JP2006108083A - Manganese oxide for anode active substance - Google Patents

Manganese oxide for anode active substance Download PDF

Info

Publication number
JP2006108083A
JP2006108083A JP2005261350A JP2005261350A JP2006108083A JP 2006108083 A JP2006108083 A JP 2006108083A JP 2005261350 A JP2005261350 A JP 2005261350A JP 2005261350 A JP2005261350 A JP 2005261350A JP 2006108083 A JP2006108083 A JP 2006108083A
Authority
JP
Japan
Prior art keywords
manganese
manganese oxide
electrolytic
less
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005261350A
Other languages
Japanese (ja)
Other versions
JP3968372B2 (en
Inventor
Shinya Kagei
慎也 蔭井
Naoki Kumada
直樹 熊田
Yasuhiro Ochi
康弘 越智
Hiromi Hata
祥巳 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005261350A priority Critical patent/JP3968372B2/en
Publication of JP2006108083A publication Critical patent/JP2006108083A/en
Application granted granted Critical
Publication of JP3968372B2 publication Critical patent/JP3968372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manganese oxide which can realize a battery more excellent in high rate performance than a conventional battery. <P>SOLUTION: The manganese oxide is expressed by a composition formula, MnS<SB>a</SB>H<SB>b</SB>Me<SB>x</SB>O<SB>c</SB>zH<SB>2</SB>O, where Me is one kind of Ti, Ca, Mg, Ln or a combination of two or more kinds of them, an open circuit potential is 250 mV or more, and the open circuit potential is measured at a temperature of 20°C by using a mercury oxide (Hg/HgO) as a reference electrode and 40% KOH as an electrolyte. If the open circuit voltage is 250 mV or more, the manganese oxide used as an anode active substance can realize the battery excellent in the high rate performance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池の正極活物質として用いるマンガン酸化物に関する。   The present invention relates to a manganese oxide used as a positive electrode active material for a battery.

マンガン酸化物は、ニッケルマンガン電池、アルカリ電池、マンガンリチウム電池などの正極活物質として広く使用されている。中でも、電解二酸化マンガンは、比較的安価である上、高放電容量の電池を実現できるため、近年、これを正極活物質として用いたアルカリ電池は、デジタルカメラ、デジタルビデオカメラ、携帯電話機、PDAなどの電子機器用駆動電源として広く利用されている。   Manganese oxides are widely used as positive electrode active materials such as nickel manganese batteries, alkaline batteries, and manganese lithium batteries. Among them, electrolytic manganese dioxide is relatively inexpensive and can realize a battery with a high discharge capacity. In recent years, alkaline batteries using this as a positive electrode active material are digital cameras, digital video cameras, cellular phones, PDAs, and the like. It is widely used as a drive power source for electronic equipment.

最近、電子機器の高性能化に伴い、正極活物質として用いるマンガン酸化物にも、より一層のハイレート特性、すなわちハイレートでの連続放電特性が求められるようになって来ているが、本来的に電解二酸化マンガンは、電池の正極活物質として用いた場合、放電電流が大きくなると電解二酸化マンガンの利用率が低下して大電流を効率良く取り出せなくなる課題を有している。そこで従来、ハイレート特性を向上させるための種々の提案が為されてきた。   Recently, with higher performance of electronic devices, manganese oxides used as positive electrode active materials have been required to have higher high-rate characteristics, that is, continuous discharge characteristics at high rates. When the electrolytic manganese dioxide is used as a positive electrode active material of a battery, there is a problem that when the discharge current is increased, the utilization rate of the electrolytic manganese dioxide is reduced and a large current cannot be efficiently extracted. Therefore, various proposals have been made for improving the high rate characteristics.

例えば特許文献1には、硫酸マンガン及び硫酸溶液にアンモニウム塩を添加した電解液を電解して得た、アンモニアを有するα型二酸化マンガンを、リチウム塩水溶液で中和処理し、またはリチウム塩を混合することにより、リチウム二次電池の正極材料として使用することが提案されている。   For example, in Patent Document 1, α-type manganese dioxide having ammonia obtained by electrolyzing an electrolytic solution in which ammonium salt is added to manganese sulfate and a sulfuric acid solution is neutralized with an aqueous lithium salt solution, or mixed with a lithium salt. Thus, it has been proposed to be used as a positive electrode material for a lithium secondary battery.

特許文献2には、120℃以上400℃を超えない範囲での加熱処理により除去される水のモル数が、Mn原子1モル当たり0.16以上である電解二酸化マンガンを正極に用いることが提案されている。   Patent Document 2 proposes that electrolytic manganese dioxide having a mole number of water removed by heat treatment in a range not less than 120 ° C. and not exceeding 400 ° C. be 0.16 or more per mole of Mn atoms is used for the positive electrode. Has been.

特許文献3には、最大粒子径が100μm以下で、1μm以下の粒子個数が15%未満で、かつそのメジアン径が20〜60μmの範囲にある電解二酸化マンガン粉末であって、該粉末を窒素中150℃で脱気した後、窒素とヘリウムの混合ガス吸着法により測定した比表面積が50m2/g以上である電解二酸化マンガン粉末が提案されている。 Patent Document 3 discloses an electrolytic manganese dioxide powder having a maximum particle size of 100 μm or less, a number of particles of 1 μm or less of less than 15%, and a median diameter in the range of 20 to 60 μm. An electrolytic manganese dioxide powder having a specific surface area of 50 m 2 / g or more measured by a mixed gas adsorption method of nitrogen and helium after deaeration at 150 ° C. has been proposed.

また、特許文献4には、最大粒子径が100μm以下で、1μm以下の粒子個数が15%未満で、かつそのメジアン径が20〜60μmの範囲にある電解二酸化マンガン粉末であって、該粉末を、X線源としてCuKαを用いた測定において、ミラー指数が(110)である回折面の半価幅が3.5°未満である微小結晶サイズの大きな電解二酸化マンガン粉末が提案されている。   Patent Document 4 discloses an electrolytic manganese dioxide powder having a maximum particle diameter of 100 μm or less, the number of particles of 1 μm or less being less than 15%, and a median diameter in the range of 20 to 60 μm. In the measurement using CuKα as the X-ray source, an electrolytic manganese dioxide powder having a large microcrystal size in which the half width of the diffraction surface having a Miller index of (110) is less than 3.5 ° has been proposed.

特許文献5には、ハイレート間欠性能を向上させたアルカリマンガン電池用正極合材として、表面硫酸量が0.10重量%以上であり、かつ、表面アルカリ金属量が0.20重量%未満である二酸化マンガンが開示されている。   In Patent Document 5, as a positive electrode mixture for an alkaline manganese battery with improved high-rate intermittent performance, the surface sulfuric acid amount is 0.10% by weight or more, and the surface alkali metal amount is less than 0.20% by weight. Manganese dioxide is disclosed.

特許文献6は、チタンを電解二酸化マンガンに0.001〜3.0重量%含有させることにより、電化二酸化マンガンの比表面積を高めて反応面積を高めることによりハイレート特性を高める方法が提案されている。   Patent Document 6 proposes a method for enhancing high-rate characteristics by increasing the specific surface area of electrified manganese dioxide and increasing the reaction area by containing titanium in electrolytic manganese dioxide in an amount of 0.001 to 3.0% by weight. .

更に、特許文献7には、ハイレート特性を向上させることができる電解二酸化マンガンとして、硫酸根を1.3〜1.6重量%含有するものが開示されている。   Furthermore, Patent Document 7 discloses an electrolytic manganese dioxide capable of improving the high rate characteristics, containing 1.3 to 1.6% by weight of sulfate radicals.

特開平5−21062号Japanese Patent Laid-Open No. 5-21062 特開平5−174841号Japanese Patent Laid-Open No. 5-174841 特開2002−289185号JP 2002-289185 A 特開2002−289186号JP 2002-289186 A 特開2002−304990号JP 2002-304990 A 特開2003−163003号JP2003-163003 特開2004−47445号JP 2004-47445 A

本発明は、従来とは異なる観点からマンガン酸化物について研究を進め、その結果得られた新たな知見に基づき、優れたハイレート特性を実現することができるマンガン酸化物を提供せんとするものである。   The present invention aims to provide a manganese oxide capable of realizing excellent high-rate characteristics based on new knowledge obtained as a result of research on manganese oxide from a point of view different from conventional ones. .

本発明は、組成式MnSabMexc・zH2O(但し、Me:Ti,Ca、Mg、Ln(ランタノイド)の一種あるいは二種以上の組合せ)で表されるマンガン酸化物であって、
aは、0.010以上0.015以下であり、
bは、0.30以上0.40以下であり、
cは、1.8以上2.3以下であり、
xは、0或いは0より大きく0.015以下であり、
zは、0を超える値であり、
参照電極に酸化水銀(Hg/HgO)、電解液に40%KOHを用いて、20℃で測定されるマンガン酸化物の開回路電位が250mV以上、或いは、マンガン酸化物:黒鉛=94:6の割合で黒鉛を混合した時に、参照電極に酸化水銀(Hg/HgO)、電解液に40%KOHを用いて、20℃で測定される、前記マンガン酸化物と黒鉛との混合物の開回路電位が230mV以上であることを特徴とするマンガン酸化物を提案する。
The invention, formula MnS a H b Me x O c · zH 2 O ( However, Me: Ti, Ca, Mg , Ln ( one or two or more combinations of lanthanoid)) manganese oxide represented by There,
a is 0.010 or more and 0.015 or less,
b is 0.30 or more and 0.40 or less,
c is 1.8 or more and 2.3 or less,
x is 0 or greater than 0 and less than or equal to 0.015;
z is a value greater than 0;
Using mercury oxide (Hg / HgO) as the reference electrode and 40% KOH as the electrolyte, the open circuit potential of the manganese oxide measured at 20 ° C. is 250 mV or more, or manganese oxide: graphite = 94: 6 When graphite was mixed at a ratio, the open circuit potential of the mixture of manganese oxide and graphite measured at 20 ° C. using mercury oxide (Hg / HgO) for the reference electrode and 40% KOH for the electrolyte was A manganese oxide characterized by being 230 mV or higher is proposed.

本発明のマンガン酸化物は、開回路電位(OCPともいう)が高いため、放電電圧が高くても、すなわちハイレート領域の使用であっても放電持続時間を長く維持できるというハイレート特性を備えている。
マンガン酸化物中に所定量の「S」「H」が取り込まれることによって、放電反応時に、マンガン酸化物内から直接かつ速やかにプロトン(H+)が供給され、高負荷時においても放電反応(ハイレート放電)が追随でき易くなり、ハイレート特性に優れた電池(例えばアルカリ電池)を実現することができるものと考えられる。
また、マンガン酸化物の結晶成長の間に「S」乃至「Me」が取り込まれると、これが結晶成長に際して制御因子として働き、ハイレート特性が更に優れたものとなる。詳細なメカニズムは不明であるが、おそらくマンガン酸化物の結晶成長の間に取り込まれた「S」「Me」が結晶成長に際して制御因子と働き、プロトン(H+)を含めて放電反応物の供給がより一層スムースになると同時に放電生成物の拡散もスムースになるため優れたハイレート特性が実現されるものと考えられる。ただし、一定量以上の「S」「Me」が存在するとプロトン(H+)の拡散を阻害することになる為、「S」「Me」の量を適正にすることが重要であるとも考えられる。
以上のように本発明のマンガン酸化物は、所定の組成において開回路電位が高く、正極活物質として高電位を備えているから、これを電池の正極活物質として用いることにより、高出力を発現可能な電池を構成することができるばかりか、負極活物質及び電解液の選択の幅を大きく広げることができる。
Since the manganese oxide of the present invention has a high open circuit potential (also referred to as OCP), it has a high rate characteristic that can maintain a long discharge duration even when the discharge voltage is high, that is, even in the use of a high rate region. .
By incorporating a predetermined amount of “S” and “H” into the manganese oxide, protons (H + ) are supplied directly and quickly from the manganese oxide during the discharge reaction, and the discharge reaction ( It is considered that a battery (for example, an alkaline battery) excellent in high rate characteristics can be realized.
Further, when “S” to “Me” are incorporated during the crystal growth of the manganese oxide, this acts as a control factor during the crystal growth, and the high rate characteristics are further improved. Although the detailed mechanism is unknown, it is likely that “S” and “Me” incorporated during the crystal growth of manganese oxide act as regulators during crystal growth, and supply of discharge reactants including protons (H + ) It is considered that excellent high-rate characteristics can be realized because the discharge product is also smoothly diffused at the same time. However, if “S” or “Me” above a certain amount is present, diffusion of protons (H + ) is inhibited, so it is considered that it is important to make the amounts of “S” and “Me” appropriate. .
As described above, the manganese oxide of the present invention has a high open circuit potential in a predetermined composition and has a high potential as a positive electrode active material. Therefore, by using this as a positive electrode active material of a battery, high output is expressed. In addition to being able to construct a possible battery, the selection range of the negative electrode active material and the electrolyte can be greatly expanded.

なお、本発明において「ハイレート」とは、アルカリ電池(LR06)及びニッケルマンガン電池(ZR06)の場合には400mA以上(LR06及びZR06の場合約1300mAに相当)の使用領域をハイレートと言う。後述する試験では、ハーフセルにおいて25mAの電流を所定の電圧を維持しつつ継続的に連続放電することによってハイレート特性を検討した。   In the present invention, the term “high rate” refers to a high rate in the use area of 400 mA or more (corresponding to about 1300 mA in LR06 and ZR06) in the case of an alkaline battery (LR06) and a nickel manganese battery (ZR06). In the test described later, the high rate characteristic was examined by continuously discharging a current of 25 mA while maintaining a predetermined voltage in the half cell.

本発明の組成式MnSabMexc・zH2Oにおいて「S」「H」及び「Me」は、事後的に添加されて混合状態で存在するものとは異なり、マンガン酸化物内に含有され、X線回折において「S」「H」「Me」のピークが観察されない状態を意味し、マンガン酸化物と一体的に含有されている状態のものをいう。 In the composition formula MnS a H b Me x O c · zH 2 O of the present invention, “S”, “H” and “Me” are different from those added after the fact and present in a mixed state. Means a state in which peaks of “S”, “H”, and “Me” are not observed in X-ray diffraction, and a state in which the peaks are contained integrally with manganese oxide.

また、組成式MnSabMexc・zH2Oにおける「z」は、マンガン酸化物を110℃で2時間乾燥させた時のマンガン酸化物1モル当たりの重量減少をH2Oのモル数に換算した値である。この「H2O」は110℃での加熱乾燥によって蒸発し得る状態にある水、すなわちマンガン酸化物中にH2Oの状態で含有される水であるから、事後的に添加された水分とは異なる。又、マンガン酸化物を200〜400℃に加熱した際に蒸発する水分を結合水などと言うが、この結合水は110℃での加熱乾燥では蒸発しないため、結合水とも異なる。 Further, "z" in the composition formula MnS a H b Me x O c · zH 2 O is the weight loss per mole of manganese oxide when manganese oxide is dried for 2 hours at 110 ° C. in H 2 O It is the value converted into the number of moles. This “H 2 O” is water that can be evaporated by heat drying at 110 ° C., that is, water contained in the manganese oxide in the H 2 O state. Is different. Moreover, although the water | moisture content which evaporates when a manganese oxide is heated at 200-400 degreeC is called combined water etc., since this combined water does not evaporate by the heat drying at 110 degreeC, it differs from combined water.

本明細書において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意であり、「好ましくはXより大きく、Yより小さい」の意を包含する。 In this specification, “X to Y” (X and Y are arbitrary numbers) means “X or more and Y or less” unless otherwise specified, and “preferably larger than X and smaller than Y”. Is included.

次に、本発明の実施の形態について説明するが、本発明の範囲が以下に説明する実施形態に制限されるものではない。   Next, embodiments of the present invention will be described, but the scope of the present invention is not limited to the embodiments described below.

本発明のマンガン酸化物は、組成式MnSabMexc・zH2Oで表されるマンガン酸化物である。 The manganese oxide of the present invention is a manganese oxide represented by the composition formula MnS a H b Me x O c · zH 2 O.

本発明のマンガン酸化物は、上記組成を満足するのであれば、天然マンガン酸化物、化学合成マンガン酸化物、電解マンガン酸化物、その他のマンガン酸化物のいずれでもよいが、安価でかつ上記組成を実現し易いという観点から、硫酸マンガン溶液を電気分解することによって生成(析出)して得られるマンガン酸化物が好ましい。   The manganese oxide of the present invention may be any of natural manganese oxide, chemically synthesized manganese oxide, electrolytic manganese oxide, and other manganese oxides as long as the above composition is satisfied. From the viewpoint of easy realization, a manganese oxide obtained by electrolysis of a manganese sulfate solution (precipitation) is preferable.

上記組成式において、Sのモル比率としての「a」は、0.010以上0.015以下であることが重要であり、好ましくは0.012以上0.014以下である。このSのモル比率aは、電解法によってマンガン酸化物を製造する場合であれば、例えば電解装置の設計(電解液の上層を高温層とし下層を低温層とすることも含む)、電解液の硫酸濃度、電解条件などによって調整することができる。但し、この方法に限定されるものではない。
S元素の定量はICP分析装置を使って測定することができる(JIS K 1467:2003)。
In the above composition formula, “a” as the molar ratio of S is important to be 0.010 or more and 0.015 or less, and preferably 0.012 or more and 0.014 or less. If the molar ratio a of S is a case where manganese oxide is produced by an electrolytic method, for example, the design of an electrolytic device (including the case where the upper layer of the electrolytic solution is a high temperature layer and the lower layer is a low temperature layer), It can be adjusted according to sulfuric acid concentration, electrolysis conditions, and the like. However, it is not limited to this method.
The quantification of S element can be measured using an ICP analyzer (JIS K 1467: 2003).

上記組成式において、Hのモル比率としての「b」は、0.30以上0.4以下であることが重要であり、好ましくは0.33以上0.37以下である。このHのモル比率bは、電解法によってマンガン酸化物を製造する場合であれば、例えば電解装置の設計(電解液の上層を高温層とし下層を低温層とすることも含む)、電解液の硫酸濃度、電解条件などによって調整することができる。但し、この方法に限定されるものではない。
H元素の定量は、窒素雰囲気中で110から500℃まで加熱した際に試料から放出された水分量をカールフィッシャー水分計で測定し、得られた水分量から、110℃で加熱乾燥した際に放出される水分量を除いた値に基づいて算出することができる。
なお、マンガン酸化物におけるHの存在状態として、H+、OH-、H2Oが考えられるが、試料を500℃まで加熱した場合、MnOx値に大きな減少は観られないため、この点から周囲の酸素を捉えてH2Oとして蒸発するプロトン(H+)の絶対量はほとんどなく、主にOH-、H2Oとして存在すると考えられる。
In the above composition formula, “b” as the molar ratio of H is important to be 0.30 or more and 0.4 or less, and preferably 0.33 or more and 0.37 or less. The molar ratio b of H is, for example, the design of an electrolysis apparatus (including the case where the upper layer of the electrolyte is a high temperature layer and the lower layer is a low temperature layer), if the manganese oxide is produced by an electrolytic method, It can be adjusted according to sulfuric acid concentration, electrolysis conditions, and the like. However, it is not limited to this method.
The amount of H element is determined by measuring the amount of water released from the sample when heated from 110 to 500 ° C. in a nitrogen atmosphere with a Karl Fischer moisture meter, and then heating and drying at 110 ° C. from the obtained amount of water. It can be calculated based on a value excluding the amount of water released.
In addition, H + , OH , and H 2 O can be considered as the existence state of H in the manganese oxide. However, when the sample is heated to 500 ° C., no significant decrease is observed in the MnOx value. the absolute amount will almost no protons evaporation oxygen as the capture H 2 O (H +), mainly OH -, is believed to be present as H 2 O.

さらに、Sに対するHの量が所定比率であることが好ましい。具体的には、Sに対するHの比率b/aは35以下であるのが好ましく、中でも20以上35以下であるのが好ましく、その中でも特に24以上33以下であるのが好ましい。
Sに対するHの比率b/aは、電解法によってマンガン酸化物を製造する場合であれば、例えば電解装置の設計(電解液の上層を高温層とし下層を低温層とすることも含む)、電解液の硫酸濃度、電解条件などによって調整することができる。但し、この方法に限定されるものではない。
Furthermore, it is preferable that the amount of H with respect to S is a predetermined ratio. Specifically, the ratio b / a of H to S is preferably 35 or less, more preferably 20 or more and 35 or less, and particularly preferably 24 or more and 33 or less.
The ratio b / a of H to S is, for example, the design of an electrolytic device (including the case where the upper layer of the electrolytic solution is a high temperature layer and the lower layer is a low temperature layer), and electrolysis. It can be adjusted according to the sulfuric acid concentration of the liquid, electrolysis conditions, and the like. However, it is not limited to this method.

上記組成式において、Oのモル比率としての「c」は、1.8以上2.3以下であることが重要である。このOのモル比率cは、S、H及びMeの含有量を変化させることにより調整することができる。但し、この方法に限定されるものではない。   In the above composition formula, it is important that “c” as the molar ratio of O is 1.8 or more and 2.3 or less. The molar ratio c of O can be adjusted by changing the contents of S, H, and Me. However, it is not limited to this method.

上記組成式において、「Me」はTi,Ca、Mg、Ln(ランタノイド)の一種あるいは二種以上の組合せであり、原料中に含まれている不可避不純物と故意に添加された物とを区別するものではない。
「Me」のモル比率としての「x」は、0或いは0より大きく0.015以下であることが重要であり、好ましくは0.000001以上0.013以下、さらに好ましくは0.00001以上0.013以下である。すなわち、Meは必ずしも含まれていなくてもよいが、少しでも含まれていると結晶成長の際に制御因子として働き、ハイレート特性を更に優れたものとすることができる。但し、上述したように「Me」が多すぎるとプロトン(H+)の拡散を阻害することになる為、その量を適正にすることが重要である。
In the above composition formula, “Me” is one or a combination of two or more of Ti, Ca, Mg, and Ln (lanthanoid), and distinguishes the inevitable impurities contained in the raw material from those intentionally added. It is not a thing.
It is important that “x” as the molar ratio of “Me” is 0 or more than 0 and 0.015 or less, preferably 0.000001 or more and 0.013 or less, more preferably 0.00001 or more and 0.0. 013 or less. That is, Me does not necessarily need to be contained, but if it is contained in a small amount, it acts as a control factor during crystal growth and can further improve the high rate characteristics. However, as described above, if there is too much “Me”, diffusion of protons (H + ) is inhibited, so it is important to make the amount appropriate.

上記組成式において、「z」は、マンガン酸化物中にH2Oの状態で含有される水のモル比率を意味し、110℃で十分加熱乾燥させた時の重量減少を、マンガン酸化物1モル当たりのH2Oモル数に換算した値であり、若干でも存在すれば、すなわち0を超える値であればよいが、好ましくは0.2以下、特に好ましくは0.15以下である。 In the above composition formula, “z” means the molar ratio of water contained in the state of H 2 O in the manganese oxide, and the weight loss when sufficiently heated and dried at 110 ° C. It is a value converted to the number of moles of H 2 O per mole, and if it exists even slightly, that is, a value exceeding 0 is sufficient, but it is preferably 0.2 or less, particularly preferably 0.15 or less.

上記組成を有するマンガン酸化物の中でも、X線回折法(XRD)で測定される(310)面のピーク強度I(310)と(221)面のピーク強度I(221)との比率が、I(310)/I(221)<0.4、特に<0.38、中でも特に<0.35であるのが好ましい。ピーク強度I(310)とピーク強度I(221)の比率が0.4よりどれだけ小さいかは、結晶構造がどれだけ乱れているかの指標、言い換えればマンガン酸化物内にS、H及びMeがどれだけ含有されているかの指標となる。したがって、I(310)/I(221)<0.4であれば、マンガン酸化物内にS、H及びMeが十分に取り込まれていることの一つの目安となる。但し、例外はある。   Among the manganese oxides having the above composition, the ratio of the peak intensity I (310) on the (310) plane and the peak intensity I (221) on the (221) plane measured by X-ray diffraction (XRD) is I It is preferred that (310) / I (221) <0.4, especially <0.38, especially <0.35. The ratio of the peak intensity I (310) to the peak intensity I (221) is smaller than 0.4 is an index of how much the crystal structure is disturbed, in other words, S, H and Me are contained in the manganese oxide. It is an index of how much is contained. Therefore, if I (310) / I (221) <0.4, it is one indication that S, H, and Me are sufficiently taken into the manganese oxide. There are exceptions.

また、X線回折法(XRD)で測定される(110)面の面間隔d値が4.01Å以上、特に4.01〜4.09、中でも特に4.01〜4.08であるのが好ましい。
(110)面の面間隔d値はMnとOの結合状態に起因して変化する値である。詳細な理由は不明であるが、面間隔d値が4.01Å以上以上であればハイレート特性がより一層優れたものとなることが確かめられている。
Further, the (110) plane spacing d value measured by X-ray diffraction (XRD) is 4.01 mm or more, particularly 4.01 to 4.09, and particularly 4.01 to 4.08. preferable.
The (110) plane spacing d value is a value that changes due to the bonding state of Mn and O. Although the detailed reason is unknown, it has been confirmed that the high rate characteristic is further improved if the inter-surface distance d value is 4.01 mm or more.

本発明のマンガン酸化物は、参照電極に酸化水銀(Hg/HgO)、電解液に40%KOHを用いて、20℃で測定されるマンガン酸化物の開回路電位が250mV以上であることが重要であり、好ましくは250mV以上350mV以下、特に好ましくは260mV以上350mV以下の特性を備えたものである。
また、黒鉛と混合して正極合剤とする場合には、マンガン酸化物:黒鉛=94:6の割合で黒鉛を混合した時に、参照電極に酸化水銀(Hg/HgO)、電解液に40%KOHを用いて、20℃で測定される、前記マンガン酸化物と黒鉛との混合物の開回路電位が230mV以上であることが重要であり、好ましくは230mV以上330mV以下、特に好ましくは240mV以上330mV以下の特性を備えたものである。
In the manganese oxide of the present invention, it is important that the open circuit potential of the manganese oxide measured at 20 ° C. is 250 mV or more by using mercury oxide (Hg / HgO) for the reference electrode and 40% KOH for the electrolytic solution. And preferably has a characteristic of 250 mV to 350 mV, particularly preferably 260 mV to 350 mV.
Further, when mixed with graphite to form a positive electrode mixture, mercury oxide (Hg / HgO) is used for the reference electrode and 40% for the electrolytic solution when graphite is mixed at a ratio of manganese oxide: graphite = 94: 6. It is important that the open circuit potential of the mixture of manganese oxide and graphite measured at 20 ° C. using KOH is 230 mV or more, preferably 230 mV or more and 330 mV or less, particularly preferably 240 mV or more and 330 mV or less. It has the characteristics of.

(マンガン酸化物の製造方法)
本発明のマンガン酸化物の製造方法は、例えば、硫酸マンガン及び硫酸溶液からなる電解液を電気分解する方法において、電解槽内に高温の上層電解液層と低温の下層電解液層とを形成すると共に、電解電流密度、電解液の硫酸濃度等を調整することにより、目的とする組成のマンガン酸化物を製造することができる。以下、この製造方法についてより詳細に説明する。
(Manufacturing method of manganese oxide)
The method for producing a manganese oxide according to the present invention includes, for example, a method of electrolyzing an electrolytic solution composed of manganese sulfate and a sulfuric acid solution, and forming a high temperature upper electrolyte layer and a low temperature lower electrolyte layer in an electrolytic cell. At the same time, by adjusting the electrolytic current density, the sulfuric acid concentration of the electrolytic solution, etc., a manganese oxide having a target composition can be produced. Hereinafter, this manufacturing method will be described in more detail.

電極として陽極には、チタン、チタン合金、鉛板、黒鉛板等を用い、陰極には、カーボン等を用いればよい。但し、これらに限定するものではない。
上層電解液層の温度は90〜100℃、低温の下層電解液層の温度は60〜85℃、特に65〜84℃とするのが好ましい。このように高温の上層電解液層と低温の下層電解液層とを形成する手段は、特に制限するものではないが、一例としては、電解槽の底部から補給液を上方向に送液するように導入管を設け、所定温度の電解液を所定の送液速度で補給しながら、熱交換器の配設位置とその加熱温度を調整する手段を紹介することができる。
As the electrode, titanium, a titanium alloy, a lead plate, a graphite plate, or the like may be used for the anode, and carbon or the like may be used for the cathode. However, it is not limited to these.
The temperature of the upper electrolyte layer is 90 to 100 ° C., and the temperature of the low temperature lower electrolyte layer is preferably 60 to 85 ° C., particularly 65 to 84 ° C. The means for forming the high-temperature upper electrolyte layer and the low-temperature lower electrolyte layer in this way is not particularly limited, but as an example, the replenisher is fed upward from the bottom of the electrolytic cell. A means for adjusting the position of the heat exchanger and its heating temperature can be introduced while an introduction pipe is provided to supply an electrolyte solution at a predetermined temperature at a predetermined liquid feeding speed.

電解液の硫酸濃度、マンガン濃度及び電解電流密度は、これらのバランスによって所望の組成となるように調整するのが好ましい。それぞれの値に絶対値としての制限はないが、一つの目安としては、電解液の硫酸濃度は30〜100g/L、特に55〜75g/Lであるのが好ましく、電解液中のマンガン濃度は10〜39g/L、特に10〜35g/Lであるのが好ましく、電解電流密度は20〜100A/m2、特に30〜70A/m2であるのが好ましい。
なお、送液速度つまり電解液の補給速度は、電解液の硫酸濃度が所定濃度に保持されるように設定すればよい。
It is preferable to adjust the sulfuric acid concentration, manganese concentration, and electrolytic current density of the electrolytic solution so as to obtain a desired composition by balancing these. Each value is not limited as an absolute value, but as one guideline, the sulfuric acid concentration of the electrolytic solution is preferably 30 to 100 g / L, particularly 55 to 75 g / L, and the manganese concentration in the electrolytic solution is It is preferably 10 to 39 g / L, particularly 10 to 35 g / L, and the electrolysis current density is preferably 20 to 100 A / m 2 , particularly preferably 30 to 70 A / m 2 .
The liquid feeding speed, that is, the replenishing speed of the electrolytic solution may be set so that the sulfuric acid concentration of the electrolytic solution is maintained at a predetermined concentration.

Meを含有させる場合、Meを多く含む原料を選択するか、或いは電解液にMe化合物を添加するようにすればよい。この際、Me化合物としては、硫酸塩化合物、硝酸塩化合物、塩化塩化合物などを挙げることができる。具体的には、補給液としての硫酸マンガン溶液にこれらのMe化合物を溶解して添加する方法が好ましい。   When Me is contained, a raw material containing a large amount of Me may be selected, or a Me compound may be added to the electrolytic solution. In this case, examples of the Me compound include a sulfate compound, a nitrate compound, and a chloride compound. Specifically, a method of dissolving and adding these Me compounds in a manganese sulfate solution as a replenisher is preferable.

陽極上に電析固着したマンガン酸化物の析出物を剥離し、必要に応じて粉砕及び分級するのが一般的である。但し、必ず粉砕及び分級をしなければならないというものではない。
この際の粉砕方法としては、ジョークラッシャー等により粗粉砕して数cmの塊状物に粉砕し、さらに微粉砕を行うためにローラーミル等により粉砕を行い、必要に応じてさらに乳鉢、湿式ボールミル粉砕、臼(ミル)粉砕、乾式ボールミル粉砕等によって粉砕を行うようにすればよい。
また、分級方法は、篩によるほか、粉砕して得られたマンガン酸化物粉末を純水中に分散させ、沈降粉末をろ過し乾燥を行うことにより微粉末を除去する方法等を採用することができる。
このように微粉砕したマンガン酸化物粉は、必要に応じて、表面に残留する遊離酸を取り除くため、水洗もしくはアルカリを用いて洗浄・乾燥を行うようにする。
In general, the deposit of manganese oxide electrodeposited on the anode is peeled off, and pulverized and classified as necessary. However, pulverization and classification are not necessarily required.
As a pulverization method at this time, it is roughly pulverized by a jaw crusher or the like to be pulverized into a mass of several centimeters, and further pulverized by a roller mill or the like for further pulverization. The pulverization may be performed by pulverization, dry ball milling, or the like.
The classification method may be a method of removing fine powder by dispersing the manganese oxide powder obtained by pulverization in pure water, filtering the precipitated powder and drying, etc. it can.
The finely pulverized manganese oxide powder is washed and dried using water or alkali in order to remove free acid remaining on the surface, if necessary.

開回路電位を高める手段としては、種々の方法が挙げられるが、組成式MnSabMexc・zH2Oで表されるマンガン酸化物においては、Sの量を多くし、かつHの量を少なくする。すなわち、b/aを比較的小さくする、好ましくはb/aが35以下、中でも20以上35以下、その中でも特に24以上33以下にすれば、例外はあるが一般的にはOCPを高くすることができる。具体的な手段としては、Mnの電解酸化反応をゆっくり又は少量で行う製造条件において、硫酸濃度を高めるか、Mn濃度を下げるか、或いは電流密度を下げるかの方向でこれらのバランスを調整すると、二酸化マンガン純分が上昇してb/aが小さくなりOCPを高めることができる。
また、電解によって得られたマンガン酸化物を酸化剤で処理することによってもOCPを高めることができる。マンガン酸化物を酸化剤で処理する方法としては、例えばマンガン酸化物を過マンガン水溶液に浸漬した後、水洗する方法を挙げることができる。
There are various methods for increasing the open circuit potential. In the manganese oxide represented by the composition formula MnS a H b Me x O c .zH 2 O, the amount of S is increased, and H Reduce the amount of. That is, if b / a is relatively small, preferably b / a is 35 or less, especially 20 or more and 35 or less, particularly 24 or more and 33 or less, there is an exception, but generally OCP is increased. Can do. As specific means, in the production conditions in which the electrolytic oxidation reaction of Mn is performed slowly or in a small amount, adjusting these balances in the direction of increasing the sulfuric acid concentration, decreasing the Mn concentration, or decreasing the current density, As the pure manganese dioxide increases, b / a decreases, and OCP can be increased.
OCP can also be increased by treating manganese oxide obtained by electrolysis with an oxidizing agent. As a method of treating manganese oxide with an oxidizing agent, for example, a method of immersing manganese oxide in a permanganese aqueous solution and washing with water can be given.

なお、上述した製造方法は、本発明のマンガン酸化物を製造するための一例であり、これに限定するものではない。マンガン酸化物中にS、H、場合によってはMeがそれぞれ所定量含有されるようにマンガン酸化物を製造できる他の方法でも製造可能であると考えられる。   In addition, the manufacturing method mentioned above is an example for manufacturing the manganese oxide of this invention, and is not limited to this. It is considered that the manganese oxide can be produced by another method capable of producing manganese oxide so that a predetermined amount of S, H, and, in some cases, Me is contained in the manganese oxide.

(用途)
本発明のマンガン酸化物は、ニッケルマンガン電池、アルカリ電池、マンガンリチウム電池などの正極活物質として好適に用いることができる。特に、本発明のマンガン酸化物は開回路電位が250mV以上であるから、ハイレート特性に優れており、これを正極活物質として用いた電池は、デジタルカメラ、デジタルビデオカメラ、携帯電話機、PDAなどの電子機器用駆動電源として好適に用いることができる。
(Use)
The manganese oxide of the present invention can be suitably used as a positive electrode active material for nickel manganese batteries, alkaline batteries, manganese lithium batteries, and the like. In particular, since the manganese oxide of the present invention has an open circuit potential of 250 mV or more, it has excellent high rate characteristics. Batteries using this as a positive electrode active material include digital cameras, digital video cameras, cellular phones, PDAs, and the like. It can be suitably used as a drive power source for electronic equipment.

また、本発明のマンガン酸化物は、黒鉛を混合した時の開回路電位が230mV以上であるから、ニッケルマンガン電池用の正極活物質原料としても好適である。すなわち本発明のマンガン酸化物にオキシ水酸化ニッケル及び黒鉛を加えてなる混合合材を正極活物質として用いてニッケルマンガン電池を構成すれば、ハイレート特性に優れ、高出力を実現可能な電池を提供することができる。   In addition, the manganese oxide of the present invention has an open circuit potential of 230 mV or more when graphite is mixed, and is therefore suitable as a positive electrode active material material for nickel manganese batteries. That is, if a nickel manganese battery is constituted by using a mixed material obtained by adding nickel oxyhydroxide and graphite to the manganese oxide of the present invention as a positive electrode active material, a battery capable of realizing high output and high output can be provided. can do.

電池の負極活物質は従来から知られているものでよく、特に限定されないが、マンガン電池、アルカリマンガン電池の場合は亜鉛等を、リチウム電池の場合はリチウム等を用いるのが一般的である。
電池を構成する電解液も従来から知られているものでよく、特に限定されないが、マンガン電池では塩化亜鉛又は塩化アンモニウム、アルカリ電池では水酸化カリウム、リチウム電池ではリチウム塩の有機溶媒溶液等を用いるのが一般的である。
The negative electrode active material of the battery may be a conventionally known material, and is not particularly limited, but zinc or the like is generally used for a manganese battery or an alkaline manganese battery, and lithium or the like is generally used for a lithium battery.
The electrolyte constituting the battery may also be a conventionally known electrolyte, and is not particularly limited. For example, a manganese battery uses zinc chloride or ammonium chloride, an alkaline battery uses potassium hydroxide, and a lithium battery uses an organic solvent solution of a lithium salt. It is common.

本発明のマンガン酸化物を用いて、アルカリマンガン電池を構成する例について説明すると、例えばマンガン酸化物と導電剤である黒鉛と混練し、これを圧縮成型し正極缶の内側に配置する。また、正極活物質の内側にセパレータを介してゲル状亜鉛粉末からなる負極材を設けるようにして構成することができる。但し、この構成例に限定されるものではない。
また、ニッケルマンガン電池を構成する場合には、例えばマンガン酸化物と、オキシ水酸化ニッケルと、導電剤である黒鉛と混練し、これを正極合材とすればよい。
An example of constituting an alkaline manganese battery using the manganese oxide of the present invention will be described. For example, manganese oxide and graphite as a conductive agent are kneaded, and this is compression molded and placed inside the positive electrode can. Moreover, it can comprise so that the negative electrode material which consists of gelatinous zinc powder may be provided inside a positive electrode active material through a separator. However, it is not limited to this configuration example.
In the case of constituting a nickel manganese battery, for example, manganese oxide, nickel oxyhydroxide, and graphite as a conductive agent may be kneaded and used as a positive electrode mixture.

(実施例1)
5Lビーカーを電解槽として用い、陽極としてチタン板、陰極として黒鉛板をそれぞれ交互に電解槽内に懸吊し、電解槽の底部から補給液が上方向に補給されるように硫酸マンガン電解補給液の導入管を設けた。この際、電解液に浸漬している極板の長さ1に対して、電解槽底から極板下端までの距離が0.2となる長さの電極を用いた。
60℃に調整した電解補給液を前記導入管を通じて電解槽内に注入し、電解するに際して電解液の組成がマンガン35g/L、硫酸60g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を95〜98℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保つようにしながら、電流密度55A/m2で10日間電解した。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
Example 1
Using a 5L beaker as an electrolytic cell, a titanium plate as an anode and a graphite plate as a cathode are alternately suspended in the electrolytic cell. The introduction pipe was provided. At this time, an electrode having a length such that the distance from the bottom of the electrolytic cell to the lower end of the electrode plate is 0.2 with respect to the length 1 of the electrode plate immersed in the electrolytic solution.
The electrolytic replenisher adjusted to 60 ° C. is poured into the electrolytic cell through the introduction tube, and the electrolysis is adjusted so that the composition of the electrolytic solution is 35 g / L manganese and 60 g / L sulfuric acid. While adjusting the installation position and heating temperature, the temperature of the upper layer of the electrolyte (upper layer including the entire electrode plate immersed in the electrolyte) is maintained at 95 to 98 ° C., while the lower layer of the electrolyte (lower layer than the electrode plate) ) Was maintained for 10 days at a current density of 55 A / m 2 while maintaining the temperature at 65-80 ° C.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

電解析出して得られたマンガン酸化物は粗粉砕し、90℃の熱水で30分洗浄後、デカンテーションし、さらに同量の水で24時間撹拌洗浄し、再びデカンテーションした。そして、ここで得られたマンガン酸化物を苛性ソーダによりマンガン酸化物のJISpHが3.5になるよう中和後、95℃で0.5時間加熱乾燥し、そして平均粒径が約35μmとなるよう微粉砕してマンガン酸化物粉体を得た。   Manganese oxide obtained by electrolytic deposition was coarsely pulverized, washed with hot water at 90 ° C. for 30 minutes, decanted, further stirred and washed with the same amount of water for 24 hours, and decanted again. The manganese oxide obtained here is neutralized with caustic soda so that the JIS pH of the manganese oxide becomes 3.5, then dried by heating at 95 ° C. for 0.5 hour, and the average particle size becomes about 35 μm. Finely pulverized to obtain a manganese oxide powder.

(実施例2)
実施例1と同様の電解槽において、電解液に浸漬している極板の長さ1に対して、電解槽底から極板下端までの距離が0.4となる長さの電極を用い、他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Example 2)
In the same electrolytic cell as in Example 1, for the length 1 of the electrode plate immersed in the electrolytic solution, an electrode having a length from which the distance from the electrolytic cell bottom to the lower electrode plate is 0.4 is used. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed (see Table 1 for details).

(実施例3)
Caを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給し、他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Example 3)
A manganese sulfate electrolytic replenisher composed of a manganese raw material containing a large amount of Ca was prepared and supplied, and electrolytic deposition, pulverization, washing, and drying were performed so that the other conditions were the same as in Example 1 (for details, see Table 1). checking).

(実施例4)
Lnを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給すると共に、電解するに際して電解液の組成をマンガン30g/L、硫酸70g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度55A/m2で10日間電解した。他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った。(詳しくは表1を参照のこと)。
Example 4
In addition to adjusting and supplying a manganese sulfate electrolytic replenisher composed of a manganese raw material containing a large amount of Ln, the composition of the electrolytic solution is adjusted to 30 g / L manganese and 70 g / L sulfuric acid when electrolyzing, and the heat exchanger By adjusting the arrangement position and the heating temperature, electrolysis was performed at a current density of 55 A / m 2 for 10 days while maintaining the temperature of the upper layer of the electrolyte at 95 to 98 ° C. and the temperature of the lower layer at 65 to 80 ° C. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed. (See Table 1 for details).

(実施例5)
電解液及び電解補給液にTiを0.25g/L及びLnを0.25g/L添加し、電解するに際して電解液の組成をマンガン20g/L、硫酸80g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度55A/m2で10日間電解した。他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Example 5)
While adding 0.25 g / L of Ti and 0.25 g / L of Ln to the electrolytic solution and the electrolytic replenisher, the composition of the electrolytic solution is adjusted to 20 g / L of manganese and 80 g / L of sulfuric acid when electrolyzing, By adjusting the position of the heat exchanger and the heating temperature, the temperature of the upper layer of the electrolytic solution is kept at 95 to 98 ° C., and the temperature of the lower layer is kept at 65 to 80 ° C., while the current density is 10 A at 55 A / m 2 . Electrolyzed for days. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed (see Table 1 for details).

(実施例6)
電解するに際して電解液の組成がマンガン20g/L、硫酸80g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を87〜93℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度30A/m2で10日間電解し、その他の点は実施例1と同様に行った。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
(Example 6)
In the electrolysis, the composition of the electrolytic solution is adjusted to 20 g / L of manganese and 80 g / L of sulfuric acid, the position of the heat exchanger and the heating temperature are adjusted, and the upper layer of the electrolytic solution (soaked in the electrolytic solution) while keeping the temperature of the upper layer portion) containing the entire are electrode plates 87 to 93 ° C., while maintaining the temperature of the lower layer (lower layer portion from the electrode plate) in the electrolyte 65-80 ° C., a current density of 30A / m 2 10 The electrolysis was performed for the same day, and the other points were the same as in Example 1.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

(実施例7)
電解するに際して電解液の組成がマンガン10g/L、硫酸30g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を96〜99℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度30A/m2で10日間電解し、その他の点は実施例1と同様に行った。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
(Example 7)
During electrolysis, the composition of the electrolytic solution is adjusted to 10 g / L of manganese and 30 g / L of sulfuric acid, and the arrangement position of the heat exchanger and the heating temperature are adjusted, and the upper layer of the electrolytic solution (immersed in the electrolytic solution) 10) at a current density of 30 A / m 2 while maintaining the temperature of the lower layer of the electrolyte (lower layer from the electrode plate) at 65 to 80 ° C. The electrolysis was performed for the same day, and the other points were the same as in Example 1.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

(実施例8)
電解するに際して電解液の組成がマンガン10g/L、硫酸30g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を87〜93℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度30A/m2で10日間電解し、その他の点は実施例1と同様に行った。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
(Example 8)
During electrolysis, the composition of the electrolytic solution is adjusted to 10 g / L of manganese and 30 g / L of sulfuric acid, and the arrangement position of the heat exchanger and the heating temperature are adjusted, and the upper layer of the electrolytic solution (immersed in the electrolytic solution) while keeping the temperature of the upper layer portion) containing the entire are electrode plates 87 to 93 ° C., while maintaining the temperature of the lower layer (lower layer portion from the electrode plate) in the electrolyte 65-80 ° C., a current density of 30A / m 2 10 The electrolysis was performed for the same day, and the other points were the same as in Example 1.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

(実施例9)
電解するに際して電解液の組成がマンガン30g/L、硫酸60g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を96〜99℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度60A/m2で10日間電解し、その他の点は実施例1と同様に行った。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
Example 9
During electrolysis, the composition of the electrolytic solution is adjusted to 30 g / L of manganese and 60 g / L of sulfuric acid, and the arrangement position of the heat exchanger and the heating temperature are adjusted, and the upper layer of the electrolytic solution (immersed in the electrolytic solution) 10) at a current density of 60 A / m 2 while maintaining the temperature of the lower layer of the electrolyte (lower layer from the electrode plate) at 65 to 80 ° C. The electrolysis was performed for the same day, and the other points were the same as in Example 1.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

(実施例10)
電解液及び電解補給液にTiを0.25g/L添加し、電解するに際して電解液の組成をマンガン30g/L、硫酸60g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度60A/m2で10日間電解した。他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Example 10)
When 0.25 g / L of Ti is added to the electrolytic solution and the electrolytic replenishing solution, and the electrolysis is performed, the composition of the electrolytic solution is adjusted to 30 g / L of manganese and 60 g / L of sulfuric acid. By adjusting the heating temperature, electrolysis was performed at a current density of 60 A / m 2 for 10 days while maintaining the temperature of the upper layer of the electrolyte at 95 to 98 ° C. and the temperature of the lower layer at 65 to 80 ° C. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed (see Table 1 for details).

(実施例11)
電解するに際して電解液の組成がマンガン40g/L、硫酸55g/Lとなるように調整し、電流密度55A/m2で10日間電解し、その他の点は実施例1と同様に電解析出してマンガン酸化物を得た。次に、電解析出して得たマンガン酸化物50gを、0.05モルKMnO4水溶液(酸化剤水溶液、30℃)300ml中に投入し、マグネットスターラーで1時間攪拌継続した後、水洗し、107℃で乾燥した。乾燥後、粗粉砕し、90℃の熱水で30分洗浄した後デカンテーションし、さらに同量の水で24時間撹拌洗浄し、再びデカンテーションした。そして、ここで得られたマンガン酸化物を苛性ソーダによりマンガン酸化物のJISpHが3.5になるよう中和後、95℃で0.5時間加熱乾燥し、そして平均粒径が約35μmとなるよう微粉砕してマンガン酸化物粉体を得た。
なお、マンガン濃度、硫酸濃度、電流密度の実測値は表1に示した。
(Example 11)
When electrolyzing, the composition of the electrolytic solution was adjusted to 40 g / L of manganese and 55 g / L of sulfuric acid, and electrolysis was carried out at a current density of 55 A / m 2 for 10 days. Manganese oxide was obtained. Next, 50 g of manganese oxide obtained by electrolytic deposition was put into 300 ml of 0.05 mol KMnO 4 aqueous solution (oxidant aqueous solution, 30 ° C.) and stirred for 1 hour with a magnetic stirrer, then washed with water, 107 ° C. And dried. After drying, coarsely pulverized, washed with hot water at 90 ° C. for 30 minutes, decanted, further stirred and washed with the same amount of water for 24 hours, and decanted again. The manganese oxide obtained here is neutralized with caustic soda so that the JIS pH of the manganese oxide becomes 3.5, then dried by heating at 95 ° C. for 0.5 hour, and the average particle size becomes about 35 μm. Finely pulverized to obtain a manganese oxide powder.
The measured values of manganese concentration, sulfuric acid concentration, and current density are shown in Table 1.

(実施例12)
Mgを多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給し、他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Example 12)
A manganese sulfate electrolytic replenisher composed of a manganese raw material containing a large amount of Mg was prepared and supplied, and electrolytic deposition, pulverization, washing, and drying were performed so that other conditions were the same as in Example 1 (for details, see Table 1). checking).

(実施例13)
実施例12に比べ、Mgを更に多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給し、他の条件は実施例12と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Example 13)
Compared to Example 12, a manganese sulfate electrolytic replenisher composed of a manganese raw material further containing Mg is prepared and supplied, and electrolytic deposition, pulverization, washing, and drying are performed so that other conditions are the same as in Example 12. (See Table 1 for details).

(実施例14)
電解液及び電解補給液にTiを0.56g/L添加し、電解するに際して電解液の組成をマンガン30g/L、硫酸60g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度60A/m2で10日間電解した。他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Example 14)
When 0.56 g / L of Ti is added to the electrolytic solution and the electrolytic replenisher, and the electrolysis is performed, the composition of the electrolytic solution is adjusted to 30 g / L manganese and 60 g / L sulfuric acid. By adjusting the heating temperature, electrolysis was performed at a current density of 60 A / m 2 for 10 days while maintaining the temperature of the upper layer of the electrolyte at 95 to 98 ° C. and the temperature of the lower layer at 65 to 80 ° C. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed (see Table 1 for details).

(実施例15)
実施例4に比べ、Lnを更に多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給すると共に、電解するに際して電解液の組成をマンガン30g/L、硫酸70g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度55A/m2で10日間電解した。他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った。(詳しくは表1を参照のこと)。
(Example 15)
Compared to Example 4, a manganese sulfate electrolytic replenisher composed of a manganese raw material further containing Ln is prepared and supplied, and the composition of the electrolytic solution is adjusted to 30 g / L manganese and 70 g / L sulfuric acid during electrolysis. At the same time, by adjusting the arrangement position of the heat exchanger and the heating temperature, the temperature of the upper layer of the electrolytic solution is maintained at 95 to 98 ° C., and the temperature of the lower layer is maintained at 65 to 80 ° C. 2 for 10 days. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed. (See Table 1 for details).

(実施例16)
電解するに際して電解液の組成がマンガン20g/L、硫酸90g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を87〜93℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度30A/m2で10日間電解し、その他の点は実施例1と同様に行った。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
(Example 16)
During electrolysis, the composition of the electrolytic solution is adjusted to 20 g / L of manganese and 90 g / L of sulfuric acid, the position of the heat exchanger and the heating temperature are adjusted, and the upper layer of the electrolytic solution (immersed in the electrolytic solution) while keeping the temperature of the upper layer portion) containing the entire are electrode plates 87 to 93 ° C., while maintaining the temperature of the lower layer (lower layer portion from the electrode plate) in the electrolyte 65-80 ° C., a current density of 30A / m 2 10 The electrolysis was performed for the same day, and the other points were the same as in Example 1.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

(実施例17)
電解するに際して電解液の組成がマンガン30g/L、硫酸30g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を95〜98℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度30A/m2で10日間電解し、その他の点は実施例1と同様に行った。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
(Example 17)
In the electrolysis, the composition of the electrolytic solution is adjusted to be 30 g / L of manganese and 30 g / L of sulfuric acid, the position of the heat exchanger and the heating temperature are adjusted, and the upper layer of the electrolytic solution (soaked in the electrolytic solution) 10) at a current density of 30 A / m 2 while maintaining the temperature of the lower layer of the electrolyte (lower layer part from the electrode plate) at 65 to 80 ° C. The electrolysis was performed for the same day, and the other points were the same as in Example 1.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

(比較例1)
電解するに際して電解液の組成をマンガン50g/L、硫酸20g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度55A/m2で10日間電解した。他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Comparative Example 1)
In the electrolysis, the composition of the electrolytic solution is adjusted to 50 g / L of manganese and 20 g / L of sulfuric acid, and the temperature of the upper layer of the electrolytic solution is adjusted to 95 to 95 by adjusting the position of the heat exchanger and the heating temperature. Electrolysis was performed at a current density of 55 A / m 2 for 10 days while maintaining the temperature at 98 ° C. and the temperature of the lower layer at 65 to 80 ° C. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed (see Table 1 for details).

(比較例2)
電解するに際して電解液の組成をマンガン45g/L、硫酸30g/Lとなるように調整するとともに、電流密度55A/m2に設定し、他の条件は比較例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Comparative Example 2)
In the electrolysis, the composition of the electrolytic solution was adjusted to 45 g / L manganese and 30 g / L sulfuric acid, the current density was set to 55 A / m 2 , and the other conditions were the same as in Comparative Example 1. It was discharged and crushed, washed and dried (see Table 1 for details).

(比較例3)
電解するに際して電解液の組成をマンガン40g/L、硫酸50g/Lとなるように調整するとともに、電流密度55A/m2に設定し、他の条件は比較例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Comparative Example 3)
In the electrolysis, the composition of the electrolytic solution was adjusted to 40 g / L manganese and 50 g / L sulfuric acid, and the current density was set to 55 A / m 2 , and the other conditions were the same as in Comparative Example 1. It was discharged and crushed, washed and dried (see Table 1 for details).

(比較例4)
電解液及び電解補給液にTiを0.25g/L添加し、電解するに際して電解液の組成をマンガン40g/L、硫酸30g/Lとなるように調整するとともに、電流密度55A/m2に設定し、他の条件は比較例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Comparative Example 4)
0.25 g / L of Ti is added to the electrolytic solution and the electrolytic replenishing solution, and the composition of the electrolytic solution is adjusted to 40 g / L manganese and 30 g / L sulfuric acid when electrolyzing, and the current density is set to 55 A / m 2 . Then, electrolytic deposition and pulverization / washing / drying were performed so that the other conditions were the same as those in Comparative Example 1 (see Table 1 for details).

(比較例5)
実施例13に比べ、Mgを更に多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給し、他の条件は実施例13と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Comparative Example 5)
Compared to Example 13, a manganese sulfate electrolytic replenisher composed of a manganese raw material further containing Mg is prepared and supplied, and electrolytic deposition and pulverization / washing / drying are performed so that other conditions are the same as in Example 13. (See Table 1 for details).

(比較例6)
電解液及び電解補給液にTiを4.300g/L添加し、電解するに際して電解液の組成をマンガン30g/L、硫酸60g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度60A/m2で10日間電解した。他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った(詳しくは表1を参照のこと)。
(Comparative Example 6)
4. 4. 30 g / L of Ti was added to the electrolytic solution and the electrolytic replenisher, and the composition of the electrolytic solution was adjusted to 30 g / L of manganese and 60 g / L of sulfuric acid when electrolyzing, and the position of the heat exchanger and By adjusting the heating temperature, electrolysis was performed at a current density of 60 A / m 2 for 10 days while maintaining the temperature of the upper layer of the electrolyte at 95 to 98 ° C. and the temperature of the lower layer at 65 to 80 ° C. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed (see Table 1 for details).

(比較例7)
実施例15に比べ、Lnを更に多く含むマンガン原料からなる硫酸マンガン電解補給液を調整して供給すると共に、電解するに際して電解液の組成をマンガン30g/L、硫酸70g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整することにより、電解液の上層の温度を95〜98℃に保ち、下層の温度を65〜80℃に保ちながら、電流密度55A/m2で10日間電解した。他の条件は実施例1と同じになるように電解析出及び粉砕・洗浄・乾燥を行った。(詳しくは表1を参照のこと)。
(Comparative Example 7)
Compared to Example 15, a manganese sulfate electrolytic replenisher composed of a manganese raw material further containing Ln is adjusted and supplied, and the composition of the electrolytic solution is adjusted to 30 g manganese and 70 g sulfuric acid when electrolyzing. At the same time, by adjusting the arrangement position of the heat exchanger and the heating temperature, the temperature of the upper layer of the electrolytic solution is maintained at 95 to 98 ° C., and the temperature of the lower layer is maintained at 65 to 80 ° C., while the current density is 55 A / m. 2 for 10 days. The other conditions were the same as in Example 1, and electrolytic deposition and pulverization / washing / drying were performed. (See Table 1 for details).

(比較例8)
電解するに際して電解液の組成がマンガン15g/L、硫酸100g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を95〜98℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度30A/m2で10日間電解し、その他の点は実施例1と同様に行った。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
(Comparative Example 8)
In the electrolysis, the composition of the electrolyte is adjusted to 15 g / L manganese and 100 g / L sulfuric acid, and the position and heating temperature of the heat exchanger are adjusted, and the upper layer of the electrolyte (immersed in the electrolyte) 10) at a current density of 30 A / m 2 while maintaining the temperature of the lower layer of the electrolyte (lower layer part from the electrode plate) at 65 to 80 ° C. The electrolysis was performed for the same day, and the other points were the same as in Example 1.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

(比較例9)
電解するに際して電解液の組成がマンガン30g/L、硫酸30g/Lとなるように調整するとともに、熱交換器の配設位置と加熱温度を調整し、電解液の上層(電解液に浸漬している電極板全体を含む上層部)の温度を95〜98℃に保つ一方、電解液の下層(電極板より下層部)の温度を65〜80℃に保ちながら、電流密度20A/m2で10日間電解し、その他の点は実施例1と同様に行った。
なお、マンガン濃度、硫酸濃度、電流密度の実測値の平均値を表1に示した。
(Comparative Example 9)
In the electrolysis, the composition of the electrolytic solution is adjusted to be 30 g / L of manganese and 30 g / L of sulfuric acid, the position of the heat exchanger and the heating temperature are adjusted, and the upper layer of the electrolytic solution (soaked in the electrolytic solution) 10) at a current density of 20 A / m 2 while maintaining the temperature of the lower layer of the electrolyte (lower layer from the electrode plate) at 65 to 80 ° C. The electrolysis was performed for the same day, and the other points were the same as in Example 1.
Table 1 shows the average values of actually measured values of manganese concentration, sulfuric acid concentration, and current density.

(参考例1)
実施例6で得られたマンガン酸化物粉体を常温中で12ヶ月保存したものを、参考例1のサンプルとした。
(Reference Example 1)
A sample of Reference Example 1 was prepared by storing the manganese oxide powder obtained in Example 6 for 12 months at room temperature.

Figure 2006108083
Figure 2006108083

Figure 2006108083
Figure 2006108083

実施例3−5、実施例10および実施例12−15の結果をみると、Ti、Ca、Ln、Mgのいずれを含む場合にも優れた特性(効果)が得られることが認められる。その一方、比較例5、7の結果をみると、Me量が多すぎると特性(効果)が低下することが認められる。このような点から、Me量(モル比率)の好ましい範囲としては0.015以下、特に0.004以下(実施例13参照)であると考えられる。 From the results of Example 3-5, Example 10 and Example 12-15, it can be seen that excellent characteristics (effects) can be obtained when Ti, Ca, Ln, and Mg are included. On the other hand, when the results of Comparative Examples 5 and 7 are seen, it is recognized that if the amount of Me is too large, the characteristic (effect) is lowered. From such a point, it is considered that the preferable range of the Me amount (molar ratio) is 0.015 or less, particularly 0.004 or less (see Example 13).

<評価>
上記実施例及び比較例で得られたマンガン酸化物の測定及び評価は、次に説明する方法で行った。
<Evaluation>
Measurement and evaluation of the manganese oxides obtained in the above Examples and Comparative Examples were performed by the method described below.

(水分量の測定)
試料としてのマンガン酸化物粉末を、110℃で2時間加熱乾燥した際に放出される水分量を測定した。
(Measurement of water content)
The amount of water released when the manganese oxide powder as a sample was heat-dried at 110 ° C. for 2 hours was measured.

(H元素の定量方法)
試料としてのマンガン酸化物粉末を、カールフィッシャー水分計を用いて、窒素雰囲気中で110から500℃まで加熱した際に水分のカウントが安定するまで保持することで放出される水分量を測定し、その水分量から、上記の110℃の加熱乾燥させた際に放出される水分量を除き、その除いた水分量からH元素のモル比率を算出した。
(Quantitative method of H element)
Measure the amount of moisture released by holding the manganese oxide powder as a sample until the water count is stabilized when heated from 110 to 500 ° C. in a nitrogen atmosphere using a Karl Fischer moisture meter, From the amount of water, the amount of water released when heated at 110 ° C. was removed, and the molar ratio of element H was calculated from the amount of water removed.

(S元素の定量方法)
JIS K 1467:2003に基づき、ICP分析装置でS元素の量を測定した。
(Quantitative method of S element)
Based on JIS K 1467: 2003, the amount of S element was measured with an ICP analyzer.

(Me元素の定量方法)
JIS K 1467:2003に基づき、ICP分析装置で各Me元素の量を測定した。
(Me element quantitative method)
Based on JIS K 1467: 2003, the amount of each Me element was measured with an ICP analyzer.

(MnO2含有量及び全Mn量の測定)
MnO2含有量は、JIS K 1467:2003の通り測定した。全Mn量はKMnO4を用いた電位差滴定により測定した。
(Measurement of MnO 2 content and total Mn content)
The MnO 2 content was measured according to JIS K 1467: 2003. The total amount of Mn was measured by potentiometric titration using KMnO 4 .

(酸素分の測定)
MnO2含有量及び全Mn量からMn酸化数を算出してMnOx値を算出した。また、Sの存在状態をSO4 2-と仮定し、S量から酸素量を算出した。さらにまた、窒素雰囲気中で110℃から500℃まで加熱した際に試料から放出される水分量をカールフィッシャー水分計で測定し、得られた水分量から、110℃で加熱乾燥した際に放出される水分量を除いた値に基づいて酸素量を算出した。そして、前記MnOx値から算出した酸素量、前記S量から算出した酸素量、および前記加熱乾燥した際に放出される水分量の合計量から全酸素量を求め、O元素のモル比率を算出した。
(Measurement of oxygen content)
The MnO x value was calculated by calculating the Mn oxidation number from the MnO 2 content and the total Mn amount. Further, assuming that the presence state of S is SO 4 2- , the oxygen amount was calculated from the S amount. Furthermore, the amount of moisture released from the sample when heated from 110 ° C. to 500 ° C. in a nitrogen atmosphere is measured with a Karl Fischer moisture meter, and the obtained moisture amount is released when heated and dried at 110 ° C. The amount of oxygen was calculated based on the value excluding the amount of water. Then, the total amount of oxygen is determined from the total amount of oxygen calculated from the MnO x value, the amount of oxygen calculated from the S amount, and the amount of water released upon heating and drying, and the molar ratio of the O element is calculated. did.

(XRD測定方法)
Cu管球を用いて、測定範囲10〜80°をスキャンステップ0.02°、スキャンスピード1°/minでXRD測定してXRDチャートを求めた。
得られたXRDチャートのピークのうち、Ramsdellite(空間群:Pnma)と帰属した場合における(110)面、(310)面、(201)面、(020)面、(211)面、(221)面のピークの平滑化処理、バックグラウンド除去処理及びKα2除去処理(最大強度比=0.500)を行ない、ピークトップの角度を用いて、(110)面のd値、(310)面/(221)面のピーク強度比I(310)/I(221)を算出し、表2に示した。
(XRD measurement method)
Using a Cu tube, an XRD chart was obtained by XRD measurement at a scan range of 0.02 ° and a scan speed of 1 ° / min over a measurement range of 10 to 80 °.
Of the peaks of the obtained XRD chart, (110) plane, (310) plane, (201) plane, (020) plane, (211) plane, (221) when attributed to Ramsdellite (space group: Pnma) Surface smoothing processing, background removal processing and Kα2 removal processing (maximum intensity ratio = 0.500) are performed, and the peak top angle is used to determine the d value of (110) plane, (310) plane / ( The peak intensity ratio I (310) / I (221) of the 221) plane was calculated and shown in Table 2.

(OCPの測定方法)
上記実施例及び比較例で得たマンガン酸化物(サンプル)を0.3g秤量し、φ10mmの上部開放底付きニッケルめっきスチール缶に充填した。これを専用ダイスにセットし、油圧プレス機で荷重2tonを10秒間かけた後、金属ニッケルリボンを底部にスポット溶接した。
200mLビーカーに前記充填済みスチール缶を挿入し、ニッケルリボンを折り曲げて固定し、電解液として40%KOH水溶液を注入し、スチール缶部分を完全に浸漬させて1昼夜静置した後、参照電極(水銀/酸化水銀)を電解液に浸漬させ、デジタル電圧計でサンプルと参照電極間の電位(開回路電位:OCP)を測定した。
(Measurement method of OCP)
0.3 g of the manganese oxide (sample) obtained in the above Examples and Comparative Examples was weighed and filled into a nickel-plated steel can with an open bottom of φ10 mm. This was set on a special die, and a load of 2 ton was applied for 10 seconds with a hydraulic press machine, and then a metal nickel ribbon was spot welded to the bottom.
Insert the filled steel can into a 200 mL beaker, fold and fix the nickel ribbon, inject 40% KOH aqueous solution as the electrolyte, completely immerse the steel can part and let it stand for a day and night. Mercury / mercury oxide) was immersed in the electrolyte, and the potential (open circuit potential: OCP) between the sample and the reference electrode was measured with a digital voltmeter.

(黒鉛入りOCPの測定方法)
上記実施例及び比較例で得たマンガン酸化物(サンプル)と黒鉛を所定比率(94:6)で混合し、200mLビーカーにて薬さじで充分に攪拌混合した後、この混合剤0.2gを、専用ダイスにセットし、油圧プレス機で荷重2tonを10秒間かけた後、金属ニッケルリボンを底部にスポット溶接した。
200mLビーカーに前記充填済みスチール缶を挿入し、ニッケルリボンを折り曲げて固定し、電解液として40%KOH水溶液を注入し、スチール缶部分を完全に浸漬させて一昼夜静置した後、参照電極(水銀/酸化水銀)を電解液に浸漬させ、デジタル電圧計でサンプルと参照電極間の電位(黒鉛入りOCP)を測定した。
(Method for measuring OCP with graphite)
Manganese oxide (sample) obtained in the above examples and comparative examples and graphite were mixed at a predetermined ratio (94: 6), and after thoroughly stirring and mixing with a spoonful in a 200 mL beaker, 0.2 g of this mixture was added. A special die was set and a load of 2 tons was applied for 10 seconds with a hydraulic press machine, and then a metal nickel ribbon was spot welded to the bottom.
Insert the filled steel can into a 200 mL beaker, fold and fix the nickel ribbon, inject 40% KOH aqueous solution as the electrolyte, completely immerse the steel can part and let it stand overnight. / Mercury oxide) was immersed in the electrolytic solution, and the potential (OCP with graphite) between the sample and the reference electrode was measured with a digital voltmeter.

なお、実施例1で得られたマンガン酸化物に、3重量%、6重量%、12重量%、20重量%の割合(混合後の量に対する重量割合)で黒鉛を混合した場合の回路電位を上記同様に測定したところ、それぞれ242mV、240mV、238mV、236mVであった。すなわち、同一のマンガン酸化物であっても、黒鉛の混合量が増加すると開回路電位は低下し、その割合は、6重量%を中心に考えると、3重量%であれば2mV程度高くなり、12重量%であれば2mV程度低くなることが分った。これより、仮に電池内の黒鉛量が6重量%から上下にずれていても、前記の傾向から黒鉛量6重量%時の電位を推測することができる。   The circuit potential when graphite was mixed with the manganese oxide obtained in Example 1 at a ratio of 3% by weight, 6% by weight, 12% by weight, and 20% by weight (weight ratio with respect to the amount after mixing). When measured in the same manner as described above, they were 242 mV, 240 mV, 238 mV, and 236 mV, respectively. That is, even with the same manganese oxide, the open circuit potential decreases as the mixing amount of graphite increases, and the ratio increases by about 2 mV if it is 3% by weight, centering on 6% by weight, It was found that if it was 12% by weight, it would be about 2 mV lower. From this, even if the amount of graphite in the battery deviates up and down from 6% by weight, the potential at the amount of graphite of 6% by weight can be estimated from the above tendency.

(ハーフセル特性の測定方法)
−アルカリマンガン電池−
上記実施例1〜11及び比較例1〜3で得たマンガン酸化物(サンプル)と黒鉛を所定比率(94:6)で混合し、200mLビーカーにて薬さじで充分に攪拌混合した後、この混合剤0.2gを、φ10mm円盤作製用ダイスにセットし、油圧プレス機で荷重2tonを10秒間かけて成形品を得た。この成形品をφ10mmの上部開放底付きニッケルめっきスチール缶に装入し、φ10mmニッケル網を成形品上部に装入した後、成形品を圧着するため油圧プレス機で荷重2tonを10秒間かけた。次いで成形品が圧着されたスチール缶をアクリル樹脂製モデルセルに装着し、対極として導電用タブをつけたニッケル網をモデルセルに装着し、電解液40%KOH水溶液をモデルセルに注入し、一昼夜静置した後、サンプル極と対極(:ニッケル)と電流計とを、電流値が予め設定されている定電流電源装置に配線し、参照電極(Hg/HgO)を電解液に浸漬させ、デジタル式電圧記録計でサンプル極と参照電極間の電位を測定記録した。
定電流電源装置から25mA連続放電を行い、電位がカットオフ電位(−0.2V)に達した時点で放電終了し、−0.2V時の放電容量を測定した。
各実施例及び比較例のハーフセル特性(25mA)は、比較例3の測定値(放電容量)を100とし、これに対する比率で表2に示した。
(Measurement method of half-cell characteristics)
-Alkaline manganese battery-
The manganese oxide (sample) obtained in Examples 1 to 11 and Comparative Examples 1 to 3 and graphite were mixed at a predetermined ratio (94: 6) and thoroughly stirred and mixed with a spoonful in a 200 mL beaker. 0.2 g of the mixed agent was set on a φ10 mm disk making die, and a molded article was obtained by applying a load of 2 ton for 10 seconds with a hydraulic press. This molded product was placed in a nickel-plated steel can with a top opening bottom of φ10 mm, a φ10 mm nickel mesh was placed on the top of the molded product, and then a load of 2 ton was applied for 10 seconds with a hydraulic press to crimp the molded product. Next, the steel can on which the molded product has been pressure-bonded is attached to an acrylic resin model cell, a nickel net with a conductive tab as a counter electrode is attached to the model cell, and a 40% KOH aqueous solution is injected into the model cell. After standing, wire the sample electrode, counter electrode (nickel), and ammeter to a constant current power supply device with a preset current value, and immerse the reference electrode (Hg / HgO) in the electrolyte. The potential between the sample electrode and the reference electrode was measured and recorded with a type voltage recorder.
A 25 mA continuous discharge was performed from the constant current power supply, and when the potential reached the cut-off potential (−0.2 V), the discharge was terminated, and the discharge capacity at −0.2 V was measured.
The half cell characteristics (25 mA) of each Example and Comparative Example are shown in Table 2 in terms of the measured value (discharge capacity) of Comparative Example 3 being 100.

−ニッケルマンガン電池−
実施例1,2及び比較例3で得たマンガン酸化物(サンプル)とオキシ水酸化ニッケルと黒鉛とを所定比率(47:47:6)で混合し、200mLビーカーにて薬さじで充分に攪拌混合した後、この混合剤0.2gを、φ10mm円盤作製用ダイスにセットし、油圧プレス機で荷重2tonを10秒間かけて成形品を得た。この成形品をφ10mmの上部開放底付きニッケルめっきスチール缶に装入し、φ10mmニッケル網を成形品上部に装入した後、成形品を圧着するため油圧プレス機で荷重2tonを10秒間かけた。次いで成形品が圧着されたスチール缶をアクリル樹脂製モデルセルに装着し、対極として導電用タブをつけたニッケル網をモデルセルに装着し、電解液40%KOH水溶液をモデルセルに注入し、一昼夜静置した後、サンプル極と対極(:ニッケル)と電流計とを、電流値が予め設定されている定電流電源装置に配線し、参照電極(Hg/HgO)を電解液に浸漬させ、デジタル式電圧記録計でサンプル極と参照電極間の電位を測定記録した。
実施例のハーフセル特性(25mA)は、比較例3の測定値(放電容量)を100とし、これに対する比率で表2に示した。
ニッケルマンガン電池はオキシ水酸化ニッケルが加わること以外はアルカリ電池と同様の電池構成である。なお且つ実施例1,2及び比較例3よりニッケルマンガン電池においても同様の効果が確認された。これらのことから、本発明による効果はニッケルマンガン電池においても同様の効果があると考えられる。


-Nickel manganese battery-
Manganese oxides (samples) obtained in Examples 1 and 2 and Comparative Example 3, nickel oxyhydroxide and graphite were mixed at a predetermined ratio (47: 47: 6), and sufficiently stirred with a spoonful in a 200 mL beaker. After mixing, 0.2 g of this admixture was set on a φ10 mm disk making die, and a molded article was obtained by applying a load of 2 ton for 10 seconds with a hydraulic press. This molded product was placed in a nickel-plated steel can with a top opening bottom of φ10 mm, a φ10 mm nickel mesh was placed on the top of the molded product, and then a load of 2 ton was applied for 10 seconds with a hydraulic press to crimp the molded product. Next, the steel can on which the molded product has been pressure-bonded is attached to an acrylic resin model cell, a nickel net with a conductive tab as a counter electrode is attached to the model cell, and a 40% KOH aqueous solution is injected into the model cell. After standing, wire the sample electrode, counter electrode (nickel), and ammeter to a constant current power supply device with a preset current value, and immerse the reference electrode (Hg / HgO) in the electrolyte. The potential between the sample electrode and the reference electrode was measured and recorded with a type voltage recorder.
The half-cell characteristics (25 mA) of the example are shown in Table 2 as ratios relative to the measured value (discharge capacity) of Comparative Example 3 being 100.
The nickel manganese battery has the same battery configuration as the alkaline battery except that nickel oxyhydroxide is added. In addition, from Examples 1 and 2 and Comparative Example 3, the same effect was confirmed in the nickel manganese battery. From these facts, the effect of the present invention is considered to be the same in the nickel manganese battery.


Claims (4)

組成式MnSabMexc・zH2O(但し、Me:Ti,Ca、Mg、Lnの一種或いは二種以上の組合せ)で表されるマンガン酸化物であって、
aは、0.010以上0.015以下であり、
bは、0.30以上0.40以下であり、
cは、1.8以上2.3以下であり、
xは、0或いは0より大きく0.015以下であり、
zは、0を超える値であり、
参照電極に酸化水銀(Hg/HgO)、電解液に40%KOHを用いて、20℃で測定されるマンガン酸化物の開回路電位が250mV以上であることを特徴とするマンガン酸化物。
A manganese oxide represented by a composition formula MnS a H b Me x O c · zH 2 O (where Me is one or a combination of two or more of Ti, Ca, Mg, and Ln),
a is 0.010 or more and 0.015 or less,
b is 0.30 or more and 0.40 or less,
c is 1.8 or more and 2.3 or less,
x is 0 or greater than 0 and less than or equal to 0.015;
z is a value greater than 0;
A manganese oxide characterized in that an open circuit potential of manganese oxide measured at 20 ° C. is 250 mV or more by using mercury oxide (Hg / HgO) as a reference electrode and 40% KOH as an electrolyte.
組成式MnSabMexc・zH2O(但し、Me:Ti,Ca、Mg、Lnの一種或いは二種以上の組合せ)で表されるマンガン酸化物であって、
aは、0.010以上0.015以下であり、
bは、0.30以上0.40以下であり、
cは、1.8以上2.3以下であり、
xは、0或いは0より大きく0.015以下であり、
zは、0を超える値であり、
マンガン酸化物:黒鉛=94:6の割合で黒鉛を混合した時に、参照電極に酸化水銀(Hg/HgO)、電解液に40%KOHを用いて、20℃で測定される、前記マンガン酸化物と黒鉛との混合物の開回路電位が230mV以上であることを特徴とするマンガン酸化物。
A manganese oxide represented by a composition formula MnS a H b Me x O c · zH 2 O (where Me is one or a combination of two or more of Ti, Ca, Mg, and Ln),
a is 0.010 or more and 0.015 or less,
b is 0.30 or more and 0.40 or less,
c is 1.8 or more and 2.3 or less,
x is 0 or greater than 0 and less than or equal to 0.015;
z is a value greater than 0;
Manganese oxide: graphite = 94: 6 When graphite is mixed at a ratio of 94: 6, the manganese oxide is measured at 20 ° C. using mercury oxide (Hg / HgO) as a reference electrode and 40% KOH as an electrolyte. A manganese oxide characterized in that the open circuit potential of a mixture of graphite and graphite is 230 mV or more.
請求項1又は2に記載のマンガン酸化物を正極活物質として用いてなる構成を備えた電池。   The battery provided with the structure which uses the manganese oxide of Claim 1 or 2 as a positive electrode active material. 請求項1又は2に記載のマンガン酸化物にオキシ水酸化ニッケルと黒鉛とを混合してなる混合合材を正極活物質として用いてなる構成を備えた電池。




A battery comprising a structure in which a mixed material obtained by mixing nickel oxyhydroxide and graphite with the manganese oxide according to claim 1 or 2 is used as a positive electrode active material.




JP2005261350A 2004-09-09 2005-09-08 Manganese oxide for cathode active material Expired - Fee Related JP3968372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261350A JP3968372B2 (en) 2004-09-09 2005-09-08 Manganese oxide for cathode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004262235 2004-09-09
JP2005261350A JP3968372B2 (en) 2004-09-09 2005-09-08 Manganese oxide for cathode active material

Publications (2)

Publication Number Publication Date
JP2006108083A true JP2006108083A (en) 2006-04-20
JP3968372B2 JP3968372B2 (en) 2007-08-29

Family

ID=36377519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261350A Expired - Fee Related JP3968372B2 (en) 2004-09-09 2005-09-08 Manganese oxide for cathode active material

Country Status (1)

Country Link
JP (1) JP3968372B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108081A (en) * 2004-09-09 2006-04-20 Mitsui Mining & Smelting Co Ltd Manganese oxide for positive electrode active material
WO2008062614A1 (en) * 2006-11-22 2008-05-29 Panasonic Corporation Alkaline battery
EP1964944A1 (en) 2007-02-14 2008-09-03 Tosoh Corporation Electrolytic manganese dioxide, and method for its production and its application
JP2009043547A (en) * 2007-08-08 2009-02-26 Fdk Energy Co Ltd Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery
JP2019139960A (en) * 2018-02-09 2019-08-22 東ソー株式会社 Electrolytic manganese dioxide and its manufacturing method and use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108081A (en) * 2004-09-09 2006-04-20 Mitsui Mining & Smelting Co Ltd Manganese oxide for positive electrode active material
WO2008062614A1 (en) * 2006-11-22 2008-05-29 Panasonic Corporation Alkaline battery
EP1964944A1 (en) 2007-02-14 2008-09-03 Tosoh Corporation Electrolytic manganese dioxide, and method for its production and its application
US8721865B2 (en) 2007-02-14 2014-05-13 Tosoh Corporation Electrolytic manganese dioxide, and method for its production and its application
US8734992B2 (en) 2007-02-14 2014-05-27 Tosoh Corporation Electrolytic manganese dioxide, and method for its production and its application
JP2009043547A (en) * 2007-08-08 2009-02-26 Fdk Energy Co Ltd Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery
JP2019139960A (en) * 2018-02-09 2019-08-22 東ソー株式会社 Electrolytic manganese dioxide and its manufacturing method and use
JP7127291B2 (en) 2018-02-09 2022-08-30 東ソー株式会社 Electrolytic manganese dioxide, method for producing the same, and use thereof

Also Published As

Publication number Publication date
JP3968372B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
CN101828286A (en) Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods
US20130221271A1 (en) Positive Electrode Active Material For Lithium-Ion Battery, Positive Electrode For A Lithium-Ion Battery, Lithium-Ion Battery Using Same, And Precursor To A Positive Electrode Active Material For A Lithium-Ion Battery
JPWO2007023933A1 (en) Alkaline battery
JP3968372B2 (en) Manganese oxide for cathode active material
Kim et al. A study on the improvement of the cyclic durability by Cr substitution in V–Ti alloy and surface modification by the ball-milling process
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
Zhu et al. Structural and electrochemical characterization of mechanochemically synthesized calcium zincate as rechargeable anodic materials
JP4993888B2 (en) Manganese oxide powder for cathode active material
KR100882403B1 (en) Alkaline cell
US20060257742A1 (en) Alkaline battery and positive electrode material for alkaline battery
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
JP2001023641A (en) Positive electrode active material for lithium secondary battery and manufacture of the same
US9745202B2 (en) Metal cyanometallate synthesis method
US20150266745A1 (en) Metal Cyanometallate Synthesis Method
US6203945B1 (en) Nickel hydroxide active material for use in alkaline storage cell and manufacturing method of the same
Pan et al. Preparation of NaBiO3 and the electrochemical characteristic of manganese dioxide doped with NaBiO3
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
JP3983779B2 (en) Manganese oxide for cathode active material
US20220223845A1 (en) Electrodes for alkaline iron batteries
JP4993887B2 (en) Manganese oxide powder for cathode active material
CN104584280A (en) Cathode active material for alkaline storage battery, alkaline storage battery and alkaline storage battery cathode containing same, and nickel-hydrogen storage battery
JP3578349B1 (en) Manganese oxide for positive electrode active material
WO2005015666A1 (en) Alkaline battery
EP1837938A1 (en) Alkaline dry cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3968372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees