JP2019139960A - Electrolytic manganese dioxide and its manufacturing method and use - Google Patents

Electrolytic manganese dioxide and its manufacturing method and use Download PDF

Info

Publication number
JP2019139960A
JP2019139960A JP2018022056A JP2018022056A JP2019139960A JP 2019139960 A JP2019139960 A JP 2019139960A JP 2018022056 A JP2018022056 A JP 2018022056A JP 2018022056 A JP2018022056 A JP 2018022056A JP 2019139960 A JP2019139960 A JP 2019139960A
Authority
JP
Japan
Prior art keywords
manganese dioxide
electrolytic manganese
less
electrolysis
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018022056A
Other languages
Japanese (ja)
Other versions
JP7127291B2 (en
Inventor
望水 井手
Nozomi Ide
望水 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2018022056A priority Critical patent/JP7127291B2/en
Publication of JP2019139960A publication Critical patent/JP2019139960A/en
Application granted granted Critical
Publication of JP7127291B2 publication Critical patent/JP7127291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide: an electrolytic manganese dioxide superior in high rate discharge characteristic when used as a positive electrode active material of a battery, e.g. a manganese dry battery, especially an alkali manganese dry battery or a lithium ion primary battery; and a manufacturing method which enables the manufacturing with high productivity.SOLUTION: Disclosed are an electrolytic manganese dioxide and a method for manufacturing an electrolytic manganese dioxide. Of the electrolytic manganese dioxide, the (110) plane half value width is 1.4° or more and 2.5° or less in XRD measurement using Cu Kα rays as a light source, the structural water amount calculated from a decrease in weight at 240°C is 1.4 wt% or more and 2.1 wt% or less, and the carbon weight percentage is 0.02 wt% or more and 1.0wt% or less. The method is one for manufacturing manganese dioxide by electrolysis in aqueous solution of a manganese salt, which comprises the steps of: mixing a cationic surfactant in the electrolyte solution; and performing electrodeposition at 98°C or below.SELECTED DRAWING: None

Description

本発明は、電池、例えばマンガン乾電池等、特にアルカリマンガン乾電池やリチウムイオン一次電池において、正極活物質として使用される電解二酸化マンガン及びその製造方法並びにその用途に関する。   The present invention relates to electrolytic manganese dioxide used as a positive electrode active material in a battery such as a manganese dry battery, particularly an alkaline manganese dry battery or a lithium ion primary battery, a method for producing the same, and an application thereof.

二酸化マンガンは、たとえばマンガン乾電池またはアルカリマンガン乾電池の正極活物質として知られており、保存性に優れ、且つ安価であるという利点を有する。特に、二酸化マンガンを正極活物質として用いるアルカリマンガン乾電池は、重負荷での放電特性に優れていることから電子カメラ、携帯用テープレコーダー、携帯情報機器、さらにはゲーム機や玩具にまで幅広く使用され、近年急速にその需要が伸びてきている。   Manganese dioxide is known as a positive electrode active material of, for example, a manganese dry battery or an alkaline manganese dry battery, and has an advantage of being excellent in storage stability and being inexpensive. In particular, alkaline manganese batteries using manganese dioxide as the positive electrode active material have excellent discharge characteristics under heavy loads, so they are widely used in electronic cameras, portable tape recorders, portable information devices, game machines, and toys. In recent years, the demand has been increasing rapidly.

しかし、アルカリマンガン乾電池は、放電電流が大きくなるに従い正極活物質である二酸化マンガンの利用率が低下し、また放電電圧が低下した状態では使用できないため、実質的な放電容量が大きく損なわれるという課題があった。すなわち、大電流を使用(ハイレート放電)する機器にアルカリマンガン乾電池を用いると、充填されている正極活物質である二酸化マンガンが十分に活用されず、使用可能な時間が短いという欠点を有していた。   However, the alkaline manganese battery has a problem that the substantial discharge capacity is greatly impaired because the utilization rate of manganese dioxide, which is a positive electrode active material, decreases as the discharge current increases and cannot be used in a state where the discharge voltage decreases. was there. In other words, when an alkaline manganese battery is used in a device that uses a large current (high rate discharge), the charged positive electrode active material manganese dioxide is not fully utilized, and the usable time is short. It was.

そこで短時間に大電流を取り出すハイレート間欠放電条件においても、高容量、長寿命を発現できる優れた二酸化マンガン、所謂ハイレート放電特性に優れた二酸化マンガンが望まれていた。   Therefore, excellent manganese dioxide capable of developing a high capacity and long life under high-rate intermittent discharge conditions in which a large current is taken out in a short time, that is, manganese dioxide excellent in so-called high-rate discharge characteristics has been desired.

これまで、ハイレート放電特性改善のため、(110)面の半価幅が小さい電解二酸化マンガンを製造することが検討されてきた(特許文献1、2)。   Until now, in order to improve the high-rate discharge characteristics, production of electrolytic manganese dioxide having a small (110) plane half width has been studied (Patent Documents 1 and 2).

しかしながら、電解二酸化マンガンの(110)面の半価幅を小さくするためには電解時の電流密度を小さくする必要があり、生産性が低いという問題があった。   However, in order to reduce the half width of the (110) plane of electrolytic manganese dioxide, it is necessary to reduce the current density during electrolysis, and there is a problem that productivity is low.

カチオン性界面活性剤を電解液中に混合して電解二酸化マンガンを製造することも検討されているが(非特許文献1)、電解時の温度が100℃以上と高温である事から半価幅を小さくする効果は見られていない。   The production of electrolytic manganese dioxide by mixing a cationic surfactant in an electrolytic solution has also been studied (Non-patent Document 1). However, since the temperature during electrolysis is as high as 100 ° C. or higher, the half-value width is The effect of reducing the size is not seen.

特開2009−135067号公報JP 2009-135067 A 特開2017−179583号公報Japanese Patent Laid-Open No. 2017-179583

Journal of Power Sources、141(2005)、p.340−350Journal of Power Sources, 141 (2005), p. 340-350

本発明の目的は、(110)面の半価幅が小さく、構造水量が少なく全体に対する二酸化マンガンの含有量が多く、結晶構造が含有界面活性剤の炭素分により維持され、ハイレート放電特性に優れる電解二酸化マンガンと、これを高い生産性で得られる製造方法及びその用途を提供することである。   The object of the present invention is that the half width of the (110) plane is small, the amount of structural water is small, the content of manganese dioxide in the whole is large, the crystal structure is maintained by the carbon content of the contained surfactant, and the high rate discharge characteristics are excellent. It is to provide electrolytic manganese dioxide, a production method for obtaining it with high productivity, and its use.

本発明者は、特にアルカリマンガン乾電池の正極活物質として使用される二酸化マンガンの製造方法について鋭意検討を重ねた結果、カチオン系界面活性剤を電解液中に混合して98℃以下で電解することにより(110)面の半価幅が小さく、かつ、構造水量が少なく全体に対する二酸化マンガンの含有量が多く、結晶構造が含有界面活性剤の炭素分により維持される電解二酸化マンガンを得られることを見出し、さらにこれを生産性の高い高電流密度で製造できることを見出し、本発明を完成するに至った。すなわち、本発明は、CuKα線を光源とするXRD測定における(110)面の半値幅が1.4°以上2.5°以下で、240℃での重量減少から算出する構造水量が1.4wt%以上2.1wt%以下で、炭素重量分率が0.02wt%以上1.0wt%以下である電解二酸化マンガン、カチオン性界面活性剤を電解液中に混合し、98℃以下で電析する電解二酸化マンガンの製造方法である。   As a result of intensive studies on a method for producing manganese dioxide used as a positive electrode active material for alkaline manganese dry batteries, the present inventor mixed a cationic surfactant in an electrolytic solution and electrolyzed it at 98 ° C. or lower. It is possible to obtain electrolytic manganese dioxide in which the half width of the (110) plane is small, the amount of structural water is small, the content of manganese dioxide in the whole is large, and the crystal structure is maintained by the carbon content of the contained surfactant. Further, the inventors have found that this can be produced at a high current density with high productivity, and have completed the present invention. That is, according to the present invention, the half-value width of the (110) plane in XRD measurement using CuKα rays as a light source is 1.4 ° or more and 2.5 ° or less, and the structural water amount calculated from the weight reduction at 240 ° C. is 1.4 wt. Electrolytic manganese dioxide having a carbon weight fraction of 0.02 wt% or more and 1.0 wt% or less and a cationic surfactant are mixed in the electrolytic solution and electrodeposited at 98 ° C or less. It is a manufacturing method of electrolytic manganese dioxide.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の電解二酸化マンガンは、CuKα線を光源とするXRD測定における(110)面の半値幅が1.4°以上2.5°以下である。CuKα線を光源とするXRD測定における(110)面の半値幅が2.5°を超える場合は結晶性が十分ではなく、1.4°未満であると結晶性が高くなりすぎて、[H+]拡散に有効な構造欠陥等の水酸基が減少するため、放電性能が低下すると推測される。この半値幅は1.5°以上2.5°以下が好ましい。   In the electrolytic manganese dioxide of the present invention, the half width of the (110) plane in XRD measurement using CuKα rays as a light source is 1.4 ° or more and 2.5 ° or less. When the half width of the (110) plane in XRD measurement using CuKα rays as a light source exceeds 2.5 °, the crystallinity is not sufficient, and when it is less than 1.4 °, the crystallinity becomes too high, and [H + It is presumed that the discharge performance deteriorates because hydroxyl groups such as structural defects effective for diffusion decrease. The half width is preferably 1.5 ° to 2.5 °.

本発明の電解二酸化マンガンは、240℃での重量減少から算出する構造水量が1.4wt%以上2.1wt%以下である。240℃での重量減少から算出する構造水量が1.4wt%未満の場合は、[H+]拡散に有効な構造欠陥等の水酸基が減少し、放電性能が低下すると推測される。2.1wt%を超える場合は、全体に対する二酸化マンガンの含有率が減少し、放電性能が低下することが推測される。この構造水量は1.45wt%以上2.05wt%以下が好ましい。   In the electrolytic manganese dioxide of the present invention, the structural water amount calculated from the weight loss at 240 ° C. is 1.4 wt% or more and 2.1 wt% or less. When the amount of structural water calculated from the weight reduction at 240 ° C. is less than 1.4 wt%, it is presumed that hydroxyl groups such as structural defects effective for [H +] diffusion decrease and discharge performance deteriorates. When it exceeds 2.1 wt%, it is estimated that the content rate of manganese dioxide with respect to the whole reduces, and discharge performance falls. The amount of structural water is preferably 1.45 wt% or more and 2.05 wt% or less.

本発明の電解二酸化マンガンは、炭素重量分率が0.02wt%以上1.0wt%以下である。炭素重量分率が0.02wt%未満の場合は、カチオン性界面活性剤等の炭素分により維持された二酸化マンガンの結晶性が十分でなくなり、放電性能が低下する。1.0wt%を超える場合は、全体に対する二酸化マンガンの含有率が減少し、放電性能が低下する。炭素重量分率は0.3wt%以上0.9wt%以下が好ましい。   The electrolytic manganese dioxide of the present invention has a carbon weight fraction of 0.02 wt% or more and 1.0 wt% or less. When the carbon weight fraction is less than 0.02 wt%, the crystallinity of manganese dioxide maintained by the carbon content of the cationic surfactant or the like is not sufficient, and the discharge performance is deteriorated. When it exceeds 1.0 wt%, the content of manganese dioxide with respect to the whole decreases, and the discharge performance deteriorates. The carbon weight fraction is preferably 0.3 wt% or more and 0.9 wt% or less.

本発明の電解二酸化マンガンの製造方法は、電解工程において、電解液中にカチオン性界面活性剤を添加するものである。   In the method for producing electrolytic manganese dioxide of the present invention, a cationic surfactant is added to the electrolytic solution in the electrolysis step.

本発明におけるカチオン性界面活性剤は特に限定はないが、例えば、アルキルアミン、アルキルアミン塩及び第四級アンモニウム塩のうちの少なくとも1種等があげられる。アルキルアミンとしては、例えば、オクチルアミン、デシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、メチルオクチルアミン、メチルデシルアミン、メチルテトラデシルアミン、メチルヘキサデシルアミン、メチルオクタデシルアミン、ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルテトラデシルアミン、ジメチルヘキサデシルアミン、ジメチルオクタデシルアミン等が例示でき、アルキルアミン塩としては、例えば、オクチルアミン塩酸塩、デシルアミン塩酸塩、テトラデシルアミン塩酸塩、ヘキサデシルアミン塩酸塩、オクタデシルアミン塩酸塩等が例示でき、第四級アンモニウム塩としては、例えば、オクチルトリメチルアンモニウムクロリド、ドデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムクロリド、ドコシルトリメチルアンモニウムクロリド、オクチルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムブロミド、ドコシルトリメチルアンモニウムブロミド、オクチルトリメチルアンモニウムヒドロキシド、ドデシルトリメチルアンモニウムヒドロキシド、ヘキサデシルトリメチルアンモニウムヒドロキシド、オクタデシルトリメチルアンモニウムヒドロキシド、ドコシルトリメチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、ベンジルジメチルステアリルアンモニウムクロリド、ベンジルジメチルステアリルアンモニウムブロミド、ベンジルジメチルステアリルアンモニウムヒドロキシド等が例示できる。   The cationic surfactant in the present invention is not particularly limited, and examples thereof include at least one of alkylamine, alkylamine salt and quaternary ammonium salt. Examples of the alkylamine include octylamine, decylamine, tetradecylamine, hexadecylamine, octadecylamine, methyloctylamine, methyldecylamine, methyltetradecylamine, methylhexadecylamine, methyloctadecylamine, dimethyloctylamine, dimethyl Examples include decylamine, dimethyltetradecylamine, dimethylhexadecylamine, dimethyloctadecylamine, and the like. Examples of alkylamine salts include octylamine hydrochloride, decylamine hydrochloride, tetradecylamine hydrochloride, hexadecylamine hydrochloride, Examples of the quaternary ammonium salt include octyltrimethylammonium chloride and dodecyltrimethylammonium chloride. Hexadecyltrimethylammonium chloride, octadecyltrimethylammonium chloride, docosyltrimethylammonium chloride, octyltrimethylammonium bromide, dodecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, octadecyltrimethylammonium bromide, docosyltrimethylammonium bromide, octyltrimethylammonium hydroxide, Dodecyltrimethylammonium hydroxide, hexadecyltrimethylammonium hydroxide, octadecyltrimethylammonium hydroxide, docosyltrimethylammonium hydroxide, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, tetrabutylammonium Dorokishido, tetrahexyl ammonium hydroxide, tetra-octyl ammonium hydroxide, benzyl dimethyl stearyl ammonium chloride, benzyl dimethyl stearyl ammonium bromide, benzyl dimethyl stearyl ammonium hydroxide and the like.

この場合のカチオン性界面活性剤の炭素の総数は20個以上であることが好ましい。ここに、炭素の総数の20個以上のものとしては、例えば、ジメチルオクタデシルアミン、オクタデシルトリメチルアンモニウムクロリド、ドコシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムブロミド、ドコシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムヒドロキシド、ドコシルトリメチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、ベンジルジメチルステアリルアンモニウムクロリド、ベンジルジメチルステアリルアンモニウムブロミド、ベンジルジメチルステアリルアンモニウムヒドロキシド等があげられる。また、炭素数17以上のアルキル基を1個以上含むことが好ましい。ここに、炭素数17以上のアルキル基を1個以上含むものとしては、例えば、ジメチルオクタデシルアミン、オクタデシルトリメチルアンモニウムクロリド、ドコシルトリメチルアンモニウムクロリド、オクタデシルトリメチルアンモニウムブロミド、ドコシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムヒドロキシド、ドコシルトリメチルアンモニウムヒドロキシド、ベンジルジメチルステアリルアンモニウムクロリド、ベンジルジメチルステアリルアンモニウムブロミド、ベンジルジメチルステアリルアンモニウムヒドロキシド等があげられる。   In this case, the total number of carbon atoms of the cationic surfactant is preferably 20 or more. Here, as the total number of carbons of 20 or more, for example, dimethyloctadecylamine, octadecyltrimethylammonium chloride, docosyltrimethylammonium chloride, octadecyltrimethylammonium bromide, docosyltrimethylammonium bromide, octadecyltrimethylammonium hydroxide, docoyl Examples thereof include siltrimethylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, benzyldimethylstearylammonium chloride, benzyldimethylstearylammonium bromide, and benzyldimethylstearylammonium hydroxide. Moreover, it is preferable to include one or more alkyl groups having 17 or more carbon atoms. Examples of those containing at least one alkyl group having 17 or more carbon atoms include dimethyloctadecylamine, octadecyltrimethylammonium chloride, docosyltrimethylammonium chloride, octadecyltrimethylammonium bromide, docosyltrimethylammonium bromide, and octadecyltrimethylammonium. Examples thereof include hydroxide, docosyltrimethylammonium hydroxide, benzyldimethylstearylammonium chloride, benzyldimethylstearylammonium bromide, and benzyldimethylstearylammonium hydroxide.

本発明の電解二酸化マンガンの製造方法は、電析時の温度が98℃以下である。温度を98℃以下としてカチオン性界面活性剤を添加して電析することにより、(110)面の半値幅が小さい電解二酸化マンガンを得ることができる。電解温度は、電流効率を維持することで製造効率を維持し、電解液の蒸発を抑制して、加熱コストの増加を防止し、カチオン性界面活性剤の半値幅を小さくする効果を得るため、90℃以上98℃以下で行うことが好ましい。電解温度は電流効率と加熱コストの観点から、93℃以上97℃以下がより好ましく、95℃以上97℃未満がさらに好ましい。   In the method for producing electrolytic manganese dioxide of the present invention, the temperature during electrodeposition is 98 ° C. or lower. Electrolytic manganese dioxide having a small (110) plane half width can be obtained by adding a cationic surfactant and performing electrodeposition at a temperature of 98 ° C. or lower. The electrolysis temperature maintains the current efficiency, maintains the production efficiency, suppresses the evaporation of the electrolyte, prevents the heating cost from increasing, and obtains the effect of reducing the half width of the cationic surfactant, It is preferable to carry out at 90 degreeC or more and 98 degrees C or less. The electrolysis temperature is preferably 93 ° C. or higher and 97 ° C. or lower, and more preferably 95 ° C. or higher and lower than 97 ° C., from the viewpoint of current efficiency and heating cost.

本発明の電解二酸化マンガンの製造方法では、電解電流密度は特に制限はないが、生産性を向上させ、かつ、電極基盤への腐食ダメージをより防止するため、0.2A/dm以上1.5A/dm未満であることが好ましい。生産性と安定生産の観点から、電解電流密度は0.29A/dm以上1.4A/dm以下であることがより好ましく、0.29A/dm以上1.35A/dm以下であることがさらに好ましい。 In the method for producing electrolytic manganese dioxide of the present invention, the electrolytic current density is not particularly limited. However, in order to improve productivity and prevent corrosion damage to the electrode substrate, 0.2 A / dm 2 or more. It is preferably less than 5 A / dm 2 . From the viewpoint of productivity and stable production, the electrolytic current density is more preferably at 0.29a / dm 2 or more 1.4A / dm 2 or less, is 0.29a / dm 2 or more 1.35 A / dm 2 or less More preferably.

電解槽内の電解液はマンガン塩水溶液を用いることができる。マンガン塩に特に制限はないが、例えば、硝酸マンガン、塩化マンガン、硫酸マンガン等が例示できる。電解液には酸を混合することができ、例えば、硝酸、塩酸、硫酸等が例示できる。以降、硫酸−硫酸マンガン混合溶液を例として記載するが、特にこれに限定されるものではない。なお、ここでいう硫酸濃度とは、硫酸マンガンの硫酸イオンは除いた値である。電解液中の硫酸は、硫酸濃度として制御され特に限定はないが、例えば、10〜75g/Lが例示できる。電解期間中の硫酸濃度を一定にすることができるし、電解期間中に硫酸濃度を任意に変えることもでき、特に、電解終了時の硫酸濃度を電解開始時の硫酸濃度よりも高く制御することもできる。   A manganese salt aqueous solution can be used as the electrolytic solution in the electrolytic cell. Although there is no restriction | limiting in particular in manganese salt, For example, manganese nitrate, manganese chloride, manganese sulfate etc. can be illustrated. An acid can be mixed in the electrolytic solution, and examples thereof include nitric acid, hydrochloric acid, and sulfuric acid. Hereinafter, although a sulfuric acid-manganese sulfate mixed solution is described as an example, it is not particularly limited thereto. In addition, the sulfuric acid concentration here is a value excluding sulfate ions of manganese sulfate. The sulfuric acid in the electrolytic solution is controlled as the sulfuric acid concentration and is not particularly limited, but examples thereof include 10 to 75 g / L. The sulfuric acid concentration during the electrolysis period can be made constant, and the sulfuric acid concentration can be arbitrarily changed during the electrolysis period. In particular, the sulfuric acid concentration at the end of electrolysis should be controlled higher than the sulfuric acid concentration at the start of electrolysis. You can also.

この場合の電解期間中又は電解開始時の硫酸濃度としては、10g/L以上65g/L以下が好ましく、13g/L以上60g/L以下がより好ましい。また、電解終了時の硫酸濃度としては、15g/L以上75g/L以下が好ましく、18g/L以上70g/L以下がより好ましい。このように硫酸濃度を任意に変えることにより、前半に比較的低濃度の硫酸濃度で電解することで、電極基材への腐食ダメージを軽減し、結晶性が高く高充填性の二酸化マンガンを得やすく、後半に比較的高濃度の硫酸濃度で電解することにより、既に電解二酸化マンガン析出層に覆われているため電極基材がより腐食ダメージを受け難く、さらに前半の特徴に加え更に電位が高まり、ハイレート特性に優れた電解二酸化マンガンが得られ易くなる。また、電解開始から電解終了まで電解中の硫酸濃度を徐々に変化させるのではなく、電解の前半と後半で硫酸濃度を切替えることが好ましい。前半の電解と、後半の電解の比率に制限はないが、例えば低硫酸濃度と高硫酸濃度での電解時間の比が1:9〜9:1、特に3:7〜7:3の範囲が好ましい。   In this case, the sulfuric acid concentration during the electrolysis period or at the start of electrolysis is preferably 10 g / L or more and 65 g / L or less, and more preferably 13 g / L or more and 60 g / L or less. The sulfuric acid concentration at the end of electrolysis is preferably 15 g / L or more and 75 g / L or less, more preferably 18 g / L or more and 70 g / L or less. By arbitrarily changing the sulfuric acid concentration in this way, electrolysis with a relatively low concentration of sulfuric acid in the first half reduces corrosion damage to the electrode substrate, resulting in highly crystalline manganese dioxide with high crystallinity. Easy to electrolyze with a relatively high concentration of sulfuric acid in the latter half, so that the electrode base material is less susceptible to corrosion damage because it is already covered with the electrolytic manganese dioxide deposition layer, and further increases the potential in addition to the features of the first half. Thus, it is easy to obtain electrolytic manganese dioxide having excellent high rate characteristics. Moreover, it is preferable not to gradually change the sulfuric acid concentration during electrolysis from the start of electrolysis to the end of electrolysis, but to switch the sulfuric acid concentration between the first half and the second half of electrolysis. The ratio of the electrolysis in the first half and the electrolysis in the second half is not limited. For example, the ratio of electrolysis time at low sulfuric acid concentration and high sulfuric acid concentration is in the range of 1: 9 to 9: 1, particularly 3: 7 to 7: 3. preferable.

電解槽に供給される補給硫酸マンガン液中のマンガンイオン濃度に限定はないが、例えば、10〜75g/Lが例示できる。   Although there is no limitation in the manganese ion concentration in the replenishment manganese sulfate liquid supplied to an electrolytic cell, For example, 10-75 g / L can be illustrated.

本発明の電解二酸化マンガンの製造方法は、電解で得られた電解二酸化マンガンを粉砕するものである。粉砕には、例えば、ローラーミル、ジェットミル等が使用できる。ローラーミルとしては、例えば、遠心式ローラーミル、竪型のロッシェミル等が挙げられる。ローラーミルのうち、コストや耐久性に優れ、工業的な使用に適しているため、マイクロビッカース硬度が400HV(JIS Z 2244)以上の硬度を有する原料を粉砕可能で、20kW以上150kW以下のミルモーターを有するローラーミルが好ましい。   In the method for producing electrolytic manganese dioxide of the present invention, electrolytic manganese dioxide obtained by electrolysis is pulverized. For pulverization, for example, a roller mill, a jet mill or the like can be used. Examples of the roller mill include a centrifugal roller mill and a saddle type Roche mill. Among roller mills, it is excellent in cost and durability and suitable for industrial use, so it can grind raw materials with a micro Vickers hardness of 400HV (JIS Z 2244) or higher, and a mill motor of 20kW or more and 150kW or less A roller mill having is preferred.

粉砕については1段とすることで本発明の粒度構成を低コストで得ることができる。   By using one stage for pulverization, the particle size constitution of the present invention can be obtained at low cost.

また、粉砕した電解二酸化マンガンに、最頻粒径がより小さい電解二酸化マンガンを混合することにより、最頻粒径、粒度分布幅をコントロールして所望の粒度構成とすることもできる。最頻粒径がより小さい二酸化マンガンの混合量は粉砕した電解二酸化マンガンの重量を上回らない量を混合し、トータルの重量%で10重量%以上40重量%以下が好ましい。混合の方法は乾式での混合がコスト的に好ましく、湿式での混合は混合スラリーのpHを2.5以上6.5以下とすることで、1μm以下の微粒子をより大きい粒子の表面に凝集させやすくより好ましい。また、粒度構成のコントロールは粉砕後の分級によりその粒度構成を調整してもよく、乾式での気流分級や湿式での分散分級により、粒度構成や1μm以下の微粒子の量や凝集状態を調整することもできる。   Further, by mixing electrolytic manganese dioxide having a smaller mode particle size into the pulverized electrolytic manganese dioxide, the mode particle size and the particle size distribution width can be controlled to obtain a desired particle size configuration. The mixing amount of manganese dioxide having a smaller mode particle size is mixed in an amount not exceeding the weight of pulverized electrolytic manganese dioxide, and is preferably 10% by weight or more and 40% by weight or less in total weight%. As a mixing method, dry mixing is preferable in terms of cost. In wet mixing, fine particles of 1 μm or less are aggregated on the surface of larger particles by adjusting the pH of the mixed slurry to 2.5 or more and 6.5 or less. Easy and more preferable. In addition, the particle size constitution may be adjusted by classification after pulverization, and the particle size constitution, the amount of fine particles of 1 μm or less, and the aggregation state are adjusted by air classification in a dry method or dispersion classification in a wet method. You can also.

本発明の電解二酸化マンガンをアルカリマンガン乾電池の正極活物質として使用する方法には特に制限はなく、周知の方法で添加物と混合して正極合剤として用いることができる。例えば、電解二酸化マンガンに導電性を付与するためのカーボン、電解液等を加えた混合粉末を調製し、円盤状またはリング状に加圧成型した粉末成型体として電池正極とすることができる。   There is no restriction | limiting in particular in the method of using the electrolytic manganese dioxide of this invention as a positive electrode active material of an alkaline manganese dry battery, It can mix with an additive by a well-known method and can be used as a positive electrode mixture. For example, a mixed powder obtained by adding carbon for imparting conductivity to electrolytic manganese dioxide, an electrolytic solution, and the like, and forming a powder molded body that is pressure-molded into a disk shape or a ring shape can be used as a battery positive electrode.

本発明の電解二酸化マンガンは、高結晶性と低い構造水量から、高性能かつ保存特性が良好な正極材料として、電池、特にアルカリマンガン乾電池やリチウムイオン一次電池の正極活物質として好適に使用することができる。   The electrolytic manganese dioxide of the present invention is suitable for use as a positive electrode active material for batteries, particularly alkaline manganese dry batteries and lithium ion primary batteries, as a positive electrode material with high performance and good storage characteristics due to its high crystallinity and low structural water content. Can do.

アルカリマンガン乾電池の正極活物質として使用する方法には特に制限はなく、周知の方法で添加物と混合して用いることができる。例えば、電解二酸化マンガンに導電性を付与するためにカーボン等を加えた混合粉末を調製し、これを円盤状またはリング状に加圧成型した粉末成型体として電池正極とすることができる。   There is no restriction | limiting in particular in the method used as a positive electrode active material of an alkaline manganese battery, It can mix and use with an additive by a well-known method. For example, a mixed powder obtained by adding carbon or the like in order to impart conductivity to electrolytic manganese dioxide can be prepared, and the battery positive electrode can be formed as a powder molded body obtained by pressure molding this into a disk shape or a ring shape.

リチウムイオン一次電池の正極活物質として使用する場合は、特に制限はなく周知の方法で添加物と混合して用いることができる。例えば、前処理として焼成を行い、導電助剤としてカーボン等、バインダーとしてポリテトラフルオロエチレン等を加えた混合粉末を調製し、その混合粉末を集電体に結着、または前記混合粉末を溶媒に分散させスラリーとし、塗布、乾燥、その後加圧成形することで電池正極とすることができる。   When used as a positive electrode active material of a lithium ion primary battery, there is no particular limitation and it can be used by mixing with an additive by a known method. For example, baking is performed as a pretreatment, and a mixed powder is prepared by adding carbon or the like as a conductive additive and polytetrafluoroethylene or the like as a binder, and the mixed powder is bound to a current collector, or the mixed powder is used as a solvent. A battery positive electrode can be obtained by dispersing and forming a slurry, coating, drying, and then pressure forming.

本発明の電解二酸化マンガンは、2θが22±1°付近の回折線の半価全幅(FWHM)が小さく、240℃での重量減少から算出する構造水量が少なく、全体に対する二酸化マンガンの含有量が多く、結晶構造が含有界面活性剤の炭素分により維持され、アルカリマンガン乾電池やリチウムイオン一次電池の正極活物質、アルカリ電池の正極材料として用いた場合にハイレート放電特性に優れることが期待される電解二酸化マンガンであり、本発明の電解二酸化マンガンの製造方法では前記電解二酸化マンガンを生産性の高い高電流密度で生産できる。   The electrolytic manganese dioxide of the present invention has a small full width at half maximum (FWHM) of a diffraction line with 2θ of around 22 ± 1 °, a small amount of structural water calculated from weight loss at 240 ° C., and a manganese dioxide content relative to the whole. Electrolysis that is expected to have excellent high-rate discharge characteristics when used as a positive electrode active material for alkaline manganese dry batteries and lithium ion primary batteries, and as a positive electrode material for alkaline batteries. It is manganese dioxide, and the electrolytic manganese dioxide production method of the present invention can produce the electrolytic manganese dioxide at a high current density with high productivity.

実施例1のSEM画像(×1,000)である。2 is an SEM image (× 1,000) of Example 1.

以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples.

<XRD測定における(110)面の半価全幅(FWHM)の測定>
電解二酸化マンガンの2θが22±1°付近の回折線の半価全幅(FWHM)は、X線回折装置(Ultima IV、リガク製)を使用して測定した。線源にはCuKα線(λ=1.5418 Å)を用い、測定モードはスキャンスピード4.00deg./min、ステップ幅0.040deg.、および測定範囲は2θとして10°から90°の範囲で測定した。
<Measurement of full width at half maximum (FWHM) of (110) plane in XRD measurement>
The full width at half maximum (FWHM) of a diffraction line with 2θ of electrolytic manganese dioxide around 22 ± 1 ° was measured using an X-ray diffractometer (Ultima IV, manufactured by Rigaku). A CuKα ray (λ = 1.5418 Å) was used as the radiation source, and the measurement mode was a scan speed of 4.00 deg. / Min, step width 0.040 deg. , And the measurement range was measured in the range of 10 ° to 90 ° as 2θ.

<構造水量の測定>
電解二酸化マンガンの240℃での重量減少から算出する構造水量は、熱重量分析装置(TG/DTA6300、セイコーインスツルメンツ製)を使用し、240℃、12時間保持の際の重量減少量から、110℃、16時間保持の際の重量減少量を減じ、これを600℃、1時間保持した際の重量で除し、百分率で表した。
<Measurement of structural water volume>
The amount of structural water calculated from the weight loss of electrolytic manganese dioxide at 240 ° C. is 110 ° C. from the weight reduction amount when held at 240 ° C. for 12 hours using a thermogravimetric analyzer (TG / DTA6300, manufactured by Seiko Instruments). The weight loss when holding for 16 hours was reduced, and this was divided by the weight when held at 600 ° C. for 1 hour, and expressed as a percentage.

<炭素重量分率の測定>
電解二酸化マンガンの炭素重量分率は、炭素・硫黄分析装置(LECO CS844、LECO製)を用いて燃焼−赤外線吸収法で測定した。
<Measurement of carbon weight fraction>
The carbon weight fraction of electrolytic manganese dioxide was measured by a combustion-infrared absorption method using a carbon / sulfur analyzer (LECO CS844, manufactured by LECO).

<BET比表面積の測定>
電解二酸化マンガンのBET比表面積は、BET1点法の窒素吸着により測定した。測定装置にはガス吸着式比表面積測定装置(フローソーブIII,島津製作所製)を用いた。測定に先立ち、150℃で40分間加熱することで測定試料を脱気処理した。
<Measurement of BET specific surface area>
The BET specific surface area of electrolytic manganese dioxide was measured by nitrogen adsorption according to the BET one-point method. A gas adsorption specific surface area measuring device (Flowsorb III, manufactured by Shimadzu Corporation) was used as the measuring device. Prior to the measurement, the measurement sample was deaerated by heating at 150 ° C. for 40 minutes.

実施例1
電流密度を1.0A/dm、電解温度を97℃、電解補給液をマンガン濃度39.0g/lの硫酸マンガン液とし、硫酸濃度が20.0g/lとし、トリメチルステアリルアンモニウムクロリドを100mg/Lとなるように添加し、17日間電解した。電解後の電解二酸化マンガンは、粉砕、洗浄後、スラリーのpHが5.3〜5.7となるように中和した。製造条件を表1に、結果を表2に示した。また、実施例1のSEM画像(1,000倍)を図1に示す。100℃以上でカチオン性界面活性剤を添加した場合と明らかに異なり、緻密な粒子形状を示している。
Example 1
The current density is 1.0 A / dm 2 , the electrolysis temperature is 97 ° C., the electrolytic replenisher is a manganese sulfate solution having a manganese concentration of 39.0 g / l, the sulfuric acid concentration is 20.0 g / l, and trimethylstearyl ammonium chloride is 100 mg / liter. It added so that it might become L, and it electrolyzed for 17 days. The electrolytic manganese dioxide after electrolysis was pulverized and washed, and then neutralized so that the slurry had a pH of 5.3 to 5.7. The production conditions are shown in Table 1, and the results are shown in Table 2. Moreover, the SEM image (1,000 times) of Example 1 is shown in FIG. It is clearly different from the case where a cationic surfactant is added at 100 ° C. or higher, showing a dense particle shape.

Figure 2019139960
Figure 2019139960

Figure 2019139960
Figure 2019139960

実施例2
トリメチルステアリルアンモニウムクロリドを200mg/Lとなるように添加したこと以外は実施例1と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 2
Electrolysis and post-treatment were performed in the same manner as in Example 1 except that trimethylstearylammonium chloride was added to 200 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例3
トリメチルステアリルアンモニウムクロリドを50mg/Lとなるように添加したこと以外は実施例1と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 3
Electrolysis and post-treatment were performed in the same manner as in Example 1 except that trimethylstearylammonium chloride was added to 50 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例4
電流密度を0.55A/dm、電解温度を96℃、電解補給液をマンガン濃度48.0g/Lの硫酸マンガン液とし、硫酸濃度が35.3g/Lとしたこと以外は実施例1と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 4
Example 1 except that the current density was 0.55 A / dm 2 , the electrolysis temperature was 96 ° C., the electrolytic replenisher was a manganese sulfate solution with a manganese concentration of 48.0 g / L, and the sulfuric acid concentration was 35.3 g / L. Electrolysis and post-treatment were performed in the same manner. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例5
トリメチルステアリルアンモニウムクロリドを200mg/Lとなるように添加したこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 5
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that trimethylstearylammonium chloride was added to 200 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例6
トリメチルステアリルアンモニウムクロリドを50mg/Lとなるように添加したこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 6
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that trimethylstearylammonium chloride was added to 50 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例7
硫酸濃度を45.3g/Lとしたこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 7
The electrolysis and post-treatment were performed in the same manner as in Example 4 except that the sulfuric acid concentration was 45.3 g / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例8
ヘキサデシルトリメチルアンモニウムヒドロキシドを100mg/Lとなるように添加したこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 8
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that hexadecyltrimethylammonium hydroxide was added to 100 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例9
ヘキサデシルトリメチルアンモニウムヒドロキシドを400mg/Lとなるように添加したこと以外は実施例8と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 9
Electrolysis and post-treatment were performed in the same manner as in Example 8 except that hexadecyltrimethylammonium hydroxide was added to 400 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例10
ドコシルトリメチルアンモニウムサルフェートを100mg/Lとなるように添加したこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 10
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that docosyltrimethylammonium sulfate was added to 100 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

実施例11
ベンジルジメチルステアリルアンモニウムクロリドを100mg/Lとなるように添加したこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Example 11
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that benzyldimethylstearylammonium chloride was added to 100 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

比較例1
界面活性剤を添加していないこと以外は実施例1と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Comparative Example 1
Electrolysis and post-treatment were performed in the same manner as in Example 1 except that the surfactant was not added. The production conditions are shown in Table 1, and the results are shown in Table 2.

比較例2
界面活性剤を添加していないこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Comparative Example 2
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that the surfactant was not added. The production conditions are shown in Table 1, and the results are shown in Table 2.

比較例3
アニオン性界面活性剤であるドデシル硫酸ナトリウムを100mg/Lとなるように添加したこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Comparative Example 3
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that sodium anion surfactant, sodium dodecyl sulfate, was added so as to be 100 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

比較例4
両性界面活性剤であるN−ドデシルベタインを100mg/Lとなるように添加したこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Comparative Example 4
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that N-dodecylbetaine, which is an amphoteric surfactant, was added to 100 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

比較例5
ノニオン性ポリエチレングリコールモノステアレート(n=25)を100mg/Lとなるように添加したこと以外は実施例4と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Comparative Example 5
Electrolysis and post-treatment were performed in the same manner as in Example 4 except that nonionic polyethylene glycol monostearate (n = 25) was added to 100 mg / L. The production conditions are shown in Table 1, and the results are shown in Table 2.

比較例6
界面活性剤を添加せず、電流密度を0.34A/dm、電解温度を97℃としたこと以外は実施例7と同様の方法で電解・後処理を実施した。製造条件を表1に、結果を表2に示した。
Comparative Example 6
Electrolysis and post-treatment were performed in the same manner as in Example 7 except that the surfactant was not added, the current density was 0.34 A / dm 2 , and the electrolysis temperature was 97 ° C. The production conditions are shown in Table 1, and the results are shown in Table 2.

表1、2の実施例1〜3と比較例1の比較、及び実施例4〜11と比較例2の比較から、カチオン性界面活性剤を電解液中に混合し、98℃以下で電析することにより界面活性剤を混合しない場合よりも(110)面の半価幅が小さい電解二酸化マンガンが得られることが分かった。また、実施例7と比較例6の比較から、カチオン性界面活性剤を混合して電析することにより、高い電流密度、すなわち高い生産性で(110)面の半値幅が小さい電解二酸化マンガンが得られることが分かった。   From the comparison between Examples 1 to 3 and Comparative Example 1 in Tables 1 and 2 and the comparison between Examples 4 to 11 and Comparative Example 2, a cationic surfactant was mixed in the electrolytic solution and electrodeposited at 98 ° C. or lower. As a result, it was found that electrolytic manganese dioxide having a (110) plane half-value width smaller than that obtained when no surfactant was mixed was obtained. Further, from the comparison between Example 7 and Comparative Example 6, electrolytic manganese dioxide having a high current density, that is, high productivity and a small half-value width of the (110) plane is obtained by mixing the cationic surfactant and performing electrodeposition. It turns out that it is obtained.

本発明の電解二酸化マンガンは、高結晶性と低い構造水量であるため、高性能かつ保存特性が良好な正極材料として、電池、特にアルカリマンガン乾電池やリチウムイオン一次電池の正極活物質として好適に使用することができ、本発明の電解二酸化マンガンの製造方法は、高い放電特性、特にハイレート放電特性に優れることが期待されるアルカリマンガン乾電池やリチウムイオン一次電池の正極活物質を生産性の高い高電流密度で製造することができる。   The electrolytic manganese dioxide of the present invention is suitable for use as a positive electrode active material for batteries, in particular, alkaline manganese dry batteries and lithium ion primary batteries, as a positive electrode material having high crystallinity and low structural water volume and high performance and good storage characteristics. The method for producing electrolytic manganese dioxide of the present invention can produce positive current active materials for alkaline manganese dry batteries and lithium ion primary batteries, which are expected to be excellent in high discharge characteristics, particularly high-rate discharge characteristics. Can be manufactured in density.

Claims (7)

CuKα線を光源とするXRD測定における(110)面の半値幅が1.4°以上2.5°以下で、240℃での重量減少から算出する構造水量が1.4wt%以上2.1wt%以下で、炭素重量分率が0.02wt%以上1.0wt%以下であることを特徴とする電解二酸化マンガン。 The half-width of the (110) plane in XRD measurement using CuKα rays as a light source is 1.4 ° or more and 2.5 ° or less, and the structural water amount calculated from the weight loss at 240 ° C. is 1.4 wt% or more and 2.1 wt%. An electrolytic manganese dioxide having a carbon weight fraction of 0.02 wt% or more and 1.0 wt% or less. マンガン塩水溶液中の電解により二酸化マンガンを製造する方法であって、カチオン性界面活性剤を電解液中に混合し、98℃以下で電析することを特徴とする請求項1に記載の電解二酸化マンガンの製造方法。 2. The method for producing manganese dioxide by electrolysis in an aqueous manganese salt solution, wherein a cationic surfactant is mixed in the electrolyte and electrodeposited at 98 ° C. or less. Manufacturing method of manganese. 前記カチオン性界面活性剤が、アルキルアミン、アルキルアミン塩及び第四級アンモニウム塩のうちの少なくとも1種であることを特徴とする請求項2に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to claim 2, wherein the cationic surfactant is at least one of alkylamine, alkylamine salt and quaternary ammonium salt. 前記カチオン性界面活性剤が、炭素の総数が20個以上であることを特徴とする請求項2又は請求項3に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to claim 2 or 3, wherein the cationic surfactant has a total number of carbons of 20 or more. 前記カチオン性界面活性剤が、炭素数17以上のアルキル基を1個以上含むことを特徴とする請求項2〜請求項4のいずれかの項に記載の電解二酸化マンガンの製造方法。 The method for producing electrolytic manganese dioxide according to any one of claims 2 to 4, wherein the cationic surfactant contains one or more alkyl groups having 17 or more carbon atoms. 請求項1に記載の電解二酸化マンガンを含むことを特徴とする電池用正極活物質。 A positive electrode active material for a battery, comprising the electrolytic manganese dioxide according to claim 1. 請求項6に記載の電池用正極活物質を含むことを特徴とする電池。 A battery comprising the battery positive electrode active material according to claim 6.
JP2018022056A 2018-02-09 2018-02-09 Electrolytic manganese dioxide, method for producing the same, and use thereof Active JP7127291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018022056A JP7127291B2 (en) 2018-02-09 2018-02-09 Electrolytic manganese dioxide, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022056A JP7127291B2 (en) 2018-02-09 2018-02-09 Electrolytic manganese dioxide, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2019139960A true JP2019139960A (en) 2019-08-22
JP7127291B2 JP7127291B2 (en) 2022-08-30

Family

ID=67694243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022056A Active JP7127291B2 (en) 2018-02-09 2018-02-09 Electrolytic manganese dioxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP7127291B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032562A (en) * 2021-12-24 2022-02-11 广西汇元锰业有限责任公司 Manganese dioxide electrolysis method for inhibiting structural breakage at gas-liquid interface
CN117026248A (en) * 2023-05-19 2023-11-10 重庆大学 MnO with mesoporous structure 2 Composite material/C and preparation method thereof
WO2024106304A1 (en) * 2022-11-17 2024-05-23 東ソー株式会社 Electrolytic manganese dioxide, method for producing same, and use thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57848A (en) * 1980-06-02 1982-01-05 Matsushita Electric Ind Co Ltd Manufacture of positive active material for nonaqueous battery
JPS60255626A (en) * 1984-05-30 1985-12-17 Sumitomo Metal Ind Ltd Manganese oxide for dry cell
JPH0757732A (en) * 1993-08-19 1995-03-03 Hitachi Maxell Ltd Dry battery
JPH07257928A (en) * 1994-03-22 1995-10-09 Masayuki Yoshio Electrolytic production of manganese dioxide from carbon-manganese oxide composite dispersed bath and application to active material for positive electrode of alkali cell
JP2006108083A (en) * 2004-09-09 2006-04-20 Mitsui Mining & Smelting Co Ltd Manganese oxide for anode active substance
JP2009117246A (en) * 2007-11-08 2009-05-28 Tosoh Corp Electrolytic manganese dioxide, and manufacturing method and application thereof
JP2009289728A (en) * 2007-12-28 2009-12-10 Panasonic Corp Alkaline battery
WO2013157181A1 (en) * 2012-04-16 2013-10-24 パナソニック株式会社 Alkaline battery
JP2017179583A (en) * 2016-03-29 2017-10-05 東ソー株式会社 Electrolytic manganese dioxide, manufacturing method therefor and applications thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57848A (en) * 1980-06-02 1982-01-05 Matsushita Electric Ind Co Ltd Manufacture of positive active material for nonaqueous battery
JPS60255626A (en) * 1984-05-30 1985-12-17 Sumitomo Metal Ind Ltd Manganese oxide for dry cell
JPH0757732A (en) * 1993-08-19 1995-03-03 Hitachi Maxell Ltd Dry battery
JPH07257928A (en) * 1994-03-22 1995-10-09 Masayuki Yoshio Electrolytic production of manganese dioxide from carbon-manganese oxide composite dispersed bath and application to active material for positive electrode of alkali cell
JP2006108083A (en) * 2004-09-09 2006-04-20 Mitsui Mining & Smelting Co Ltd Manganese oxide for anode active substance
JP2009117246A (en) * 2007-11-08 2009-05-28 Tosoh Corp Electrolytic manganese dioxide, and manufacturing method and application thereof
JP2009289728A (en) * 2007-12-28 2009-12-10 Panasonic Corp Alkaline battery
WO2013157181A1 (en) * 2012-04-16 2013-10-24 パナソニック株式会社 Alkaline battery
JP2017179583A (en) * 2016-03-29 2017-10-05 東ソー株式会社 Electrolytic manganese dioxide, manufacturing method therefor and applications thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032562A (en) * 2021-12-24 2022-02-11 广西汇元锰业有限责任公司 Manganese dioxide electrolysis method for inhibiting structural breakage at gas-liquid interface
WO2024106304A1 (en) * 2022-11-17 2024-05-23 東ソー株式会社 Electrolytic manganese dioxide, method for producing same, and use thereof
JP7501769B2 (en) 2022-11-17 2024-06-18 東ソー株式会社 Electrolytic manganese dioxide, its manufacturing method and uses
CN117026248A (en) * 2023-05-19 2023-11-10 重庆大学 MnO with mesoporous structure 2 Composite material/C and preparation method thereof
CN117026248B (en) * 2023-05-19 2024-05-24 重庆大学 MnO with mesoporous structure2Composite material/C and preparation method thereof

Also Published As

Publication number Publication date
JP7127291B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP5998510B2 (en) Electrolytic manganese dioxide and method for producing the same, and method for producing lithium manganese composite oxide
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
KR0148827B1 (en) Method for manufacturing high density nickel hydroxide for alkali rechargeable batteries
CN113735190B (en) Small-particle ternary precursor and preparation method thereof
JP7127291B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
KR101883406B1 (en) Positive active material precursor and manufacturing method thereof, positive active material and manufacturing method thereof, lithium rechargeable battery including the same positive active material
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
JP2017130395A (en) Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method of producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
CN112010358A (en) Carbon-doped ternary precursor, preparation method thereof, ternary cathode material and lithium ion battery
CN108028364A (en) Lithium ion battery
CN116375111B (en) Sodium ion battery, positive electrode material and precursor thereof and preparation method
CN115403076A (en) Porous spherical ternary precursor and preparation method thereof, ternary positive electrode material, positive electrode plate and battery
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JP2017179583A (en) Electrolytic manganese dioxide, manufacturing method therefor and applications thereof
US20050153204A1 (en) Positive active material for a nickel electrode
WO2017170240A1 (en) Electrolytic manganese dioxide, method for manufacturing same, and use for same
WO2018180208A1 (en) Electrolytic manganese dioxide, method for manufacturing same, and application for same
JP5218900B2 (en) Alkaline storage battery
CN115504528A (en) Multi-element precursor, synthesis method thereof, positive electrode material and lithium ion battery
JP3934777B2 (en) Nickel hydroxide for nickel oxyhydroxide production
JP2015189608A (en) Manganese dioxide for production of lithium manganate, and production method thereof
US20170062802A1 (en) Polynary composite oxide, preparation method and use thereof
WO2016143844A1 (en) Positive-electrode active material for nonaqueous electrolyte lithium secondary batteries, and production method for said material
JP2018076222A (en) Electrolytic manganese dioxide, and use thereof
JP2009260289A (en) Electrochemical capacitor, and method for manufacturing of working electrode for electrochemical capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R151 Written notification of patent or utility model registration

Ref document number: 7127291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151