構成である。これに伴って、医用画像処理装置400では、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に備えた追跡部122が、追跡部422に代わっている。なお、医用画像処理装置400に備えたその他の構成要素は、第1の実施形態の医用画像処理装置100に備えた構成要素と同じ構成要素である。従って、以下の説明においては、医用画像処理装置400の構成要素において、第1の実施形態の医用画像処理装置100に備えた構成要素と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の医用画像処理装置100と異なる構成要素についてのみを説明する。
動体追跡装置420は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120と同様に、放射線治療を行っているときに、医用画像処理装置300において追跡するマーカーが撮影された患者Pの透視画像である第1画像を取得し、学習装置110が学習したマーカーの第1特徴に基づいて、第1画像に撮影されたマーカーを追跡する。さらに、動体追跡装置420は、テンプレートマッチングによっても、マーカーを追跡する。また、動体追跡装置420は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120と同様に、追跡しているマーカーの位置を表すマーカー位置信号を出力する。
テンプレート取得部423は、患者Pの体内に留置されたマーカーが透視画像内に写るマーカー像のテンプレートを取得する。テンプレート取得部423は、取得したテンプレートを、姿勢検出部424およびテンプレート選択部425に出力する。ここで、テンプレートは、患者Pの体内に留置されているマーカーが取り得る全ての姿勢に対応した複数のテンプレートである。それぞれのテンプレートは、第1の実施形態の医用画像処理装置100を構成する学習装置110に備えた学習用画像取得部111による正例画像の取得方法と同様に、マーカーの姿勢パラメータを様々な値に変更しながら仮想的に生成する。このとき、姿勢パラメータは、第2の実施形態の医用画像処理装置200において学習するマーカー像を限定するときの考え方と同様の考え方に基づいて、テンプレートを生成するために変更する値を限定してもよい。
姿勢検出部424は、テンプレート取得部423から複数のテンプレートを取得する。また、姿勢検出部424は、追跡部422から追跡しているマーカーの位置の情報を取得する。そして、姿勢検出部424は、取得したマーカーの位置の情報に基づいて、マーカーの姿勢を推定する。なお、姿勢検出部424がマーカーの姿勢を推定する方法は、第2の実施形態の医用画像処理装置200を構成する学習装置210に備えたオブジェクト抽出部215がマーカーの姿勢を推定する方法と同様である。姿勢検出部424は、推定したマーカーの姿勢の情報をテンプレート選択部425に出力する。
テンプレート選択部425は、テンプレート取得部423から複数のテンプレートを取得する。また、テンプレート選択部425は、姿勢検出部424から出力されたマーカーの姿勢の情報を取得する。そして、テンプレート選択部425は、取得したマーカーの姿勢の情報に基づいて、取得した複数のテンプレートの中から、追跡しているマーカーの姿勢に対応するテンプレートを選択する。なお、テンプレート選択部425が選択するテンプレートは、追跡しているマーカーの姿勢に対応するテンプレート、つまり、1組のテンプレートに限定されるものではない。追跡しているマーカーは、患者Pの呼吸や心拍などに連動して体内を移動する。このため、テンプレート選択部425は、マーカーの移動を考慮し、追跡しているマーカーの姿勢に対応するテンプレートの姿勢パラメータを中心値として、姿勢パラメータの値を微少に変動させた複数組のテンプレートをまとめて選択してもよい。この場合でも、マーカーが取り得る全ての姿勢に対応したテンプレートの数よりも、選択するテンプレートの数の方が少なくなるため、テンプレートマッチングによるマーカーの追跡のロバスト性の必要以上の低下を抑えることができる。テンプレート選択部425は、選択したテンプレートを、追跡部422に出力する。
追跡部422は、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に備えた追跡部122と同様に、第1画像取得部121から出力された第1画像に撮影されたマーカーを追跡する。追跡部422は、マーカーの追跡を行う際に、テンプレート選択部425からテンプレートが出力されていない場合には、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に備えた追跡部122と同様に、学習装置110に備えたパラメータ記憶部113に記憶されている特徴抽出パラメータに基づいて、第1画像に撮影されたマーカーを追跡する。一方、追跡部422は、マーカーの追跡を行う際に、テンプレート選択部425からテンプレートが出力された場合には、出力されたテンプレートを用いたテンプレートマッチングによって、第1画像に撮影されたマーカーを追跡する。そして、追跡部122は、追跡しているマーカーの位置を表すマーカー位置信号を出力する。また、追跡部422は、追跡しているマーカーの位置の情報を、姿勢検出部424に出力する。
このような構成によって、医用画像処理装置400では、学習したマーカーの第1特徴、または選択したテンプレートに基づいて、現在の患者Pの体内にあるマーカーを追跡し、追跡しているマーカーの位置を表すマーカー位置信号を出力する。これにより、医用画像処理装置200でも、第1の実施形態の医用画像処理装置100と同様に、患者Pの体内の病巣に治療ビームBを照射するタイミングを自動で検知することができる。このことにより、医用画像処理装置400を備えた治療システム4でも、第1の実施形態の医用画像処理装置100を備えた治療システム1と同様に、適切なタイミングで患者Pの体内の病巣に治療ビームBを照射することができる。しかも、医用画像処理装置400では、テンプレートマッチングによってマーカーを追跡する際に用いるテンプレートを、現在の患者Pの体内にある追跡する対象のマーカーの姿勢に基づいて限定しているため、テンプレートマッチングによってマーカーを追跡する場合でも、従来のテンプレートマッチングによるマーカーの追跡よりもロバスト性を高くすることができる。
ここで、治療システム4を構成する医用画像処理装置400の動作の概略について説明する。ここでは、医用画像処理装置400を構成する動体追跡装置420の動作の概略について説明する。図12は、第4の実施形態の医用画像処理装置400を構成する動体追跡装置420の動作の流れを示すフローチャートの一例である。図12の(a)には、動体追跡装置420が、最初に取得した第1画像に撮影されたマーカーを追跡する場合の動作の流れの一例を示している。図12の(a)に示した動体追跡装置420の動作の流れを示したフローチャートの一例は、最初に取得した第1画像に撮影されたマーカーを、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120と同様に、学習したマーカーの特徴に基づいて追跡し、さらに、追跡したマーカーの位置の情報に基づいてマーカーの姿勢に対応するテンプレートを選択する動作の流れの一例を示している。また、図12の(b)には、動体追跡装置420が、次回以降に取得した第1画像に撮影されたマーカーを追跡する場合の動作の流れの一例を示している。図12の(b)に示した動体追跡装置420の動作の流れを示したフローチャートの一例は、次回以降に取得した第1画像に撮影されたマーカーを、選択したテンプレートを用いたテンプレートマッチングによって追跡する動作の流れの一例を示している。なお、図12に示した動体追跡装置420の動作の流れを示したフローチャートの一例には、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120と同様の動作(処理)を含んでいる。従って、以下の説明においては、動体追跡装置420の動作の流れを示したフローチャートの一例において、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120と同様の動作(処理)には、同一のステップ番号を付与し、異なる動作(処理)に重点をおいて説明する。
まず、図12の(a)を用いて、動体追跡装置420が、最初に取得した第1画像に撮影されたマーカーを追跡する動作について説明する。動体追跡装置120が動作を開始すると、第1画像取得部121は、まず、最初の第1画像を取得する(ステップS103)。続いて、追跡部422は、第1画像取得部121から出力された最初の第1画像内のマーカーの位置を予測する(ステップS104)。続いて、追跡部422は、パラメータ記憶部113に記憶されている特徴抽出パラメータを取得し、取得した特徴抽出パラメータが表す第1特徴に基づいて、予測したマーカーの位置の尤度を計算する(ステップS105)。続いて、追跡部422は、計算した尤度に基づいて、最初の第1画像に含まれるマーカーの位置を計算する(ステップS106)。そして、追跡部422は、計算した最初の第1画像に含まれる、追跡しているマーカーの位置を表すマーカー位置信号を出力する。また、追跡部422は、追跡しているマーカーの位置の情報を姿勢検出部424に出力する。続いて、姿勢検出部424は、追跡部422から出力された追跡しているマーカーの位置の情報に基づいて、マーカーの姿勢を推定する(ステップS410)。また、追跡部422は、推定したマーカーの姿勢の情報をテンプレート選択部425に出力する。続いて、テンプレート選択部425は、姿勢検出部424から出力されたマーカーの姿勢の情報に基づいて、推定した(最初に追跡している)マーカーの姿勢に対応するテンプレートを選択する。そして、テンプレート選択部425は、選択したテンプレートを、追跡部422に出力する。
続いて、図12の(b)を用いて、動体追跡装置420が、次回以降に取得した第1画像に撮影されたマーカーを追跡する動作について説明する。動体追跡装置120が動作を開始すると、第1画像取得部121は、まず、次回以降の第1画像を取得する(ステップS103)。続いて、追跡部422は、第1画像取得部121から出力された次回以降の第1画像内のマーカーの位置を予測する(ステップS104)。続いて、追跡部422は、テンプレート選択部425から出力されたテンプレートを用いたテンプレートマッチングによって、予測したマーカーの位置の尤度を計算する(ステップS420)。続いて、追跡部422は、計算した尤度に基づいて、次回以降の第1画像に含まれるマーカーの位置を計算する(ステップS106)。そして、追跡部422は、計算した次回以降の第1画像に含まれる、追跡しているマーカーの位置を表すマーカー位置信号を出力する。また、追跡部422は、追跡しているマーカーの位置の情報を姿勢検出部424に出力する。続いて、姿勢検出部424は、追跡部422から出力された追跡しているマーカーの位置の情報に基づいて、マーカーの姿勢を推定する(ステップS410)。また、追跡部422は、推定したマーカーの姿勢の情報をテンプレート選択部425に出力する。続いて、テンプレート選択部425は、姿勢検出部424から出力されたマーカーの姿勢の情報に基づいて、推定した(次回以降に追跡している)マーカーの姿勢に対応するテンプレートを選択する。そして、テンプレート選択部425は、選択したテンプレートを、追跡部422に出力する。
動体追跡装置420では、図12の(a)に示した学習したマーカーの特徴に基づいて追跡したマーカーの位置と、図12の(b)に示したテンプレートマッチングによって追跡したマーカーの位置とを統合することによって、動体追跡装置420におけるロバスト性の高いマーカーの追跡を実現している。
ここで、動体追跡装置420に備えた追跡部422が、テンプレート選択部425によって選択されたテンプレートを用いたテンプレートマッチングによって、第1画像に撮影されたマーカーを追跡する方法について説明する。追跡部422は、図12の(b)に示した動体追跡装置420の動作の流れを示したフローチャートの一例のステップS420において、第1の実施形態の医用画像処理装置100を構成する動体追跡装置120に備えた追跡部122と同様に予測したマーカーの位置の尤度を計算する。なお、以下の説明においては、患者Pの体内に留置されたマーカーが、球型マーカー以外のマーカーであるものとし、その一例として、棒型マーカーMである場合について説明する。
ここで、追跡部422が計算する尤度とは、追跡部422が予測した次回以降に取得した第1画像、つまり、治療中第1画像内の棒型マーカーMの位置に撮影されている像と、テンプレートとの類似度を表す値である。なお、類似度の計算には、正規化相互相関や相互情報量などを利用することができる。その他、分離度を、類似度としてもよい。
以下に、図13を参照して、分離度の計算方法について説明する。図13は、第4の実施形態の医用画像処理装置400を構成する動体追跡装置420においてマーカーの追跡に用いるテンプレートの一例を示す図である。図13に示したテンプレートの一例では、棒型マーカーMが存在する第1領域A1と、第1領域A1以外の第2領域(つまり、棒型マーカーMが存在しない領域)A2とに分類している。分離度の計算では、第1画像にテンプレートと同様の領域が存在する場合、第1画像に含まれる画素値のヒストグラムが、第1領域A1に属する画素値のヒストグラムと、第2領域A2に属する画素値のヒストグラムとのそれぞれに分類される。これは、第1画像に写された棒型マーカーMのマーカー像が第1領域A1と重なった場合、第1領域A1に属する画素値のヒストグラムは、暗い画素の画素値の頻度が高くなり、第2領域A2に属する画素値のヒストグラムは、明るい画素の画素値の頻度が高くなるためである。分離度の計算では、フィッシャーの判別基準を用いて、上述したような画素値のヒストグラムの分離性を数値化する。そして、分離度の計算では、それぞれの領域内に属する画素の画素値の分散の平均(クラス内分散)と、それぞれの領域間の画素値の分散(クラス間分散)との比を計算し、この比を分離度とする。このようにして、予測したマーカーの位置の尤度を、テンプレートを用いて計算することができる。そして、追跡部422では、計算した予測したマーカーの位置の尤度と、追跡部422に備えた識別器によって求めた尤度との積を用いて追跡することによって、ロバストな追跡を行うことができる。
上述したように、第4の実施形態の医用画像処理装置400でも、学習装置110が、放射線治療を行う前に、医用画像処理装置400における学習用画像を取得し、取得した学習用画像からマーカー像を検出するための第1特徴を学習し、学習した第1特徴に基づいて、マーカーの特徴を表す特徴抽出パラメータを計算してパラメータ記憶部113に記憶させておく。また、第4の実施形態の医用画像処理装置400では、動体追跡装置420に備えたテンプレート取得部423が、患者Pの体内に留置された棒型マーカーMが透視画像(第1画像)内に写るマーカー像のテンプレートを取得する。そして、第4の実施形態の医用画像処理装置400では、最初に取得した第1画像に撮影された棒型マーカーMを、特徴抽出パラメータが表す第1特徴に基づいて追跡し、追跡した棒型マーカーMの位置の情報に基づいて、棒型マーカーMの姿勢を推定して、棒型マーカーMの姿勢に対応するテンプレートを選択する。また、第4の実施形態の医用画像処理装置400では、次回以降に取得した第1画像に撮影された棒型マーカーMを、選択したテンプレートを用いたテンプレートマッチングによって追跡し、同様に棒型マーカーMの姿勢を推定して、棒型マーカーMの姿勢に対応するテンプレートを選択する。以降同様に、第4の実施形態の医用画像処理装置400では、取得した第1画像に撮影された棒型マーカーMを、選択したテンプレートを用いたテンプレートマッチングによって追跡し、同様に棒型マーカーMの姿勢を推定して、棒型マーカーMの姿勢に対応するテンプレートを選択しながら、棒型マーカーMを追跡する。そして、第4の実施形態の医用画像処理装置400でも、第1の実施形態の医用画像処理装置100と同様に、動体追跡装置420が、追跡した棒型マーカーMの位置を表すマーカー位置信号を出力する。
これにより、第4の実施形態の医用画像処理装置400でも、第1の実施形態の医用画像処理装置100と同様に、棒型マーカーMを追跡する際の計算を効率的に行い、棒型マーカーMの追跡のリアルタイム性の低下を抑えることができる。そして、第4の実施形態の医用画像処理装置400では、テンプレートマッチングによって棒型マーカーMを追跡することあるが、テンプレートマッチングにおいて用いるテンプレートを、現在の患者Pの体内にある追跡する対象の棒型マーカーMの姿勢に基づいて限定しながら、棒型マーカーMを追跡する。これにより、第4の実施形態の医用画像処理装置400では、テンプレートマッチングによって棒型マーカーMを追跡する場合のロバスト性を高くすることができる。このことにより、第4の実施形態の医用画像処理装置400でも、第1の実施形態の医用画像処理装置100と同様に、従来のテンプレートマッチングにおいて棒型マーカーMに類似度が高いテンプレートが存在してしまうことによって発生することが考えられる、棒型マーカーMの誤追跡の可能性を低くすることができる。
これにより、第4の実施形態の医用画像処理装置400を備えた治療システム4でも、第1の実施形態の医用画像処理装置100を備えた治療システム1と同様に、患者Pの呼気や吸気に同期した適切なタイミングで、治療ビームBを安全に病巣に照射することができる。
なお、第4の実施形態の医用画像処理装置400でも、追跡する対象のマーカーが棒型マーカーMである場合について説明したが、第1の実施形態の医用画像処理装置100と同様に、追跡する対象のマーカーは棒型マーカーMに限定されるものではない。
上記説明したように、医用画像処理装置400は、被写体像のテンプレートを取得するテンプレート取得部423と、追跡部422が追跡した被写体の位置の情報に基づいて、被写体の姿勢を検出する姿勢検出部424と、被写体の姿勢に対応するテンプレートを選択するテンプレート選択部425と、をさらに備え、追跡部422は、テンプレート選択部425によってテンプレートが選択された場合、選択されたテンプレートを用いて被写体を追跡する。
(第5の実施形態)
以下、第5の実施形態について説明する。なお、第5の実施形態の医用画像処理装置を備えた治療システムの構成は、図1に示した第1の実施形態の医用画像処理装置100を備えた治療システム1の構成において、医用画像処理装置100が第5の実施形態の医用画像処理装置(以下、「医用画像処理装置500」という)に代わった構成である。以下の説明においては、医用画像処理装置500を備えた治療システムを、「治療システム5」という。
なお、以下の説明においては、医用画像処理装置500を備えた治療システム5の構成要素において、第1の実施形態の医用画像処理装置100を備えた治療システム1の構成要素と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の医用画像処理装置100と異なる構成要素である医用画像処理装置500の構成、動作、および処理についてのみを説明する。
医用画像処理装置500は、第1の実施形態の医用画像処理装置100と同様に、放射線検出器13−1および放射線検出器13−2から出力された透視画像に基づいて、放射線治療において治療を行う患者Pの体内に留置されているマーカーを追跡する。これにより、医用画像処理装置500でも、第1の実施形態の医用画像処理装置100と同様に、放射線治療において治療を行う患者Pの体内の病巣を追跡することができる。そして、医用画像処理装置500は、第1の実施形態の医用画像処理装置100と同様に、患者Pの体内に留置されているマーカーを追跡した結果に基づいて、放射線治療において病巣に治療ビームBを照射するタイミングを自動で検知する。そして、医用画像処理装置500は、患者Pの体内に留置されているマーカーを追跡した結果に基づいて、治療装置10に備えた治療ビーム照射門14による治療ビームBの照射や、放射線源12による放射線rの照射を制御する。
以下、治療システム5を構成する医用画像処理装置500の構成について説明する。図14は、第5の実施形態の医用画像処理装置500の概略構成を示すブロック図である。図14に示した医用画像処理装置500は、学習装置110と、動体追跡装置120と、制御部540とを備える。また、学習装置110は、学習用画像取得部111と、学習部112と、パラメータ記憶部113とを備える。また、動体追跡装置120は、第1画像取得部121と、追跡部122とを備える。
医用画像処理装置500は、第1の実施形態の医用画像処理装置100に制御部540が追加された構成である。なお、医用画像処理装置500に備えたその他の構成要素は、第1の実施形態の医用画像処理装置100に備えた構成要素と同じ構成要素である。従って、以下の説明においては、医用画像処理装置500の構成要素において、第1の実施形態の医用画像処理装置100に備えた構成要素と同様の構成要素には、同一の符号を付与し、それぞれの構成要素に関する詳細な説明は省略する。そして、以下の説明においては、第1の実施形態の医用画像処理装置100と異なる構成要素についてのみを説明する。
医用画像処理装置500を構成する動体追跡装置120に備えた追跡部122は、追跡しているマーカーの位置を表すマーカー位置信号を、制御部540に出力する。
制御部540は、動体追跡装置120に備えた追跡部122から出力されたマーカー位置信号に基づいて、医用画像処理装置500を備えた治療システム5における放射線治療を制御する。より具体的には、制御部540は、追跡部122から出力されたマーカー位置信号が表す追跡しているマーカーの位置の情報に基づいて、追跡しているマーカーの位置が放射線治療を行う所定の範囲(領域)内にあるか否かを判定し、治療システム5における放射線治療を制御する制御信号を出力する。つまり、制御部540は、患者Pの体内の病巣の位置が放射線治療を行う所定の範囲(領域)内にある場合には、治療システム5における放射線治療を行い、患者Pの体内の病巣の位置が放射線治療を行う所定の範囲(領域)内にない場合には、治療システム5における放射線治療を行わないように制御するための制御信号を出力する。以下の説明においては、治療ビームBを病巣に照射する位置および所定の範囲(領域)を、「ゲートウィンドウ」という。
ゲートウィンドウは、治療計画の段階など、放射線治療を行う前に設定される、治療ビームBを照射する位置または範囲(領域)である。ゲートウィンドウは、治療計画のときに撮影したCT画像に指定されたマーカーの位置に基づいて決定する。治療計画では、実際の治療を行うときに発生する可能性がある誤差に基づいて、予め余裕(マージン)が設定されている。このため、ゲートウィンドウとしては、CT画像内のマーカーの位置を中心とし、その中心の位置にマージンを付加した3次元の領域が設定される。また、ゲートウィンドウは、CT画像に対して設定した範囲(領域)を、CT画像から作成したDRR画像や第1画像に射影させた範囲(領域)として設定してもよい。また、ゲートウィンドウは、治療を開始する直前の患者Pの状態を考慮し設定されたマージンを付加して設定してもよい。上記のようなことを考慮してゲートウィンドウを設定することにより、患者Pに対して不適切な治療ビームBや不要な放射線rの照射を行ってしまうような事態、いわゆる、被ばくを回避することができる。
ここで、放射線治療を行う前に行われる治療計画について説明する。治療計画では、患者Pに照射する治療ビームB(放射線)のエネルギー、照射方向、照射範囲の形状、複数回に分けて治療ビームBを照射する場合における線量の配分などを定める。より具体的には、まず、治療計画の立案者(医師など)が、治療計画の段階において撮影したCT画像に対して、腫瘍(病巣)の領域と正常な組織の領域との境界、腫瘍とその周辺にある重要な臓器との境界などを指定する。そして、治療計画では、指定された腫瘍に関する情報から算出した、患者Pの体表面から腫瘍の位置までの深さや、腫瘍の大きさに基づいて、照射する治療ビームBの方向(経路)や強度などを決定する。このとき、患者Pの体内に留置されたマーカーの位置も指定(入力)される。
上述した腫瘍の領域と正常な組織の領域との境界の指定は、腫瘍の位置および体積を指定することに相当する。この腫瘍の体積は、肉眼的腫瘍体積(Gross Tumor Volume:GTV)、臨床的標的体積(Clinical Target Volume:CTV)、内的標的体積(Internal Target Volume:ITV)、計画標的体積(Planning Target Volume:PTV)などと呼ばれている。GTVは、画像から肉眼で確認することができる腫瘍の体積であり、放射線治療においては、十分な線量の治療ビームBを照射する必要がある体積である。CTVは、GTVと治療すべき潜在性の腫瘍とを含む体積である。ITVは、予測される生理的な患者Pの動きなどによってCTVが移動することを考慮し、CTVに予め定めた余裕(マージン)を付加した体積である。PTVは、治療を行う際に行う患者Pの位置合わせにおける誤差を考慮して、ITVにマージンを付加した体積である。これらの体積には、下式(6)の関係が成り立っている。
Figure 2019154738
このため、 治療計画の段階においては、実際の治療において生じる可能性がある誤差を考慮したマージンを加えて、患者Pに治療ビームBを照射する位置および範囲(領域)を決定する。このとき考慮する実際の治療において生じる可能性がある誤差とは、例えば、患者Pの体内の病巣や骨などの位置を、治療計画のときの位置と合わせるために行う患者Pの位置決めの際に生じる可能性がある患者Pの位置のずれなどである。
制御部540における放射線治療の制御では、例えば、治療装置10に備えた治療ビーム照射門14による治療ビームBの照射や、放射線源12および放射線検出器13による透視画像の撮影を制御する。より具体的には、制御部540は、追跡部122から出力されたマーカー位置信号が表す追跡しているマーカーの位置、つまり、患者Pの体内の病巣の位置が、放射線治療において病巣に治療ビームBを照射するゲートウィンドウ内にあることを表している場合には、治療ビーム照射門14に治療ビームBを照射させるように制御する制御信号を出力する。また、制御部540は、マーカー位置信号が表す追跡しているマーカーの位置が、ゲートウィンドウ内にはないが、透視画像を取得することができる範囲(領域)内にあることを表している場合には、放射線源12に放射線rを照射させ、放射線検出器13に患者Pの体内を通過して到達した放射線rを検出して患者Pの体内の透視画像(第1画像)を生成させるように制御する制御信号を出力する。
また、制御部540は、マーカー位置信号が表す追跡しているマーカーの位置が、通常取り得る軌跡を大きく逸脱するなど、異常な範囲にあることを表している場合には、治療ビーム照射門14による治療ビームBの照射を停止するように制御する制御信号を出力する。このとき、制御部540は、放射線源12による放射線rの照射と、放射線検出器13による透視画像の生成とを停止する、つまり、透視画像(第1画像)の撮影を停止するように制御する制御信号を出力してもよい。このように制御することによって、患者Pに対して不適切な治療ビームBや不要な放射線rの照射を回避することができる。
なお、追跡しているマーカーの位置が異常な範囲に移動するような不測の事態となる要因としては、患者Pの咳やくしゃみ、患者Pが寝ている間の無呼吸症候群の発生などが考えられる。このような要因による不測の事態は、長い時間を要さずに解消される、つまり、患者Pの咳やくしゃみなどが収まって、放射線治療を再開することができる安定した状態になること考えられる。このため、制御部540は、追跡しているマーカーの位置が異常な範囲にあることを表している場合に、直ちに透視画像(第1画像)の撮影を停止するのではなく、予め定めた時間の間、透視画像(第1画像)の撮影間隔を長くし、その後も追跡しているマーカーの位置が異常な範囲にあることを表している場合に、透視画像(第1画像)の撮影を停止するように制御してもよい。
このような構成および動作によって、医用画像処理装置500は、第1の実施形態の医用画像処理装置100と同様に、学習したマーカーの特徴に基づいて、現在の患者Pの体内にあるマーカーを追跡し、追跡しているマーカーの位置を表すマーカー位置信号を出力する。そして、医用画像処理装置500は、マーカー位置信号が表す追跡しているマーカーの位置に基づいて、患者Pの体内の病巣に治療ビームBを照射するタイミングや治療中に患者Pの体内の透視画像(第1画像)を撮影するタイミング、さらには不測の事態を自動で検知する。そして、医用画像処理装置500では、検知した結果に基づいて、制御部540が、治療装置10に備えた治療ビーム照射門14による治療ビームBの照射や、放射線源12による放射線rの照射を制御する。これにより、医用画像処理装置500を備えた治療システム5でも、第1の実施形態の医用画像処理装置100を備えた治療システム1と同様に、適切なタイミングで患者Pの体内の病巣に治療ビームBを照射することができる。また、医用画像処理装置500では、制御部540が、患者Pの不測の事態を検出した場合には、患者Pへの治療ビームBと放射線rとの照射を停止するように制御する。これにより、医用画像処理装置500を備えた治療システム5では、放射線治療をより安全に行うことができる。
上述したように、第5の実施形態の医用画像処理装置500では、第1の実施形態の医用画像処理装置100と同様に、学習装置110が、学習用画像に基づいて患者Pの体内に留置されたマーカーのマーカー像に共通する第1特徴を学習し、学習によって得られた第1特徴に基づいて、マーカーを追跡するための特徴抽出パラメータを計算してパラメータ記憶部113に記憶させておく。そして、第5の実施形態の医用画像処理装置500でも、第1の実施形態の医用画像処理装置100と同様に、動体追跡装置120が、治療中に撮影された患者Pの第1画像(透視画像)に撮影されたマーカーを追跡し、マーカーの位置を表すマーカー位置信号を出力する。
これにより、第5の実施形態の医用画像処理装置500でも、第1の実施形態の医用画像処理装置100と同様に、マーカーを追跡する際の計算を効率的に行い、マーカーの追跡のリアルタイム性の低下を抑えることができる。また、第5の実施形態の医用画像処理装置500でも、第1の実施形態の医用画像処理装置100と同様に、従来のテンプレートマッチングにおいてマーカーに類似度が高いテンプレートが存在してしまうことによって発生することが考えられる、マーカーの誤追跡の可能性を低くすることができる。
これにより、第5の実施形態の医用画像処理装置500を備えた治療システム5でも、第1の実施形態の医用画像処理装置100を備えた治療システム1と同様に、患者Pの呼気や吸気に同期した適切なタイミングで、治療ビームBを安全に病巣に照射することができる。
また、第5の実施形態の医用画像処理装置500では、制御部540が、マーカー位置信号に基づいて、治療装置10における治療ビームBと放射線rとの照射や停止を制御する。これにより、第5の実施形態の医用画像処理装置500を備えた治療システム5では、治療中の患者Pの体内に留置されたマーカーの位置を追跡した状況に応じて、放射線治療を安全に行うことができる。つまり、第5の実施形態の医用画像処理装置500を備えた治療システム5では、患者Pの正常な組織への不適切な治療ビームBの照射や、不要な放射線rの照射の可能性を低減させることができる。
なお、第5の実施形態の医用画像処理装置500では、図14に示した医用画像処理装置500の構成において、制御部540が、医用画像処理装置500に備えた構成要素である場合について説明した。しかし、制御部540は、医用画像処理装置500に備えた構成要素である構成に限定されるものではない。例えば、第5の実施形態の医用画像処理装置500を備えた治療システム5において、制御部540の機能、つまり、医用画像処理装置500を構成する動体追跡装置120に備えた追跡部122から出力されたマーカー位置信号に基づいて、治療システム5における放射線治療を制御(治療ビームBや放射線rの照射を制御)する機能を、治療装置10に備える構成であってもよい。
上記説明したように、医用画像処理装置500は、追跡部122が追跡した被写体の位置の情報に基づいて、治療する対象の部位(病巣)に対する治療を制御する制御部540 をさらに備える。
また、上記説明したように、制御部540は、追跡部122が追跡した被写体の位置の情報に基づいて、被写体の撮影を制御してもよい。
上記に述べたとおり、各実施形態の医用画像処理装置では、治療前に、患者の体内に留置されるときにマーカーが取り得るあらゆる方向を模擬したシミュレーション画像を学習用画像として、マーカーに共通する特徴を学習し、学習によって得られた特徴に基づいて、マーカーの方向の特徴を表す特徴抽出パラメータを計算してパラメータ記憶部に記憶させておく。そして、各実施形態の医用画像処理装置では、特徴抽出パラメータが表すマーカーの方向の特徴に基づいて、治療中に撮影された患者の透視画像に撮影されたマーカーを追跡し、患者の体内に留置されマーカーの位置を表すマーカー位置信号を出力する。これにより、各実施形態の医用画像処理装置では、マーカーを追跡する際の計算を効率的に行い、マーカーの追跡のリアルタイム性の低下を抑えることができ、マーカーの誤追跡の可能性を低くすることができる。このことにより、各実施形態の医用画像処理装置を備えた治療システムでは、追跡しているマーカーの位置に基づいて、患者の呼吸や心拍などに連動して移動する病巣に対して治療ビームを照射する適切なタイミングを自動で検知することができる。そして、各実施形態の医用画像処理装置を備えた治療システムでは、患者の呼気や吸気に同期した適切なタイミングで治療ビームを病巣に照射する放射線治療を安全に行うことができる。
なお、第2の実施形態から第5の実施形態では、第1の実施形態の医用画像処理装置100にそれぞれの実施形態において特徴となる構成要素を追加した構成を説明した。しかし、それぞれの実施形態において特徴となる構成要素は、医用画像処理装置において排他的に備える構成に限定されるものではない。つまり、それぞれの実施形態において特徴となる構成要素は、医用画像処理装置において同時に備えてもよい。例えば、第3の実施形態の医用画像処理装置300において備えた表示部330と、第5の実施形態の医用画像処理装置500において備えた制御部540とを同時に備えた医用画像処理装置を構成してもよい。この場合、医用画像処理装置に備えるその他の構成要素は、適宜変更することによって、それぞれの構成要素に対応する機能を実現する。
また、各実施形態では、医用画像処理装置と治療装置10とのそれぞれが別体の装置である構成を説明した。しかし、医用画像処理装置と治療装置10とは、別体の装置である構成に限定されるものではなく、医用画像処理装置と治療装置10とが一体になった構成であってもよい。
上記実施形態で説明した治療システムにおいて用いられる医用画像処理プログラムは、コンピュータを、患者の透視画像を第1画像として取得する第1画像取得部と、患者の体内に留置された被写体を複数の方向から観察して得られる複数の被写体の像である被写体像に共通する第1特徴に基づいて、第1画像に撮影された被写体を追跡する追跡部と、を備える医用画像処理装置として機能させるための医用画像処理プログラムである。
以上説明した少なくともひとつの実施形態によれば、患者Pの透視画像を第1画像として取得する第1画像取得部(121)と、患者Pの体内に留置された被写体(マーカー)を複数の方向から観察して得られる複数の被写体の像である被写体像(マーカー像)に共通する第1特徴に基づいて、第1画像に撮影された被写体を追跡する追跡部(122)とを持つことにより、放射線治療において放射線を照射中の患者の透視画像から、患者の体内に留置しておいたマーカーを自動で追跡することができる。
なお、例えば、図2において示した学習用画像取得部111、学習部112、およびパラメータ記憶部113を含む学習装置110、第1画像取得部121および追跡部122を含む動体追跡装置120など、医用画像処理装置を構成する各構成要素による機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、本実施形態の治療システムに係る上述した種々の機能を実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1,2,3,4,5・・・治療システム、10・・・治療装置、11・・・治療台、12,12−1,12−2・・・放射線源、13,13−1,13−2・・・放射線検出器、14・・・治療ビーム照射門、100,200,300,400,500・・・医用画像処理装置、110,210・・・学習装置、111,211・・・学習用画像取得部、112・・・学習部、113・・・パラメータ記憶部、120,320,420・・・動体追跡装置、121,321・・・第1画像取得部、122,422・・・追跡部、214・・・第2画像取得部、215・・・オブジェクト抽出部、330・・・表示部、423・・・テンプレート取得部、424・・・姿勢検出部、425・・・テンプレート選択部、540・・・制御部

Claims (18)

  1. 患者の透視画像を第1画像として取得する第1画像取得部と、
    前記患者の体内に留置された被写体を複数の方向から観察して得られる複数の前記被写体の像である被写体像に共通する第1特徴に基づいて、前記第1画像に撮影された前記被写体を追跡する追跡部と、
    を備える医用画像処理装置。
  2. 複数の前記被写体像のそれぞれに対応する複数の学習用画像を取得する学習用画像取得部と、
    複数の前記学習用画像に含まれる前記被写体像のそれぞれに共通する前記第1特徴を学習する学習部と、
    をさらに備える、
    請求項1に記載の医用画像処理装置。
  3. 前記学習用画像取得部は、
    前記第1画像を撮影する撮像装置のジオメトリ情報と、前記被写体の3次元の形状とに基づいて、前記被写体が前記第1画像に撮影されたときの前記被写体像を模擬した模擬画像に基づいた前記学習用画像として取得する、
    請求項2に記載の医用画像処理装置。
  4. 前記学習用画像は、
    前記模擬画像と、前記第1画像とを合成した画像である、
    請求項3に記載の医用画像処理装置。
  5. 前記学習用画像は、
    前記模擬画像と、前記第1画像と同じ範囲が撮影された臨床画像とを合成した画像である、
    請求項3に記載の医用画像処理装置。
  6. 前記学習用画像は、
    前記被写体像の重心が中心に位置するように予め定められた範囲の正例画像と、
    前記被写体像の重心が前記正例画像の状態以外である前記正例画像と同じ範囲の負例画像と、
    によって構成されている、
    請求項2から請求項5のいずれか1項に記載の医用画像処理装置。
  7. 前記第1画像とは異なる時刻に撮影された前記透視画像を第2画像として取得する第2画像取得部と、
    前記第2画像に撮影された前記被写体像を抽出するオブジェクト抽出部と、
    をさらに備え、
    前記学習用画像取得部は、
    前記第2画像に撮影された前記被写体の姿勢に対応する前記学習用画像を取得する、
    請求項2から請求項6のいずれか1項に記載の医用画像処理装置。
  8. 前記学習用画像は、
    前記第2画像から抽出された前記被写体像と、前記第2画像と同じ範囲が撮影された臨床画像とを合成した画像である、
    請求項7に記載の医用画像処理装置。
  9. 前記被写体像のテンプレートを取得するテンプレート取得部と、
    前記追跡部が追跡した前記被写体の位置の情報に基づいて、前記被写体の姿勢を検出する姿勢検出部と、
    前記被写体の姿勢に対応する前記テンプレートを選択するテンプレート選択部と、
    をさらに備え、
    前記追跡部は、
    前記テンプレート選択部によって前記テンプレートが選択された場合、選択された前記テンプレートを用いて前記被写体を追跡する、
    請求項1から請求項8のいずれか1項に記載の医用画像処理装置。
  10. 前記第1画像を表示させ、前記第1画像内で追跡した前記被写体の位置の情報を、表示させている前記第1画像内に重畳して表示させる、
    請求項1から請求項9のいずれか1項に記載の医用画像処理装置。
  11. 治療する対象の部位の位置の情報を、表示させている前記第1画像内に重畳して表示させる、
    請求項10に記載の医用画像処理装置。
  12. 前記追跡部が追跡した前記被写体の位置の情報に基づいて、治療する対象の部位に対する治療を制御する制御部、
    をさらに備える、
    請求項1から請求項11のいずれか1項に記載の医用画像処理装置。
  13. 前記制御部は、
    前記追跡部が追跡した前記被写体の位置の情報に基づいて、前記被写体の撮影を制御する、
    請求項12に記載の医用画像処理装置。
  14. 前記被写体は、
    前記患者の体内に留置されたマーカーである、
    請求項1から請求項13のいずれか1項に記載の医用画像処理装置。
  15. 前記マーカーは、
    球型以外の形状である、
    請求項14に記載の医用画像処理装置。
  16. 請求項1から請求項15のいずれか1項に記載の医用画像処理装置と、
    治療する対象の部位に治療ビームを照射する照射部と、前記被写体を撮影する撮像装置とを具備した治療装置と、
    追跡した前記被写体の位置の情報に基づいて、治療する対象の部位に対する治療を制御する制御部と、
    を備える治療システム。
  17. 追跡した前記被写体の位置の情報を表示する表示部、
    をさらに備える、
    請求項16に記載の治療システム。
  18. コンピュータを、
    患者の透視画像を第1画像として取得する第1画像取得部と、
    前記患者の体内に留置された被写体を複数の方向から観察して得られる複数の前記被写体の像である被写体像に共通する第1特徴に基づいて、前記第1画像に撮影された前記被写体を追跡する追跡部と、
    を備える医用画像処理装置として機能させるための医用画像処理プログラム。
JP2018044793A 2018-03-12 2018-03-12 医用画像処理装置、治療システム、および医用画像処理プログラム Active JP7113447B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018044793A JP7113447B2 (ja) 2018-03-12 2018-03-12 医用画像処理装置、治療システム、および医用画像処理プログラム
PCT/JP2019/009134 WO2019176734A1 (ja) 2018-03-12 2019-03-07 医用画像処理装置、治療システム、および医用画像処理プログラム
US16/978,103 US20210042917A1 (en) 2018-03-12 2019-03-07 Medical image processing device, treatment system, and storage medium
RU2020129466A RU2020129466A (ru) 2018-03-12 2019-03-07 Устройство для обработки медицинских изображений, система лучевой терапии и носитель информации
EP19767606.7A EP3766541B1 (en) 2018-03-12 2019-03-07 Medical image processing device, treatment system, and medical image processing program
KR1020207025046A KR102579039B1 (ko) 2018-03-12 2019-03-07 의료용 화상 처리 장치, 치료 시스템, 및 의료용 화상 처리 프로그램
CN201980018104.6A CN111918697B (zh) 2018-03-12 2019-03-07 医用图像处理装置、治疗系统以及存储介质
TW108107745A TWI721384B (zh) 2018-03-12 2019-03-08 醫用畫像處理裝置、治療系統及醫用畫像處理程式產品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044793A JP7113447B2 (ja) 2018-03-12 2018-03-12 医用画像処理装置、治療システム、および医用画像処理プログラム

Publications (2)

Publication Number Publication Date
JP2019154738A true JP2019154738A (ja) 2019-09-19
JP7113447B2 JP7113447B2 (ja) 2022-08-05

Family

ID=67907857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044793A Active JP7113447B2 (ja) 2018-03-12 2018-03-12 医用画像処理装置、治療システム、および医用画像処理プログラム

Country Status (8)

Country Link
US (1) US20210042917A1 (ja)
EP (1) EP3766541B1 (ja)
JP (1) JP7113447B2 (ja)
KR (1) KR102579039B1 (ja)
CN (1) CN111918697B (ja)
RU (1) RU2020129466A (ja)
TW (1) TWI721384B (ja)
WO (1) WO2019176734A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190846A1 (ja) * 2021-03-12 2022-09-15 東芝エネルギーシステムズ株式会社 医用画像処理装置、医用画像処理方法、医用画像処理プログラム、および放射線治療装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11113838B2 (en) * 2019-03-26 2021-09-07 Nec Corporation Deep learning based tattoo detection system with optimized data labeling for offline and real-time processing
US11871998B2 (en) 2019-12-06 2024-01-16 Stryker European Operations Limited Gravity based patient image orientation detection
US20230097849A1 (en) * 2020-02-26 2023-03-30 Shimadzu Corporation Creation method of trained model, image generation method, and image processing device
CN112767378A (zh) * 2021-01-28 2021-05-07 佛山科学技术学院 一种基于Dense-Unet的玻璃体浑浊程度评级方法
US11790627B2 (en) * 2022-01-20 2023-10-17 Lenovo Global Technology (United States) Inc. Using an object key to deprioritize processing of relative regions
WO2024077293A1 (en) * 2022-10-07 2024-04-11 Washington University Convolutional neural network classification of pretreatment biopsies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116659A (ja) * 2014-12-19 2016-06-30 株式会社東芝 医用画像処理装置、治療システム、医用画像処理方法、および医用画像処理プログラム
JP2016131737A (ja) * 2015-01-20 2016-07-25 国立大学法人北海道大学 放射線治療システムおよび放射線治療プログラム
JP2018029852A (ja) * 2016-08-25 2018-03-01 株式会社東芝 医用画像処理装置、治療システム、および医用画像処理プログラム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053389B1 (ja) * 1998-12-03 2000-06-19 三菱電機株式会社 動体追跡照射装置
US8571639B2 (en) * 2003-09-05 2013-10-29 Varian Medical Systems, Inc. Systems and methods for gating medical procedures
JP4959440B2 (ja) * 2007-06-22 2012-06-20 三菱電機株式会社 放射線治療装置及び治療部位の位置決め方法
JP2010054807A (ja) * 2008-08-28 2010-03-11 Nikon Corp 電子カメラ
US8761863B2 (en) * 2009-02-26 2014-06-24 National University Corporation Hokkaido University Target tracking device and radiation therapy apparatus
US8682414B2 (en) * 2009-11-27 2014-03-25 Mitsubishi Heavy Industries, Ltd. Radiation therapy apparatus control method and radiation therapy apparatus controller
US8737725B2 (en) * 2010-09-20 2014-05-27 Siemens Aktiengesellschaft Method and system for learning based object detection in medical images
US9042616B2 (en) * 2010-12-02 2015-05-26 Dai Nippon Printing Co., Ltd. Medical image processing device
US8526702B2 (en) * 2011-01-06 2013-09-03 The Board Of Trustees Of The Leland Standford Junior University 4D anatomically based image selection procedure for medical imaging
US9014423B2 (en) * 2011-03-14 2015-04-21 Siemens Aktiengesellschaft Method and system for catheter tracking in fluoroscopic images using adaptive discriminant learning and measurement fusion
US9031317B2 (en) * 2012-09-18 2015-05-12 Seiko Epson Corporation Method and apparatus for improved training of object detecting system
EP2915562A4 (en) * 2012-11-05 2016-07-13 Mitsubishi Electric Corp THREE DIMENSIONAL IMAGE CAPTURE SYSTEM, AND PARTICLE BEAM THERAPY DEVICE
JP6065103B2 (ja) * 2013-03-27 2017-01-25 株式会社島津製作所 X線透視装置
JP6181459B2 (ja) * 2013-08-05 2017-08-16 株式会社日立製作所 放射線治療システム
JP6139361B2 (ja) * 2013-09-30 2017-05-31 株式会社東芝 医用画像処理装置、治療システム及び医用画像処理方法
JP6437286B2 (ja) * 2014-11-26 2018-12-12 株式会社東芝 画像処理装置、画像処理プログラム、画像処理方法及び治療システム
KR101544973B1 (ko) * 2014-12-22 2015-08-18 주식회사 제노시스 다 방향 자동 추적 카메라장치
JP6504899B2 (ja) * 2015-04-21 2019-04-24 キヤノン株式会社 制御装置、光学機器、撮像装置および制御方法
JP6815587B2 (ja) * 2016-01-06 2021-01-20 東芝エネルギーシステムズ株式会社 治療システム、医用画像処理装置、および治療プログラム
JP2017189526A (ja) * 2016-04-15 2017-10-19 株式会社東芝 情報処理装置、及び、放射線治療システム
JP2019141109A (ja) * 2016-04-28 2019-08-29 株式会社日立製作所 追跡対象認識シミュレータ、若しくはマーカ認識シミュレータおよび動体追跡装置ならびに放射線照射システム
JP2018044793A (ja) 2016-09-12 2018-03-22 株式会社リコー 情報処理システム、位置情報管理サーバ、情報処理方法、およびプログラム
CN109464153B (zh) * 2017-09-08 2022-09-20 通用电气公司 辐射成像系统及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116659A (ja) * 2014-12-19 2016-06-30 株式会社東芝 医用画像処理装置、治療システム、医用画像処理方法、および医用画像処理プログラム
JP2016131737A (ja) * 2015-01-20 2016-07-25 国立大学法人北海道大学 放射線治療システムおよび放射線治療プログラム
JP2018029852A (ja) * 2016-08-25 2018-03-01 株式会社東芝 医用画像処理装置、治療システム、および医用画像処理プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190846A1 (ja) * 2021-03-12 2022-09-15 東芝エネルギーシステムズ株式会社 医用画像処理装置、医用画像処理方法、医用画像処理プログラム、および放射線治療装置

Also Published As

Publication number Publication date
WO2019176734A1 (ja) 2019-09-19
KR20200118093A (ko) 2020-10-14
EP3766541A1 (en) 2021-01-20
KR102579039B1 (ko) 2023-09-18
TW202003064A (zh) 2020-01-16
JP7113447B2 (ja) 2022-08-05
EP3766541B1 (en) 2023-11-29
RU2020129466A3 (ja) 2022-03-09
RU2020129466A (ru) 2022-03-09
EP3766541A4 (en) 2021-12-08
CN111918697A (zh) 2020-11-10
TWI721384B (zh) 2021-03-11
CN111918697B (zh) 2023-11-10
US20210042917A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2019176734A1 (ja) 医用画像処理装置、治療システム、および医用画像処理プログラム
JP7181538B2 (ja) 医用画像処理装置および放射線治療システム
JP6181459B2 (ja) 放射線治療システム
JP6746435B2 (ja) 医用画像処理装置、治療システム、および医用画像処理プログラム
JP2006095267A (ja) 差分画像作成装置、差分画像作成方法、及び、そのプログラム
JP2017144000A (ja) 医用画像処理装置、方法、プログラム及び放射線治療装置
CN114980970A (zh) 确定放射参数的系统和方法
JP6095112B2 (ja) 放射線治療システム
WO2020230642A1 (ja) 医用画像処理装置、医用画像処理プログラム、医用装置、および治療システム
JP2021142146A (ja) 医用画像処理装置、医用装置、治療システム、医用画像処理方法、およびプログラム
JP6824641B2 (ja) X線ct装置
JP7226207B2 (ja) 医用画像処理装置、x線画像処理システム、および、学習モデルの生成方法
JP2021061895A (ja) 医用画像処理装置、医用画像処理プログラム、医用装置、および治療システム
WO2024070093A1 (ja) 照射位置確認支援装置、照射位置確認支援方法、および照射位置確認支援プログラム
WO2024117129A1 (ja) 医用画像処理装置、治療システム、医用画像処理方法、およびプログラム
TWI840465B (zh) 決定輻射參數的系統和方法以及其非暫態電腦可讀取儲存媒介
JP6799292B2 (ja) 放射線撮影装置および放射線画像検出方法
JP6855173B2 (ja) X線ct装置
Hugo -Online Monitoring, Tracking, and Dose Accumulation
Peshko Design of a System for Target Localization and Tracking in Image-Guided Radiation Therapy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220713

R150 Certificate of patent or registration of utility model

Ref document number: 7113447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150