JP2019154134A - ゲート駆動装置 - Google Patents

ゲート駆動装置 Download PDF

Info

Publication number
JP2019154134A
JP2019154134A JP2018037185A JP2018037185A JP2019154134A JP 2019154134 A JP2019154134 A JP 2019154134A JP 2018037185 A JP2018037185 A JP 2018037185A JP 2018037185 A JP2018037185 A JP 2018037185A JP 2019154134 A JP2019154134 A JP 2019154134A
Authority
JP
Japan
Prior art keywords
gate
switching
power device
turned
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018037185A
Other languages
English (en)
Other versions
JP7025007B2 (ja
JP2019154134A5 (ja
Inventor
智介 萬年
Tomosuke Mannen
智介 萬年
和田 圭二
Keiji Wada
圭二 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2018037185A priority Critical patent/JP7025007B2/ja
Publication of JP2019154134A publication Critical patent/JP2019154134A/ja
Publication of JP2019154134A5 publication Critical patent/JP2019154134A5/ja
Application granted granted Critical
Publication of JP7025007B2 publication Critical patent/JP7025007B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】複数の駆動回路を有する構成において、パワーデバイスのオン、オフ時のサージ電圧およびスイッチング損失の少なくとも一方を抑制すること。【解決手段】ゲートドライブ内で並列に接続された複数の駆動回路(12)に対して、各駆動回路(12)における第1の切替素子(12a)および第2の切替素子(12b)のいずれか一方をオンにし且つ他方をオフに制御する制御部(21)であって、半導体パワーデバイス(3)をオンとオフとの間で切り替える場合に発生するサージ電圧(51)に基づいて、ゲートドライブ内の複数の駆動回路(12)の中で切替素子(12a,12b)をオンにする個数を時間経過に応じて制御する制御部(21)と、を備えたゲート駆動装置(2)。【選択図】図3

Description

本発明は、半導体パワーデバイスをオン・オフさせる動作を行うゲート駆動装置に関し、特に、強電系の主回路を弱電系の信号を入力して制御するゲート駆動装置に関する。
電力の変換や制御を行うパワーエレクトロニクス分野において、半導体パワーデバイスのスイッチングが利用されている。このような、半導体パワーデバイスとして、下記の特許文献1に記載の技術が知られている。
特許文献1(特開2013−219874号公報)には、電力変換装置において、nチャネル型のMOSFETにより構成された2つのスイッチ素子(SW1,SW2)が使用され、上アーム側スイッチ素子(SW1)のソースに下アーム側スイッチ素子(SW2)のドレインが接続されるとともに、各スイッチ素子(SW1,SW2)のゲートに対して、ゲート駆動回路(GD1,GD2)が接続され、ゲートドライバ制御回路(GDCTL)からゲート駆動回路(GD1,GD2)に信号が入力されることで、スイッチ素子(SW1,SW2)がオン・オフされる構成が記載されている。特許文献1に記載の構成では、ゲートドライバ制御回路(GDCTL)に、マイコン等で生成された上アーム用制御信号(HIN)と下アーム用制御信号(LIN)が入力されると、入力された信号(HIN,LIN)に応じて、上アームドライバ用制御信号(HO1)と下アームドライバ用制御信号(LO1)が出力される。
パワーエレクトロニクスでは、損失を低減するため、半導体パワーデバイスをスイッチとして動作させる。パワーデバイスの損失というのは、ある瞬間にパワーデバイスに印加されている「電圧」と流れている「電流」の「積」で計算される電力損失である。理想的なスイッチであれば、「スイッチオン時は電圧が0」、「スイッチオフ時は電流が0」なので損失は発生しないが、実際のパワーデバイスでは、ターンオンとターンオフには有限の時間がかかるため、電圧と電流が同時に存在する期間がある。スイッチング損失とは、ターンオンおよびターンオフの切換時に発生する損失で、一般的に、スイッチング速度が遅いほど、その損失が大きくなる。
特許文献1に記載の従来方式のゲートドライバでは、スイッチングによる電流の変化が急峻すぎると、回路配線や半導体パワーデバイス内などに存在する寄生インダクタンスにより過電圧、電流振動が発生する。特許文献1等の従来技術では、ゲート抵抗を用いてスイッチングによる電流の変化を緩やかにすることにより過電圧等を抑えているが、ゲート抵抗は回路が組み上がった後は変更することができない。そして、最初はゲート抵抗が最適であっても、回路の動作状況(例えば、出力電流が大きい時と小さい時とで過電圧の大きさが変わり、最適なゲート抵抗値も変わる)や、パワーデバイスの使用状況(導通している電流値・印加電圧・発熱や素子の劣化等)によっては、最適でなくなることがある。すなわち、特許文献1に記載の技術では、回路の動作状況やパワーデバイスの使用状況によっては、ゲート抵抗が最適でなくなり、過電圧等が発生する場合がある。
上記の過電圧を抑えるために、ゲート抵抗を大きくしてスイッチングを遅くした場合、スイッチング損失が増えてしまう。つまり、スイッチング時に発生する過電圧とスイッチング損失はトレードオフの関係にある。
非特許文献1には、ゲートドライバ内で63対のMOSドライバ(2組のスイッチ素子+MOS用ゲート駆動回路)を並列に接続して、IGBT等のパワーデバイスの使用状況に応じて、オン、オフするMOSドライバの数を変更することで、ゲート電流を変化させる技術が記載されている。例えば、MOSドライバを1つのみオンにする場合と、MOSドライバを10個オンにする場合で、ゲート電流を10倍にすることができる技術が記載されている。したがって、非特許文献1に記載の技術によれば、回路の動作状況やパワーデバイスの状態に応じてゲート電流を変化させることが可能である。
特開2013−219874号公報(「0022」〜「0028」、図1)
Koutaro Miyazaki,他6名,"General-Purpose Clocked Gate Driver(CGD) IC with Programmable 63-Level Drivability to Reduce Ic Overshoot and Switching Loss of Various Power Transistors",2016 IEEE Applied Power Electronics Conference and Exposition(APEC 2016),pp.1640-1645,2016-3
(従来技術の問題点)
非特許文献1に記載された技術では、MOSドライバ(駆動回路)が63対設けられる構成では、pMOSとnMOSが63個ずつで合計126個の素子が設けられることとなる。したがって、126個の素子のオン、オフを制御する信号(6bit×2=12bit)を入力する必要が発生する。すなわち、非特許文献1に記載の技術では、ゲートドライバの制御用の入力信号として、専用の入力信号が必要になる問題があった。そして、MOSドライバの数が増減すると、入力信号のbit数も信号の内容も変える必要がある問題があった。
また、非特許文献1に記載された技術では、回路の使用状況に応じてゲート電流の増減を制御している。しかしながら、パワーデバイスでオン、オフを切り替える際には、サージ電圧が発生する。したがって、例えば、ゲート電流を10倍にしたいときに、単純に10個のMOSドライバをオンにするだけでは、サージ電圧が発生して、最悪の場合は、パワーデバイスが破損してしまう恐れがある。
本発明は、複数の駆動回路を有する構成において、パワーデバイスのオン、オフ時のサージ電圧およびスイッチング損失の少なくとも一方を抑制することを技術的課題とする。
前記技術的課題を解決するために、請求項1に記載の発明のゲート駆動装置は、
半導体パワーデバイスのオン・オフを制御するゲートドライブ回路であって、第1の切替素子と、第2の切替素子と、を有し、前記第1の切替素子がオンの場合に前記半導体パワーデバイスをオンにする電源に出力端子が接続され、前記第2の切替素子がオンの場合に前記半導体パワーデバイスをオフにする電源に出力端子が接続される駆動回路と、
並列に接続された複数の前記駆動回路に対して、前記各駆動回路における第1の切替素子および第2の切替素子のいずれか一方をオンにし且つ他方をオフに制御する制御部であって、前記半導体パワーデバイスをオンとオフとの間で切り替える場合に発生するサージ電圧およびスイッチング損失の少なくとも一方に基づいて、前記ゲートドライブ回路の中に複数ある前記駆動回路の切替素子をオンにする個数を時間経過に応じて制御する制御部と、
を備えたことを特徴とする。
請求項2に記載の発明は、請求項1に記載のゲート駆動装置において、
前記半導体パワーデバイス内部の配線に起因する寄生インダクタンスにより発生する前記サージ電圧およびスイッチング損失の少なくとも一方に基づいて、前記ゲートドライブ回路の中で複数ある前記駆動回路の切替素子をオンにする個数を時間経過に応じて制御する制御部、
を備えたことを特徴とする。
請求項3に記載の発明は、請求項1または2に記載のゲート駆動装置において、
前記半導体パワーデバイスの周辺の回路の配線に起因する寄生インダクタンスにより発生する前記サージ電圧およびスイッチング損失の少なくとも一方に基づいて、前記ゲートドライブ回路の中で複数ある前記駆動回路の切替素子をオンにする個数を時間経過に応じて制御する制御部、
を備えたことを特徴とする。
請求項4に記載の発明は、請求項1ないし3のいずれかに記載のゲート駆動装置において、
前記半導体パワーデバイスの切り替えの後に発生する電圧の振動に基づいて、前記ゲートドライブ回路の中で複数ある前記駆動回路の切替素子をオンにする個数を時間経過に応じて制御する前記制御部、
を備えたことを特徴とする。
請求項1に記載の発明によれば、複数の駆動回路を有する構成において、パワーデバイスのオン、オフ時のサージ電圧・スイッチング損失等を抑制することができる。
請求項2,3に記載の発明によれば、パワーデバイスの内部や周辺の回路の配線の長さ等に起因する寄生インダクタンスを考慮しない場合に比べて、寄生インダクタンスによる悪影響を抑制することができる。
請求項4に記載の発明によれば、切り替え後の電圧の振動を考慮しない場合に比べて、電圧の振動を抑制することができる。
図1は本発明の実施例1のゲート駆動装置と半導体パワーデバイスの説明図である。 図2は実施例1のゲート駆動装置を含む主回路に寄生インダクタンスを明示した回路の説明図である。 図3は実施例1のゲート駆動装置の機能ブロックである。 図4は比較例1および比較例2と実験例1の説明図であり、横軸に時間を取り、縦軸に電圧や切替素子のオン・オフを表記したグラフであって、図4Aは比較例1のグラフ、図4Bは比較例2のグラフ、図4Cは実験例1のグラフである。 図5は横軸に時間を取り、縦軸にゲート電圧Vgやコレクタエミッタ間の電圧Vceを取ったグラフであり、図5Aは比較例1の場合のグラフ、図5Bは実験例1の場合のグラフである。 図6は図4Cに対応する実験例2,3および比較例3,4の説明図であり、図6Aは比較例3のグラフ、図6Bは実験例2のグラフ、図6Cは比較例4のグラフ、図6Dは実験例3のグラフである。 図7は図4Cに対応する実験例4,5の説明図であり、図7Aは実験例4のグラフ、図7Bは実験例5のグラフである。
次に図面を参照しながら、本発明の実施の形態の具体例である実施例を説明するが、本発明は以下の実施例に限定されるものではない。
なお、以下の図面を使用した説明において、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
図1は本発明の実施例1のゲート駆動装置と半導体パワーデバイスの説明図である。
図2は実施例1のゲート駆動装置を含む主回路に寄生インダクタンスを明示した回路の説明図である。
図1、図2において、電力を直流から交流に変換する実施例1の電力変換器1に、実施例1のゲート駆動装置の一例としてのゲート駆動装置2が組み込まれている。実施例1の電力変換器1は、主回路の一例としてハーフブリッジ回路3を有する。実施例1のハーフブリッジ回路3は、2つのIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)3a,3bを有する。実施例1のハーフブリッジ回路3では、第1のIGBT3aのコレクタが第2のIGBT3bのエミッタ(E)に接続されている。各IGBT3a,3bでは、コレクタ(C)とエミッタ(E)の間に還流ダイオード3a1,3b1が接続されている。
なお、実施例1では電力変換器1に負荷回路4と負荷インダクタ15が接続されている。負荷回路4は、一例として、第3のIGBT4aと、第4のIGBT4bが直列に接続されたハーフブリッジ回路を使用可能である。負荷インダクタ15は、図2の回路において、第2のIGBT3bのコレクタ(C)と第1のIGBT3aのエミッタ(E)の間と、第4のIGBT4bのコレクタ(C)と第3のIGBT4aのエミッタ(E)の間に、接続されている。また、第3のIGBT4aのエミッタ(E)と第4のIGBT4bのコレクタ(C)との間と、第1のIGBT3aのエミッタ(E)と第2のIGBT3bのコレクタ(C)との間には、寄生インダクタンスを有する。
また、第2のIGBT3bのコレクタ(C)と第1のIGBT3aのエミッタ(E)との間には、コンデンサ8が接続されており、コンデンサ8に並列に直流電源9が接続されている。コンデンサ8は、IGBTがスイッチング時に流れるパルス状の電流を供給するために利用される。また直流電源9は負荷が必要とする電力を供給するために必要となる。そのため、直流電源9からはパルス状の電流を供給しない。
なお、実施例1では、直流電源9は、一例として、500Vの電圧を印加する。
図3は実施例1のゲート駆動装置の機能ブロックである。
図2、図3において、前記第1のIGBT3aのゲート(G)には、駆動部の一例としてのゲートドライバ11が接続されている。図3において、実施例1のゲートドライバ11は、駆動回路12を63対有する。各駆動回路12は、第1の切替素子の一例としての第1スイッチング素子12aと、第2の切替素子の一例としての第2スイッチング素子12bとを有する。実施例1では、第1スイッチング素子12aは、p型のMOSFETにより構成されており、第2スイッチング素子12bは、n型のMOSFETにより構成されている。
第1スイッチング素子12aのドレイン(D)と第2スイッチング素子12bのドレイン(D)とが接続されている。また、第1スイッチング素子12aのソース(S)に、第1の電圧の一例としてのゲート駆動電圧V1が印加される。なお、実施例1では、ゲート駆動電圧V1は、一例として、V1=15[V]に設定されている。第2スイッチング素子12bのソース(S)には、第2の電圧の一例としてのV2=0[V]が印加されている。63対の駆動回路12は、ドレイン(D)どうしが接続されるとともに、第1のIGBT3aのゲート(G)に接続されている。
したがって、実施例1の回路構成では、第1スイッチング素子12aがオンになり、且つ、第2スイッチング素子12bがオフになると、第1のIGBT3aのゲート(G)がゲート駆動電圧V1に接続され、第1のIGBT3aがオンになる。そして、第1スイッチング素子12aがオフになり、且つ、第2スイッチング素子12bがオンになると、第1のIGBT3aのゲート(G)がゲート駆動電圧V2に接続され、第1のIGBT3aがオフになる。
また、実施例1のゲートドライバ11では、駆動回路12の1つ当たりが流せる最大のゲート電流がIgの場合、63対の駆動回路12が全てオンになると、最大63×Ig[A]のゲート電流がハーフブリッジ回路3のパワーデバイスに入力され、30対がオンになれば、最大30×Ig[A]が入力されるといった形で、ハーフブリッジ回路3のパワーデバイスの特性(元々備えている特性や、使用状況や経時劣化等に伴って変化する特性)に応じて、駆動回路12をオンにする個数を変更させて、入力されるゲート電流を設定可能である。
実施例1の63対の駆動回路12は、各スイッチング素子12a,12bのゲート(G)が、63対のプレドライバ18や、デコーダ17、レベルシフタ16等を介して、ドライバ制御回路(制御部)21に接続されている。ドライバ制御回路21からのクロック信号やpMOSの駆動信号、nMOSの駆動信号は、レベルシフタ16で分離され、各駆動信号がpMOS用のデコーダ17aおよびnMOS用のデコーダ17bに入力される。各デコーダ17a,17bでは、入力された駆動信号に応じて何個のpMOS,nMOSをオン(またはオフ)にするかの信号に変換される。デコーダ17a,17bからの信号は、各プレドライバ18a,18bに入力され、各プレドライバ18a,18bから入力信号に応じて各スイッチング素子12a,12bのゲート(G)に電圧が供給される。
実施例1のドライバ制御回路21は、集積回路の一例としてのFPGA:Field Programmable Gate Arrayにより構成されている。図1において、ドライバ制御回路21には、信号の入力端子の一例としての入力コネクタ22が接続されている。
入力コネクタ22には、電力変換器1のハーフブリッジ回路3のオン・オフの信号を出力する信号入力器23が接続されている。実施例1では、入力コネクタ22には、信号入力器23からオフまたはオンの信号23a、即ち、「0」または「1」からなる1bitのデジタル信号23aが入力されるように構成されている。なお、信号入力器23は、特許文献1に記載のHIN,LINのように、一般的なゲートドライバに信号を入力する公知の構成を採用可能であるため、詳細な説明は省略する。したがって、入力信号はデジタル信号に限定されず、アナログ信号を使用して、信号の振幅や周波数等が閾値よりも高い場合をオン、低い場合をオフにするといった形態も採用可能である。
実施例1のドライバ制御回路21は、入力コネクタ22を介して信号入力器23からの信号が入力される入力手段31を有する。したがって、入力手段31には、ハーフブリッジ回路3のオン・オフを切り替える入力信号が入力される。なお、実施例1では、入力信号は、前述のように、1bitの信号であり、一例として、0/5[V]のパルス信号が入力される。
また、ドライバ制御回路21には、記憶手段の一例として、パルスパターンの記憶手段32が設けられている。パルスパターンの記憶手段32は、各駆動回路12のスイッチング素子12a,12bのオン・オフを切り替える場合に、63対の駆動回路12の中でオン・オフにする個数を、ハーフブリッジ回路3の特性に応じて予め記憶する。実施例1のパルスパターンの記憶手段32は、ハーフブリッジ回路3の特性の一例として、配線等により生じる寄生インダクタンスに応じてスイッチングによる電流の変化が急峻過ぎる場合に発生する過電圧(サージ電圧)を抑制するために、ハーフブリッジ回路3をオン・オフする際に、オン・オフされる駆動回路12の数が予め設定されている。具体的には、時間経過に伴ってスイッチング素子12a,12bをオン、オフにする個数の推移(パルスパターン)を記憶する。
すなわち、図2において、実施例1では、電力変換器1において主回路の配線等により生じる寄生インダクタンスL1〜L12だけでなく、ゲートドライバとパワーデバイス間の配線等により生じる寄生インダクタンスL13〜L14も考慮してパルスパターンが設定されている。すなわち、直流電源9から、第1のIGBT3aと第3のIGBT4aとの分岐部B1までの配線(半導体パワーデバイスの周辺の配線)により生じる寄生インダクタンスL1や、第2のIGBT3bと第4のIGBT4bとの分岐部B2から直流電源9までの配線(半導体パワーデバイスの周辺の配線)により生じる寄生インダクタンスL2が存在する。同様にして、分岐部B1から第1のIGBT3aまでの配線(半導体パワーデバイスの周辺の配線)により生じる寄生インダクタンスL3や、第2のIGBT3bから分岐部B2までの配線(半導体パワーデバイスの周辺の配線)により生じる寄生インダクタンスL4も存在する。また、各IGBT3a,3b,4a,4b内の配線(半導体パワーデバイスの内部の配線)により生じる寄生インダクタンスL5〜L12も存在する。さらに、ゲートドライバ11からIGBT3a,3bまでの配線でも寄生インダクタンスL13,L14が生じる。さらに、負荷インダクタ15でも配線によってインダクタンスL7が生じる。なお、配線の寄生インダクタンスを含めて負荷インダクタ15と扱うことも可能である。
よって、実施例1では、主回路の寄生インダクタンスL1〜L12だけでなく、ゲート駆動装置の寄生インダクタンスL13〜L14にも対応する形でパルスパターンが設定されている。
また、実施例1では、寄生インダクタンスL1〜L14だけでなく、スイッチング後に現れる電圧の振動成分を打ち消すように、オン・オフされる駆動回路12の個数の推移もあわせて記憶されている。
なお、パルスパターンの記憶手段32に記憶されたデータは、図示しない更新ソフトウェア(更新手段)により、更新可能に構成されている。したがって、環境変化や経時劣化等でハーフブリッジ回路3のパワーデバイスの特性が変化した場合に、ユーザの入力に応じて、オン・オフされる駆動回路12の個数を変更可能である。
ドライバ制御回路21の入力信号の判別手段33は、入力された信号が、ハーフブリッジ回路3をオンにする信号か、オフにする信号かを判別する。
クロック34は、63対の駆動回路12を同期して制御するためのクロック信号(同期信号)を生成、出力する。したがって、このクロック34の周期ごとに、パルスパターンを変化させることができる。
信号生成手段の一例としてのゲートドライバの制御信号生成手段35は、63対の駆動回路12に対して、各駆動回路12における第1のスイッチング素子12aおよび第2のスイッチング素子12bのオン・オフを制御する信号35aを生成する。実施例1のゲートドライバの制御信号生成手段35は、入力信号23aに応じてパルスパターンの記憶手段32に記憶された個数に基づいたスイッチング素子12a,12bのオン・オフを制御する信号35aを生成する。したがって、実施例1のゲートドライバの制御信号生成手段35は、63個ずつのスイッチング素子12a,12bの制御を行うために、6bit(2=64通り)×2、合計12bitの信号35aを出力する。
なお、以下の説明において、実施例1のゲートドライバの制御信号生成手段35から出力される信号35aの説明をする場合に、第1スイッチング素子(pMOS)12aをオンにする個数を「+」、第2スイッチング素子(nMOS)12bをオンにする個数を「−」として説明する。例えば、30個の第1スイッチング素子12aをオンにする場合は「+30」と表現し、20個の第2スイッチング素子12bをオンにすると「−20」と表現する。
そして、実施例1のゲートドライバの制御信号生成手段35は、パルスパターンの記憶手段32に記憶された個数が60個の場合、入力されたデジタル信号23aが「オン」の場合は、「+60」の信号を出力し、入力されたデジタル信号23aが「オフ」になると「−60」の信号を生成して、各駆動回路12に出力して制御する。なお、実施例1では、ゲートドライバの制御信号生成手段35が出力する信号35aは、パルス状の信号により構成されている。
なお、実施例1では、第2のIGBT3bのゲート(G)に、第1のIGBT3aに接続されたゲートドライバ11およびドライバ制御回路21と同様に構成されたゲートドライバ11およびドライバ制御回路21が接続されている。なお、ゲートドライバ11およびドライバ制御回路21を2つ設けた構成を例示したが、これに限定されない。例えば、ゲートドライバ回路11およびドライバ制御回路21が1つのみとして、第2のIGBT3bのゲート(G)とエミッタ(E)を電気的に接続することでも、同様の機能を実現可能である。
(実施例1の作用)
前記構成を備えた実施例1のゲート駆動装置2では、1bitの入力信号23aが入力されると、入力信号23aに応じて、パルスパターンの記憶手段32に記憶されたデータに基づいて、63対の駆動回路12に対して、ゲートドライバの制御信号生成手段35から12bitの信号35aが出力される。そして、ゲートドライバ11は、受信した信号35aに応じて、各スイッチング素子12a,12bがオン、オフされ、IGBT3a,3bがオン、オフされる。
したがって、実施例1のゲート駆動装置2では、非特許文献1に記載されているように63対の駆動回路12を駆動する際に12bitの入力信号を必要とせず、特許文献1に記載されているような従来から使用されている1bitの入力信号23aを使用することが可能である。すなわち、実施例1のゲート駆動装置2では、1bitの入力信号23aにより、63対の駆動回路12を制御し、第1のIGBT3aのデバイス特性に応じて制御を行うことができる。よって、実施例1のゲート駆動装置2は、複数の駆動回路12を有する構成でも、特許文献1のようにゲートドライブ回路が1つの場合と同様の入力信号23aに対応して、駆動回路12を動作させることができる。
また、実施例1のゲート駆動装置2では、パルスパターンの記憶手段32に記憶されたデータを更新することで、ハーフブリッジ回路3の特性(パワーデバイスや寄生インダクタンスL1〜L14)に応じて、駆動される駆動回路12の数を調整することが可能である。したがって、特許文献1のように、ゲート抵抗の初期値に応じて設定されたゲートドライバの特性が、経時的に変更できない場合に比べて、実施例1では、パワーデバイスの特性変化に対応でき、過電圧等の発生を抑制することができる。すなわち、ゲート抵抗を動作中に動的に変更することに相当するゲート電流制御が可能となる。
パワーデバイスの特性が同じでも、パワーデバイスとゲートドライバとを接続する配線や、電源とパワーデバイスとを接続する配線等が長かったり、短かったりすると、配線による寄生インダクタンスが異なる。したがって、回路レイアウトによっては寄生インダクタンスの影響も大きくなり、特に、スイッチングが高速化すると寄生インダクタンスの影響が顕著になりやすい。したがって、パワーデバイスの特性に合わせてスイッチング素子12a,12bを切り替える個数を制御しても、サージ電圧が十分に抑制できない場合があった。よって、最悪の場合は、サージ電圧で主回路やハーフブリッジ回路3等が故障する恐れがあった。
これに対して、実施例1では、寄生インダクタンスL1〜L14の影響も考慮してパルスパターンが設定されている。すなわち、配線が短い構成でも長い構成でも、それに応じたパルスパターンが設定可能であり、配線の長短(回路レイアウト)に応じてサージ電圧を抑制可能である。
また、実施例1では、スイッチング時のサージ電圧だけでなく、その後に発生する電圧の振動成分を抑制するようにパルスパターンが設定されている。電圧が振動すると、回路に想定しない電流、電圧がかかることとなり、回路が故障するまたはノイズが発生する恐れがあった。これに対して、実施例1では、スイッチング後の電圧の振動が抑制されており、回路故障・ノイズを抑制できる。
(実験例1)
図4は比較例1および比較例2と実験例1の説明図であり、横軸に時間を取り、縦軸に電圧や切替素子のオン・オフを表記したグラフであって、図4Aは比較例1のグラフ、図4Bは比較例2のグラフ、図4Cは実験例1のグラフである。
図5は横軸に時間を取り、縦軸にゲート電圧Vgやコレクタエミッタ間の電圧Vceを取ったグラフであり、図5Aは比較例1の場合のグラフ、図5Bは実験例1の場合のグラフである。
実験例1では、実施例1のゲート駆動装置2を使用して、スイッチング時の電圧変化を測定する実験を行った。実験例1および比較例1,2では、同一の回路を使用し、入力するパルスパターンを変えた。実験結果を図4に示す。
図4Aにおいて、比較例1では、63個のスイッチング素子12a,12bがオフの状態からオンの状態になった場合であり、流れる電流が最も多い状態である。したがって、図4A、図5の符号51に示すようにサージ電圧が観測された。また、サージ電圧の低下後に、電圧の振動52も観測された。
図4Bにおいて、比較例2では、12個のスイッチング素子12a,12bがオンになった状態であり、図4Aの場合に比べて、流れる電流が約1/5となっている。したがって、比較例1の場合に比べて、流れる電流が少なくなっているために、スイッチングが遅れている。また、サージ電圧51も観測され、その後の振動52も観測されている。
図4C、図5Bにおいて、実験例1では、入力されるパルスパターンにおいて、サージ電圧抑制パターン部56と、振動抑制パターン部57とを有し、オンになるスイッチング素子12a,12bの個数が時間経過に応じて制御されている。すなわち、最初は、+63にするが、所定時間後に、+8、+32、+63と切り替えることでサージ電圧51が抑制される。また、その後0、+2、+63、0、+4、+48、+63と所定時間毎に切り替えていくことで電圧の振動52も抑制される。
したがって、図4C、図5Bに示すようにサージ電圧51′が抑制されており、振動52も振幅のピーク間の高さも短く抑制されている。さらに、比較例2に比べて、早期に電圧が立ち上がっており、図4Aに比べて、スイッチングの遅れもほとんどないことが確認された。
(実験例2,3)
図6は図4Cに対応する実験例2,3および比較例3,4の説明図であり、図6Aは比較例3のグラフ、図6Bは実験例2のグラフ、図6Cは比較例4のグラフ、図6Dは実験例3のグラフである。
次に、第1のIGBT3aとコンデンサ8との間の配線の長さが異なる場合、すなわち、寄生インダクタンスが異なる場合の実験を行った。比較例3および実験例2では配線の長さが0.6mであり、比較例4および実験例3では配線の長さが1mであった。
図6A、図6Cに示すように、配線の長さの違いにより寄生インダクタンスが異なり、サージ電圧51や振動52が異なることがわかる。そして、実験例2,3に示すように、配線の長さに応じて、それぞれ適切なパルスパターンを入力することで、サージ電圧および振動が抑制されることも確認された。
(実験例4,5)
図7は図4Cに対応する実験例4,5の説明図であり、図7Aは実験例4のグラフ、図7Bは実験例5のグラフである。
次に、ゲートドライバからパワーデバイスまでの配線の長さが異なる場合、すなわち、寄生インダクタンスが異なる場合の実験を行った。ゲートドライバ11から第1のIGBT3aのゲートまでの配線の長さを、実験例4では3cm程度とし、実験例5では20cm程度とした。実験結果を図7に示す。
図7において、実験例4,5では、配線の長さの違いによって寄生インダクタンスL13,L14が異なり、サージ電圧51および振動52を抑制するサージ電圧抑制パターン部56や振動抑制パターン部57が異なる。しかしながら、実験例4,5のパルスパターンをそれぞれ使用することで、サージ電圧51や振動52が抑制可能であることが確認された。
(変更例)
以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。本発明の変更例(H01)〜(H09)を下記に例示する。
(H01)前記実施例において、半導体パワーデバイス(主回路のハーフブリッジ回路3)として、IGBTを使用することが望ましいが、これに限定されない。MOSFET、MESFET、JFET、HEMT、IEGT等、使用可能な任意の構成を使用可能である。また、これらの半導体パワーデバイスを構成する半導体材料としては、シリコン(Si)だけでなく、炭化シリコン(SiC)、窒化ガリウム(GaN)、ヒ化ガリウム(GaAs)、AlGaAs、ダイヤモンド、酸化ガリウム(GaO)等を使用することが可能である。
(H02)前記実施例において、スイッチング素子12a,12bとして、pMOSとnMOSとを組み合わせた構成を例示したがこれに限定されない。例えば、2つのnMOSを使用したり、2つのpMOSを使用する構成とすることも可能である。また、MOSFETに限定されず、スイッチングが可能な任意の素子を使用可能である。さらに、MOSFETの数も2つに限定されず、使用目的等に応じて増減することも可能である。
(H03)前記実施例において、駆動回路12の数として、63個を例示したが、これに限定されない。用途や費用、仕様等に応じて、2以上の任意の数とすることが可能である。なお、本願発明は、駆動回路12の数が多いほど(信号35aのbit数が大きくなるほど)効果が高くなる。
(H04)前記実施例において、各手段31〜35を、ドライバ制御回路21として、FPGAの1チップで構成したものを例示したが、これに限定されない。FPGA以外の回路構成(例えば、DSP(デジタルシグナルプロセッサ)、マイクロコンピュータ、CPU等)や2以上のチップ(集積回路)で構成することも可能である。
(H05)前記実施例において、パルスパターンの時間変化の推移(プロファイル)を記憶させる構成を例示したが、実施例1においてもスイッチングの前後の予め設定された期間のオン、オフする個数を記憶させることも可能である。
(H06)前記実施例において、パルスパターンを予め設定する構成を例示したが、これに限定されない。例えば、電圧を測定する電圧計を回路内に設置して、電圧の検知結果に応じてパルスパターンを変更する構成とすることが可能である。予めいくつかのパルスパターンを用意しておき、各パターンを入力した場合の電圧の挙動で、最もサージ電圧51や振動52が少ないものを採用したり、最も少ないパターンと次に少ないパターンの平均を取って新たなパターンを作成したり、あるいは、人工知能等を使用して学習する等で、自動的にパルスパターンを設定する構成とすることも可能である。なお、検知するパラメータも電圧に限定されず、負荷インダクタ15を流れる電流や、半導体パワーデバイスの端子間電圧、コモンモード電圧、漏れ電流、サージ電圧、あるいは、これらの組み合せとすることも可能である。
(H07)前記実施例において、サージ電圧が低減されるようにパルスパターンの設定を行い、スイッチング損失(スイッチング期間の長さ)よりもサージ電圧の低減を優先する構成を例示したがこれに限定されない。例えば、スイッチング損失の上限を制限し、スイッチング損失が上限を超えない範囲でサージ電圧が低減されるようにパルスパターンを設定する構成とすることも可能である。他にも、回路に流れる電流値に応じてデッドタイムを優先してパルスパターンを設定する構成とすることも可能である。
(H08)前記実施例において、ゲートドライバが半導体パワーデバイスをオン時の電圧として15V、オフ時の電圧として0Vを例示したが、これに限定されない。例えば、一方が正の電圧で他方が負の電圧とすることが可能である。
(H09)前記実施例において、主回路一例として、2つのパワーデバイスから成るハーフブリッジ回路を例示したが、これに限定されない。フルブリッジ回路や三相インバータ回路、あるいは中性点クランプインバータやフライングキャパシタコンバータなど、3レベル以上の電圧出力が可能なマルチレベルインバータ等のあらゆる回路構成の主回路に対して適用可能である。
2…ゲート駆動装置、
3…半導体パワーデバイス、
12…駆動回路、
12a…第1の切替素子、
12b…第2の切替素子、
21…制御部、
51…サージ電圧、
52…電圧の振動、
L1〜L14…寄生インダクタンス。

Claims (4)

  1. 半導体パワーデバイスのオン・オフを制御するゲートドライブ回路であって、第1の切替素子と、第2の切替素子と、を有し、前記第1の切替素子がオンの場合に前記半導体パワーデバイスをオンにする電源に出力端子が接続され、前記第2の切替素子がオンの場合に前記半導体パワーデバイスをオフにする電源に出力端子が接続される駆動回路と、
    並列に接続された複数の前記駆動回路に対して、前記各駆動回路における第1の切替素子および第2の切替素子のいずれか一方をオンにし且つ他方をオフに制御する制御部であって、前記半導体パワーデバイスをオンとオフとの間で切り替える場合に発生するサージ電圧およびスイッチング損失の少なくとも一方に基づいて、前記ゲートドライブ回路の中に複数ある前記駆動回路の切替素子をオンにする個数を時間経過に応じて制御する制御部と、
    を備えたことを特徴とするゲート駆動装置。
  2. 前記半導体パワーデバイス内部の配線に起因する寄生インダクタンスにより発生する前記サージ電圧およびスイッチング損失の少なくとも一方に基づいて、前記ゲートドライブ回路の中で複数ある前記駆動回路の切替素子をオンにする個数を時間経過に応じて制御する制御部、
    を備えたことを特徴とする請求項1に記載のゲート駆動装置。
  3. 前記半導体パワーデバイスの周辺の回路の配線に起因する寄生インダクタンスにより発生する前記サージ電圧およびスイッチング損失の少なくとも一方に基づいて、前記ゲートドライブ回路の中で複数ある前記駆動回路の切替素子をオンにする個数を時間経過に応じて制御する制御部、
    を備えたことを特徴とする請求項1または2に記載のゲート駆動装置。
  4. 前記半導体パワーデバイスの切り替えの後に発生する電圧の振動に基づいて、前記ゲートドライブ回路の中で複数ある前記駆動回路の切替素子をオンにする個数を時間経過に応じて制御する前記制御部、
    を備えたことを特徴とする請求項1ないし3のいずれかに記載のゲート駆動装置。
JP2018037185A 2018-03-02 2018-03-02 ゲート駆動装置 Active JP7025007B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037185A JP7025007B2 (ja) 2018-03-02 2018-03-02 ゲート駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037185A JP7025007B2 (ja) 2018-03-02 2018-03-02 ゲート駆動装置

Publications (3)

Publication Number Publication Date
JP2019154134A true JP2019154134A (ja) 2019-09-12
JP2019154134A5 JP2019154134A5 (ja) 2021-02-04
JP7025007B2 JP7025007B2 (ja) 2022-02-24

Family

ID=67947322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037185A Active JP7025007B2 (ja) 2018-03-02 2018-03-02 ゲート駆動装置

Country Status (1)

Country Link
JP (1) JP7025007B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175297A (ja) * 2020-04-27 2021-11-01 東芝三菱電機産業システム株式会社 半導体スイッチ駆動装置及び電力変換装置
US11531063B2 (en) 2021-01-14 2022-12-20 Kabushiki Kaisha Toshiba Support device, design support system, electrical device, and design support method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101622134B1 (ko) 2015-01-08 2016-05-18 엑스론코리아(주) 스핀들 오일 처리 장치 및 이를 구비하는 공작기계

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283973A (ja) * 2009-06-04 2010-12-16 Denso Corp パワースイッチング素子の駆動装置
JP2013219874A (ja) * 2012-04-05 2013-10-24 Hitachi Ltd 半導体駆動回路および電力変換装置
US9425785B1 (en) * 2015-07-14 2016-08-23 Allegro Microsystems, Llc Switching regulator with controllable slew rate
JP2017229151A (ja) * 2016-06-22 2017-12-28 ルネサスエレクトロニクス株式会社 駆動装置および電力供給システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283973A (ja) * 2009-06-04 2010-12-16 Denso Corp パワースイッチング素子の駆動装置
JP2013219874A (ja) * 2012-04-05 2013-10-24 Hitachi Ltd 半導体駆動回路および電力変換装置
US9425785B1 (en) * 2015-07-14 2016-08-23 Allegro Microsystems, Llc Switching regulator with controllable slew rate
JP2017229151A (ja) * 2016-06-22 2017-12-28 ルネサスエレクトロニクス株式会社 駆動装置および電力供給システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175297A (ja) * 2020-04-27 2021-11-01 東芝三菱電機産業システム株式会社 半導体スイッチ駆動装置及び電力変換装置
JP7296915B2 (ja) 2020-04-27 2023-06-23 東芝三菱電機産業システム株式会社 半導体スイッチ駆動装置及び電力変換装置
US11531063B2 (en) 2021-01-14 2022-12-20 Kabushiki Kaisha Toshiba Support device, design support system, electrical device, and design support method

Also Published As

Publication number Publication date
JP7025007B2 (ja) 2022-02-24

Similar Documents

Publication Publication Date Title
US9059076B2 (en) Gate drivers for circuits based on semiconductor devices
WO2010134276A1 (ja) ゲート駆動回路
CN108809060B (zh) 驱动装置及开关装置
JP5675190B2 (ja) パワートランジスタを制御する装置
JPWO2010070899A1 (ja) 電力変換回路
JP2013110878A (ja) インバータ装置
CN108736703B (zh) 最小化宽带隙半导体器件中的振铃
KR101986475B1 (ko) 구동 장치
CN110401335B (zh) 驱动电路、功率模块以及电力变换系统
JP2009011013A (ja) 電力変換装置
JP7025007B2 (ja) ゲート駆動装置
US10778087B2 (en) Method and switching arrangement for changing a switching state of a switching half-bridge
WO2019207977A1 (ja) ゲート駆動回路およびゲート駆動方法
JP2012256987A (ja) スイッチング回路
JPWO2017221417A1 (ja) ゲート駆動回路、電力変換装置および鉄道車両
JP2010172078A (ja) スイッチ回路
JP2019004656A (ja) 双方向スイッチ及びその駆動方法
WO2023062745A1 (ja) 電力用半導体素子の駆動回路、電力用半導体モジュール、および電力変換装置
JP2019024289A (ja) 電力変換装置の駆動方法
EP2811648B1 (en) Method and arrangement for controlling semiconductor switch
JP2018037723A (ja) ゲート駆動装置
JP2017228912A (ja) 半導体装置
JP4722341B2 (ja) ゲートノイズ抑制回路
JPH10209832A (ja) 半導体スイッチ回路
JP5578231B2 (ja) インバータ回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220203

R150 Certificate of patent or registration of utility model

Ref document number: 7025007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150