JP2019152481A - 電流測定装置 - Google Patents

電流測定装置 Download PDF

Info

Publication number
JP2019152481A
JP2019152481A JP2018036472A JP2018036472A JP2019152481A JP 2019152481 A JP2019152481 A JP 2019152481A JP 2018036472 A JP2018036472 A JP 2018036472A JP 2018036472 A JP2018036472 A JP 2018036472A JP 2019152481 A JP2019152481 A JP 2019152481A
Authority
JP
Japan
Prior art keywords
magnetic sensors
current
conductor
measured
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018036472A
Other languages
English (en)
Other versions
JP2019152481A5 (ja
JP7155541B2 (ja
Inventor
一馬 竹中
Kazuma Takenaka
一馬 竹中
美菜子 寺尾
Minako Terao
美菜子 寺尾
晃太朗 小河
Kotaro Ogawa
晃太朗 小河
紗希 小箱
Saki KOBAKO
紗希 小箱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018036472A priority Critical patent/JP7155541B2/ja
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to CN201980015287.6A priority patent/CN111771128B/zh
Priority to KR1020207024038A priority patent/KR102412180B1/ko
Priority to EP22195147.8A priority patent/EP4130757B1/en
Priority to US16/971,927 priority patent/US11360124B2/en
Priority to PCT/JP2019/004009 priority patent/WO2019167565A1/ja
Priority to EP19760523.1A priority patent/EP3761044A4/en
Publication of JP2019152481A publication Critical patent/JP2019152481A/ja
Publication of JP2019152481A5 publication Critical patent/JP2019152481A5/ja
Application granted granted Critical
Publication of JP7155541B2 publication Critical patent/JP7155541B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

【課題】柔軟な配置が可能であり、直流電流及び低周波の交流電流を非接触で直接的に測定することができる電流測定装置を提供する。【解決手段】電流測定装置1は、各々の感磁方向が互いに平行になるように、予め規定された間隔をもって配置された2つの三軸磁気センサ11,12と、2つの三軸磁気センサ11,12の検出結果と2つの三軸磁気センサ11,12の間隔とに基づいて、被測定導体MCに流れる電流Iを求める演算部と、を備える。【選択図】図1

Description

本発明は、電流測定装置に関する。
従来から、被測定導体に流れる電流を非接触で直接的に測定することが可能な様々な電流測定装置が開発されている。このような電流測定装置の代表的なものとしては、例えばCT(Current Transformer:変流器)方式の電流測定装置、ゼロフラックス方式の電流測定装置、ロゴスキー方式の電流測定装置、ホール素子方式の電流測定装置等が挙げられる。
例えば、CT方式及びゼロフラックス方式の電流測定装置は、巻線が巻回された磁気コアを被測定導体の周囲に設け、被測定導体(一次側)に流れる電流によって磁気コアに生ずる磁束を打ち消すように巻線(二次側)に流れる電流を検出することで、被測定導体に流れる電流を測定するものである。また、ロゴスキー方式の電流測定装置は、ロゴスキーコイル(空芯コイル)を被測定導体の周囲に設け、被測定導体に流れる交流電流によって生ずる磁界がロゴスキーコイルと鎖交することでロゴスキーコイルに誘起される電圧を検出することで、被測定導体に流れる電流を測定するものである。
以下の特許文献1には、ゼロフラックス方式の電流測定装置の一例が開示されている。また、以下の特許文献2には、複数の磁気センサを用いた電流測定装置が開示されている。具体的に、以下の特許文献2に開示された電流測定装置は、被測定導体に対してそれぞれ異なる距離をとって2つの磁気センサを配置し、これら磁気センサの出力から磁気センサと被測定導体との距離を求め、求めた距離を用いて被測定導体に流れる電流の大きさを求めている。
特開2005−55300号公報 特開2011−164019号公報
ところで、近年、ハイブリッド自動車(HV:Hybrid Vehicle)や電気自動車(EV:Electric Vehicle)の開発工程において、SiC(シリコンカーバイド)等のパワー半導体のピンに流れる電流や、組み立て後のバスバーに流れる電流を直接的に測定したいという要求がある。パワー半導体はピンのピッチが狭いものが多く、バスバーは周辺のスペースが限られている場所に設置されることがあり、このようなパワー半導体やバスバー等に対して、電流測定時の設置を柔軟に行うことが可能な電流測定装置が望まれている。また、ハイブリッド自動車や電気自動車では、例えばバッテリから供給される直流電流やモータに流れる交流電流が取り扱われるため、直流電流及び低周波(例えば、十[Hz]程度)の交流電流を非接触で測定可能な電流測定装置が望まれている。
しかしながら、上述した特許文献1に開示されたゼロフラックス方式の電流測定装置は、ある程度の大きさを有する磁気コアを被測定導体の周囲に設ける必要があることから、狭い場所への設置が困難であるという問題がある。また、上述したロゴスキー方式の電流測定装置は、ロゴスキーコイルに誘起される電圧を検出していることから、原理的に直流電流の測定を行うことはできないという問題がある。また低周波領域では、出力信号が微弱であるとともに位相がずれるため、測定精度が悪いという問題がある。また、上述した特許文献2に開示された電流測定装置は、磁気センサの感磁方向を被測定導体の円周方向に一致させる必要があることから、磁気センサの配置が制限されてしまい柔軟な配置が困難であるという問題がある。
本発明は上記事情に鑑みてなされたものであり、柔軟な配置が可能であり、直流電流及び低周波の交流電流を非接触で直接的に測定することができる電流測定装置を提供することを目的とする。
上記課題を解決するために、本発明の一態様による電流測定装置は、被測定導体(MC)に流れる電流(I)を測定する電流測定装置(1)であって、各々の感磁方向が互いに平行になるように、予め規定された間隔をもって配置された2つの三軸磁気センサ(11、12)と、前記2つの三軸磁気センサの検出結果と前記2つの三軸磁気センサの間隔(d)とに基づいて、前記被測定導体に流れる電流を求める演算部(24)と、を備える。
また、本発明の一態様による電流測定装置は、前記演算部が、前記2つの三軸磁気センサの検出結果と前記2つの三軸磁気センサの間隔とに基づいて、前記被測定導体に対する前記2つの三軸磁気センサの何れか一方の距離を推定する距離推定部(24b)と、前記距離推定部によって推定された距離と、前記2つの三軸磁気センサの何れか一方の検出結果とに基づいて、前記被測定導体に流れる電流を求める電流算出部(24c)と、を備える。
また、本発明の一態様による電流測定装置は、前記演算部が、前記2つの三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部(24a)を更に備えており、前記雑音除去部によって雑音成分が除去された前記2つの三軸磁気センサの検出結果を用いて前記被測定導体に流れる電流を求める。
また、本発明の一態様による電流測定装置は、前記雑音除去部が、予め規定された一定の期間毎に得られる、前記2つの三軸磁気センサの検出結果の各々に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記2つの三軸磁気センサの検出結果に含まれる雑音成分をそれぞれ除去する。
また、本発明の一態様による電流測定装置は、前記2つの三軸磁気センサを備えるセンサヘッド(10)と、前記演算部を備える回路部(20)と、を備える。
また、本発明の一態様による電流測定装置は、前記2つの三軸磁気センサの検出結果を示す信号が、ディジタル信号である。
本発明によれば、柔軟な配置が可能であり、直流電流及び低周波の交流電流を非接触で直接的に測定することができるという効果がある。
本発明の一実施形態による電流測定装置を模式的に示す図である。 本発明の一実施形態による電流測定装置の要部構成を示すブロック図である。 本発明の一実施形態による電流測定装置による電流の測定原理を説明するための図である。 被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。 三軸磁気センサのY方向における間隔Lを求める方法を説明するための図である。 本発明の一実施形態による電流測定装置の動作の概要を示すフローチャートである。
以下、図面を参照して本発明の一実施形態による電流測定装置について詳細に説明する。
〈電流測定装置の構成〉
図1は、本発明の一実施形態による電流測定装置を模式的に示す図である。図1に示す通り、本実施形態の電流測定装置1は、ケーブルCBによって接続されたセンサヘッド10及び回路部20を備えており、被測定導体MCに流れる電流Iを非接触で直接的に測定する。尚、被測定導体MCは、例えばパワー半導体のピンやバスバー等の任意の導体である。以下では、説明を簡単にするために、被測定導体MCは、円柱形状の導電であるとする。
センサヘッド10は、被測定導体MCに流れる電流Iを非接触で測定するために、被測定導体MCに対して任意の位置に任意の姿勢で配置される部材である。このセンサヘッド10は、電流Iによって生成される磁界(例えば、図1中に示す磁界H1,H2)を遮らない材質(例えば、樹脂等)によって形成されている。このセンサヘッド10は、いわば被測定導体MCに流れる電流Iを非接触で測定するためのプローブとして用いられるものである。
センサヘッド10には、2つの三軸磁気センサ11,12が設けられている。三軸磁気センサ11,12は、互いに直交する三軸に感磁方向を有する磁気センサである。三軸磁気センサ11,12は、各々の感磁方向が互いに平行になるように、予め規定された間隔をもって配置されている。例えば、三軸磁気センサ11,12の第1軸が平行になり、三軸磁気センサ11,12の第2軸が平行になり、且つ三軸磁気センサ11,12の第3軸が平行になり、所定の方向に所定の距離だけ離間するように配置されている。尚、以下では、三軸磁気センサ11,12は、第1軸方向に所定の距離だけ離間するように配列されているとする。
三軸磁気センサ11,12の検出結果を示す信号は、アナログ信号及びディジタル信号の何れでも良いが、三軸磁気センサ11,12の検出結果を示す信号がディジタル信号である場合には、センサヘッド10と回路部20とを接続するケーブルCBの本数を少なくすることができる。例えば、三軸磁気センサ11,12の検出結果を示す信号がアナログ信号である場合には、三軸磁気センサ11,12の各々について三軸の検出結果を出力する3本のケーブルCBがそれぞれ必要になるため、計6本のケーブルCBが必要になるが、三軸磁気センサ11,12の検出結果を示す信号がディジタル信号である場合には、1本のケーブルCBのみで良い。ケーブルCBの本数が少ないと、ケーブルCBの屈曲性が向上するため、例えばセンサヘッド10を狭い空間内に配置する際にハンドリングが容易になる。
回路部20は、センサヘッド10から出力される検出結果(三軸磁気センサ11,12の検出結果)に基づいて、被測定導体MCに流れる電流Iを測定する。回路部20は、電流Iの測定結果を表示し、或いは外部に出力する。センサヘッド10と回路部20とを接続するケーブルCBとしては任意のものを用いることができるが、可撓性を有し、取り回しが用意であり、且つ断線が生じ難いものが望ましい。
図2は、本発明の一実施形態による電流測定装置の要部構成を示すブロック図である。尚、図2では、図1に示した構成に対応するブロックについては、同一の符号を付してある。以下では、主に、図2を参照して回路部20の内部構成の詳細について説明する。図2に示す通り、回路部20は、操作部21、表示部22、メモリ23、及び演算部24を備える。
操作部21は、例えば電源ボタン、設定ボタン等の各種ボタンを備えており、各種ボタンに対する操作指示を示す信号を演算部24に出力する。表示部22は、例えば例えば7セグメントLED(Light Emitting Diode:発光ダイオード)表示器、液晶表示装置等の表示装置を備えており、演算部24から出力される各種情報(例えば、電流Iの測定結果を示す情報)を表示する。尚、操作部21及び表示部22は、物理的に分離されたものであっても良く、表示機能と操作機能とを兼ね備えるタッチパネル式の液晶表示装置のように物理的に一体化されたものであっても良い。
メモリ23は、例えば揮発性又は不揮発性の半導体メモリを備えており、センサヘッド10から出力される三軸磁気センサ11,12の検出結果、演算部24の演算結果(電流Iの測定結果)等を記憶する。尚、メモリ23は、上記の半導体メモリとともに(或いは、上記の半導体メモリに代えて)、例えばHDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等の補助記憶装置を備えていても良い。
演算部24は、センサヘッド10から出力される三軸磁気センサ11,12の検出結果をメモリ23に記憶させる。また、演算部24は、メモリ23に記憶された三軸磁気センサ11,12の検出結果を読み出して、被測定導体MCに流れる電流Iを求める演算を行う。この演算部24は、雑音除去部24a、距離推定部24b、及び電流算出部24cを備える。
雑音除去部24aは、三軸磁気センサ11,12の検出結果に含まれる雑音成分を除去する。具体的に、雑音除去部24aは、予め規定された一定の期間(例えば、1秒)毎に、三軸磁気センサ11,12の各々から得られる複数の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、三軸磁気センサ11,12の検出結果に含まれる雑音成分を除去する。尚、三軸磁気センサ11,12からは三軸の検出結果がそれぞれ出力されるが、雑音除去部24aによる雑音成分の除去は、各軸の検出結果に対して個別に行われる。このような雑音除去を行うのは、三軸磁気センサ11,12のSN比(信号対雑音比)を向上させて、電流Iの測定精度を高めるためである。
距離推定部24bは、三軸磁気センサ11,12の検出結果と三軸磁気センサ11,12の間隔とに基づいて、被測定導体MCに対する三軸磁気センサ11,12の何れか一方の距離を推定する。尚、本実施形態では、距離推定部24bは、被測定導体MCに対する三軸磁気センサ12の距離を推定するものとする。このような距離の推定を行うのは、被測定導体MCに流れる電流Iを測定するためである。尚、距離推定部24bで行われる処理の詳細については後述する。
電流算出部24cは、距離推定部24bによって推定された距離と、三軸磁気センサ11,12の何れか一方の検出結果とに基づいて、被測定導体MCに流れる電流Iを求める。尚、本実施形態では、電流算出部24cは、距離推定部24bによって推定された距離と、被測定導体MCに対する距離が推定された三軸磁気センサ12の検出結果とに基づいて、被測定導体MCに流れる電流Iを求めるものとする。尚、電流算出部24cで行われる処理の詳細については後述する。
ここで、図1,図2に示す通り、回路部20は、センサヘッド10と分離されており、ケーブルCBを介してセンサヘッド10に接続されている。このような構成にすることで、磁界検出機能(三軸磁気センサ11,12)と演算機能(演算部24)とを分離することができ、演算部24がセンサヘッド10内に設けられている場合に生ずる諸問題(例えば、温度特性、絶縁耐性)等を回避することができ、これにより電流測定装置1の用途を拡げることができる。
〈電流の測定原理〉
次に、電流測定装置1による電流の測定原理について説明する。図3は、本発明の一実施形態による電流測定装置による電流の測定原理を説明するための図である。まず、図3に示す通り、センサヘッド10のみに係る座標系(xyz直交座標系)と、被測定導体MC及びセンサヘッド10の双方に係る座標系(XYZ直交座標系)との2つの座標系を設定する。尚、図示の都合上、XYZ直交座標系は、原点位置をずらして図示しているが、XYZ直交座標系の原点は、xyz直交座標系の原点と同じ位置である。
xyz直交座標系は、センサヘッド10の位置及び姿勢に応じて規定される座標系である。このxyz直交座標系は、三軸磁気センサ11の位置に原点が設定されており、三軸磁気センサ11,12の配列方向(第1軸方向)にx軸が設定されており、三軸磁気センサ11,12の第2軸方向にy軸が設定されており、三軸磁気センサ11,12の第3軸方向にz軸が設定されている。尚、三軸磁気センサ11,12のx方向の間隔はd[m]であるとする。従って、三軸磁気センサ11は、xyz直交座標系の座標(0,0,0)に配置されており、三軸磁気センサ12は、xyz直交座標系の座標(d,0,0)に配置されているということができる。
XYZ座標系は、被測定導体MCとセンサヘッド10との相対的な位置関係に応じて規定される座標系である。このXYZ直交座標系は、三軸磁気センサ11の位置に原点が設定されており、被測定導体MCの長手方向(電流Iの方向)と平行になるようにX軸が設定されており、原点位置(三軸磁気センサ11の位置)における磁界H1の方向にY軸が設定される。尚、Z軸は、X軸及びY軸に直交する方向に設定される。
図3に示す通り、被測定導体MCに対する三軸磁気センサ11の距離をr1とし、被測定導体MCに対する三軸磁気センサ12の距離をr2とする。尚、距離r1は、三軸磁気センサ11から被測定導体MCに垂直に下ろした線分の長さであり、距離r2は、三軸磁気センサ12から被測定導体MCに垂直に下ろした線分の長さである。また、電流Iによって三軸磁気センサ11の位置に形成される磁界をH1とし、電流Iによって三軸磁気センサ12の位置に形成される磁界をH2とする。ここで、上記の磁界H1,H2は、三軸磁気センサ11,12によって検出することができるが、磁界H1,H2のみでは距離r1,r2を検出することはできない点に注意されたい。
図4は、被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。図3中の方向D1は、被測定導体MCの長手方向に沿う方向(電流Iが流れる方向とは反対の方向)である。尚、図4においては、理解を容易にするためにセンサヘッド10の図示を省略して、被測定導体MC及び三軸磁気センサ11,12を図示している。また、図4においても、図3と同様に、原点位置をずらしてXYZ直交座標系を図示している。
図4に示す通り、紙面に対して垂直なX方向(−X方向)に流れる電流Iによって、三軸磁気センサ11,12の位置に形成される磁界H1,H2は、X軸に直交するものになる。従って、図4に示す通り、電流Iが流れる方向と直交するYZ平面に、三軸磁気センサ11,12の位置に形成される磁界H1,H2を、その大きさを変えることなく射影することができる。
三軸磁気センサ11の位置に形成される磁界H1は、三軸磁気センサ11から被測定導体MCに垂直に下ろした線分に直交する。また、三軸磁気センサ12の位置に形成される磁界H2は、三軸磁気センサ12から被測定導体MCに垂直に下ろした線分に直交する。従って、上記の線分同士がなす角θ2は、磁界H1と磁界H2とがなす角θ1に等しくなる。このため、三軸磁気センサ11,12のY方向における間隔Lは、以下の(1)式で表される。
Figure 2019152481
ここで、上述の通り、上記の角θ1は、ベクトルで表される磁界H1と磁界H2とのなす角である。このため、角θ1は、ベクトルの内積公式を用いて以下の(2)式で表される。
Figure 2019152481
上記(2)式を変形して上記(1)に代入すると、以下の(3)式が得られる。
Figure 2019152481
上記(3)式中の磁界H1,H2は、三軸磁気センサ11,12の検出結果である。このため、上記の間隔Lが分かれば、被測定導体MCに対する三軸磁気センサ12の距離r2を求める(推定する)ことができる。そして、距離r2を求める(推定する)ことができれば、その距離r2と三軸磁気センサ12で検出される磁界H2とを用いて、アンペールの法則から電流Iを測定することができる。以下、距離r2(電流Iを測定するために必要となる距離)を求めるために必要となる三軸磁気センサ11,12のY方向における間隔Lを求める方法について説明する。
図5は、三軸磁気センサのY方向における間隔Lを求める方法を説明するための図である。尚、図5(a)は、xyz座標系を+z側から−z側の方向に見た図であり、図5(b)は、xyz座標系を+x側から−x側の方向に見た図であり、図5(c)は、xyz座標系を+y側から−y側の方向に見た図である。本実施形態では、XYZ座標系を回転させてxyz座標系に一致させる操作を行って、三軸磁気センサ11,12のY方向における間隔Lを求めている。尚、かかる操作を行うことで、三軸磁気センサ11の位置における磁界はy成分のみになり、被測定導体MCはyz平面と直交した状態(x軸と平行な状態)になる。
具体的には、まず、図5(a)に示す通り、XYZ座標系をz軸の周りで角αだけ回転させて、磁界H1(Y軸)をyz平面に配置する操作を行う。ここで、三軸磁気センサ11で検出される磁界H1のx成分をH1とし、y成分をH1とし、z成分をH1とすると、上記の角αは、以下の(4)式で表される。また、かかる操作を行った後の三軸磁気センサ12の位置P1は、以下の(5)式で表される。
Figure 2019152481
Figure 2019152481
次に、図5(b)に示す通り、XYZ座標系をx軸の周りで角βだけ回転させて、磁界H1(Y軸)をy軸上に配置する操作を行う。上記の角βは、以下の(6)式で表される。また、かかる操作を行った後の三軸磁気センサ12の位置P2は、以下の(7)式で表される。
Figure 2019152481
Figure 2019152481
次いで、図5(c)に示す通り、XYZ座標系をy軸の周りで角γだけ回転させて、被測定導体MCをyz平面と直交させる操作を行う。このとき、y座標は変化しないことから、かかる操作を行った後の三軸磁気センサ12の位置P3のy座標は、d・sinα・cosβである。
以上の操作を行うことにより、三軸磁気センサ11,12のY方向(y方向)における間隔Lは、三軸磁気センサ12の位置P3のy座標(d・sinα・cosβ)と等しくなる。すると、上記(1)式は、上記(4)式及び上記(6)式を用いて以下の(8)式に変形することができる。この(8)式を参照すると、三軸磁気センサ11,12の検出結果と三軸磁気センサ11,12の間隔dとから、被測定導体MCに対する三軸磁気センサ12の距離r2が求められる(推定される)ことが分かる。
Figure 2019152481
被測定導体MCに対する三軸磁気センサ12の距離r2が求められると、アンペールの法則から被測定導体MCに流れる電流Iを求めることができる。具体的には、以下の(9)式から、電流Iを求めることができる。この(9)式を参照すると、定数(2π)、上記の距離r2、及び三軸磁気センサ12の検出結果(H2)から電流Iが求められることが分かる。
Figure 2019152481
〈電流測定装置の動作〉
次に、電流測定装置1を用いて被測定導体MCに流れる電流Iを測定する際の動作について説明する。まず、電流測定装置1のユーザは、被測定導体MCに流れる電流Iを測定するために、センサヘッド10を被測定導体MCに近接配置させる。尚、被測定導体MCに対するセンサヘッド10の位置及び姿勢は任意である。
図6は、本発明の一実施形態による電流測定装置の動作の概要を示すフローチャートである。図6に示すフローチャートは、例えば一定周期(例えば、1秒)で開始される。図6に示すフローチャートの処理が開始されると、まず三軸磁気センサ11,12によって、被測定導体MCに流れる電流Iによって形成される磁界が検出される(ステップS11)。尚、三軸磁気センサ11,12による磁界の検出は、例えば1秒間に1000回程度行われる。次に、三軸磁気センサ11,12の検出結果を示す検出データを、メモリ23に蓄積する処理が、回路部20の演算部24によって行われる(ステップS12)。
次いで、検出データから雑音を除去する処理が、雑音除去部24aによって行われる(ステップS13)。具体的には、メモリ23に蓄積された検出データが雑音除去部24aに読み出され、読み出された検出データに対して平均化処理又は二乗和平方根処理が行われることで、検出データに含まれる雑音成分を除去する処理が行われる。尚、二乗和平方根処理を行うと符号が無くなるため、別途、符号の付加を行う。ここで、三軸磁気センサ11,12からは、三軸の検出結果を出力する3種類の検出データがそれぞれ出力される。雑音除去部24aによる雑音成分の除去は、各軸の検出データに対して個別に行われる。
続いて、被測定導体MCに対する三軸磁気センサ12の距離r2を推定する処理が、距離推定部24bによって行われる(ステップS14)。具体的には、ステップS13で雑音が除去された検出データと、予め入力されている三軸磁気センサ11,12の間隔dを示すデータとを用い、前述した(8)式に示される演算を行って、被測定導体MCに対する三軸磁気センサ12の距離r2を推定する処理が距離推定部24bによって行われる。
以上の処理が終了すると、被測定導体MCに流れる電流Iを算出する処理が、演算部24の電流算出部24cによって行われる(ステップS15)。具体的には、ステップS14で推定された距離r2と、ステップS13で雑音が除去された三軸磁気センサ12の検出データとを用い、前述した(9)式に示される演算を行って、被測定導体MCに流れる電流Iを算出する処理が、演算部24の電流算出部24cによって行われる。このようにして、被測定導体MCに流れる電流Iが非接触で直接的に測定される。
以上の通り、本実施形態では、三軸磁気センサ11,12の検出結果を示す検出データと、三軸磁気センサ11,12の間隔dを示すデータとを用いて、被測定導体MCに対する三軸磁気センサ12の距離r2を推定し、推定した距離r2と三軸磁気センサ12の検出結果を示す検出データとを用いて被測定導体MCに流れる電流Iを測定している。ここで、本実施形態では、被測定導体MCに対するセンサヘッド10の位置及び姿勢は任意で良い。また、三軸磁気センサ11,12の検出結果は、電流Iが直流電流であるか交流電流であるかに拘わらず得られる。このため、本実施形態では、柔軟な配置が可能であり、直流電流及び低周波の交流電流を非接触で直接的に測定することができる。
また、本実施形態では、三軸磁気センサ11,12が設けられたセンサヘッド10と、演算部24が設けられた回路部20とが分離されてケーブルCBによって接続されている。これにより、センサヘッド10の取り回しが容易になり、例えば狭い場所へのセンサヘッド10の設置も容易に行うことができるため、より柔軟な配置が可能である。
以上、本発明の一実施形態による電流測定装置について説明したが、本発明は上記実施形態に制限されることなく本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態では、被測定導体MCに対する三軸磁気センサ12の距離r2を推定し、推定した距離r2を用いて被測定導体MCに流れる電流Iを測定する例について説明した。しかしながら、前述した(9)式を参照すると、被測定導体MCに流れる電流Iは、三軸磁気センサ11,12の検出結果と、三軸磁気センサ11,12の間隔dとから求められることが分かる。このため、被測定導体MCに対する三軸磁気センサ12の距離r2を推定することなく、前述した(9)式を用いて直接的に被測定導体MCに流れる電流Iを測定するようにしても良い。
また、上述した実施形態では、被測定導体MCに対する三軸磁気センサ12の距離r2のみを推定し、推定した距離r2を用いて被測定導体MCに流れる電流Iを測定する例について説明した。しかしながら、被測定導体MCに対する三軸磁気センサ11,12の距離r1,r2を共に推定し、推定した距離r1を用いて被測定導体MCに流れる電流Iを求めるとともに、推定した距離r2を用いて被測定導体MCに流れる電流Iを求め、求めた電流Iを平均化することによって被測定導体MCに流れる電流Iを測定するようにしても良い。
また、上述した実施形態では、三軸磁気センサ11,12が第1軸方向(x軸方向)に間隔d[m]だけ離間している例について説明した。しかしながら、三軸磁気センサ11,12は、第2軸方向(y軸方向)に離間していても良く、第3軸方向(z軸方向)に離間していても良く、その他の方向に離間していても良い。つまり、三軸磁気センサ11,12が離間する方向は任意である。
1 電流測定装置
10 センサヘッド
11 三軸磁気センサ
12 三軸磁気センサ
20 回路部
24 演算部
24a 雑音除去部
24b 距離推定部
24c 電流算出部
I 電流
MC 被測定導体

Claims (6)

  1. 被測定導体に流れる電流を測定する電流測定装置であって、
    各々の感磁方向が互いに平行になるように、予め規定された間隔をもって配置された2つの三軸磁気センサと、
    前記2つの三軸磁気センサの検出結果と前記2つの三軸磁気センサの間隔とに基づいて、前記被測定導体に流れる電流を求める演算部と、
    を備える電流測定装置。
  2. 前記演算部は、前記2つの三軸磁気センサの検出結果と前記2つの三軸磁気センサの間隔とに基づいて、前記被測定導体に対する前記2つの三軸磁気センサの何れか一方の距離を推定する距離推定部と、
    前記距離推定部によって推定された距離と、前記2つの三軸磁気センサの何れか一方の検出結果とに基づいて、前記被測定導体に流れる電流を求める電流算出部と、
    を備える請求項1記載の電流測定装置。
  3. 前記演算部は、前記2つの三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部を更に備えており、
    前記雑音除去部によって雑音成分が除去された前記2つの三軸磁気センサの検出結果を用いて前記被測定導体に流れる電流を求める、
    請求項1又は請求項2記載の電流測定装置。
  4. 前記雑音除去部は、予め規定された一定の期間毎に得られる、前記2つの三軸磁気センサの検出結果の各々に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記2つの三軸磁気センサの検出結果に含まれる雑音成分をそれぞれ除去する、請求項3記載の電流測定装置。
  5. 前記2つの三軸磁気センサを備えるセンサヘッドと、
    前記演算部を備える回路部と、
    を備える請求項1から請求項4の何れか一項に記載の電流測定装置。
  6. 前記2つの三軸磁気センサの検出結果を示す信号は、ディジタル信号である、請求項1から請求項5の何れか一項に記載の電流測定装置。
JP2018036472A 2018-03-01 2018-03-01 電流測定装置 Active JP7155541B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018036472A JP7155541B2 (ja) 2018-03-01 2018-03-01 電流測定装置
KR1020207024038A KR102412180B1 (ko) 2018-03-01 2019-02-05 전류 측정 장치, 전류 측정 방법, 및 컴퓨터 판독 가능한 비일시적 기록 매체
EP22195147.8A EP4130757B1 (en) 2018-03-01 2019-02-05 Current measuring device, current measuring method, and non-transitory computer-readable storage medium
US16/971,927 US11360124B2 (en) 2018-03-01 2019-02-05 Current measuring device, current measuring method, and non-transitory computer-readable storage medium
CN201980015287.6A CN111771128B (zh) 2018-03-01 2019-02-05 电流测量装置、电流测量方法以及计算机可读取的非暂时性记录介质
PCT/JP2019/004009 WO2019167565A1 (ja) 2018-03-01 2019-02-05 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体
EP19760523.1A EP3761044A4 (en) 2018-03-01 2019-02-05 ELECTRIC CURRENT MEASUREMENT DEVICE, ELECTRIC CURRENT MEASUREMENT METHOD AND COMPUTER READABLE NON-TRANSITORY RECORDING MEDIA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036472A JP7155541B2 (ja) 2018-03-01 2018-03-01 電流測定装置

Publications (3)

Publication Number Publication Date
JP2019152481A true JP2019152481A (ja) 2019-09-12
JP2019152481A5 JP2019152481A5 (ja) 2021-04-08
JP7155541B2 JP7155541B2 (ja) 2022-10-19

Family

ID=67948786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036472A Active JP7155541B2 (ja) 2018-03-01 2018-03-01 電流測定装置

Country Status (1)

Country Link
JP (1) JP7155541B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986648A (zh) * 2019-12-12 2021-06-18 嘉兴博感科技有限公司 一种长直导线电流测量方法及系统
WO2022030287A1 (ja) * 2020-08-05 2022-02-10 横河電機株式会社 電流測定装置
EP4024055A4 (en) * 2019-08-27 2023-09-13 Yokogawa Electric Corporation CURRENT MEASUREMENT DEVICE, CURRENT MEASUREMENT METHOD AND NON-TRANSIENT COMPUTER-READABLE STORAGE MEDIUM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151649A (en) * 1990-01-23 1992-09-29 Paul Heroux Pair of electrically shielded triaxial magnetic sensors for determination of electric currents in conductors in air with distance and angle compensation
JPH07248366A (ja) * 1994-03-11 1995-09-26 Shimadzu Corp 磁気雑音補償方法
JP2007179901A (ja) * 2005-12-28 2007-07-12 Nippon Soken Inc 燃料電池の電流測定システムおよび電流測定方法
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2010286295A (ja) * 2009-06-10 2010-12-24 Kyoritsu Denki Kk 電流検出装置
JP2011086476A (ja) * 2009-10-15 2011-04-28 Univ Of Tsukuba 検出装置および燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151649A (en) * 1990-01-23 1992-09-29 Paul Heroux Pair of electrically shielded triaxial magnetic sensors for determination of electric currents in conductors in air with distance and angle compensation
JPH07248366A (ja) * 1994-03-11 1995-09-26 Shimadzu Corp 磁気雑音補償方法
JP2007179901A (ja) * 2005-12-28 2007-07-12 Nippon Soken Inc 燃料電池の電流測定システムおよび電流測定方法
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
JP2010286295A (ja) * 2009-06-10 2010-12-24 Kyoritsu Denki Kk 電流検出装置
JP2011086476A (ja) * 2009-10-15 2011-04-28 Univ Of Tsukuba 検出装置および燃料電池システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024055A4 (en) * 2019-08-27 2023-09-13 Yokogawa Electric Corporation CURRENT MEASUREMENT DEVICE, CURRENT MEASUREMENT METHOD AND NON-TRANSIENT COMPUTER-READABLE STORAGE MEDIUM
US11927647B2 (en) 2019-08-27 2024-03-12 Yokogawa Electric Corporation Current measurement device, current measurement method, and non-transitory computer readable storage medium
CN112986648A (zh) * 2019-12-12 2021-06-18 嘉兴博感科技有限公司 一种长直导线电流测量方法及系统
CN112986648B (zh) * 2019-12-12 2023-03-31 嘉兴博感科技有限公司 一种长直导线电流测量方法及系统
WO2022030287A1 (ja) * 2020-08-05 2022-02-10 横河電機株式会社 電流測定装置
JP2022029714A (ja) * 2020-08-05 2022-02-18 横河電機株式会社 電流測定装置

Also Published As

Publication number Publication date
JP7155541B2 (ja) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2019167565A1 (ja) 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体
JP7430989B2 (ja) 電流測定装置
JP2019152481A (ja) 電流測定装置
US20160047846A1 (en) Apparatus and methods for measuring current
JP2016502098A (ja) 磁気センシング装置及びその磁気誘導方法
WO2021039755A1 (ja) 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体
JP7114943B2 (ja) 電流測定装置
JP2005345249A (ja) 電流分布測定装置
JP7001079B2 (ja) 電流測定装置
JP2016148597A (ja) 電流センサ
RU2717397C1 (ru) Устройство и способ для измерения силы тока одного отдельного провода многопроводной системы
US10048298B2 (en) Thin-film sensor type electrical power measurement device
US20120229134A1 (en) Current detection device
US20170307663A1 (en) Current detection method, current detection device, signal correction method for current detection device, and signal correction device for current detection device
JP5783361B2 (ja) 電流測定装置
WO2013145928A1 (ja) 電流検出装置及び電流検出方法
JP2015206719A (ja) 電流センサ
JPH08159771A (ja) 電子方位計

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7155541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150