WO2018180208A1 - Electrolytic manganese dioxide, method for manufacturing same, and application for same - Google Patents

Electrolytic manganese dioxide, method for manufacturing same, and application for same Download PDF

Info

Publication number
WO2018180208A1
WO2018180208A1 PCT/JP2018/008106 JP2018008106W WO2018180208A1 WO 2018180208 A1 WO2018180208 A1 WO 2018180208A1 JP 2018008106 W JP2018008106 W JP 2018008106W WO 2018180208 A1 WO2018180208 A1 WO 2018180208A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese dioxide
electrolytic manganese
electrolytic
less
electrolysis
Prior art date
Application number
PCT/JP2018/008106
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木直人
井手望水
末次和正
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2018180208A1 publication Critical patent/WO2018180208A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/21Manganese oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to electrolytic manganese dioxide, a method for producing the same, and uses thereof. More specifically, the present invention relates to electrolytic manganese dioxide used as a positive electrode active material in, for example, a manganese dry battery, particularly an alkaline manganese dry battery, and a method for producing the same.
  • Manganese dioxide is known, for example, as a positive electrode active material for manganese dry batteries, particularly alkaline manganese dry batteries, and has the advantage of being excellent in storage stability and being inexpensive.
  • alkaline manganese batteries using manganese dioxide as the positive electrode active material have excellent characteristics in a wide range of discharge rates from low-rate discharge to high-rate discharge, so they are widely used in electronic cameras, portable information devices, game machines and toys. in use.
  • the alkaline manganese battery has a problem that the practical discharge capacity is greatly impaired because the utilization rate of manganese dioxide, which is a positive electrode active material, decreases as the discharge current increases and cannot be used in a state where the discharge voltage is reduced. was there.
  • the charged positive electrode active material manganese dioxide is not fully utilized, and the usable time is short. It was.
  • Patent Document 3 the use of manganese dioxide having a half width of the (110) plane measured by powder X-ray diffraction measurement in the range of 2.00 ° to 2.40 ° has been proposed.
  • An object of the present invention is an electrolytic manganese dioxide used as a positive electrode active material of a manganese dry battery, particularly an alkaline manganese dry battery excellent in high-rate discharge characteristics, which has a different micropore surface area from the conventional one and has a crystal of electrolytic manganese dioxide.
  • the present invention provides electrolytic manganese dioxide having a small twin rate in the structure, a method for producing the same, and use thereof.
  • the present inventors have a micropore area of 45 m 2 / g or more and 90 m 2 / g or less, and In order to complete the present invention, it has been found that the twin rate in the crystal structure is 40% or more and 80% or less, so that the cathode material has excellent high rate discharge characteristics and high filling properties. It came.
  • the present invention resides in the following [1] to [10].
  • An electrolytic manganese dioxide having a micropore area of 45 m 2 / g or more and 90 m 2 / g or less and a twin rate in a crystal structure of 40% or more and 80% or less.
  • the value of (B) / (A) is 0.90 for the mode particle size (A) in the volume frequency distribution and the particle size width (B) that is 1/2 the mode particle size (A).
  • the electrolytic manganese dioxide according to any one of [1] to [4] above, which is 2.0 or more and 2.0 or less.
  • [8] Use a sulfuric acid-manganese sulfate mixed solution whose sulfuric acid concentration in the electrolytic solution at the end of electrolysis is higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis, and sulfuric acid concentration in the electrolytic solution at the end of electrolysis Is 32 g / L or more and 80 g / L or less,
  • the manufacturing method of the electrolytic manganese dioxide as described in said [7] characterized by the above-mentioned.
  • a positive electrode active material for a battery comprising the electrolytic manganese dioxide according to any one of [1] to [6] above.
  • a battery comprising the battery positive electrode active material according to [9].
  • the electrolytic manganese dioxide of the present invention is excellent in high-rate discharge characteristics and filling properties when used as a positive electrode material for alkaline dry batteries, and the electrolytic manganese dioxide of the present invention can be obtained by the production method of the present invention.
  • the electrolytic manganese dioxide of the present invention has a micropore area of 45 m 2 / g or more and 90 m 2 / g or less.
  • the micropore area is preferably 45 m 2 / g or more and 70 m 2 / g or less.
  • a voltage drop occurs when an alkaline manganese battery is pulse-discharged at a high rate.
  • voltage drop 1 the utilization factor of the active material is lowered. Therefore, in order to increase the utilization factor, it is desirable that the voltage drop (the sum of the voltage drop 1 and the voltage drop 2) is small. By reducing the voltage drop, the utilization factor of the active material can be increased, and as a result, the high rate discharge performance of the alkaline manganese battery can be improved.
  • the discharge formula of electrolytic manganese dioxide is usually represented by the following formula.
  • charge transfer resistance is closely related to the magnitude of the voltage drop (voltage drop 1) having a fast response speed, and it is estimated that the voltage drop 1 becomes small when the charge transfer resistance is small.
  • Electrolytic manganese dioxide has pores of 2 nm or less (hereinafter referred to as micropores) and pores of 2 to 50 nm (hereinafter referred to as mesopores), but the surface area of the micropores is 3 to 5 in comparison with mesopores. Since it is about twice as large, the charge transfer reaction is presumed to occur mainly on the surface of the micropores.
  • the electrolytic manganese dioxide of the present invention has a twin rate in the crystal structure of 40% or more and 80% or less. If the twin rate is less than 40%, the voltage when the alkaline manganese battery is made is low, which is not preferable. If the twin rate is greater than 80%, the voltage drop 2 becomes large, and the high rate characteristics of the alkaline manganese dry battery are likely to deteriorate, which is not preferable.
  • the twin rate in the crystal structure is preferably 40% or more and 70% or less, and more preferably 50% or more and 70% or less.
  • electrolytic manganese dioxide is ⁇ -type MnO 2 , and it is known that twins exist in the crystal structure.
  • [H + ] diffuses in the crystal structure of electrolytic manganese dioxide, if there are few twins, the diffusion becomes smooth because the diffusion becomes smooth, and as a result, the voltage drop 2 is estimated to be small.
  • the electrolytic manganese dioxide of the present invention maintains high voltage and storage characteristics when it is used as an alkaline manganese battery, and can increase the discharge time until the lower limit of usable discharge voltage. Therefore, the alkaline potential may be 250 mV or more and 310 mV or less. preferable.
  • the alkali potential is more preferably 280 mV to 310 mV, and still more preferably 290 mV to 310 mV.
  • the alkali potential is measured in a 40 wt% KOH aqueous solution with a mercury / mercury oxide reference electrode as a standard.
  • the voltage drop 1 becomes small, and when the alkaline manganese battery is made, the high-rate characteristic is more excellent, and the storage characteristic of the dry battery is kept high, so that the content of sulfate radical (SO 4 ) is 1. It is preferably 5% by weight or less, and more preferably 1.3% by weight or less.
  • the electrolytic manganese dioxide of the present invention has a low corrosiveness to a metal material such as a can when it is an alkaline manganese dry battery, and the voltage drop 1 is small, so that the high rate characteristics when the alkaline manganese dry battery is made can be maintained. It is preferable that sodium content is 10 weight ppm or more and 5,000 weight ppm or less, More preferably, it is 10 weight ppm or more and 3,000 weight ppm or less. Since sodium contained in electrolytic manganese dioxide is mainly derived from sodium hydroxide used as a neutralizing agent, most of it is adsorbed on the particle surface.
  • the electrolytic manganese dioxide of the present invention has a mode particle size (A) in the volume frequency distribution and a particle size width (B) that is 1/2 height of the mode particle size (A).
  • the value is preferably 0.90 or more and 2.0 or less.
  • the mode particle size (A) in the volume frequency distribution refers to the particle size having the largest volume frequency in the distribution, and the particle size width (B) that is 1 ⁇ 2 the mode particle size (A) is the maximum.
  • ⁇ Pressure density of electrolytic manganese dioxide increases when the particle size composition satisfies the above characteristics.
  • electrolytic manganese dioxide is used as the positive electrode of a dry battery, it is mixed with a conductive agent such as graphite and used as a molded body.
  • a conductive agent such as graphite
  • the contact density between electrolytic manganese dioxide and conductive agent is improved by increasing the press density of electrolytic manganese dioxide.
  • the powder resistance of the positive electrode is reduced, and as a result, the high rate characteristics of the dry battery are improved.
  • the particle size composition of the electrolytic manganese dioxide of the present invention is represented by a volume frequency distribution.
  • the mode particle size (A) is not particularly limited as long as the value of (B) / (A) is 0.90 or more and 2.0 or less, but is preferably 20 ⁇ m or more from the pulverization efficiency. 75 ⁇ m or less is preferable from the viewpoint of reactivity.
  • the particle size width (B) that is 1/2 height of the mode particle size (A) is particularly limited as long as the value of (B) / (A) is 0.90 or more and 2.0 or less. However, it is preferably 15 ⁇ m or more and 80 ⁇ m or less from the viewpoint of productivity.
  • the electrolytic manganese dioxide of the present invention has a small voltage drop 2 when an alkaline manganese battery is formed, and it is easy to improve the high-rate characteristics. Therefore, the half width of the (110) plane by the XRD measurement using CuK ⁇ rays as the light source is 1.
  • the angle is preferably from 8 ° to 2.2 °, more preferably from 1.8 ° to 2.1 °.
  • the electrolytic manganese dioxide of the present invention has a BET specific surface area of preferably 10 m 2 / g or more and 40 m 2 / g or less because the voltage drop 1 when an alkaline manganese dry battery is formed becomes small and the high rate characteristics are easily improved. 25 m 2 / g or more and 35 m 2 / g or less is more preferable.
  • the electrolytic manganese dioxide of the present invention makes it easy to achieve both battery performance and filling density when an alkaline dry battery is used, so that the average particle diameter is preferably 20 ⁇ m or more and 50 ⁇ m or less, and more preferably 20 ⁇ m or more and 40 ⁇ m or less. .
  • the manganese ion concentration in the supplemental manganese solution supplied to the electrolytic cell is 40 g / L or more.
  • the micropore area is 45 m 2 / g to 90 m 2 / g and the twin rate in the crystal structure is 40% to 80%.
  • the following electrolytic manganese dioxide can be produced.
  • the electrolysis current density is 0.1 A / dm 2 or more 1.0A / dm 2 or less.
  • the electrolytic current density is less than 0.1 A / dm 2 , the micropore area is decreased and the productivity is extremely decreased, which is not preferable.
  • the twin rate increases, which is not preferable.
  • the electrolysis current density is 0.2 A / dm 2 or more 0.8 A / dm 2 or less, 0.25A / dm 2 or more 0.6 A / dm More preferably, it is 2 or less.
  • the number of electrolysis days is 15 days or less.
  • Productivity improves by making electrolysis days into 15 days or less. For example, 1 to 5 days, 7 to 15 days, and the like can be given.
  • the electrolysis temperature is preferably 90 ° C. or higher and 99 ° C. or lower in order to maintain manufacturing efficiency by maintaining current efficiency, suppress evaporation of the electrolytic solution, and prevent an increase in heating cost.
  • the electrolysis temperature is more preferably 93 ° C. or more and 97 ° C. or less, and further preferably 95 ° C. or more and 97 ° C. or less from the viewpoint of current efficiency and heating cost.
  • the sulfuric acid concentration here is a value excluding sulfate ions of manganese sulfate.
  • the sulfuric acid in the electrolytic solution is controlled as the sulfuric acid concentration, and the sulfuric acid concentration during the electrolysis period can be made constant, or the sulfuric acid concentration can be arbitrarily changed during the electrolysis period.
  • the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is 44 g / L or more and 50 g / L or less.
  • the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is less than 44 g / L, the micropore area of the obtained electrolytic manganese dioxide tends to be small, and as a result, the high-rate characteristics are likely to deteriorate.
  • it exceeds 50 g / L a passive film is likely to be formed on the surface of the titanium electrode during electrolysis, and as a result, peeling of manganese dioxide deposited on the titanium electrode is likely to occur, resulting in poor electrodeposition.
  • the sulfuric acid concentration at the end of electrolysis can be controlled to be higher than the sulfuric acid concentration at the start of electrolysis.
  • the sulfuric acid concentration during the electrolysis period or at the start of electrolysis is 44 g / L or more and 50 g / L or less, and the reason is as described above.
  • the sulfuric acid concentration at the end of electrolysis is preferably 45 g / L or more and 80 g / L or less.
  • Electrolysis with a relatively high concentration of sulfuric acid in the second half makes the electrode base material less susceptible to corrosion damage because it is already covered with the electrolytic manganese dioxide deposition layer, and further increases the alkaline potential in addition to the features of the first half. Thus, it becomes easy to obtain electrolytic manganese dioxide excellent in high rate characteristics.
  • the sulfuric acid concentration during electrolysis is not gradually changed from the start of electrolysis to the end of electrolysis, but the sulfuric acid concentration can be switched between the first half and the second half of electrolysis.
  • the ratio of electrolysis in the first half and electrolysis in the second half There is no restriction on the ratio of electrolysis in the first half and electrolysis in the second half.
  • the ratio of electrolysis time at low sulfuric acid concentration and high sulfuric acid concentration is in the range of 1: 9 to 9: 1, particularly 3: 7 to 7: 3. preferable.
  • the method for producing electrolytic manganese dioxide of the present invention can also be performed by a so-called suspension electrolysis method in which particles of manganese oxide or the like are continuously mixed in a sulfuric acid-manganese sulfate mixed solution.
  • the method for producing electrolytic manganese dioxide of the present invention is to grind electrolytic manganese dioxide obtained by electrolysis.
  • a jaw crusher, a roller mill, a ball mill, a jet mill or the like can be used.
  • the roller mill include a centrifugal roller mill and a saddle type Roche mill.
  • it has excellent cost and durability and is suitable for industrial use, so it can grind raw materials with micro Vickers hardness of 400HV (JIS Z 2244) or higher, and mill motor of 20kW or more and 150kW or less A roller mill having is preferred.
  • electrolytic manganese dioxide pulverized by a roller mill can be mixed with electrolytic manganese dioxide having a mode diameter smaller than 1 ⁇ m or less.
  • the mixing amount of manganese dioxide with a smaller mode particle size and fine particles of 1 ⁇ m or less is mixed in an amount not exceeding the weight of electrolytic manganese dioxide pulverized by a roller mill, and the total weight% is 10 wt% or more and 40 wt% or less. preferable.
  • dry mixing is preferable in terms of cost.
  • fine particles of 1 ⁇ m or less generated by pulverization with a roller mill or the like can be obtained by adjusting the pH of the mixed slurry to 2.5 to 6.5.
  • the particle size distribution may be adjusted by classification after pulverization, or may be adjusted by dry air classification or wet dispersion classification.
  • the method of using the electrolytic manganese dioxide of the present invention as a positive electrode active material of an alkaline manganese dry battery is not particularly limited, and can be used as a positive electrode mixture by mixing with additives by a known method.
  • a mixed powder obtained by adding carbon for imparting conductivity to electrolytic manganese dioxide, an electrolytic solution, and the like, and forming a powder molded body that is pressure-molded into a disk shape or a ring shape can be used as a battery positive electrode.
  • FIG. 2 is a pore distribution of electrolytic manganese dioxide obtained in Example 1.
  • 2 is a discharge curve of electrolytic manganese dioxide obtained in Example 1.
  • 2 is an enlarged view (0 to 0.2 seconds) of a discharge curve of electrolytic manganese dioxide obtained in Example 1.
  • FIG. 2 is a particle size distribution of electrolytic manganese dioxide obtained in Example 1.
  • FIG. 2 is a particle size distribution of electrolytic manganese dioxide obtained in Example 2.
  • FIG. 3 is a particle size distribution of electrolytic manganese dioxide obtained in Example 3.
  • 4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 4.
  • 4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 5.
  • 4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 6.
  • FIG. 3 is a particle size distribution of electrolytic manganese dioxide obtained in Example 7.
  • FIG. 4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 8.
  • 4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 9.
  • 4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 10.
  • 4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 11.
  • 2 is a particle size distribution of electrolytic manganese dioxide obtained in Comparative Example 1.
  • FIG. 3 is a particle size distribution of electrolytic manganese dioxide obtained in Comparative Example 2.
  • 4 is a particle size distribution of electrolytic manganese dioxide obtained in Comparative Example 3.
  • micropore area of electrolytic manganese dioxide was measured using a high-precision, multi-analyte gas adsorption amount measuring device (trade name: Autosorb-iQ, manufactured by Cantachrome Instruments Japan GK). After dehydration at 150 ° C. for 4 hours while evacuating, the amount of adsorbed argon was measured in the pressure range of 87 K and 0.0001 to 760 Torr using argon as an adsorbent.
  • a pore distribution is calculated by applying the NLDFT method to the obtained adsorption isotherm, and the pore area in the range of 0.46 to 1.95 nm is the micropore area, and the range of 1.95 to 49.0 nm.
  • the pore area of each pore was defined as the mesopore area.
  • fitting was performed using a cylindrical pore model of zeolite / silica.
  • twin rate and half width full width at half maximum: FWHM
  • XRD measurement ⁇ Measurement of twin rate and half width (full width at half maximum: FWHM) by XRD measurement.
  • the twin rate and half width (FWHM) of electrolytic manganese dioxide were measured and calculated using an X-ray diffractometer (trade name: MXP-3, manufactured by Mac Science).
  • the twin rate is obtained from the XRD measurement result after obtaining the plane distance between the (061) plane and the (021) plane, and then the reference (Reference 1: Progress in Solid State Chemistry, Vol. 23, pp. 1-130, 1995, (Reference Document 2: Tosoh Research Report, Vol. 49, p. 21-27, 2005) was calculated from the b-axis and c-axis lengths of the crystal lattice by the following formula.
  • the full width at half maximum was obtained by calculating the full width at half maximum of the (110) plane from diffraction lines with 2 ⁇ of around 22 ⁇ 1 °.
  • the alkaline potential of electrolytic manganese dioxide was measured in a 40 wt% KOH aqueous solution as follows.
  • sulfate radical and sodium content The sulfate radical and sodium content of electrolytic manganese dioxide were quantified by dissolving electrolytic manganese dioxide in nitric acid and hydrogen peroxide solution, and measuring this solution with ICP.
  • the particle size composition of electrolytic manganese dioxide was measured according to the following method. 0.03 g of electrolytic manganese dioxide is added to 20 ml of pure water, pH is adjusted to 8 by adding ammonia water, and then a dispersion slurry is prepared by ultrasonic irradiation. Microtrac MT3300EXII (manufactured by Microtrac Bell) and SDC circulation The particle size distribution was measured in the HRA mode using a container (manufactured by Microtrack Bell).
  • the BET specific surface area of electrolytic manganese dioxide was measured by nitrogen adsorption according to the BET one-point method.
  • a gas adsorption specific surface area measuring device (Flowsorb III, manufactured by Shimadzu Corporation) was used as the measuring device.
  • the electrolytic manganese dioxide was dehydrated by heating at 150 ° C. for 1 hour.
  • the press density of electrolytic manganese dioxide is obtained by pressing 0.5 g of electrolytic manganese dioxide at 2 t / cm 2 using a 13 mm ⁇ mold and holding it for 60 seconds to produce a molded body.
  • the press density is determined from the weight and volume of the molded body. Asked.
  • a mixture was prepared by mixing 90% by weight of electrolytic manganese dioxide, 7% by weight of graphite (trade name: KS-44, manufactured by Lonza) and 3% by weight of polytetrafluoroethylene (manufactured by Aldrich).
  • a positive electrode is formed by pressure bonding to a mesh made at 2 t / cm 2 , and a positive electrode, a separator, a 40 wt% KOH aqueous solution, and a negative electrode (zinc wire) are placed in a polyvinyl chloride container, and an electrochemical measurement cell (FIG. 1) is installed. Produced.
  • open circuit voltage 1 After measuring the open circuit voltage (open circuit voltage 1), a constant current (100 mA for 1 g of electrolytic manganese dioxide) was passed between the positive electrode and the negative electrode for 60 seconds, and the voltage of the single electrode of the positive electrode was mercury / oxidized. Measurements were made based on a mercury reference electrode. After passing the current for 60 seconds, the current was interrupted, and after 6 hours, the open circuit voltage (open circuit voltage 2) was measured, and the open circuit voltage drop was calculated by subtracting the open circuit voltage 2 from the open circuit voltage 1. A voltage drop from 50 ms after starting to flow current was defined as a voltage drop 1, and a value obtained by subtracting an open circuit voltage drop from a voltage drop from 50 ms to 60 seconds was defined as a voltage drop 2.
  • the voltage drop was measured when the electrolytic manganese dioxide was in an undischarged state, 25% discharge, and 50% discharge. Electrolytic manganese dioxide in a 25% discharge state and a 50% discharge state was produced by discharging the electrolytic manganese dioxide at a capacity restriction of 308 mAh / g.
  • the 25% discharge state simulates a state where the lower limit voltage (1.05V) is reached by 1.5W discharge (ANSI standard discharge), which is an evaluation of high rate discharge characteristics of an alkaline manganese dry battery, and a 50% discharge state. Is a simulation of a state in which the discharge lower limit voltage (0.9 V) has been reached in 1 A discharge (ANSI standard discharge), which is also a high-rate discharge characteristic evaluation.
  • the charge transfer resistance of the positive electrode single electrode was measured by the alternating current impedance method using the electrochemical measurement cell (FIG. 1) produced by the above method.
  • an AC impedance measuring device (ECI1287A, FRA1255A, manufactured by Toyo Technica Co., Ltd.) was used, and measurement was performed at a measurement frequency of 120,000 Hz to 0.1 Hz and an AC voltage of ⁇ 5 mV.
  • the measurement data was analyzed by Nyquist plot, and the diameter of the semicircular arc component was taken as the charge transfer resistance.
  • the charge transfer resistance was measured when the electrolytic manganese dioxide was in an undischarged state, 25% discharge, and 50% discharge.
  • Example 1 Electrolysis was carried out using an electrolytic cell that had a heating device and suspended a titanium plate as an anode and a graphite plate as a cathode so as to face each other.
  • the electrodeposited plate-like electrolytic manganese dioxide was washed with pure water, pulverized with a jaw crusher, and then pulverized with a ball mill to obtain an electrolytic manganese dioxide pulverized product.
  • this electrolytic manganese dioxide pulverized product is put into a water tank, and an aqueous sodium hydroxide solution is added while stirring, and the slurry is neutralized so as to have a pH of 2.8. Water washing, filtration separation, and drying were performed.
  • an electrolytic manganese dioxide powder was obtained through a sieve having an aperture of 63 ⁇ m.
  • the pore distribution of the obtained electrolytic manganese dioxide is shown in FIG. 2, the discharge curve is shown in FIG. 3, the enlarged view of the discharge curve (0 to 0.2 seconds) is shown in FIG. 4, and the particle size distribution is shown in FIG. Table 1 shows evaluation results such as area and twin rate.
  • the voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide are shown in Table 2.
  • Example 2 Electrolysis was carried out in the same manner as in Example 1 except that a replenished manganese sulfate solution having a manganese ion concentration of 55 g / L was supplied and that the sulfuric acid concentrations in the initial electrolysis and the latter electrolysis were 46 g / L and 65 g / L. .
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 6, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 3 Supplying manganese sulfate solution with a manganese ion concentration of 45 g / L, maintaining the temperature of the electrolytic cell at 96 ° C., conducting electrolysis for 7 days while maintaining the sulfuric acid concentration at 45 g / L, and neutralizing Electrolysis was carried out in the same manner as in Example 1 except that the pH at that time was 5.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 7, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 4 Example except that a replenished manganese sulfate solution having a manganese ion concentration of 100 g / L was supplied, that the temperature of the electrolytic cell was maintained at 96 ° C., and electrolysis was performed for one day while maintaining the sulfuric acid concentration at 44 g / L. Electrolysis was performed in the same manner as in 1.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 8, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 5 Grinding was performed in the same manner as in Example 1 to obtain a ground product of electrolytic manganese dioxide. Pure water was added to the obtained electrolytic manganese dioxide powder to prepare a slurry, which was subjected to dispersion treatment by ultrasonic irradiation and then allowed to stand for 20 minutes. Then, it decanted and isolate
  • electrolytic manganese dioxide of 10 ⁇ m or more and electrolytic manganese dioxide of 10 ⁇ m or less were mixed at a weight ratio of 2: 1.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 9, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 6 Electrolytic manganese dioxide was obtained in the same manner as in Example 5 except that 10 ⁇ m or more of electrolytic manganese dioxide and 10 ⁇ m or less of electrolytic manganese dioxide were mixed at a weight ratio of 5: 4. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 10, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 7 Electrolysis was carried out in the same manner as in Example 1 except that a replenished manganese sulfate solution having a manganese ion concentration of 74 g / L was supplied and that the sulfuric acid concentrations in the initial electrolysis and the latter electrolysis were 45 g / L and 75 g / L. .
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 11, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 8 Electrolysis was carried out in the same manner as in Example 1 except that a replenished manganese sulfate solution having a manganese ion concentration of 55 g / L was supplied and that electrolysis was performed for 15 days while maintaining the sulfuric acid concentration at 55 g during electrolysis.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 12, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 9 Supplying a replenished manganese sulfate solution with a manganese ion concentration of 84 g / L, an electrolysis current density of 0.55 A / dm 2, and sulfuric acid concentrations of 45 g / L and 65 g / L in the initial electrolysis and the latter electrolysis Except for this, electrolysis was performed in the same manner as in Example 1.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 13, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 10 Supplying a replenished manganese sulfate solution with a manganese ion concentration of 74 g / L, an electrolysis current density of 0.55 A / dm 2, and sulfuric acid concentrations of 45 g / L and 65 g / L in the initial and second half of electrolysis Except for this, electrolysis was performed in the same manner as in Example 1.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 14, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Example 11 Supplying a replenished manganese sulfate solution having a manganese ion concentration of 55 g / L, an electrolysis current density of 0.40 A / dm 2, and sulfuric acid concentrations of 46 g / L and 65 g / L in the initial and second half of electrolysis Except for this, electrolysis was performed in the same manner as in Example 1.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 15, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Comparative Example 1 Supplying manganese sulfate solution with a manganese ion concentration of 19 g / L, maintaining the temperature of the electrolytic cell at 96 ° C., performing electrolysis for 10 days while maintaining the sulfuric acid concentration at 19 g / L, and neutralizing Electrolysis was carried out in the same manner as in Example 1 except that the pH at that time was 5.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 16, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Comparative Example 2 Supplying a replenished manganese sulfate solution with a manganese ion concentration of 30 g / L, maintaining the electrolytic bath temperature at 96 ° C., conducting electrolysis for 1 day while maintaining the sulfuric acid concentration at 28 g / L, and neutralization Electrolysis was carried out in the same manner as in Example 1 except that the pH at that time was 5.
  • the particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 17, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • Comparative Example 3 A method similar to that of Example 1 except that a replenished manganese sulfate solution having a manganese ion concentration of 55 g / L was supplied and that the sulfuric acid concentrations in the initial electrolysis and the latter electrolysis were adjusted to 38 g / L and 65 g / L. Electrolysis was performed. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 18, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
  • the electrolytic manganese dioxide of the present invention has a specific micropore area and twin rate in the crystal structure, it should be used as a positive electrode active material for manganese batteries, particularly alkaline manganese batteries, having excellent discharge characteristics, particularly high-rate discharge characteristics. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is electrolytic manganese dioxide with high-rate discharge characteristics when used as a positive electrode in an alkaline manganese dry cell. The electrolytic manganese dioxide has a micro hole surface area of 45 – 90 m2/g and a twin crystal proportion of 40 – 80% in the crystal structure. Also provided are a method for manufacturing the electrolytic manganese dioxide and an application thereof.

Description

電解二酸化マンガン及びその製造方法並びにその用途Electrolytic manganese dioxide, method for producing the same, and use thereof
 本発明は、電解二酸化マンガン及びその製造方法並びにその用途に関するものであり、より詳しくは、例えば、マンガン乾電池、特にアルカリマンガン乾電池において、正極活物質として使用される電解二酸化マンガン及びその製造方法に関する。 The present invention relates to electrolytic manganese dioxide, a method for producing the same, and uses thereof. More specifically, the present invention relates to electrolytic manganese dioxide used as a positive electrode active material in, for example, a manganese dry battery, particularly an alkaline manganese dry battery, and a method for producing the same.
 二酸化マンガンは、例えば、マンガン乾電池、特にアルカリマンガン乾電池の正極活物質として知られており、保存性に優れ、かつ安価であるという利点を有する。特に、二酸化マンガンを正極活物質として用いるアルカリマンガン乾電池は、ローレート放電からハイレート放電まで幅広い放電レートでの特性に優れていることから、電子カメラ、携帯情報機器、さらにはゲーム機や玩具にまで幅広く使用されている。 Manganese dioxide is known, for example, as a positive electrode active material for manganese dry batteries, particularly alkaline manganese dry batteries, and has the advantage of being excellent in storage stability and being inexpensive. In particular, alkaline manganese batteries using manganese dioxide as the positive electrode active material have excellent characteristics in a wide range of discharge rates from low-rate discharge to high-rate discharge, so they are widely used in electronic cameras, portable information devices, game machines and toys. in use.
 しかし、アルカリマンガン乾電池は、放電電流が大きくなるに従い正極活物質である二酸化マンガンの利用率が低下し、また放電電圧が低下した状態では使用できないため、実質的な放電容量が大きく損なわれるという問題があった。すなわち、大電流を使用(ハイレート放電)する機器にアルカリマンガン乾電池を用いると、充填されている正極活物質である二酸化マンガンが十分に活用されず、使用可能な時間が短いという欠点を有していた。 However, the alkaline manganese battery has a problem that the practical discharge capacity is greatly impaired because the utilization rate of manganese dioxide, which is a positive electrode active material, decreases as the discharge current increases and cannot be used in a state where the discharge voltage is reduced. was there. In other words, when an alkaline manganese battery is used in a device that uses a large current (high rate discharge), the charged positive electrode active material manganese dioxide is not fully utilized, and the usable time is short. It was.
 これまで、ハイレート放電特性改善のため、CuKα線を光源とするXRD測定における(110)面の半値幅が2.2°以上2.9°以下、さらにX線回折ピーク(110)/(021)のピーク強度比が0.50以上0.80以下であることを特徴とする二酸化マンガンが提案されている(特許文献1)。 Up to now, in order to improve the high-rate discharge characteristics, the half width of the (110) plane in the XRD measurement using CuKα rays as the light source is 2.2 ° to 2.9 °, and the X-ray diffraction peak (110) / (021) Manganese dioxide characterized in that the peak intensity ratio is 0.50 or more and 0.80 or less has been proposed (Patent Document 1).
 また、ピーク強度比が0.50<I(110)/I(021)<0.70でありI(221)/I(021)<0.70であることを特徴とする電解二酸化マンガンも提案されている(特許文献2)。 Also proposed is an electrolytic manganese dioxide characterized in that the peak intensity ratio is 0.50 <I (110) / I (021) <0.70 and I (221) / I (021) <0.70. (Patent Document 2).
 さらに、粉末X線回折測定による(110)面の半価幅が、2.00°~2.40°の範囲にある二酸化マンガンの使用も提案されている(特許文献3)。 Furthermore, the use of manganese dioxide having a half width of the (110) plane measured by powder X-ray diffraction measurement in the range of 2.00 ° to 2.40 ° has been proposed (Patent Document 3).
 しかしながら、上記の特徴を有する二酸化マンガンでもハイレート放電における課題を解決するには十分ではなく、短時間に大電流を取り出すハイレート放電条件において、高容量、長寿命を発現できる優れた二酸化マンガン、所謂ハイレート放電特性がより優れた二酸化マンガンが望まれていた。 However, even manganese dioxide having the above characteristics is not sufficient to solve the problems in high-rate discharge, and excellent manganese dioxide that can exhibit high capacity and long life under high-rate discharge conditions in which a large current is taken out in a short time, so-called high-rate Manganese dioxide having better discharge characteristics has been desired.
日本国特開2009-135067号公報Japanese Unexamined Patent Publication No. 2009-135067 日本国特開2007-141643号公報Japanese Laid-Open Patent Publication No. 2007-141643 国際公開2013/157181号International Publication 2013/157181
 本発明の目的は、ハイレート放電特性に優れるマンガン乾電池、特にアルカリマンガン乾電池の正極活物質として使用される電解二酸化マンガンであって、従来とは異なりミクロ孔表面積が大きく、かつ、電解二酸化マンガンの結晶構造中の双晶率が少ない電解二酸化マンガン及びその製造方法並びにその用途を提供するものである。 An object of the present invention is an electrolytic manganese dioxide used as a positive electrode active material of a manganese dry battery, particularly an alkaline manganese dry battery excellent in high-rate discharge characteristics, which has a different micropore surface area from the conventional one and has a crystal of electrolytic manganese dioxide. The present invention provides electrolytic manganese dioxide having a small twin rate in the structure, a method for producing the same, and use thereof.
 本発明者らは、マンガン乾電池、特にアルカリマンガン乾電池の正極活物質として使用される電解二酸化マンガンについて鋭意検討を重ねた結果、ミクロ孔面積が45m/g以上90m/g以下であり、かつ、結晶構造中の双晶率が40%以上80%以下である特徴を有することで、優れたハイレート放電特性を有し、充填性が高い正極材料となることを見出し、本発明を完成するに至った。 As a result of intensive studies on electrolytic manganese dioxide used as a positive electrode active material for manganese dry batteries, particularly alkaline manganese dry batteries, the present inventors have a micropore area of 45 m 2 / g or more and 90 m 2 / g or less, and In order to complete the present invention, it has been found that the twin rate in the crystal structure is 40% or more and 80% or less, so that the cathode material has excellent high rate discharge characteristics and high filling properties. It came.
 すなわち、本発明は以下の[1]乃至[10]に存する。 That is, the present invention resides in the following [1] to [10].
 [1] ミクロ孔面積が45m/g以上90m/g以下であり、かつ、結晶構造中の双晶率が40%以上80%以下であることを特徴とする電解二酸化マンガン。 [1] An electrolytic manganese dioxide having a micropore area of 45 m 2 / g or more and 90 m 2 / g or less and a twin rate in a crystal structure of 40% or more and 80% or less.
 [2] アルカリ電位が250mV以上310mV以下であることを特徴とする上記[1]に記載の電解二酸化マンガン。 [2] The electrolytic manganese dioxide as described in [1] above, wherein the alkali potential is 250 mV or more and 310 mV or less.
 [3] 硫酸根(SO)の含有量が1.5重量%以下であることを特徴とする上記[1]又は[2]に記載の電解二酸化マンガン。 [3] The electrolytic manganese dioxide as described in [1] or [2] above, wherein the content of sulfate radical (SO 4 ) is 1.5% by weight or less.
 [4] ナトリウム含有量が10重量ppm以上5,000重量ppm以下であることを特徴とする上記[1]~[3]のいずれかに記載の電解二酸化マンガン。 [4] The electrolytic manganese dioxide as described in any one of [1] to [3] above, wherein the sodium content is 10 ppm by weight or more and 5,000 ppm by weight or less.
 [5] 体積頻度分布における最頻粒径(A)と最頻粒径(A)の1/2高さの粒径幅(B)について、(B)/(A)の値が0.90以上2.0以下であることを特徴とする上記[1]~[4]のいずれかに記載の電解二酸化マンガン。 [5] The value of (B) / (A) is 0.90 for the mode particle size (A) in the volume frequency distribution and the particle size width (B) that is 1/2 the mode particle size (A). The electrolytic manganese dioxide according to any one of [1] to [4] above, which is 2.0 or more and 2.0 or less.
 [6] 平均粒子径が20μm以上50μm以下であることを特徴とする上記[1]~[5]のいずれかに記載の電解二酸化マンガン。 [6] The electrolytic manganese dioxide as described in any one of [1] to [5] above, wherein the average particle size is 20 μm or more and 50 μm or less.
 [7] 電解槽に供給される補給マンガン液中のマンガンイオン濃度が40g/L以上で、電解電流密度が0.1A/dm以上1.0A/dm以下で、電解開始時の電解液中の硫酸濃度が44g/L以上50g/L以下で、かつ、電解日数が15日以下であることを特徴とする上記[1]~[6]のいずれかに記載の電解二酸化マンガンの製造方法。 [7] with manganese ion concentration in the replenishment manganese liquid supplied to the electrolytic cell is 40 g / L or more, the electrolytic current density is 0.1 A / dm 2 or more 1.0A / dm 2 or less, the electrolytic solution at the time of initiation of the electrolysis The method for producing electrolytic manganese dioxide according to any one of the above [1] to [6], wherein the sulfuric acid concentration in the solution is 44 g / L or more and 50 g / L or less and the number of days of electrolysis is 15 days or less .
 [8] 電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸-硫酸マンガン混合溶液を使用し、かつ、電解終了時の電解液中の硫酸濃度が32g/L以上80g/L以下であることを特徴とする上記[7]に記載の電解二酸化マンガンの製造方法。 [8] Use a sulfuric acid-manganese sulfate mixed solution whose sulfuric acid concentration in the electrolytic solution at the end of electrolysis is higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis, and sulfuric acid concentration in the electrolytic solution at the end of electrolysis Is 32 g / L or more and 80 g / L or less, The manufacturing method of the electrolytic manganese dioxide as described in said [7] characterized by the above-mentioned.
 [9] 上記[1]~[6]のいずれかに記載の電解二酸化マンガンを含むことを特徴とする電池用正極活物質。 [9] A positive electrode active material for a battery comprising the electrolytic manganese dioxide according to any one of [1] to [6] above.
 [10] 上記[9]に記載の電池用正極活物質を含むことを特徴とする電池。 [10] A battery comprising the battery positive electrode active material according to [9].
 本発明の電解二酸化マンガンは、アルカリ乾電池の正極材料として用いた場合にハイレート放電特性と充填性に優れ、さらに、本発明の製造方法により本発明の電解二酸化マンガンを得ることができる。 The electrolytic manganese dioxide of the present invention is excellent in high-rate discharge characteristics and filling properties when used as a positive electrode material for alkaline dry batteries, and the electrolytic manganese dioxide of the present invention can be obtained by the production method of the present invention.
 以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明の電解二酸化マンガンは、ミクロ孔面積が45m/g以上90m/g以下である。ミクロ孔面積が45m/gよりも小さいと電解二酸化マンガンを放電した際の電圧降下が大きくなり、その結果、ハイレート特性が低下しやすくなり、好ましくない。ミクロ孔面積が90m/gより大きいと電解二酸化マンガンの粉体密度が低下し、乾電池への充填性が低下するため、好ましくない。ミクロ孔面積は45m/g以上70m/g以下であることが好ましい。 The electrolytic manganese dioxide of the present invention has a micropore area of 45 m 2 / g or more and 90 m 2 / g or less. When the micropore area is smaller than 45 m 2 / g, the voltage drop when the electrolytic manganese dioxide is discharged becomes large, and as a result, the high rate characteristic tends to be lowered, which is not preferable. When the micropore area is larger than 90 m 2 / g, the powder density of the electrolytic manganese dioxide is lowered, and the filling property to the dry battery is lowered, which is not preferable. The micropore area is preferably 45 m 2 / g or more and 70 m 2 / g or less.
 通常、アルカリマンガン乾電池をハイレートでパルス放電した場合には電圧降下が生じる。この電圧降下には応答速度が数十ミリ秒程度と速いもの(以下、電圧降下1という)と、応答速度が数十ミリ秒よりも遅いもの(以下、電圧降下2という)の2種類がある。電圧降下が大きいと活物質の利用率が低下してしまうため、利用率を大きくするためには電圧降下(電圧降下1と電圧降下2の合計)が小さいことが望ましい。電圧降下を小さくすることにより活物質の利用率を大きくすることができ、その結果、アルカリマンガン乾電池のハイレート放電性能を向上させることができる。 Usually, a voltage drop occurs when an alkaline manganese battery is pulse-discharged at a high rate. There are two types of voltage drops, one with a response speed as fast as several tens of milliseconds (hereinafter referred to as voltage drop 1) and one with a response speed slower than several tens of milliseconds (hereinafter referred to as voltage drop 2). . When the voltage drop is large, the utilization factor of the active material is lowered. Therefore, in order to increase the utilization factor, it is desirable that the voltage drop (the sum of the voltage drop 1 and the voltage drop 2) is small. By reducing the voltage drop, the utilization factor of the active material can be increased, and as a result, the high rate discharge performance of the alkaline manganese battery can be improved.
 一方、電解二酸化マンガンの放電式は、通常、以下の式で表される。 On the other hand, the discharge formula of electrolytic manganese dioxide is usually represented by the following formula.
  MnO+HO+e → MnOOH+OH
 この時、まず始めに、電解二酸化マンガンの表面において電解液中のHOから[H]を取り込む電荷移動反応が生じる。この電荷移動反応に対する抵抗(電荷移動抵抗)は、上記の応答速度が速い電圧降下(電圧降下1)の大きさと密接に関連し、電荷移動抵抗が小さいと電圧降下1が小さくなると推定される。
MnO 2 + H 2 O + e → MnOOH + OH
At this time, first, a charge transfer reaction for taking in [H + ] from H 2 O in the electrolytic solution occurs on the surface of the electrolytic manganese dioxide. The resistance to the charge transfer reaction (charge transfer resistance) is closely related to the magnitude of the voltage drop (voltage drop 1) having a fast response speed, and it is estimated that the voltage drop 1 becomes small when the charge transfer resistance is small.
 一方、電荷移動反応は電解二酸化マンガンの表面において生じるため、電解二酸化マンガンの表面積が大きいと反応が進みやすく、電荷移動抵抗が小さくなる。電解二酸化マンガンには2nm以下の細孔(以下ミクロ孔)と2nm~50nmの細孔(以下、メソ孔という)が存在しているが、ミクロ孔の表面積はメソ孔と比較して3~5倍程度大きいため、電荷移動反応は主にミクロ孔の表面で起きていると推定される。 On the other hand, since the charge transfer reaction occurs on the surface of the electrolytic manganese dioxide, if the surface area of the electrolytic manganese dioxide is large, the reaction is likely to proceed and the charge transfer resistance is reduced. Electrolytic manganese dioxide has pores of 2 nm or less (hereinafter referred to as micropores) and pores of 2 to 50 nm (hereinafter referred to as mesopores), but the surface area of the micropores is 3 to 5 in comparison with mesopores. Since it is about twice as large, the charge transfer reaction is presumed to occur mainly on the surface of the micropores.
 よって、電解二酸化マンガンのミクロ孔面積が大きいと電荷移動抵抗が小さくなるため電圧降下1も小さくなり、その結果、アルカリマンガン乾電池のハイレート特性が向上しやすくなると推定される。 Therefore, if the micropore area of electrolytic manganese dioxide is large, the charge transfer resistance is small, so the voltage drop 1 is also small. As a result, it is presumed that the high-rate characteristics of the alkaline manganese battery are likely to be improved.
 本発明の電解二酸化マンガンは、結晶構造中の双晶率が40%以上80%以下である。双晶率が40%より小さいとアルカリマンガン乾電池とした際の電圧が低くなり、好ましくない。双晶率が80%より大きいと電圧降下2が大きくなり、アルカリマンガン乾電池のハイレート特性が低下しやすくなるため好ましくない。結晶構造中の双晶率は40%以上70%以下が好ましく、50%以上70%以下がより好ましい。 The electrolytic manganese dioxide of the present invention has a twin rate in the crystal structure of 40% or more and 80% or less. If the twin rate is less than 40%, the voltage when the alkaline manganese battery is made is low, which is not preferable. If the twin rate is greater than 80%, the voltage drop 2 becomes large, and the high rate characteristics of the alkaline manganese dry battery are likely to deteriorate, which is not preferable. The twin rate in the crystal structure is preferably 40% or more and 70% or less, and more preferably 50% or more and 70% or less.
 電解二酸化マンガンの放電時には、電解二酸化マンガンの表面において電解液中のHOから[H]を取り込む電荷移動反応が生じた後、電解二酸化マンガンの結晶構造内を[H]が拡散し、MnOと[H]が反応してMnOOHが生成する。結晶構造内の[H]の拡散速度は、電解二酸化マンガンの放電時に見られる電圧降下2と密接に関連し、拡散速度が大きいと電圧降下2が小さくなると推定される。 At the time of discharge of electrolytic manganese dioxide, after a charge transfer reaction that takes in [H + ] from H 2 O in the electrolytic solution on the surface of electrolytic manganese dioxide, [H + ] diffuses in the crystal structure of electrolytic manganese dioxide. MnO 2 reacts with [H + ] to produce MnOOH. The diffusion rate of [H + ] in the crystal structure is closely related to the voltage drop 2 observed during the discharge of electrolytic manganese dioxide, and it is estimated that the voltage drop 2 becomes small when the diffusion rate is high.
 一方、電解二酸化マンガンはγ型MnOであるが、その結晶構造中には双晶が存在することが知られている。電解二酸化マンガンの結晶構造内を[H]が拡散する際には、双晶が少ないと拡散がスムーズになるため拡散速度が大きくなり、その結果、電圧降下2が小さくなると推定される。 On the other hand, electrolytic manganese dioxide is γ-type MnO 2 , and it is known that twins exist in the crystal structure. When [H + ] diffuses in the crystal structure of electrolytic manganese dioxide, if there are few twins, the diffusion becomes smooth because the diffusion becomes smooth, and as a result, the voltage drop 2 is estimated to be small.
 よって、電解二酸化マンガンの結晶構造中の双晶率が小さいと電圧降下2が小さくなり、その結果、アルカリマンガン乾電池のハイレート特性が向上しやすくなると推定される。 Therefore, when the twin rate in the crystal structure of electrolytic manganese dioxide is small, the voltage drop 2 is small, and as a result, it is presumed that the high rate characteristics of the alkaline manganese dry battery are likely to be improved.
 本発明の電解二酸化マンガンは、アルカリマンガン乾電池とした際の電圧と保存特性を高く維持し、使用可能な放電電圧下限までの放電時間を長くできるため、アルカリ電位が250mV以上310mV以下であることが好ましい。アルカリ電位は280mV以上310mV以下がより好ましく、290mV以上310mV以下であることがさらに好ましい。アルカリ電位は、40重量%KOH水溶液中で水銀/酸化水銀参照電極を基準として測定する。 The electrolytic manganese dioxide of the present invention maintains high voltage and storage characteristics when it is used as an alkaline manganese battery, and can increase the discharge time until the lower limit of usable discharge voltage. Therefore, the alkaline potential may be 250 mV or more and 310 mV or less. preferable. The alkali potential is more preferably 280 mV to 310 mV, and still more preferably 290 mV to 310 mV. The alkali potential is measured in a 40 wt% KOH aqueous solution with a mercury / mercury oxide reference electrode as a standard.
 本発明の電解二酸化マンガンは、電圧降下1が小さくなり、アルカリマンガン乾電池とした際にハイレート特性がより優れるとともに、乾電池の保存特性を高く維持するため、硫酸根(SO)の含有量が1.5重量%以下であることが好ましく、より好ましくは1.3重量%以下である。 In the electrolytic manganese dioxide of the present invention, the voltage drop 1 becomes small, and when the alkaline manganese battery is made, the high-rate characteristic is more excellent, and the storage characteristic of the dry battery is kept high, so that the content of sulfate radical (SO 4 ) is 1. It is preferably 5% by weight or less, and more preferably 1.3% by weight or less.
 本発明の電解二酸化マンガンは、アルカリマンガン乾電池とした際に缶体等の金属材料に対する腐食性が低くなるとともに、電圧降下1が小さくなり、アルカリマンガン乾電池とした際のハイレート特性を維持できるため、ナトリウム含有量が10重量ppm以上5,000重量ppm以下であることが好ましく、より好ましくは10重量ppm以上3,000重量ppm以下である。電解二酸化マンガンに含まれるナトリウムは主に中和剤として使用される水酸化ナトリウムに由来するため、そのほとんどが粒子表面に吸着されて存在する。 The electrolytic manganese dioxide of the present invention has a low corrosiveness to a metal material such as a can when it is an alkaline manganese dry battery, and the voltage drop 1 is small, so that the high rate characteristics when the alkaline manganese dry battery is made can be maintained. It is preferable that sodium content is 10 weight ppm or more and 5,000 weight ppm or less, More preferably, it is 10 weight ppm or more and 3,000 weight ppm or less. Since sodium contained in electrolytic manganese dioxide is mainly derived from sodium hydroxide used as a neutralizing agent, most of it is adsorbed on the particle surface.
 本発明の電解二酸化マンガンは、体積頻度分布における最頻粒径(A)と最頻粒径(A)の1/2高さの粒径幅(B)について、(B)/(A)の値が0.90以上2.0以下であることが好ましい。体積頻度分布における最頻粒径(A)とは、分布における体積頻度が最も大きい粒子径をいい、最頻粒径(A)の1/2高さの粒径幅(B)とは、最頻粒径(A)の半分の高さにおける、粒子径の最小値から最大値までの粒子径の広がりをいう。0.90以上1.7以下が好ましく、1.1より大きく1.6以下がさらに好ましい。 The electrolytic manganese dioxide of the present invention has a mode particle size (A) in the volume frequency distribution and a particle size width (B) that is 1/2 height of the mode particle size (A). The value is preferably 0.90 or more and 2.0 or less. The mode particle size (A) in the volume frequency distribution refers to the particle size having the largest volume frequency in the distribution, and the particle size width (B) that is ½ the mode particle size (A) is the maximum. The spread of the particle diameter from the minimum value to the maximum value of the particle diameter at half the height of the frequent particle diameter (A). It is preferably 0.90 or more and 1.7 or less, more preferably 1.1 or more and 1.6 or less.
 粒度構成が上記特徴を満たすことで電解二酸化マンガンのプレス密度が増加する。電解二酸化マンガンを乾電池の正極として使用する場合、グラファイト等の導電剤と混合して成型体として使用するが、電解二酸化マンガンのプレス密度が増加することにより電解二酸化マンガンと導電剤の接触性が向上し、正極の粉体抵抗が低減され、その結果、乾電池のハイレート特性が向上する。 ¡Pressure density of electrolytic manganese dioxide increases when the particle size composition satisfies the above characteristics. When electrolytic manganese dioxide is used as the positive electrode of a dry battery, it is mixed with a conductive agent such as graphite and used as a molded body. However, the contact density between electrolytic manganese dioxide and conductive agent is improved by increasing the press density of electrolytic manganese dioxide. In addition, the powder resistance of the positive electrode is reduced, and as a result, the high rate characteristics of the dry battery are improved.
 本発明の電解二酸化マンガンの粒度構成は体積頻度分布により表記される。最頻粒径(A)は、(B)/(A)の値が0.90以上2.0以下となるものであれば特に制限はないが、その粉砕効率から20μm以上が好ましく、粒子の反応性の観点から75μm以下が好ましい。また、最頻粒径(A)の1/2高さの粒径幅(B)は、(B)/(A)の値が0.90以上2.0以下となるものであれば特に制限はないが、生産性の観点から15μm以上80μm以下が好ましい。 The particle size composition of the electrolytic manganese dioxide of the present invention is represented by a volume frequency distribution. The mode particle size (A) is not particularly limited as long as the value of (B) / (A) is 0.90 or more and 2.0 or less, but is preferably 20 μm or more from the pulverization efficiency. 75 μm or less is preferable from the viewpoint of reactivity. Further, the particle size width (B) that is 1/2 height of the mode particle size (A) is particularly limited as long as the value of (B) / (A) is 0.90 or more and 2.0 or less. However, it is preferably 15 μm or more and 80 μm or less from the viewpoint of productivity.
 本発明の電解二酸化マンガンは、アルカリマンガン乾電池とした際の電圧降下2が小さくなり、ハイレート特性を向上させやすくなるため、CuKα線を光源とするXRD測定による(110)面の半値幅が1.8°以上2.2°以下であることが好ましく、1.8°以上2.1°以下がより好ましい。 The electrolytic manganese dioxide of the present invention has a small voltage drop 2 when an alkaline manganese battery is formed, and it is easy to improve the high-rate characteristics. Therefore, the half width of the (110) plane by the XRD measurement using CuKα rays as the light source is 1. The angle is preferably from 8 ° to 2.2 °, more preferably from 1.8 ° to 2.1 °.
 本発明の電解二酸化マンガンは、アルカリマンガン乾電池とした際の電圧降下1が小さくなり、ハイレート特性を向上させやすくなるため、BET比表面積が10m/g以上40m/g以下であることが好ましく、25m/g以上35m/g以下であることがより好ましい。 The electrolytic manganese dioxide of the present invention has a BET specific surface area of preferably 10 m 2 / g or more and 40 m 2 / g or less because the voltage drop 1 when an alkaline manganese dry battery is formed becomes small and the high rate characteristics are easily improved. 25 m 2 / g or more and 35 m 2 / g or less is more preferable.
 本発明の電解二酸化マンガンは、アルカリ乾電池とした際の電池性能及び充填密度を両立させやすくなるため、平均粒子径が20μm以上50μm以下であることが好ましく、20μm以上40μm以下であることがより好ましい。 The electrolytic manganese dioxide of the present invention makes it easy to achieve both battery performance and filling density when an alkaline dry battery is used, so that the average particle diameter is preferably 20 μm or more and 50 μm or less, and more preferably 20 μm or more and 40 μm or less. .
 次に、本発明の電解二酸化マンガンの製造方法について説明する。 Next, the method for producing electrolytic manganese dioxide of the present invention will be described.
 本発明の電解二酸化マンガンの製造方法は、電解槽に供給される補給マンガン液中のマンガンイオン濃度は40g/L以上である。補給マンガン液中のマンガンイオン濃度を40g/L以上とすることにより、ミクロ孔面積が45m/g以上90m/g以下であり、かつ、結晶構造中の双晶率が40%以上80%以下である電解二酸化マンガンを製造することができる。 In the method for producing electrolytic manganese dioxide of the present invention, the manganese ion concentration in the supplemental manganese solution supplied to the electrolytic cell is 40 g / L or more. By setting the manganese ion concentration in the supplemental manganese solution to 40 g / L or more, the micropore area is 45 m 2 / g to 90 m 2 / g and the twin rate in the crystal structure is 40% to 80%. The following electrolytic manganese dioxide can be produced.
 本発明の電解二酸化マンガンの製造方法は、電解電流密度は0.1A/dm以上1.0A/dm以下である。電解電流密度が0.1A/dm未満であると、ミクロ孔面積が小さくなるとともに、生産性が極端に低下するため好ましくない。逆に1.0dm以上になると、双晶率が大きくなり好ましくない。生産性とミクロ孔面積、双晶率の観点から、電解電流密度は0.2A/dm以上0.8A/dm以下であることが好ましく、0.25A/dm以上0.6A/dm以下であることがより好ましい。 Method for producing electrolytic manganese dioxide of the present invention, the electrolysis current density is 0.1 A / dm 2 or more 1.0A / dm 2 or less. When the electrolytic current density is less than 0.1 A / dm 2 , the micropore area is decreased and the productivity is extremely decreased, which is not preferable. On the other hand, if it is 1.0 dm 2 or more, the twin rate increases, which is not preferable. Productivity and micropore area, from the viewpoint of SoAkiraritsu, preferably the electrolysis current density is 0.2 A / dm 2 or more 0.8 A / dm 2 or less, 0.25A / dm 2 or more 0.6 A / dm More preferably, it is 2 or less.
 本発明の電解二酸化マンガンの製造方法は、電解日数は15日以下である。電解日数を15日以下とすることで、生産性が向上する。例えば、1日~5日、7日~15日等があげられる。 In the method for producing electrolytic manganese dioxide of the present invention, the number of electrolysis days is 15 days or less. Productivity improves by making electrolysis days into 15 days or less. For example, 1 to 5 days, 7 to 15 days, and the like can be given.
 電解温度は、電流効率を維持することで製造効率を維持し、電解液の蒸発を抑制して、加熱コストの増加を防止するため、90℃以上99℃以下で行うことが好ましい。電解温度は電流効率と加熱コストの観点から、93℃以上97℃以下がより好ましく、95℃以上97℃以下がさらに好ましい。 The electrolysis temperature is preferably 90 ° C. or higher and 99 ° C. or lower in order to maintain manufacturing efficiency by maintaining current efficiency, suppress evaporation of the electrolytic solution, and prevent an increase in heating cost. The electrolysis temperature is more preferably 93 ° C. or more and 97 ° C. or less, and further preferably 95 ° C. or more and 97 ° C. or less from the viewpoint of current efficiency and heating cost.
 電解槽内の電解液には硫酸-硫酸マンガン混合溶液を使用する。なお、ここでいう硫酸濃度とは、硫酸マンガンの硫酸イオンは除いた値である。電解液中の硫酸は、硫酸濃度として制御され、電解期間中の硫酸濃度を一定にすることができるし、電解期間中に硫酸濃度を任意に変えることもできる。 Use a sulfuric acid-manganese sulfate mixed solution as the electrolyte in the electrolytic cell. In addition, the sulfuric acid concentration here is a value excluding sulfate ions of manganese sulfate. The sulfuric acid in the electrolytic solution is controlled as the sulfuric acid concentration, and the sulfuric acid concentration during the electrolysis period can be made constant, or the sulfuric acid concentration can be arbitrarily changed during the electrolysis period.
 電解開始時の電解液中の硫酸濃度は44g/L以上50g/L以下である。電解開始時の電解液中の硫酸濃度が44g/L未満であると、得られる電解二酸化マンガンのミクロ孔面積が小さくなり易くなり、その結果、ハイレート特性が低下し易くなる。一方、50g/Lを超えると、電解時にチタン電極表面に不働態被膜が形成され易くなり、その結果、チタン電極上に析出した二酸化マンガンの剥離が生じる等、電着状態が不良となり易くなる。 The sulfuric acid concentration in the electrolytic solution at the start of electrolysis is 44 g / L or more and 50 g / L or less. When the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is less than 44 g / L, the micropore area of the obtained electrolytic manganese dioxide tends to be small, and as a result, the high-rate characteristics are likely to deteriorate. On the other hand, when it exceeds 50 g / L, a passive film is likely to be formed on the surface of the titanium electrode during electrolysis, and as a result, peeling of manganese dioxide deposited on the titanium electrode is likely to occur, resulting in poor electrodeposition.
 特に、電解終了時の硫酸濃度を電解開始時の硫酸濃度よりも高く制御することができる。この場合の電解期間中又は電解開始時の硫酸濃度としては、44g/L以上50g/L以下であり、その理由は上記した通りである。また、電解終了時の硫酸濃度としては、45g/L以上80g/L以下が好ましい。このように硫酸濃度を任意に変えることにより、前半に比較的低濃度の硫酸濃度で電解することで、電極基材への腐食ダメージを軽減し結晶性が高く高充填性の二酸化マンガンを得やすく、後半に比較的高濃度の硫酸濃度で電解することにより、既に電解二酸化マンガン析出層に覆われているため電極基材がより腐食ダメージを受け難く、さらに前半の特徴に加え更にアルカリ電位が高まり、ハイレート特性に優れた電解二酸化マンガンが得られやすくなる。また、電解開始から電解終了まで電解中の硫酸濃度を徐々に変化させるのではなく、電解の前半と後半で硫酸濃度を切替えることもできる。前半の電解と、後半の電解の比率に制限はないが、例えば低硫酸濃度と高硫酸濃度での電解時間の比が1:9~9:1、特に3:7~7:3の範囲が好ましい。 In particular, the sulfuric acid concentration at the end of electrolysis can be controlled to be higher than the sulfuric acid concentration at the start of electrolysis. In this case, the sulfuric acid concentration during the electrolysis period or at the start of electrolysis is 44 g / L or more and 50 g / L or less, and the reason is as described above. Further, the sulfuric acid concentration at the end of electrolysis is preferably 45 g / L or more and 80 g / L or less. By arbitrarily changing the sulfuric acid concentration in this way, electrolysis with a relatively low sulfuric acid concentration in the first half reduces corrosion damage to the electrode substrate, making it easy to obtain highly filled manganese dioxide with high crystallinity. Electrolysis with a relatively high concentration of sulfuric acid in the second half makes the electrode base material less susceptible to corrosion damage because it is already covered with the electrolytic manganese dioxide deposition layer, and further increases the alkaline potential in addition to the features of the first half. Thus, it becomes easy to obtain electrolytic manganese dioxide excellent in high rate characteristics. In addition, the sulfuric acid concentration during electrolysis is not gradually changed from the start of electrolysis to the end of electrolysis, but the sulfuric acid concentration can be switched between the first half and the second half of electrolysis. There is no restriction on the ratio of electrolysis in the first half and electrolysis in the second half. For example, the ratio of electrolysis time at low sulfuric acid concentration and high sulfuric acid concentration is in the range of 1: 9 to 9: 1, particularly 3: 7 to 7: 3. preferable.
 また、本発明の電解二酸化マンガンの製造方法は、硫酸-硫酸マンガン混合溶液中にマンガン酸化物等の粒子を連続的に混合する、所謂、懸濁電解法により行うこともできる。 The method for producing electrolytic manganese dioxide of the present invention can also be performed by a so-called suspension electrolysis method in which particles of manganese oxide or the like are continuously mixed in a sulfuric acid-manganese sulfate mixed solution.
 本発明の電解二酸化マンガンの製造方法は、電解で得られた電解二酸化マンガンを粉砕するものである。粉砕には、例えば、ジョークラッシャー、ローラーミル、ボールミル、ジェットミル等が使用できる。ローラーミルとしては、例えば、遠心式ローラーミル、竪型のロッシェミル等が挙げられる。ローラーミルのうち、コストや耐久性に優れ、工業的な使用に適しているため、マイクロビッカース硬度が400HV(JIS Z 2244)以上の硬度を有する原料を粉砕可能で、20kW以上150kW以下のミルモーターを有するローラーミルが好ましい。 The method for producing electrolytic manganese dioxide of the present invention is to grind electrolytic manganese dioxide obtained by electrolysis. For crushing, for example, a jaw crusher, a roller mill, a ball mill, a jet mill or the like can be used. Examples of the roller mill include a centrifugal roller mill and a saddle type Roche mill. Among roller mills, it has excellent cost and durability and is suitable for industrial use, so it can grind raw materials with micro Vickers hardness of 400HV (JIS Z 2244) or higher, and mill motor of 20kW or more and 150kW or less A roller mill having is preferred.
 また、ローラーミルで粉砕した電解二酸化マンガンに、最頻粒径がより小さい電解二酸化マンガンや1μm以下の微粒子を混合することもできる。最頻粒径がより小さい二酸化マンガンや1μm以下の微粒子の混合量はローラーミルで粉砕した電解二酸化マンガンの重量を上回らない量を混合し、トータルの重量%で10重量%以上40重量%以下が好ましい。混合の方法は乾式での混合がコスト的に好ましく、湿式での混合は混合スラリーのpHを2.5以上6.5以下とすることで、ローラーミル等の粉砕で発生する1μm以下の微粒子をより大きい粒子の表面に凝集させ、微粒子による作業性の低下が改善されるため、より好ましい。また、粒度分布は粉砕後の分級により調整してもよく、乾式での気流分級や湿式での分散分級により調整することもできる。 In addition, electrolytic manganese dioxide pulverized by a roller mill can be mixed with electrolytic manganese dioxide having a mode diameter smaller than 1 μm or less. The mixing amount of manganese dioxide with a smaller mode particle size and fine particles of 1 μm or less is mixed in an amount not exceeding the weight of electrolytic manganese dioxide pulverized by a roller mill, and the total weight% is 10 wt% or more and 40 wt% or less. preferable. As a mixing method, dry mixing is preferable in terms of cost. In wet mixing, fine particles of 1 μm or less generated by pulverization with a roller mill or the like can be obtained by adjusting the pH of the mixed slurry to 2.5 to 6.5. It is more preferable because it is aggregated on the surface of larger particles, and the deterioration of workability due to the fine particles is improved. The particle size distribution may be adjusted by classification after pulverization, or may be adjusted by dry air classification or wet dispersion classification.
 本発明の電解二酸化マンガンをアルカリマンガン乾電池の正極活物質として使用する方法には特に制限はなく、周知の方法で添加物と混合して正極合剤として用いることができる。例えば、電解二酸化マンガンに導電性を付与するためのカーボン、電解液等を加えた混合粉末を調製し、円盤状またはリング状に加圧成型した粉末成型体として電池正極とすることができる。 The method of using the electrolytic manganese dioxide of the present invention as a positive electrode active material of an alkaline manganese dry battery is not particularly limited, and can be used as a positive electrode mixture by mixing with additives by a known method. For example, a mixed powder obtained by adding carbon for imparting conductivity to electrolytic manganese dioxide, an electrolytic solution, and the like, and forming a powder molded body that is pressure-molded into a disk shape or a ring shape can be used as a battery positive electrode.
電気化学測定用セルの模式図である。It is a schematic diagram of the cell for electrochemical measurements. 実施例1で得られた電解二酸化マンガンの細孔分布である。2 is a pore distribution of electrolytic manganese dioxide obtained in Example 1. 実施例1で得られた電解二酸化マンガンの放電曲線である。2 is a discharge curve of electrolytic manganese dioxide obtained in Example 1. 実施例1で得られた電解二酸化マンガンの放電曲線の拡大図(0~0.2秒)である。2 is an enlarged view (0 to 0.2 seconds) of a discharge curve of electrolytic manganese dioxide obtained in Example 1. FIG. 実施例1で得られた電解二酸化マンガンの粒度分布である。2 is a particle size distribution of electrolytic manganese dioxide obtained in Example 1. FIG. 実施例2で得られた電解二酸化マンガンの粒度分布である。2 is a particle size distribution of electrolytic manganese dioxide obtained in Example 2. FIG. 実施例3で得られた電解二酸化マンガンの粒度分布である。3 is a particle size distribution of electrolytic manganese dioxide obtained in Example 3. 実施例4で得られた電解二酸化マンガンの粒度分布である。4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 4. 実施例5で得られた電解二酸化マンガンの粒度分布である。4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 5. 実施例6で得られた電解二酸化マンガンの粒度分布である。4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 6. 実施例7で得られた電解二酸化マンガンの粒度分布である。3 is a particle size distribution of electrolytic manganese dioxide obtained in Example 7. FIG. 実施例8で得られた電解二酸化マンガンの粒度分布である。4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 8. 実施例9で得られた電解二酸化マンガンの粒度分布である。4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 9. 実施例10で得られた電解二酸化マンガンの粒度分布である。4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 10. 実施例11で得られた電解二酸化マンガンの粒度分布である。4 is a particle size distribution of electrolytic manganese dioxide obtained in Example 11. 比較例1で得られた電解二酸化マンガンの粒度分布である。2 is a particle size distribution of electrolytic manganese dioxide obtained in Comparative Example 1. FIG. 比較例2で得られた電解二酸化マンガンの粒度分布である。3 is a particle size distribution of electrolytic manganese dioxide obtained in Comparative Example 2. 比較例3で得られた電解二酸化マンガンの粒度分布である。4 is a particle size distribution of electrolytic manganese dioxide obtained in Comparative Example 3.
 以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
 <ミクロ孔面積の測定>
 電解二酸化マンガンのミクロ孔面積は、高精度・多検体ガス吸着量測定装置(商品名:Autosorb-iQ、カンタクローム・インスツルメンツ・ジャパン合同会社製)を使用して測定した。真空排気しながら150℃、4時間脱水処理を行った後、アルゴンを吸着媒として87K、0.0001~760Torrの圧力範囲でアルゴン吸着量を測定した。得られた吸着等温線にNLDFT法を適用して細孔分布を算出し、0.46~1.95nmの範囲の細孔の細孔面積をミクロ孔面積、1.95~49.0nmの範囲の細孔の細孔面積をメソ孔面積とした。なお、NLDFT法ではゼオライト/シリカのシリンダー状細孔モデルを用いてフィッティングを行った。
<Measurement of micropore area>
The micropore area of electrolytic manganese dioxide was measured using a high-precision, multi-analyte gas adsorption amount measuring device (trade name: Autosorb-iQ, manufactured by Cantachrome Instruments Japan GK). After dehydration at 150 ° C. for 4 hours while evacuating, the amount of adsorbed argon was measured in the pressure range of 87 K and 0.0001 to 760 Torr using argon as an adsorbent. A pore distribution is calculated by applying the NLDFT method to the obtained adsorption isotherm, and the pore area in the range of 0.46 to 1.95 nm is the micropore area, and the range of 1.95 to 49.0 nm. The pore area of each pore was defined as the mesopore area. In the NLDFT method, fitting was performed using a cylindrical pore model of zeolite / silica.
 <XRD測定による双晶率、半値幅(半価全幅:FWHM)の測定>
 電解二酸化マンガンの双晶率、半値幅(FWHM)は、X線回折装置(商品名:MXP-3,マックサイエンス製)を使用して測定・算出した。線源にはCuKα線(λ=1.5405Å)を用い、測定モードはステップスキャン、スキャン条件は毎秒0.04°、計測時間は3秒、および測定範囲は2θとして10°~80°の範囲で測定した。
<Measurement of twin rate and half width (full width at half maximum: FWHM) by XRD measurement>
The twin rate and half width (FWHM) of electrolytic manganese dioxide were measured and calculated using an X-ray diffractometer (trade name: MXP-3, manufactured by Mac Science). CuKα ray (λ = 1.5405 mm) is used as the radiation source, the measurement mode is step scan, the scan condition is 0.04 ° per second, the measurement time is 3 seconds, and the measurement range is 10 ° to 80 ° as 2θ. Measured with
 双晶率は、XRD測定結果から(061)面と(021)面の面間隔を求めた後、参考文献(参考文献1:Progress in Solid State Chemistry、23巻、1-130ページ、1995年、参考文献2:東ソー研究報告、49巻、21-27ページ、2005年)に基づいて結晶格子のb軸及びc軸長から以下の式により算出した。 The twin rate is obtained from the XRD measurement result after obtaining the plane distance between the (061) plane and the (021) plane, and then the reference (Reference 1: Progress in Solid State Chemistry, Vol. 23, pp. 1-130, 1995, (Reference Document 2: Tosoh Research Report, Vol. 49, p. 21-27, 2005) was calculated from the b-axis and c-axis lengths of the crystal lattice by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 半値幅(FWHM)は、2θが22±1°付近の回折線から、(110)面の半値幅を算出した。 The full width at half maximum (FWHM) was obtained by calculating the full width at half maximum of the (110) plane from diffraction lines with 2θ of around 22 ± 1 °.
 <アルカリ電位の測定>
 電解二酸化マンガンのアルカリ電位は、40重量%KOH水溶液中で次のように測定した。
<Measurement of alkali potential>
The alkaline potential of electrolytic manganese dioxide was measured in a 40 wt% KOH aqueous solution as follows.
 電解二酸化マンガン3gに導電剤としてカーボンを0.9g加えて混合粉体とし、この混合粉体に40%KOH水溶液4mlを加え、電解二酸化マンガンとカーボンとKOH水溶液の混合物スラリーとした。この混合物スラリーの電位を水銀/酸化水銀参照電極を基準として、電解二酸化マンガンのアルカリ電位を測定した。 0.9 g of carbon as a conductive agent was added to 3 g of electrolytic manganese dioxide to obtain a mixed powder, and 4 ml of 40% KOH aqueous solution was added to this mixed powder to obtain a mixture slurry of electrolytic manganese dioxide, carbon and KOH aqueous solution. The alkaline potential of the electrolytic manganese dioxide was measured with respect to the potential of the mixture slurry with reference to a mercury / mercury oxide reference electrode.
 <硫酸根、ナトリウム含有量の測定>
 電解二酸化マンガンの硫酸根、ナトリウム含有量は、電解二酸化マンガンを硝酸と過酸化水素水に溶解し、この溶解液をICPで測定して定量した。
<Measurement of sulfate radical and sodium content>
The sulfate radical and sodium content of electrolytic manganese dioxide were quantified by dissolving electrolytic manganese dioxide in nitric acid and hydrogen peroxide solution, and measuring this solution with ICP.
 <電解二酸化マンガンの粒度構成の測定方法>
 電解二酸化マンガンの粒度構成の測定は以下の方法に従い測定した。電解二酸化マンガン0.03gを純水20mlに投入し、アンモニア水を添加してpHを8に調整した後、超音波照射により分散スラリーを調製し、マイクロトラックMT3300EXII(マイクロトラックベル製)及びSDC循環器(マイクロトラックベル製)を使用してHRAモードで粒度分布を測定した。この時、凝集状態にある1μm以下の微粒子を分散して正確な量を測定するために、必ず超音波照射等の分散処理を行う必要がある。分散処理を行わないと微粒子が凝集したままの状態で測定されるため微粒子の量が正確に測定できない。また、体積頻度分布を算出する際には、非球形近似で粒度分布測定装置に設定されている測定用の101チャンネルに合わせた101区間(704.00、645.60、592.00、542.90、497.80、456.50、418.60、383.90、352.00、322.80、296.00、271.40、248.90、228.20、209.30、191.90、176.00、161.40、148.00、135.70、124.50、114.10、104.70、95.96、88.00、80.70、74.00、67.86、62.23、57.06、52.33、47.98、44.00、40.35、37.00、33.93、31.11、28.53、26.16、23.99、22.00、20.17、18.50、16.96、15.56、14.27、13.08、12.00、11.00、10.09、9.25、8.48、7.78、7.13、6.54、6.00、5.50、5.04、4.63、4.24、3.89、3.57、3.27、3.00、2.75、2.52、2.31、2.12、1.95、1.78、1.64、1.50、1.38、1.26、1.16、1.06、0.97、0.89、0.82、0.75、0.69、0.63、0.58、0.53、0.49、0.45、0.41、0.38、0.34、0.32、0.29、0.27、0.24、0.22、0.20、0.19、0.17、0.16、0.15、0.13、0.12/μm)で測定を行った。
<Measuring method of particle size composition of electrolytic manganese dioxide>
The particle size composition of electrolytic manganese dioxide was measured according to the following method. 0.03 g of electrolytic manganese dioxide is added to 20 ml of pure water, pH is adjusted to 8 by adding ammonia water, and then a dispersion slurry is prepared by ultrasonic irradiation. Microtrac MT3300EXII (manufactured by Microtrac Bell) and SDC circulation The particle size distribution was measured in the HRA mode using a container (manufactured by Microtrack Bell). At this time, in order to disperse fine particles having a size of 1 μm or less in an aggregated state and measure an accurate amount, it is necessary to perform a dispersion treatment such as ultrasonic irradiation. If the dispersion treatment is not performed, the amount of fine particles cannot be measured accurately because measurement is performed in a state where the fine particles are aggregated. Further, when calculating the volume frequency distribution, 101 sections (704.00, 645.60, 592.00, 542...) That match the 101 channels for measurement set in the particle size distribution measuring apparatus by non-spherical approximation. 90, 497.80, 456.50, 418.60, 383.90, 352.00, 322.80, 296.00, 271.40, 248.90, 228.20, 209.30, 191.90, 176.00, 161.40, 148.00, 135.70, 124.50, 114.10, 104.70, 95.96, 88.00, 80.70, 74.00, 67.86, 62. 23, 57.06, 52.33, 47.98, 44.00, 40.35, 37.00, 33.93, 31.11, 28.53, 26.16, 23.99, 22.00, 2 .17, 18.50, 16.96, 15.56, 14.27, 13.08, 12.00, 11.00, 10.09, 9.25, 8.48, 7.78, 7.13 6.54, 6.00, 5.50, 5.04, 4.63, 4.24, 3.89, 3.57, 3.27, 3.00, 2.75, 2.52, 2 .31, 2.12, 1.95, 1.78, 1.64, 1.50, 1.38, 1.26, 1.16, 1.06, 0.97, 0.89, 0.82 0.75, 0.69, 0.63, 0.58, 0.53, 0.49, 0.45, 0.41, 0.38, 0.34, 0.32, 0.29, 0 27, 0.24, 0.22, 0.20, 0.19, 0.17, 0.16, 0.15, 0.13, 0.12 / μm).
 <BET比表面積の測定>
 電解二酸化マンガンのBET比表面積は、BET1点法の窒素吸着により測定した。測定装置にはガス吸着式比表面積測定装置(フローソーブIII,島津製作所製)を用いた。測定に先立ち、150℃で1時間加熱することで電解二酸化マンガンを脱水処理した。
<Measurement of BET specific surface area>
The BET specific surface area of electrolytic manganese dioxide was measured by nitrogen adsorption according to the BET one-point method. A gas adsorption specific surface area measuring device (Flowsorb III, manufactured by Shimadzu Corporation) was used as the measuring device. Prior to measurement, the electrolytic manganese dioxide was dehydrated by heating at 150 ° C. for 1 hour.
 <プレス密度の測定>
 電解二酸化マンガンのプレス密度は、13mmφの金型を使用して電解二酸化マンガン0.5gを2t/cmで加圧し60秒間保持して成型体を作製し、成型体の重量と体積からプレス密度を求めた。
<Measurement of press density>
The press density of electrolytic manganese dioxide is obtained by pressing 0.5 g of electrolytic manganese dioxide at 2 t / cm 2 using a 13 mmφ mold and holding it for 60 seconds to produce a molded body. The press density is determined from the weight and volume of the molded body. Asked.
 <平均粒子径の測定>
 電解二酸化マンガンの平均粒子径は、マイクロトラックMT3300EXII(マイクロトラックベル製)を使用してHRAモードで測定した。
<Measurement of average particle diameter>
The average particle diameter of electrolytic manganese dioxide was measured in HRA mode using Microtrac MT3300EXII (manufactured by Microtrac Bell).
 <電圧降下1、電圧降下2の測定>
 電解二酸化マンガンを90重量%、グラファイト(商品名:KS-44、ロンザ製)を7重量%、ポリテトラフルオロエチレン(アルドリッチ製)を3重量%混合して合剤を作製した後、13mmφのステンレス製メッシュに2t/cmで圧着して正極とし、正極とセパレータ、40重量%KOH水溶液及び負極(亜鉛ワイヤー)をポリ塩化ビニル製の容器に設置して電気化学測定用セル(図1)を作製した。開回路電圧(開回路電圧1)を測定した後、正極と負極の間に一定の大きさの電流(電解二酸化マンガン1gに対して100mA)を60秒間流し、正極単極の電圧を水銀/酸化水銀参照電極を基準として測定した。60秒間電流を流した後、電流を遮断し、6時間経過後に開回路電圧(開回路電圧2)を測定し、開回路電圧1から開回路電圧2を差し引いて開回路電圧降下を算出した。電流を流し始めてから50msまでの電圧降下を電圧降下1とし、50msから60秒までの電圧降下から開回路電圧降下を差し引いた値を電圧降下2とした。電圧降下の測定は、電解二酸化マンガンが未放電状態、25%放電、50%放電の状態において測定した。25%放電状態、50%放電状態の電解二酸化マンガンは、電解二酸化マンガンの全容量を308mAh/gとして容量規制で放電して作製した。なお、25%放電状態はアルカリマンガン乾電池のハイレート放電特性評価である1.5W放電(ANSI規格放電)で放電下限電圧(1.05V)に到達した状態を模擬したものであり、50%放電状態は同じくハイレート放電特性評価である1A放電(ANSI規格放電)で放電下限電圧(0.9V)に到達した状態を模擬したものである。
<Measurement of voltage drop 1 and voltage drop 2>
A mixture was prepared by mixing 90% by weight of electrolytic manganese dioxide, 7% by weight of graphite (trade name: KS-44, manufactured by Lonza) and 3% by weight of polytetrafluoroethylene (manufactured by Aldrich). A positive electrode is formed by pressure bonding to a mesh made at 2 t / cm 2 , and a positive electrode, a separator, a 40 wt% KOH aqueous solution, and a negative electrode (zinc wire) are placed in a polyvinyl chloride container, and an electrochemical measurement cell (FIG. 1) is installed. Produced. After measuring the open circuit voltage (open circuit voltage 1), a constant current (100 mA for 1 g of electrolytic manganese dioxide) was passed between the positive electrode and the negative electrode for 60 seconds, and the voltage of the single electrode of the positive electrode was mercury / oxidized. Measurements were made based on a mercury reference electrode. After passing the current for 60 seconds, the current was interrupted, and after 6 hours, the open circuit voltage (open circuit voltage 2) was measured, and the open circuit voltage drop was calculated by subtracting the open circuit voltage 2 from the open circuit voltage 1. A voltage drop from 50 ms after starting to flow current was defined as a voltage drop 1, and a value obtained by subtracting an open circuit voltage drop from a voltage drop from 50 ms to 60 seconds was defined as a voltage drop 2. The voltage drop was measured when the electrolytic manganese dioxide was in an undischarged state, 25% discharge, and 50% discharge. Electrolytic manganese dioxide in a 25% discharge state and a 50% discharge state was produced by discharging the electrolytic manganese dioxide at a capacity restriction of 308 mAh / g. The 25% discharge state simulates a state where the lower limit voltage (1.05V) is reached by 1.5W discharge (ANSI standard discharge), which is an evaluation of high rate discharge characteristics of an alkaline manganese dry battery, and a 50% discharge state. Is a simulation of a state in which the discharge lower limit voltage (0.9 V) has been reached in 1 A discharge (ANSI standard discharge), which is also a high-rate discharge characteristic evaluation.
 <電荷移動抵抗の測定>
 前記の方法で作製した電気化学測定セル(図1)を使用して交流インピーダンス法で正極単極の電荷移動抵抗を測定した。評価には交流インピーダンス測定装置(ECI1287A、FRA1255A、東陽テクニカ製)を用い、測定周波数120,000Hz~0.1Hz、交流電圧±5mVで測定を行った。測定データの解析はナイキストプロットにより行い、半円弧成分の直径を電荷移動抵抗とした。電荷移動抵抗の測定は、電解二酸化マンガンが未放電状態、25%放電、50%放電の状態において測定した。
<Measurement of charge transfer resistance>
The charge transfer resistance of the positive electrode single electrode was measured by the alternating current impedance method using the electrochemical measurement cell (FIG. 1) produced by the above method. For the evaluation, an AC impedance measuring device (ECI1287A, FRA1255A, manufactured by Toyo Technica Co., Ltd.) was used, and measurement was performed at a measurement frequency of 120,000 Hz to 0.1 Hz and an AC voltage of ± 5 mV. The measurement data was analyzed by Nyquist plot, and the diameter of the semicircular arc component was taken as the charge transfer resistance. The charge transfer resistance was measured when the electrolytic manganese dioxide was in an undischarged state, 25% discharge, and 50% discharge.
 実施例1
 加温装置を有し、陽極としてチタン板、陰極として黒鉛板をそれぞれ向かい合うように懸垂せしめた電解槽を用いて電解を行った。
Example 1
Electrolysis was carried out using an electrolytic cell that had a heating device and suspended a titanium plate as an anode and a graphite plate as a cathode so as to face each other.
 電解槽にマンガンイオン濃度65g/Lの補給硫酸マンガン液を供給し、電解電流密度0.34A/dm、電解槽の温度を97℃に保ちながら、電解初期と電解後半の硫酸濃度を45g/L、77g/Lとなるように調整し、前半の硫酸濃度で10日、後半の硫酸濃度で5日、計15日間電解を行った。 Supplying a manganese sulfate solution with a manganese ion concentration of 65 g / L to the electrolytic cell, maintaining an electrolytic current density of 0.34 A / dm 2 and a temperature of the electrolytic cell at 97 ° C. L was adjusted to 77 g / L, and electrolysis was carried out for 15 days in total, 10 days with the sulfuric acid concentration in the first half and 5 days with the sulfuric acid concentration in the second half.
 電解後、電着した板状の電解二酸化マンガンを純水にて洗浄後、ジョークラッシャーにより粉砕し、続いてボールミルにより粉砕して電解二酸化マンガンの粉砕物を得た。次に、この電解二酸化マンガン粉砕物を水槽に入れて撹拌しながら水酸化ナトリウム水溶液を添加し、そのスラリーのpHを2.8となるようにして中和処理を行った後、電解二酸化マンガンの水洗、ろ過分離、乾燥を行った。次に、目開き63μmの篩を通し、電解二酸化マンガン粉末を得た。 After electrolysis, the electrodeposited plate-like electrolytic manganese dioxide was washed with pure water, pulverized with a jaw crusher, and then pulverized with a ball mill to obtain an electrolytic manganese dioxide pulverized product. Next, this electrolytic manganese dioxide pulverized product is put into a water tank, and an aqueous sodium hydroxide solution is added while stirring, and the slurry is neutralized so as to have a pH of 2.8. Water washing, filtration separation, and drying were performed. Next, an electrolytic manganese dioxide powder was obtained through a sieve having an aperture of 63 μm.
 得られた電解二酸化マンガンの細孔分布を図2に、放電曲線を図3に、放電曲線の拡大図(0~0.2秒)を図4に、粒度分布を図5に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。 The pore distribution of the obtained electrolytic manganese dioxide is shown in FIG. 2, the discharge curve is shown in FIG. 3, the enlarged view of the discharge curve (0 to 0.2 seconds) is shown in FIG. 4, and the particle size distribution is shown in FIG. Table 1 shows evaluation results such as area and twin rate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。 The voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例2
 マンガンイオン濃度55g/Lの補給硫酸マンガン液を供給したことと、電解初期と電解後半の硫酸濃度を46g/L、65g/Lとしたこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図6に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 2
Electrolysis was carried out in the same manner as in Example 1 except that a replenished manganese sulfate solution having a manganese ion concentration of 55 g / L was supplied and that the sulfuric acid concentrations in the initial electrolysis and the latter electrolysis were 46 g / L and 65 g / L. . The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 6, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例3
 マンガンイオン濃度45g/Lの補給硫酸マンガン液を供給したことと、電解槽の温度を96℃に保持したことと、硫酸濃度を45g/Lに保ちながら7日間電解を行ったことと、中和時のpHを5としたこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図7に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 3
Supplying manganese sulfate solution with a manganese ion concentration of 45 g / L, maintaining the temperature of the electrolytic cell at 96 ° C., conducting electrolysis for 7 days while maintaining the sulfuric acid concentration at 45 g / L, and neutralizing Electrolysis was carried out in the same manner as in Example 1 except that the pH at that time was 5. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 7, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例4
 マンガンイオン濃度100g/Lの補給硫酸マンガン液を供給したことと、電解槽の温度を96℃に保持したことと、硫酸濃度を44g/Lに保ちながら1日間電解を行ったこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図8に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 4
Example except that a replenished manganese sulfate solution having a manganese ion concentration of 100 g / L was supplied, that the temperature of the electrolytic cell was maintained at 96 ° C., and electrolysis was performed for one day while maintaining the sulfuric acid concentration at 44 g / L. Electrolysis was performed in the same manner as in 1. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 8, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例5
 実施例1と同様な方法で粉砕を行い、電解二酸化マンガンの粉砕物を得た。得られた電解二酸化マンガン粉末に純水を添加してスラリーを調製し、超音波照射による分散処理を行った後、20分間静置した。その後、デカンテーションを行い、残渣と上澄みスラリーに分離した。残渣を60℃で乾燥して10μm以上の比較的粒子径の大きい電解二酸化マンガン粉末を得た。また、上澄みスラリーをろ過し60℃で乾燥して10μm以下の比較的小さい電解二酸化マンガン粉末を得た。その後、10μm以上の電解二酸化マンガンと10μm以下の電解二酸化マンガンを重量比2:1の割合で混合した。得られた電解二酸化マンガンの粒度分布を図9に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 5
Grinding was performed in the same manner as in Example 1 to obtain a ground product of electrolytic manganese dioxide. Pure water was added to the obtained electrolytic manganese dioxide powder to prepare a slurry, which was subjected to dispersion treatment by ultrasonic irradiation and then allowed to stand for 20 minutes. Then, it decanted and isolate | separated into the residue and the supernatant slurry. The residue was dried at 60 ° C. to obtain an electrolytic manganese dioxide powder having a relatively large particle size of 10 μm or more. The supernatant slurry was filtered and dried at 60 ° C. to obtain a relatively small electrolytic manganese dioxide powder of 10 μm or less. Thereafter, electrolytic manganese dioxide of 10 μm or more and electrolytic manganese dioxide of 10 μm or less were mixed at a weight ratio of 2: 1. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 9, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例6
 10μm以上の電解二酸化マンガンと10μm以下の電解二酸化マンガンを重量比5:4の割合で混合したこと以外は実施例5と同様の方法で電解二酸化マンガンを得た。得られた電解二酸化マンガンの粒度分布を図10に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 6
Electrolytic manganese dioxide was obtained in the same manner as in Example 5 except that 10 μm or more of electrolytic manganese dioxide and 10 μm or less of electrolytic manganese dioxide were mixed at a weight ratio of 5: 4. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 10, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例7
 マンガンイオン濃度74g/Lの補給硫酸マンガン液を供給したことと、電解初期と電解後半の硫酸濃度を45g/L、75g/Lとしたこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図11に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 7
Electrolysis was carried out in the same manner as in Example 1 except that a replenished manganese sulfate solution having a manganese ion concentration of 74 g / L was supplied and that the sulfuric acid concentrations in the initial electrolysis and the latter electrolysis were 45 g / L and 75 g / L. . The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 11, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例8
 マンガンイオン濃度55g/Lの補給硫酸マンガン液を供給したことと、電解時の硫酸濃度を55gに保ちながら15日間電解を行ったこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図12に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 8
Electrolysis was carried out in the same manner as in Example 1 except that a replenished manganese sulfate solution having a manganese ion concentration of 55 g / L was supplied and that electrolysis was performed for 15 days while maintaining the sulfuric acid concentration at 55 g during electrolysis. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 12, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例9
 マンガンイオン濃度84g/Lの補給硫酸マンガン液を供給したことと、電解電流密度を0.55A/dmとしたことと、電解初期と電解後半の硫酸濃度を45g/L、65g/Lとしたこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図13に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 9
Supplying a replenished manganese sulfate solution with a manganese ion concentration of 84 g / L, an electrolysis current density of 0.55 A / dm 2, and sulfuric acid concentrations of 45 g / L and 65 g / L in the initial electrolysis and the latter electrolysis Except for this, electrolysis was performed in the same manner as in Example 1. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 13, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例10
 マンガンイオン濃度74g/Lの補給硫酸マンガン液を供給したことと、電解電流密度を0.55A/dmとしたことと、電解初期と電解後半の硫酸濃度を45g/L、65g/Lとしたこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図14に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 10
Supplying a replenished manganese sulfate solution with a manganese ion concentration of 74 g / L, an electrolysis current density of 0.55 A / dm 2, and sulfuric acid concentrations of 45 g / L and 65 g / L in the initial and second half of electrolysis Except for this, electrolysis was performed in the same manner as in Example 1. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 14, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 実施例11
 マンガンイオン濃度55g/Lの補給硫酸マンガン液を供給したことと、電解電流密度を0.40A/dmとしたことと、電解初期と電解後半の硫酸濃度を46g/L、65g/Lとしたこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図15に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Example 11
Supplying a replenished manganese sulfate solution having a manganese ion concentration of 55 g / L, an electrolysis current density of 0.40 A / dm 2, and sulfuric acid concentrations of 46 g / L and 65 g / L in the initial and second half of electrolysis Except for this, electrolysis was performed in the same manner as in Example 1. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 15, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 比較例1
 マンガンイオン濃度19g/Lの補給硫酸マンガン液を供給したことと、電解槽の温度を96℃に保持したことと、硫酸濃度を19g/Lに保ちながら10日間電解を行ったことと、中和時のpHを5としたこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図16に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Comparative Example 1
Supplying manganese sulfate solution with a manganese ion concentration of 19 g / L, maintaining the temperature of the electrolytic cell at 96 ° C., performing electrolysis for 10 days while maintaining the sulfuric acid concentration at 19 g / L, and neutralizing Electrolysis was carried out in the same manner as in Example 1 except that the pH at that time was 5. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 16, and the evaluation results such as the micropore area and the twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 比較例2
 マンガンイオン濃度30g/Lの補給硫酸マンガン液を供給したことと、電解槽の温度を96℃に保持したことと、硫酸濃度を28g/Lに保ちながら1日間電解を行ったことと、中和時のpHを5としたこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図17に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Comparative Example 2
Supplying a replenished manganese sulfate solution with a manganese ion concentration of 30 g / L, maintaining the electrolytic bath temperature at 96 ° C., conducting electrolysis for 1 day while maintaining the sulfuric acid concentration at 28 g / L, and neutralization Electrolysis was carried out in the same manner as in Example 1 except that the pH at that time was 5. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 17, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 比較例3
 マンガンイオン濃度55g/Lの補給硫酸マンガン液を供給したことと、電解初期と電解後半の硫酸濃度を38g/L、65g/Lとなるように調整したこと以外は実施例1と同様な方法で電解を行った。得られた電解二酸化マンガンの粒度分布を図18に示し、ミクロ孔面積、双晶率等の評価結果を表1に示した。さらに、得られた電解二酸化マンガンの電圧降下1、電圧降下2及び電荷移動抵抗を表2に示した。
Comparative Example 3
A method similar to that of Example 1 except that a replenished manganese sulfate solution having a manganese ion concentration of 55 g / L was supplied and that the sulfuric acid concentrations in the initial electrolysis and the latter electrolysis were adjusted to 38 g / L and 65 g / L. Electrolysis was performed. The particle size distribution of the obtained electrolytic manganese dioxide is shown in FIG. 18, and the evaluation results such as the micropore area and twin rate are shown in Table 1. Further, Table 2 shows voltage drop 1, voltage drop 2 and charge transfer resistance of the obtained electrolytic manganese dioxide.
 表1~2から、実施例1~11のマンガンイオン濃度で電解二酸化マンガンを製造することにより、比較例1、2と比較してミクロ孔面積が大きく、かつ、双晶率が小さい電解二酸化マンガンを得ることができ、また、実施例1~11の電解開始時の電解液中の硫酸濃度で電解二酸化マンガンを製造することにより、比較例3と比較して双晶率が小さい電解二酸化マンガンを得ることができる。さらに、実施例1~11の電解二酸化マンガンは比較例1~3と比較して電圧降下1+電圧降下2が小さくなっており、優れたハイレート放電特性が期待できる。 From Tables 1 and 2, by producing electrolytic manganese dioxide at the manganese ion concentration of Examples 1 to 11, electrolytic manganese dioxide having a larger micropore area and a lower twin rate than Comparative Examples 1 and 2. In addition, by producing electrolytic manganese dioxide at a sulfuric acid concentration in the electrolytic solution at the start of electrolysis in Examples 1 to 11, electrolytic manganese dioxide having a smaller twin rate than that in Comparative Example 3 can be obtained. Obtainable. Furthermore, the electrolytic manganese dioxides of Examples 1 to 11 have a smaller voltage drop 1 + voltage drop 2 than those of Comparative Examples 1 to 3, and excellent high-rate discharge characteristics can be expected.
 なお、2017年3月27日に出願された日本特許出願2017-61561号、2017年11月22日に出願された日本特許出願2017-224782号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The specification, claims, drawings and abstract of Japanese Patent Application No. 2017-61561 filed on March 27, 2017 and Japanese Patent Application No. 2017-222472 filed on November 22, 2017. Is hereby incorporated by reference as a disclosure of the specification of the present invention.
 本発明の電解二酸化マンガンは特異的なミクロ孔面積及び結晶構造中の双晶率を有するため、放電特性、特にハイレート放電特性に優れたマンガン乾電池、特にアルカリマンガン乾電池の正極活物質として使用することができる。 Since the electrolytic manganese dioxide of the present invention has a specific micropore area and twin rate in the crystal structure, it should be used as a positive electrode active material for manganese batteries, particularly alkaline manganese batteries, having excellent discharge characteristics, particularly high-rate discharge characteristics. Can do.

Claims (10)

  1. ミクロ孔面積が45m/g以上90m/g以下であり、かつ、結晶構造中の双晶率が40%以上80%以下であることを特徴とする電解二酸化マンガン。 An electrolytic manganese dioxide having a micropore area of 45 m 2 / g or more and 90 m 2 / g or less, and a twin rate in a crystal structure of 40% or more and 80% or less.
  2. アルカリ電位が250mV以上310mV以下であることを特徴とする請求項1に記載の電解二酸化マンガン。 2. The electrolytic manganese dioxide according to claim 1, wherein the alkaline potential is 250 mV or more and 310 mV or less.
  3. 硫酸根(SO)の含有量が1.5重量%以下であることを特徴とする請求項1又は請求項2に記載の電解二酸化マンガン。 The electrolytic manganese dioxide according to claim 1 or 2, wherein the content of sulfate radical (SO 4 ) is 1.5% by weight or less.
  4. ナトリウム含有量が10重量ppm以上5,000重量ppm以下であることを特徴とする請求項1~請求項3のいずれかの項に記載の電解二酸化マンガン。 The electrolytic manganese dioxide according to any one of claims 1 to 3, wherein the sodium content is 10 ppm by weight or more and 5,000 ppm by weight or less.
  5. 体積頻度分布における最頻粒径(A)と最頻粒径(A)の1/2高さの粒径幅(B)について、(B)/(A)の値が0.90以上2.0以下であることを特徴とする請求項1~請求項4のいずれかの項に記載の電解二酸化マンガン。 1. The value of (B) / (A) is 0.90 or more for the mode particle size (A) in the volume frequency distribution and the particle size width (B) that is 1/2 the mode particle size (A). The electrolytic manganese dioxide according to any one of claims 1 to 4, wherein the electrolytic manganese dioxide is 0 or less.
  6. 平均粒子径が20μm以上50μm以下であることを特徴とする請求項1~請求項5のいずれかの項に記載の電解二酸化マンガン。 6. The electrolytic manganese dioxide according to claim 1, wherein the average particle size is 20 μm or more and 50 μm or less.
  7. 電解槽に供給される補給マンガン液中のマンガンイオン濃度が40g/L以上で、電解電流密度が0.1A/dm以上1.0A/dm以下で、電解開始時の電解液中の硫酸濃度が44g/L以上50g/L以下で、かつ、電解日数が15日以下であることを特徴とする請求項1~請求項6のいずれかの項に記載の電解二酸化マンガンの製造方法。 Manganese ion concentration in the replenishment manganese liquid supplied to the electrolytic cell is 40 g / L or more, the electrolytic current density is 0.1 A / dm 2 or more 1.0A / dm 2 or less, sulfuric acid in the electrolytic solution at the initiation of the electrolysis The method for producing electrolytic manganese dioxide according to any one of claims 1 to 6, wherein the concentration is 44 g / L or more and 50 g / L or less, and the number of days of electrolysis is 15 days or less.
  8. 電解終了時の電解液中の硫酸濃度が電解開始時の電解液中の硫酸濃度より高い濃度の硫酸-硫酸マンガン混合溶液を使用し、かつ、電解終了時の電解液中の硫酸濃度が32g/L以上80g/L以下であることを特徴とする請求項7に記載の電解二酸化マンガンの製造方法。 A sulfuric acid-manganese sulfate mixed solution whose sulfuric acid concentration in the electrolytic solution at the end of electrolysis is higher than the sulfuric acid concentration in the electrolytic solution at the start of electrolysis is used, and the sulfuric acid concentration in the electrolytic solution at the end of electrolysis is 32 g / L is 80 g / L or less, The manufacturing method of the electrolytic manganese dioxide of Claim 7 characterized by the above-mentioned.
  9. 請求項1~請求項6のいずれかの項に記載の電解二酸化マンガンを含むことを特徴とする電池用正極活物質。 A positive electrode active material for a battery, comprising the electrolytic manganese dioxide according to any one of claims 1 to 6.
  10. 請求項9に記載の電池用正極活物質を含むことを特徴とする電池。 A battery comprising the battery positive electrode active material according to claim 9.
PCT/JP2018/008106 2017-03-27 2018-03-02 Electrolytic manganese dioxide, method for manufacturing same, and application for same WO2018180208A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-061561 2017-03-27
JP2017061561 2017-03-27
JP2017224782 2017-11-22
JP2017-224782 2017-11-22

Publications (1)

Publication Number Publication Date
WO2018180208A1 true WO2018180208A1 (en) 2018-10-04

Family

ID=63675608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008106 WO2018180208A1 (en) 2017-03-27 2018-03-02 Electrolytic manganese dioxide, method for manufacturing same, and application for same

Country Status (2)

Country Link
JP (1) JP7063007B2 (en)
WO (1) WO2018180208A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220033274A1 (en) * 2018-11-29 2022-02-03 Tosoh Corporation Electrolytic manganese dioxide, method for manufacturing same, and use thereof
WO2023058286A1 (en) * 2021-10-06 2023-04-13 パナソニックIpマネジメント株式会社 Alkaline battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093947A (en) * 2007-10-10 2009-04-30 Panasonic Corp Spherical electrolytic manganese dioxide and alkaline primary battery using the same
JP2011068552A (en) * 2009-08-24 2011-04-07 Tosoh Corp Electrolytic manganese dioxide, method for producing the same, and use of the same
JP2016108212A (en) * 2013-12-20 2016-06-20 東ソー株式会社 Manganese dioxide and manganese dioxide mixture, and method for producing the same and use for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093947A (en) * 2007-10-10 2009-04-30 Panasonic Corp Spherical electrolytic manganese dioxide and alkaline primary battery using the same
JP2011068552A (en) * 2009-08-24 2011-04-07 Tosoh Corp Electrolytic manganese dioxide, method for producing the same, and use of the same
JP2016108212A (en) * 2013-12-20 2016-06-20 東ソー株式会社 Manganese dioxide and manganese dioxide mixture, and method for producing the same and use for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220033274A1 (en) * 2018-11-29 2022-02-03 Tosoh Corporation Electrolytic manganese dioxide, method for manufacturing same, and use thereof
WO2023058286A1 (en) * 2021-10-06 2023-04-13 パナソニックIpマネジメント株式会社 Alkaline battery

Also Published As

Publication number Publication date
JP7063007B2 (en) 2022-05-09
JP2019081686A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP5998510B2 (en) Electrolytic manganese dioxide and method for producing the same, and method for producing lithium manganese composite oxide
US9103044B2 (en) Electrolytic manganese dioxide, and method for its production and its application
JP6115174B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
JP5909845B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
JP5428163B2 (en) Electrolytic manganese dioxide for alkaline manganese batteries, method for producing the same, and use thereof
JP2011251862A (en) Manganese oxide and method for producing the same
WO2015093578A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
WO2018180208A1 (en) Electrolytic manganese dioxide, method for manufacturing same, and application for same
JP6492617B2 (en) Manganese dioxide and manganese dioxide mixtures and their production and use
JP6862766B2 (en) Electrolyzed manganese dioxide, its manufacturing method and its uses
WO2020045279A1 (en) Electrolytic manganese dioxide, method for producing same, and use of same
CN108884577B (en) Electrolytic manganese dioxide, method for producing same, and use thereof
JP7451961B2 (en) Electrolytic manganese dioxide, its manufacturing method, and its uses
JP6550729B2 (en) Electrolytic manganese dioxide, method for producing the same, and use thereof
JP2014205617A (en) Manganese oxide and method for producing lithium manganate using the same
JP7039927B2 (en) Electrolyzed manganese dioxide and its uses
WO2024106304A1 (en) Electrolytic manganese dioxide, method for producing same, and use thereof
CN115231611B (en) Li with porous structure 2 ZnTi 3 O 8 Lithium ion battery anode material, preparation method and application thereof
JP5544798B2 (en) Method for producing lithium manganate and manganese dioxide used therefor
JP6822067B2 (en) Electrolyzed manganese dioxide and its uses
JP2024073376A (en) Electrolytic manganese dioxide, its manufacturing method and uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778082

Country of ref document: EP

Kind code of ref document: A1