JP2019138472A - Instrument having sinter bearing - Google Patents
Instrument having sinter bearing Download PDFInfo
- Publication number
- JP2019138472A JP2019138472A JP2019031838A JP2019031838A JP2019138472A JP 2019138472 A JP2019138472 A JP 2019138472A JP 2019031838 A JP2019031838 A JP 2019031838A JP 2019031838 A JP2019031838 A JP 2019031838A JP 2019138472 A JP2019138472 A JP 2019138472A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- bearing
- sintered bearing
- sintered
- copper powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lubricants (AREA)
- Powder Metallurgy (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Motor Or Generator Frames (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
本発明は、焼結軸受、および該焼結軸受を有する機器に関する。 The present invention relates to a sintered bearing and an apparatus having the sintered bearing.
携帯電話、スマートフォン等の移動端末、あるいはウエアラブル端末等の携帯端末は、電話やメールの着信通知、あるいは時刻通知等を行うためにバイブレーション機能を備えるものが多い。このバイブレーション機能に必要となる、端末本体に振動を発生させる振動装置として、例えば特開2003−220363号公報(特許文献1)に記載されるように、強磁界内に配置した駆動コイルに交流電流を供給することにより、錘を軸方向に駆動させて振動を発生するもの(軸方向駆動タイプ)が知られている。この他、特開2011−259662号公報(特許文献2)に記載されるように、先端に偏心錘を取り付けた軸をモータで回転させて振動を発生する振動装置(回転駆動タイプ)も知られている。 Mobile terminals such as mobile phones and smartphones, or mobile terminals such as wearable terminals often have a vibration function for notification of incoming calls or mails, time notification, or the like. As a vibration device that generates vibrations in the terminal body that is necessary for the vibration function, for example, as described in Japanese Patent Application Laid-Open No. 2003-220363 (Patent Document 1), an alternating current is applied to a drive coil disposed in a strong magnetic field. Is known to generate a vibration by driving the weight in the axial direction by supplying (axial drive type). In addition, as described in Japanese Patent Application Laid-Open No. 2011-259622 (Patent Document 2), there is also known a vibration device (rotation drive type) that generates vibration by rotating a shaft with an eccentric weight attached to the tip by a motor. ing.
何れの振動装置でも、振動装置自体は回路基板に取り付けられる。この取り付けは、近年、リフローはんだ付けにより行う場合が多くなっている。リフローはんだ付けは、図13(a)に示すように回路基板1上にクリームはんだと呼ばれるペースト状のはんだ2をパターンに合わせて印刷し、図13(b)に示すように、回路基板1に電子部品と共に振動装置3を実装し、その後、図13(c)に示すように、回路基板1を加熱炉に供給してはんだ2を溶融させることにより、はんだ付けを行うものである。回路基板1の加熱は、炉内雰囲気温度を220℃〜260℃程度に保持したバッチ炉や連続炉内で数秒〜数十分程度行うのが一般的である。 In any vibration device, the vibration device itself is attached to the circuit board. In recent years, this attachment is often performed by reflow soldering. In reflow soldering, paste solder 2 called cream solder is printed on the circuit board 1 according to the pattern as shown in FIG. 13A, and the circuit board 1 is printed as shown in FIG. 13B. The vibration device 3 is mounted together with the electronic components, and then soldering is performed by supplying the circuit board 1 to a heating furnace and melting the solder 2 as shown in FIG. In general, the circuit board 1 is heated for several seconds to several tens of minutes in a batch furnace or a continuous furnace in which the atmospheric temperature in the furnace is maintained at about 220 ° C. to 260 ° C.
振動装置には、軸の往復運動(軸方向駆動タイプ)や回転運動(回転駆動タイプ)を支持するために軸受が組み込まれる。この軸受として、近年では多孔質の焼結体に潤滑油を含浸させた焼結軸受を用いる場合が多くなっている。 A bearing is incorporated in the vibration device in order to support a reciprocating motion (axial driving type) and a rotational motion (rotational driving type) of the shaft. In recent years, a sintered bearing in which a porous sintered body is impregnated with a lubricating oil is often used as this bearing.
このように振動装置に焼結軸受を使用した場合、振動装置のリフローはんだ付けに伴って回路基板を加熱する際に、焼結軸受も上記の高温雰囲気に晒されるため、焼結軸受に含浸させた潤滑油が蒸発し、あるいは低粘度化した潤滑油が軸受外に流出することになる。そのため、軸受の含油率が低下し、軸受寿命の低下を招くおそれがある。潤滑油の蒸発や流出を抑えるため、例えば高温特性に優れるフッ素系油を高粘度に調製して焼結軸受に含浸させることも考えられるが、潤滑油が高粘度であるために常温環境下では摺動部の摩擦抵抗が増大する問題がある。また、フッ素系油は高価であるため、焼結軸受の製造コストが高騰する点も問題となる。加えて、特に軸方向駆動タイプの振動装置では、軸受面に滲み出た潤滑油が軸の繰り返しの往復運動によって軸受の外側にかき出されるため、潤滑油の消費量が多くなる点も問題となる。 When the sintered bearing is used in the vibration device as described above, the sintered bearing is also exposed to the above high temperature atmosphere when the circuit board is heated along with the reflow soldering of the vibration device. As a result, the lubricating oil evaporates or the lubricating oil whose viscosity is lowered flows out of the bearing. For this reason, the oil content of the bearing is lowered, which may lead to a reduction in bearing life. In order to suppress the evaporation and outflow of lubricating oil, for example, it is conceivable to prepare a high-viscosity fluorinated oil with excellent high-temperature characteristics and impregnate the sintered bearing. However, because the lubricating oil is highly viscous, There is a problem that the frictional resistance of the sliding portion increases. In addition, since the fluorine-based oil is expensive, there is a problem that the manufacturing cost of the sintered bearing is increased. In addition, especially in the axial drive type vibration device, the lubricating oil that has oozed out on the bearing surface is scraped to the outside of the bearing by the reciprocating motion of the shaft, which increases the consumption of the lubricating oil. Become.
そこで、本発明は、焼結軸受を組み込んだ機器において、該機器の組み付け時等に一時的に加熱される際の潤滑油の蒸発や流出を抑制し、併せて該機器の使用中の摺動部での摩擦抵抗を低減できる焼結軸受を提供することを目的とする。 Therefore, the present invention suppresses evaporation and outflow of lubricating oil when the device is incorporated with a sintered bearing, and is temporarily heated when the device is assembled. It aims at providing the sintered bearing which can reduce the frictional resistance in a part.
上記目的を達成するため、本発明は、焼結体と、焼結体に含浸させたグリースとを有する焼結軸受であって、前記グリースが、増ちょう剤と、JIS K 2283に基づく動粘度測定方法にて、40℃における動粘度が40mm2/s以上、60mm2/s以下であり、かつ100℃における動粘度が5mm2/s以上、10mm2/s以下である基油とを含み、グリースにおける増ちょう剤濃度が0.1〜3wt%であることを特徴とする。 To achieve the above object, the present invention provides a sintered bearing having a sintered body and grease impregnated in the sintered body, wherein the grease comprises a thickener and a kinematic viscosity based on JIS K 2283. And a base oil having a kinematic viscosity at 40 ° C. of 40 mm 2 / s to 60 mm 2 / s and a kinematic viscosity at 100 ° C. of 5 mm 2 / s to 10 mm 2 / s. The thickener concentration in the grease is 0.1 to 3 wt%.
このように本発明では、焼結体に潤滑油ではなくグリースを含浸させている。グリースの増ちょう剤は焼結体の細孔内でも網目構造により基油を保持しているため、保油性が高い。従って、潤滑油を含浸させる場合に比べ、高温時にも基油の蒸発や流出が生じにくい。また、基油として100℃の動粘度が高めのものを選択しているので、高温時にも細孔からの基油の流出が生じ難い。従って、例えば、振動装置の回路基板へのリフローはんだ付けに伴い、焼結軸受が一時的に高温に加熱されたとしても、焼結軸受からの基油の蒸発や流出を抑制することができる。その一方で、40℃では基油の動粘度が小さいため、軸受使用中に軸と軸受面の摺動部での摩擦抵抗を小さくすることができる。 Thus, in the present invention, the sintered body is impregnated with grease instead of lubricating oil. Since the thickener of grease retains the base oil by the network structure even in the pores of the sintered body, the oil retaining property is high. Therefore, the base oil is less likely to evaporate or flow out even at high temperatures compared to the case of impregnating with the lubricating oil. Further, since a base oil having a high kinematic viscosity at 100 ° C. is selected, it is difficult for the base oil to flow out of the pores even at high temperatures. Therefore, for example, even if the sintered bearing is temporarily heated to a high temperature due to reflow soldering to the circuit board of the vibration device, evaporation and outflow of the base oil from the sintered bearing can be suppressed. On the other hand, since the kinematic viscosity of the base oil is low at 40 ° C., the frictional resistance at the sliding portion between the shaft and the bearing surface can be reduced during use of the bearing.
前記基油として、ポリαオレフィン系合成潤滑油を用いるのが好ましい。また、前記基油として、ポリαオレフィン系合成潤滑油とエステル系合成潤滑油とを用いることもできる。 As the base oil, it is preferable to use a polyalphaolefin synthetic lubricating oil. Further, as the base oil, poly-α-olefin-based synthetic lubricating oil and ester-based synthetic lubricating oil can be used.
前記増ちょう剤として、リチウム石けんを用いるのが好ましい。 As the thickener, lithium soap is preferably used.
以上に述べた焼結軸受は回路基板にリフローはんだ付けされる機器に組み込まれるものである。また、本発明の機器は、以上に述べた焼結軸受を有し、リフローはんだを用いて回路基板にはんだ付けされるものである。この場合の機器としては、錘を軸方向に往復移動させて振動を発生させるものが考えられる。 The sintered bearing described above is incorporated in a device that is reflow soldered to a circuit board. Moreover, the apparatus of this invention has the sintered bearing mentioned above, and is soldered to a circuit board using reflow soldering. As a device in this case, a device that generates vibration by reciprocating the weight in the axial direction can be considered.
以上のように、本発明の焼結軸受によれば、該焼結軸受を組み込んだ機器において、該機器の組み付け時等に一時的に加熱される際の潤滑油の蒸発や流出を抑制し、併せて該機器の使用中における摺動部の摩擦抵抗を低減することが可能となる。 As described above, according to the sintered bearing of the present invention, in the equipment incorporating the sintered bearing, the evaporation and outflow of the lubricating oil when temporarily heated when the equipment is assembled, In addition, it is possible to reduce the frictional resistance of the sliding portion during use of the device.
以下、本発明の実施形態を図1〜図12に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
図1は、往復駆動タイプの振動装置3の一例を示す断面図である。図1に示すように、この振動装置3は、ハウジング31と、駆動コイル32と、駆動子33とを主要な構成要素とするものである。 FIG. 1 is a cross-sectional view showing an example of a reciprocating drive type vibration device 3. As shown in FIG. 1, the vibration device 3 includes a housing 31, a drive coil 32, and a drive element 33 as main components.
ハウジング31は、樹脂等で両端が開口した円筒状に形成されている。ハウジングの一端側の開口部にコイルボビン35が片持ち状に固定され、このコイルボビン35の外周に駆動コイル32が形成されている。駆動子33は、磁性材料からなるカップ状のヨーク36と、ヨークの36の内底面に片持ち状に固定された磁石37(永久磁石)と、ヨーク36の外底面に固定された錘38と、ヨーク37の内周に挿入された配置された軸39とを有する。ヨーク36、磁石37、錘38、および軸39は一体に移動可能である。駆動子33の軸方向両側にはコイルばね等の弾性部材40が配置されており、この弾性部材40により、駆動子33がハウジング31に対して軸方向両側で弾性的に支持されている。この駆動子33は軸方向両側に移動可能であり、その往復運動は、ハウジング30の両端の開口部の内周に固定された焼結軸受41の内周面41a(軸受面)によって支持される。 The housing 31 is formed in a cylindrical shape whose both ends are opened with resin or the like. A coil bobbin 35 is fixed in a cantilever manner at an opening on one end side of the housing, and a drive coil 32 is formed on the outer periphery of the coil bobbin 35. The driver 33 includes a cup-shaped yoke 36 made of a magnetic material, a magnet 37 (permanent magnet) fixed to the inner bottom surface of the yoke 36 in a cantilever manner, and a weight 38 fixed to the outer bottom surface of the yoke 36. And a shaft 39 disposed on the inner periphery of the yoke 37. The yoke 36, the magnet 37, the weight 38, and the shaft 39 are movable together. Elastic members 40 such as coil springs are disposed on both sides in the axial direction of the drive element 33, and the drive elements 33 are elastically supported by the elastic member 40 on both sides in the axial direction with respect to the housing 31. The driver 33 is movable in both axial directions, and its reciprocating motion is supported by an inner peripheral surface 41 a (bearing surface) of the sintered bearing 41 fixed to the inner periphery of the opening at both ends of the housing 30. .
磁石37の自由端側の端面には磁性材料からなるポールピース42が固定されている。磁石37からの磁束はポールピース42で直径方向に広がって駆動コイル32と交わり、さらにヨーク36を経て磁石37に戻る閉磁路を形成する。磁力線と交わる駆動コイル32に交流電流を与えると、電流の向きに応じて駆動子33を軸方向一方側と他方側に押す力が交互に発生し、そのために駆動子33が軸方向に往復移動する。この駆動子33の往復運動により、振動が発生する。 A pole piece 42 made of a magnetic material is fixed to the end surface of the magnet 37 on the free end side. The magnetic flux from the magnet 37 spreads in the diameter direction by the pole piece 42, intersects with the drive coil 32, and forms a closed magnetic path that returns to the magnet 37 via the yoke 36. When an alternating current is applied to the drive coil 32 that intersects the magnetic field lines, a force that alternately pushes the drive element 33 toward the one side and the other side in the axial direction is generated according to the direction of the current, so that the drive element 33 reciprocates in the axial direction. To do. Vibration is generated by the reciprocating motion of the driver 33.
図2に示すように焼結軸受41は、内周面に軸受面41aを有する円筒状の焼結体で形成される。この焼結軸受41は、一般的な組成の焼結体(鉄系、銅系、銅鉄系)で形成する他、後で述べるように、本出願人が先に提案した、振動装置3としての用途に特に適合する焼結体(図4〜図12参照)で形成することもできる。 As shown in FIG. 2, the sintered bearing 41 is formed of a cylindrical sintered body having a bearing surface 41a on the inner peripheral surface. The sintered bearing 41 is formed of a sintered body (iron-based, copper-based, copper-iron-based) having a general composition, and as described later, as the vibration device 3 previously proposed by the present applicant. It can also be formed of a sintered body (see FIGS. 4 to 12) that is particularly suitable for the above applications.
通常、焼結軸受41を構成する焼結体には潤滑油を含浸させる。これに対し、本発明では、焼結体にグリースを含浸させてある。グリースは基油中に増ちょう剤を分散させて半固体状または固体状にした潤滑剤である。本発明において、基油及び増ちょう剤としては以下を使用する。 Usually, the sintered body constituting the sintered bearing 41 is impregnated with lubricating oil. In contrast, in the present invention, the sintered body is impregnated with grease. Grease is a lubricant in which a thickener is dispersed in a base oil to make it semi-solid or solid. In the present invention, the following are used as the base oil and the thickener.
[基油]
基油としては、ポリαオレフィン[Poly-Alpha-Olefins]系の合成潤滑油(以下、PAOと称する)が使用される。PAOは、例えばエチレンの低重合あるいはワックスの熱分解によって得られた直鎖状のα-オレフィン(炭素数6〜18)を数分子だけ限定的に重合(低重合)させ、次に水素添加処理より末端二重結合に水素を添加したものであり、例えば以下のように製造される。
As the base oil, poly-alpha-olefin [Poly-Alpha-Olefins] synthetic lubricating oil (hereinafter referred to as PAO) is used. PAO, for example, polymerizes only a few molecules (low polymerization) of linear α-olefins (6 to 18 carbon atoms) obtained by low polymerization of ethylene or thermal decomposition of wax, and then hydrogenation treatment This is one in which hydrogen is further added to the terminal double bond, and is produced, for example, as follows.
PAOは、安定性を阻害する不飽和二重結合や硫黄・窒素などの不純物を含まない均一な分子を有する合成潤滑油であり、分子量分布が狭いために高温時の蒸発損失が少ない、という特徴がある。従って、振動装置3の回路基板への取り付けに際し、リフローはんだを溶融させるために振動装置3を加熱した場合でも基油が蒸発しにくく、焼結軸受1の含油量の低下を防止することができる。また、PAOは高粘度指数で低流動点を有し、低温から高温まで使用温度領域が広いという特徴を有する。従って、振動装置3の作動中も軸39と軸受面41aの摺動部における摩擦抵抗を低減することができる。 PAO is a synthetic lubricating oil with uniform molecules that do not contain impurities such as unsaturated double bonds and sulfur / nitrogen that hinders stability, and its low molecular weight distribution results in low evaporation loss at high temperatures. There is. Therefore, when the vibration device 3 is attached to the circuit board, even when the vibration device 3 is heated to melt the reflow solder, the base oil hardly evaporates, and the oil content of the sintered bearing 1 can be prevented from being lowered. . PAO is characterized by a high viscosity index, a low pour point, and a wide operating temperature range from low to high temperatures. Accordingly, the frictional resistance at the sliding portion between the shaft 39 and the bearing surface 41a can be reduced even during the operation of the vibration device 3.
市販されているPAOには、分子量の違いに応じて40℃の動粘度および100℃の動粘度がそれぞれ異なる複数のグレードがあり、総じて40℃の動粘度が大きくなると100℃の動粘度も大きくなる傾向にある。例えば、低粘度グレードでは40℃の動粘度が16.8、100℃の動粘度3.9程度であり、高粘度グレードでは40℃の動粘度が410、100℃の動粘度が40程度となる(単位は何れも[mm2/s])。本発明では、PAOの中から、40℃の動粘度が40〜60[mm2/s]であり、100℃の動粘度が5〜10[mm2/s]のものを使用する。 There are several grades of commercially available PAO with different kinematic viscosities of 40 ° C. and 100 ° C. according to the difference in molecular weight, and as a whole, the kinematic viscosity at 100 ° C. increases as the kinematic viscosity at 40 ° C. increases. Tend to be. For example, in the low viscosity grade, the kinematic viscosity at 40 ° C. is about 16.8 and the kinematic viscosity at 100 ° C. is about 3.9, and in the high viscosity grade, the kinematic viscosity at 40 ° C. is 410 and the kinematic viscosity at 100 ° C. is about 40. (All units are [mm 2 / s]). In the present invention, a PAO having a kinematic viscosity at 40 ° C. of 40 to 60 [mm 2 / s] and a kinematic viscosity at 100 ° C. of 5 to 10 [mm 2 / s] is used.
40℃の動粘度が大きすぎると、振動装置3の通常の使用温度での摺動部の摩擦抵抗が増大する。従って、40℃の動粘度は60mm2/s以下とする。その一方で、動粘度が小さすぎると、振動装置3の使用中における基油の滲み出しが過剰となり、軸受寿命が低下する。特に図1に示すような軸方向駆動タイプの振動装置3では、基油が過剰に滲みだすと、軸39の往復運動に伴って摺動部から軸受外に押し出された基油が焼結軸受41に戻ることができないため、軸受寿命の低下が顕著なものとなる。以上の観点から、基油の40℃の動粘度は40mm2/s以上とする。 If the kinematic viscosity at 40 ° C. is too large, the frictional resistance of the sliding part at the normal operating temperature of the vibration device 3 increases. Accordingly, the kinematic viscosity at 40 ° C. is set to 60 mm 2 / s or less. On the other hand, if the kinematic viscosity is too small, the base oil oozes out during use of the vibration device 3 and the bearing life is reduced. In particular, in the axial drive type vibration device 3 as shown in FIG. 1, if the base oil begins to exude excessively, the base oil pushed out of the bearing from the sliding portion as the shaft 39 reciprocates is sintered bearing. Since it cannot return to 41, the bearing life is significantly reduced. From the above viewpoint, the base oil has a kinematic viscosity at 40 ° C. of 40 mm 2 / s or more.
また、100℃の動粘度が小さすぎると、振動装置3のリフローはんだ付けの際の短時間加熱でも基油が焼結体の表面から流出し易くなり、焼結軸受の含油率が低下する。従って、100℃の動粘度は5mm2/s以上とする。その一方で、100℃の動粘度が大きすぎると、それに伴って40℃の動粘度も大きくなって上記の上限(60mm2/s)を超えてしまうため、100℃の動粘度は10mm2/s以下とする。 On the other hand, if the kinematic viscosity at 100 ° C. is too small, the base oil tends to flow out of the surface of the sintered body even when heated for a short time during reflow soldering of the vibration device 3, and the oil content of the sintered bearing is lowered. Accordingly, the kinematic viscosity at 100 ° C. is 5 mm 2 / s or more. On the other hand, if the kinematic viscosity at 100 ° C. is too large, the kinematic viscosity at 40 ° C. increases accordingly and exceeds the upper limit (60 mm 2 / s), so the kinematic viscosity at 100 ° C. is 10 mm 2 / s. s or less.
基油としてPAOだけを使用することも可能であるが、低コスト化を図るためにPAOとエステル系合成油とを混合して使用することもできる。エステル系合成油は耐熱性に優れており、高い熱安定性を有する。また、分子量が大きく、かつ分子量分布が狭いために蒸発損失も少ない。従って、本発明の焼結軸受41のように、振動装置3の組み付け工程で一時的に加熱される場合でも、熱劣化や蒸発による含油量の低下を防止することができる。なお、このようにPAOとエステル系合成油とを混合する場合、PAOの配合量を50質量%以上とするのが好ましい。 Although it is possible to use only PAO as the base oil, it is also possible to use a mixture of PAO and ester synthetic oil in order to reduce costs. Ester synthetic oils are excellent in heat resistance and have high thermal stability. Further, since the molecular weight is large and the molecular weight distribution is narrow, the evaporation loss is small. Therefore, even when it is temporarily heated in the assembling process of the vibration device 3 like the sintered bearing 41 of the present invention, it is possible to prevent a decrease in the oil content due to thermal deterioration or evaporation. In addition, when mixing PAO and ester synthetic oil in this way, it is preferable that the compounding quantity of PAO shall be 50 mass% or more.
エステル系合成油としては、ポリオールエステル系合成潤滑油やジエステル系合成潤滑油が使用可能である。ポリオールエステル系は、β水素を含まないためジエステル系よりも熱安定性が優れる。また、エステル系合成潤滑油では、金属表面にエステルの一部が吸着して潤滑膜を形成するが、ポリオールエステル系の方がジエステル系よりも吸着基の数が多いため、より強硬な吸着膜を形成することができる。従って、化学結合安定性や潤滑性の面からはポリオールエステル系を使用するのが好ましい。一方、ジエステル系は低コストという利点を有するので、コスト面を重視する場合はジエステル系を使用するのが好ましい。ポリオールエステル系とジエステル系のどちらか一方をPAOと混合する他、双方をPAOと混合することもできる。何れにせよ混合後の基油の動粘度は、上記の条件(40℃で40mm2/s以上、60mm2/s以下、100℃で5mm2/s以上、10mm2/s以下の範囲)を満たす必要がある。 As the ester synthetic oil, a polyol ester synthetic lubricating oil or a diester synthetic lubricating oil can be used. Since the polyol ester system does not contain β hydrogen, it has better thermal stability than the diester system. In addition, in ester-based synthetic lubricating oil, a part of the ester is adsorbed on the metal surface to form a lubricating film, but the polyol ester type has a larger number of adsorbing groups than the diester type, so a harder adsorbing film Can be formed. Therefore, it is preferable to use a polyol ester system in terms of chemical bond stability and lubricity. On the other hand, since the diester type has the advantage of low cost, it is preferable to use the diester type when importance is attached to the cost. Either one of the polyol ester type and the diester type may be mixed with PAO, or both may be mixed with PAO. Kinematic viscosity of the base oil after mixing in any event, the above conditions (40 ° C. at 40 mm 2 / s or more, 60 mm 2 / s or less, 100 ° C. at 5 mm 2 / s or more, 10 mm 2 / s or less range) the It is necessary to satisfy.
[増ちょう剤]
増ちょう剤としては、相転移温度に加熱することによって液状化し、これよりも低温時に結晶化して保油性を発揮する石けん系の増ちょう剤が広く使用可能である。特に耐熱性の面で優れた特性を備えるリチウム石けんを使用するのが好ましい。リチウム石けんの化学構造は、例えばCH3(CH2)16COOLiで表される。リチウム石けんの中でも、例えば以下の化学構造を有するステアリン酸リチウムを使用することができる。
As the thickener, a soap-type thickener that is liquefied by heating to a phase transition temperature and crystallizes at a lower temperature than this to exhibit oil retention can be widely used. In particular, it is preferable to use lithium soap having excellent characteristics in terms of heat resistance. The chemical structure of lithium soap is represented by, for example, CH 3 (CH 2 ) 16 COOLi. Among lithium soaps, for example, lithium stearate having the following chemical structure can be used.
増ちょう剤としてのリチウム石けんの繊維構造は、例えば紡錘状の繊維で、その直径と長さは、直線繊維状のもので概ね0.5×3〜5μm程度である。相転移温度未満の温度では、リチウム石けんの繊維が複雑に絡み合って網目構造を構成しており、基油は網目構造中に保持される。 The fiber structure of lithium soap as a thickener is, for example, a spindle-shaped fiber, and the diameter and length thereof are linear fibers and are about 0.5 × 3 to 5 μm. At a temperature lower than the phase transition temperature, the lithium soap fibers are intertwined in a complicated manner to form a network structure, and the base oil is retained in the network structure.
グリースにおける増ちょう剤の添加量は、例えば0.1〜3質量%(好ましくは0.5〜1質量%)とする。0.1質量%よりも少ないと、グリースの保油効果が不十分となり、特に高温時に基油が流出し易くなる。また、3質量%を超えるとグリースが硬くなり、軸39との摺動部における摩擦抵抗が増大する。 The amount of thickener added to the grease is, for example, 0.1 to 3% by mass (preferably 0.5 to 1% by mass). If it is less than 0.1% by mass, the oil retaining effect of the grease becomes insufficient, and the base oil tends to flow out particularly at high temperatures. On the other hand, if it exceeds 3 mass%, the grease becomes hard and the frictional resistance at the sliding portion with the shaft 39 increases.
以上に述べた基油に、通常の潤滑グリースに使用される各種添加剤(たとえば酸化防止剤、清浄分散剤、極圧剤、摩耗防止剤、油性剤、摩擦調整剤、粘度指数向上剤、流動点硬化剤、さび止め剤、泡止め剤等の中から一種もしくは複数種を選択して使用し、または全てを使用する)を必要に応じて共存させながら増ちょう剤を加えることで、本発明のグリースが得られる。常温では、増ちょう剤が基油中に分散してミセル構造をとるため、グリースは半固体の状態になる。 Various additives (for example, antioxidants, detergent dispersants, extreme pressure agents, antiwear agents, oiliness agents, friction modifiers, viscosity index improvers, fluids used in ordinary lubricating greases to the base oils described above. By adding a thickener while coexisting one or a plurality of point curing agents, rust inhibitors, foam inhibitors, etc., if necessary, or all of them are used as needed, the present invention The grease is obtained. At normal temperature, the thickener is dispersed in the base oil to form a micelle structure, so that the grease is in a semi-solid state.
このグリースを相転移温度以上に加熱すると基油粘度程度の液体になる。このようにして液体化したグリースを、真空含浸等の手法で焼結体に含浸させ、細孔内にグリースを保有させる。グリースに含まれる増ちょう剤は、相転移温度未満の結晶化した状態でも焼結体の細孔内に入り込んだ状態にある。そのため増ちょう剤の網目構造で基油を細孔内に保持し、その過剰な滲み出しを防止することができる。 When this grease is heated above the phase transition temperature, it becomes a liquid having a base oil viscosity. The grease thus liquefied is impregnated into the sintered body by a technique such as vacuum impregnation, and the grease is retained in the pores. The thickener contained in the grease is still in the pores of the sintered body even in a crystallized state below the phase transition temperature. Therefore, the base oil can be held in the pores by the network structure of the thickener, and excessive exudation thereof can be prevented.
このように本発明では、焼結体に潤滑油ではなくグリースを含浸させている。グリースの増ちょう剤は焼結体の細孔内でも網目構造により基油を保持しているため、保油性が高い。従って、潤滑油を含浸させる場合に比べ、そもそも高温時にも基油の蒸発や流出が生じにくい。また、PAOを基油の主成分としているので、PAO特有の特性からも基油の蒸発が生じにくい。その上、PAOのグレードの中から100℃の動粘度が高めのものを選択しているので、高温時にも細孔からの基油の流出が生じ難い。従って、振動装置3の回路基板へのリフローはんだ付けに伴い、焼結軸受41が一時的に高温(220〜260℃)に加熱されたとしても、焼結軸受41からの基油の蒸発や流出を抑制することができ、焼結軸受41の含油量が低下する事態を防止することができる。 Thus, in the present invention, the sintered body is impregnated with grease instead of lubricating oil. Since the thickener of grease retains the base oil by the network structure even in the pores of the sintered body, the oil retaining property is high. Therefore, compared with the case where the lubricating oil is impregnated, the base oil hardly evaporates or flows out even at high temperatures. Further, since PAO is the main component of the base oil, the base oil is unlikely to evaporate due to the characteristics unique to PAO. In addition, since a PAO grade having a high kinematic viscosity at 100 ° C. is selected, it is difficult for base oil to flow out of the pores even at high temperatures. Therefore, even if the sintered bearing 41 is temporarily heated to a high temperature (220 to 260 ° C.) with reflow soldering to the circuit board of the vibration device 3, evaporation or outflow of the base oil from the sintered bearing 41. This can prevent the oil content of the sintered bearing 41 from decreasing.
その一方で、振動装置3の使用温度(通常は室温)では基油の動粘度が小さいため、振動装置3の使用中、つまりバイブレーション機能の作動中に軸39と軸受面41aの摺動部での摩擦抵抗を小さくすることができる。従って、安定したバイブレーション機能が得られる。また、かかる焼結軸受41を採用しても、振動装置3の製造コストが著しく高騰することはない。 On the other hand, since the kinematic viscosity of the base oil is small at the operating temperature of the vibration device 3 (usually room temperature), the sliding portion between the shaft 39 and the bearing surface 41a is in use during the vibration device 3, that is, during the operation of the vibration function. The frictional resistance can be reduced. Therefore, a stable vibration function can be obtained. Further, even when such a sintered bearing 41 is employed, the manufacturing cost of the vibration device 3 does not increase significantly.
なお、上記グリースの相転移温度は200℃前後(約198℃)であり、炉内の雰囲気温度は相転移温度を超えているが、炉内での加熱時間は短時間(数秒〜数十分)である。従って、炉内での加熱中にグリースが全て液状化することはなく、加熱に伴う基油の流出は最小限に抑えられる。 The grease has a phase transition temperature of about 200 ° C. (about 198 ° C.), and the atmospheric temperature in the furnace exceeds the phase transition temperature, but the heating time in the furnace is short (several seconds to several tens of minutes). ). Therefore, the grease is not completely liquefied during heating in the furnace, and the outflow of base oil accompanying heating is minimized.
このように本発明は、軸受使用中の温度(低温)を考慮するだけでなく、焼結軸受を組み込む機器(振動装置3)の組み付け時に焼結軸受が一時的に高温に加熱されるという特有の事情を考慮して潤滑剤の組成を検討し、最適となる組成を導き出したものである。この点において、本発明は、焼結軸受の使用温度(低温環境あるいは高温環境)だけを考慮して潤滑剤の組成を検討する既存焼結軸受における潤滑剤の選定作業とは、技術思想の面で異なるものである。 As described above, the present invention not only considers the temperature (low temperature) during use of the bearing, but is also unique in that the sintered bearing is temporarily heated to a high temperature when the apparatus incorporating the sintered bearing (vibration device 3) is assembled. In consideration of this situation, the composition of the lubricant was examined and the optimum composition was derived. In this respect, the present invention refers to the selection of the lubricant in the existing sintered bearing that examines the composition of the lubricant considering only the operating temperature (low temperature environment or high temperature environment) of the sintered bearing. Is different.
以上の説明では、図1に示す軸方向駆動タイプの振動装置3に使用する焼結軸受41を例に挙げて本発明を説明したが、図3に示す回転駆動タイプの振動装置3でも、振動装置3を回路基板にリフローはんだ付けする場合があり、その場合も、回転軸44を支持する焼結軸受41として、以上に説明した焼結軸受を使用することができる。なお、図3において、符号45はハウジングであり、符号Mは回転軸44を駆動するモータであり、符号Wは回転軸44の先端に偏心状態で取り付けられた錘である。 In the above description, the present invention has been described by taking the sintered bearing 41 used in the axial drive type vibration device 3 shown in FIG. 1 as an example. However, the rotational drive type vibration device 3 shown in FIG. In some cases, the apparatus 3 may be reflow soldered to the circuit board, and in this case, the sintered bearing described above can be used as the sintered bearing 41 that supports the rotating shaft 44. In FIG. 3, reference numeral 45 is a housing, reference numeral M is a motor for driving the rotating shaft 44, and reference numeral W is a weight attached eccentrically to the tip of the rotating shaft 44.
本発明の焼結軸受41を使用する機器は、図1および図3に示す振動装置3に限定されない。本発明の焼結軸受は、同様にリフローはんだ付けにより取り付けられる他の機器、さらにはリフローはんだ付けと同等の加熱条件で一時的に加熱される機器等に広く用いることができる。 The apparatus using the sintered bearing 41 of the present invention is not limited to the vibration device 3 shown in FIGS. 1 and 3. The sintered bearing of the present invention can be widely used in other devices that are similarly mounted by reflow soldering, and devices that are temporarily heated under the same heating conditions as reflow soldering.
以下、以上に述べた図1および図3に示す振動装置3の使用に特に適合する焼結軸受41の構成を図4〜図12に基づいて説明する。 Hereinafter, the structure of the sintered bearing 41 that is particularly suitable for the use of the vibration device 3 shown in FIGS. 1 and 3 described above will be described with reference to FIGS.
この焼結軸受41は、各種粉末を混合した原料粉を金型に充填し、これを圧縮して圧粉体を成形した後、圧粉体を焼結することで形成される。 The sintered bearing 41 is formed by filling raw material powder mixed with various powders in a mold, compressing the mold to form a green compact, and then sintering the green compact.
原料粉は、部分拡散合金粉、扁平銅粉、低融点金属粉、および固体潤滑剤粉を主成分とする混合粉末である。この混合粉末には、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤(金属セッケン等)が添加される。 The raw material powder is a mixed powder mainly composed of partially diffused alloy powder, flat copper powder, low melting point metal powder, and solid lubricant powder. To this mixed powder, various molding aids, for example, a lubricant (metal soap or the like) for improving releasability are added as necessary.
部分拡散合金粉としては、図4に示すように、鉄粉12の表面に多数の銅粉13を部分拡散させたFe−Cu部分拡散合金粉11が使用される。部分拡散合金粉11の拡散部分はFe−Cu合金を形成しており、図4中の部分拡大図に示すように、合金部分は鉄原子12aと銅原子13aとが相互に結合し、配列した結晶構造を有する。部分拡散合金粉11としては平均粒径が75μm〜212μmのものを使用するのが好ましい。 As the partial diffusion alloy powder, Fe-Cu partial diffusion alloy powder 11 in which a large number of copper powders 13 are partially diffused on the surface of iron powder 12 is used as shown in FIG. The diffusion portion of the partial diffusion alloy powder 11 forms an Fe—Cu alloy, and as shown in the partial enlarged view in FIG. 4, the alloy portions are arranged in which iron atoms 12 a and copper atoms 13 a are bonded to each other. It has a crystal structure. As the partial diffusion alloy powder 11, one having an average particle diameter of 75 μm to 212 μm is preferably used.
上記の部分拡散合金粉11を構成する鉄粉12としては、還元鉄粉、アトマイズ鉄粉等、公知の鉄粉を使用することができるが、本実施形態では還元鉄粉を使用する。還元鉄粉は、球形に近似した不規則形状で、かつ内部気孔を有する海綿状(多孔質状)であるから、海綿鉄粉とも称される。使用する鉄粉12は、平均粒径45μm〜150μmのものが好ましく、平均粒径63μm〜106μmのものがより一層好ましい。 As the iron powder 12 constituting the partial diffusion alloy powder 11, known iron powders such as reduced iron powder and atomized iron powder can be used, but reduced iron powder is used in the present embodiment. The reduced iron powder has an irregular shape that approximates a spherical shape and has a sponge shape (porous shape) having internal pores, and is also referred to as sponge iron powder. The iron powder 12 used preferably has an average particle size of 45 μm to 150 μm, and more preferably an average particle size of 63 μm to 106 μm.
なお、平均粒径は、粒子群にレーザ光を照射し、そこから発せられる回析・散乱光の強度分布パターンから計算によって粒度分布、さらには平均粒径を求めるレーザ回析散乱法(例えば株式会社島津製作所製のSALD31000を用いる)により測定することができる(以下に述べる各粉末の平均粒径も同様の方法で測定することができる)。 The average particle size is determined by irradiating a particle group with laser light and calculating the particle size distribution by calculating from the intensity distribution pattern of diffraction / scattered light emitted from the particle group. (The average particle size of each powder described below can also be measured by the same method).
また、部分拡散合金粉11を構成する銅粉13としては、汎用されている不規則形状や樹枝状の銅粉が広く使用可能であり、例えば、電解銅粉、アトマイズ銅粉等が用いられる。本実施形態では、表面に多数の凹凸を有すると共に、粒子全体として球形に近似した不規則形状をなし、成形性に優れたアトマイズ銅粉を使用している。使用する銅粉13は、鉄粉12よりも小粒径のものが使用され、具体的には平均粒径5μm以上45μm以下のものが使用される。なお、部分拡散合金粉11におけるCuの割合は10〜30wt%(好ましくは22〜26wt%)とする。 Moreover, as the copper powder 13 which comprises the partial diffusion alloy powder 11, the irregular-shaped and dendritic copper powder currently used widely can be used widely, for example, electrolytic copper powder, atomized copper powder, etc. are used. In the present embodiment, an atomized copper powder having a large number of irregularities on the surface, an irregular shape that approximates a spherical shape as a whole particle, and excellent in formability is used. The copper powder 13 to be used has a smaller particle diameter than the iron powder 12, and specifically, one having an average particle diameter of 5 μm to 45 μm is used. In addition, the ratio of Cu in the partial diffusion alloy powder 11 shall be 10-30 wt% (preferably 22-26 wt%).
扁平銅粉は、水アトマイズ粉等からなる原料銅粉を搗砕(Stamping)することで扁平化させたものである。扁平銅粉としては、長さLが20μm〜80μm、厚さtが0.5μm〜1.5μm(アスペクト比L/t=13.3〜160)のものが主に用いられる。ここでいう「長さ」および「厚さ」は、図5に示すように個々の扁平銅粉3の幾何学的な最大寸法をいう。扁平銅粉の見かけ密度は1.0g/cm3以下とする。以上のサイズ、及び見かけ密度の扁平銅粉であれば、金型成形面に対する扁平銅粉の付着力が高まるため、金型成形面に多量の扁平銅粉を付着させることができる。 The flat copper powder is flattened by stamping raw material copper powder made of water atomized powder or the like. As the flat copper powder, one having a length L of 20 μm to 80 μm and a thickness t of 0.5 μm to 1.5 μm (aspect ratio L / t = 13.3 to 160) is mainly used. Here, “length” and “thickness” refer to the geometric maximum dimension of each flat copper powder 3 as shown in FIG. The apparent density of the flat copper powder is 1.0 g / cm 3 or less. If the flat copper powder has the above size and apparent density, the adhesion of the flat copper powder to the mold forming surface is increased, so that a large amount of flat copper powder can be attached to the mold forming surface.
金型成形面に扁平銅粉を付着させるため、扁平銅粉には予め流体潤滑剤を付着させておく。この流体潤滑剤は、原料粉末の金型充填前に扁平銅粉に付着させていればよく、好ましくは原料粉の混合前、さらに好ましくは原料銅粉を搗砕する段階で原料銅粉に付着させる。搗砕後、他の原料粉体と混合するまでの間に扁平銅粉に流体潤滑剤を供給し、攪拌する等の手段で扁平銅粉に流体潤滑剤を付着させてもよい。金型成形面上の扁平銅粉の付着量を確保するため、扁平銅粉に対する流体潤滑剤の配合割合は、重量比で0.1重量%以上とし、また扁平銅粉同士の付着による凝集を防止するため、配合割合は0.8重量%以下とする。望ましくは配合割合の下限は0.2重量%以上とし、上限は0.7重量%とする。流体潤滑剤としては、脂肪酸、特に直鎖飽和脂肪酸が好ましい。この種の脂肪酸は、Cn-1H2n-1COOHの一般式で表される。この脂肪酸としては、Cnが12〜22の範囲のもので、具体例として例えばステアリン酸を使用することができる。 In order to attach the flat copper powder to the molding surface, a fluid lubricant is previously attached to the flat copper powder. This fluid lubricant only needs to be attached to the flat copper powder before filling the raw material powder into the mold, preferably before mixing the raw material powder, more preferably to the raw material copper powder at the stage of crushing the raw material copper powder. Let The fluid lubricant may be attached to the flat copper powder by means such as supplying the fluid lubricant to the flat copper powder and stirring it after mixing and before mixing with other raw material powders. In order to secure the adhesion amount of the flat copper powder on the molding surface, the blending ratio of the fluid lubricant to the flat copper powder should be 0.1% by weight or more, and aggregation due to the adhesion of the flat copper powders In order to prevent this, the blending ratio is 0.8% by weight or less. Desirably, the lower limit of the blending ratio is 0.2% by weight or more, and the upper limit is 0.7% by weight. As the fluid lubricant, fatty acids, particularly linear saturated fatty acids are preferred. This type of fatty acid is represented by the general formula C n-1 H 2n-1 COOH. As this fatty acid, Cn is in the range of 12 to 22, and for example, stearic acid can be used as a specific example.
低融点金属粉は、銅よりも低融点の金属粉であり、本発明では、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。この中でも焼結時の蒸散が少ない錫が好ましい。低融点金属粉の平均粒径は5μm〜45μmとし、部分拡散合金粉11の平均粒径よりも小さくするのが好ましい。これら低融点金属粉は銅に対して高いぬれ性を持つ。原料粉に低融点金属粉を配合することで、焼結時には先ず低融点金属粉が溶融して銅粉の表面をぬらし、銅に拡散して銅を溶融させる。溶融した銅と低融点金属の合金により液相焼結が進行し、鉄粒子同士の間、鉄粒子と銅粒子の間、および銅粒子同士の間の結合強度が強化される。 The low melting point metal powder is a metal powder having a melting point lower than that of copper. In the present invention, a metal powder having a melting point of 700 ° C. or lower, for example, a powder of tin, zinc, phosphorus or the like is used. Of these, tin is preferred because it causes less transpiration during sintering. The average particle diameter of the low-melting metal powder is preferably 5 μm to 45 μm, and is preferably smaller than the average particle diameter of the partial diffusion alloy powder 11. These low melting point metal powders have high wettability with respect to copper. By blending the low melting point metal powder with the raw material powder, the low melting point metal powder is first melted at the time of sintering to wet the surface of the copper powder and diffused into the copper to melt the copper. Liquid phase sintering proceeds by the molten alloy of copper and low melting point metal, and the bond strength between iron particles, between iron particles and copper particles, and between copper particles is strengthened.
固体潤滑剤粉は、軸との摺動による金属接触時の摩擦低減のために添加され、例えば黒鉛が使用される。この時、黒鉛粉としては、扁平銅粉に対する付着性が得られるように、鱗状黒鉛粉を使用するのが望ましい。固体潤滑剤粉としては、黒鉛粉の他に二硫化モリブデン粉も使用することができる。二硫化モリブデン粉は層状結晶構造を有していて層状に剥離するため、鱗状黒鉛と同様に扁平銅粉に対する付着性が得られる。 The solid lubricant powder is added to reduce friction at the time of metal contact due to sliding with the shaft. For example, graphite is used. At this time, as the graphite powder, it is desirable to use scaly graphite powder so that adhesion to the flat copper powder can be obtained. As solid lubricant powder, molybdenum disulfide powder can be used in addition to graphite powder. Molybdenum disulfide powder has a layered crystal structure and peels into layers, and thus adheres to flat copper powder in the same manner as scale graphite.
上記各粉末を配合した原料粉では、部分拡散合金粉を75〜90wt%、扁平銅粉を8〜20wt%、低融点金属粉(例えば錫粉)を0.8〜6.0wt% 、固体潤滑剤粉(例えば黒鉛粉)を0.5〜2.0wt%配合するのが好ましい。この配合比としたのは以下の理由による。 In the raw material powder containing the above powders, 75 to 90 wt% of the partial diffusion alloy powder, 8 to 20 wt% of the flat copper powder, 0.8 to 6.0 wt% of the low melting point metal powder (for example, tin powder), solid lubrication It is preferable to mix 0.5 to 2.0 wt% of the agent powder (for example, graphite powder). The reason for this blending ratio is as follows.
本発明では、後述のように、原料粉の金型への充填時に扁平銅粉を金型に層状に付着させている。原料粉における扁平銅の配合割合が8重量%を下回ると、金型への扁平銅の付着量が不十分となって本願発明の作用効果が期待できない。また、扁平銅粉の金型への付着量は20wt%程度で飽和し、これ以上配合量を増しても、高コストの扁平銅粉を使用することによるコストアップが問題となる。低融点金属粉の割合が0.8wt%を下回ると軸受の強度を確保できず、6.0wt%を超えると、扁平銅粉の球形化の影響が無視できなくなる。また、固体潤滑剤粉の割合が0.5重量%を下回ると、軸受面における摩擦低減効果が得られず、2.0wt%を超えると強度低下等を招く。 In the present invention, as will be described later, the flat copper powder is adhered to the mold in layers when the raw powder is filled into the mold. If the blending ratio of flat copper in the raw material powder is less than 8% by weight, the amount of flat copper adhering to the mold becomes insufficient, and the effect of the present invention cannot be expected. Moreover, the adhesion amount of the flat copper powder to the mold is saturated at about 20 wt%, and even if the blending amount is further increased, the cost increase due to the use of the high-cost flat copper powder becomes a problem. If the ratio of the low melting point metal powder is less than 0.8 wt%, the strength of the bearing cannot be ensured, and if it exceeds 6.0 wt%, the influence of spheroidizing the flat copper powder cannot be ignored. Further, if the ratio of the solid lubricant powder is less than 0.5% by weight, the effect of reducing friction on the bearing surface cannot be obtained, and if it exceeds 2.0% by weight, the strength is reduced.
以上に述べた各粉末の混合は、2回に分けて行うのが望ましい。先ず、一次混合として、鱗状黒鉛粉および予め流体潤滑剤を付着させた扁平銅粉を公知の混合機で混合する。次いで、二次混合として、一次混合粉に部分拡散合金粉、および低融点金属粉を添加して混合し、さらに必要に応じて黒鉛粉も添加・混合する。扁平銅粉は、各種原料粉末の中でも見かけ密度が低いため、原料粉中に均一に分散させるのが難しいが、一次混合で見かけ密度が同レベルの扁平銅粉と黒鉛粉とを予め混合しておくと、扁平銅粉に付着した流体潤滑剤等により、図6に示すように、扁平銅粉15と黒鉛粉14が互いに付着して層状に重なり、扁平銅粉の見かけ密度が高まる。そのため、二次混合時に原料粉末中に扁平銅粉を均一に分散させることが可能となる。一次混合時に、別途潤滑剤を添加すれば、扁平銅粉と黒鉛粉の付着がさらに促進されるため、二次混合時に扁平銅粉をより均一に分散させることが可能となる。ここで添加する潤滑剤としては、上記流体潤滑剤と同種または異種の流体状潤滑剤の他、粉末状のものも使用可能である。例えば上述した金属セッケン等の成形助剤は一般に粉状でありながら、ある程度の付着力を有するので、扁平銅粉と黒鉛粉の付着より促進させることができる。 It is desirable to mix the powders described above in two steps. First, as primary mixing, scaly graphite powder and flat copper powder to which a fluid lubricant is previously attached are mixed with a known mixer. Next, as the secondary mixing, the partial diffusion alloy powder and the low melting point metal powder are added to and mixed with the primary mixed powder, and further, the graphite powder is added and mixed as necessary. Flat copper powder has a low apparent density among various raw material powders, so it is difficult to disperse uniformly in the raw material powder, but it is premixed with flat copper powder and graphite powder that have the same apparent density in the primary mixing. Then, as shown in FIG. 6, the flat copper powder 15 and the graphite powder 14 adhere to each other and overlap in layers due to the fluid lubricant or the like adhering to the flat copper powder, and the apparent density of the flat copper powder increases. Therefore, it becomes possible to uniformly disperse the flat copper powder in the raw material powder during the secondary mixing. If a lubricant is added separately during the primary mixing, the adhesion between the flat copper powder and the graphite powder is further promoted, so that the flat copper powder can be more uniformly dispersed during the secondary mixing. As the lubricant to be added, a powdery lubricant can be used in addition to the same or different fluid lubricant as the fluid lubricant. For example, the above-mentioned forming aid such as metal soap is generally powdery and has a certain degree of adhesion, which can be promoted by adhesion of flat copper powder and graphite powder.
図6に示す扁平銅粉15と鱗状黒鉛粉14との付着状態は、二次混合後もある程度保持されるため、原料粉末を金型に充填した際には、金型表面に扁平銅粉と共に多くの黒鉛粉が付着することとなる。 Since the adhesion state of the flat copper powder 15 and the scaly graphite powder 14 shown in FIG. 6 is maintained to some extent even after the secondary mixing, when the raw material powder is filled in the mold, the flat copper powder is put on the mold surface. A lot of graphite powder will adhere.
二次混合後の原料粉末は成形機の金型20に供給される。図7に示すように、金型20は、コア21、ダイ22、上パンチ23、および下パンチ24からなり、これらによって区画されたキャビティに原料粉末が充填される。上下パンチ23,24を接近させて原料粉体を圧縮すると、原料粉末が、コア21の外周面、ダイ22の内周面、上パンチ23の端面、および下パンチ24の端面からなる成形面によって成形され、円筒状の圧粉体25が得られる。 The raw material powder after the secondary mixing is supplied to the mold 20 of the molding machine. As shown in FIG. 7, the mold 20 includes a core 21, a die 22, an upper punch 23, and a lower punch 24, and a raw material powder is filled in a cavity defined by these. When the upper and lower punches 23 and 24 are brought close to each other and the raw material powder is compressed, the raw material powder is formed by the molding surface formed by the outer peripheral surface of the core 21, the inner peripheral surface of the die 22, the end surface of the upper punch 23, and the end surface of the lower punch 24. A cylindrical green compact 25 is obtained by molding.
原料粉体における金属粉の中では、扁平銅粉の見かけ密度が最も小さい。また、扁平銅粉は、上記長さLおよび厚さtを有する箔状であり、単位重量あたりの幅広面の面積が大きい。そのため、扁平銅粉15は、その表面に付着した流体潤滑剤による付着力、さらにはクーロン力等の影響を受けやすくなり、原料粉の金型20への充填後は、図8(図7中の領域Qの拡大図)に拡大して示すように、扁平銅粉15がその幅広面を金型20の成形面20aに向け、かつ複数層(1層〜3層程度)重なった層状態となって成形面20aの全域に付着する。この際、扁平銅粉15に付着した鱗状黒鉛も扁平銅粉15に付随して金型の成形面20aに付着する(図8では黒鉛の図示を省略)。その一方で、扁平銅15の層状組織の内側領域(キャビティ中心側となる領域)では、部分拡散合金粉11、扁平銅粉15、低融点金属粉16、および黒鉛粉の分散状態が全体で均一化している。成形後の圧粉体25は、このような各粉末の分布状態をほぼそのまま保持している。 Among the metal powders in the raw material powder, the apparent density of the flat copper powder is the smallest. Further, the flat copper powder is a foil having the length L and the thickness t, and the area of the wide surface per unit weight is large. Therefore, the flat copper powder 15 is easily affected by the adhesive force due to the fluid lubricant adhered to the surface thereof, and further by the Coulomb force, etc. After filling the raw material powder into the mold 20, FIG. 8 (in FIG. 7) As shown in an enlarged view of the area Q), the flat copper powder 15 has a layered state in which the wide surface is directed to the molding surface 20a of the mold 20 and a plurality of layers (about 1 to 3 layers) overlap. And adheres to the entire area of the molding surface 20a. At this time, scaly graphite adhering to the flat copper powder 15 also adheres to the flat copper powder 15 and adheres to the molding surface 20a of the mold (illustration of graphite is omitted in FIG. 8). On the other hand, in the inner region (region on the cavity center side) of the layered structure of the flat copper 15, the dispersion state of the partial diffusion alloy powder 11, the flat copper powder 15, the low melting point metal powder 16, and the graphite powder is uniform throughout. It has become. The green compact 25 after the molding holds the distribution state of each powder almost as it is.
その後、圧粉体25は焼結炉にて焼結される。本実施形態では、鉄組織が、フェライト相とパーライト相の二相組織となるように焼結条件が決定される。このように鉄組織をフェライト相とパーライト相の二相組織とすれば、硬質のパーライト相が耐摩耗性の向上に寄与し、高面圧下での軸受面の摩耗を抑制して軸受寿命を向上させることができる。 Thereafter, the green compact 25 is sintered in a sintering furnace. In the present embodiment, the sintering conditions are determined so that the iron structure becomes a two-phase structure of a ferrite phase and a pearlite phase. In this way, if the iron structure is a two-phase structure of ferrite phase and pearlite phase, the hard pearlite phase contributes to the improvement of wear resistance and suppresses the wear of the bearing surface under high surface pressure, thereby improving the bearing life. Can be made.
炭素が拡散することにより、パーライト(γFe)の存在割合が過剰となり、フェライト(αFe)と同等レベル以上の割合になると、パーライトによる軸に対する攻撃性が著しく増して軸が摩耗しやすくなる。これを防止するため、パーライト相(γFe)はフェライト相(αFe)の粒界に存在(点在)する程度に抑える(図9参照)。ここでいう「粒界」は、粉末粒子間に形成される粒界の他、粉末粒子中に形成される結晶粒界18の双方を意味する。このように鉄組織をフェライト相(αFe)とパーライト相(γFe)の二相組織で形成する場合、鉄組織に占めるフェライト相(αFe)およびパーライト相(γFe)の割合は、後述するベース部S2の任意断面における面積比で、それぞれ、80〜95%および5〜20%(αFe:γFe=80〜95%:5〜20%)程度とするのが望ましい。これにより、軸2の摩耗抑制と軸受面1aの耐摩耗性向上とを両立させることができる。 When carbon is diffused, the existence ratio of pearlite (γFe) becomes excessive, and when the ratio is equal to or higher than that of ferrite (αFe), the aggressiveness of the pearlite against the shaft is remarkably increased and the shaft is easily worn. In order to prevent this, the pearlite phase (γFe) is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase (αFe) (see FIG. 9). The “grain boundary” here means both the grain boundary formed between the powder particles and the crystal grain boundary 18 formed in the powder particle. In this way, when the iron structure is formed of a two-phase structure of a ferrite phase (αFe) and a pearlite phase (γFe), the proportion of the ferrite phase (αFe) and the pearlite phase (γFe) in the iron structure depends on the base portion S2 described later. It is desirable that the area ratio in the arbitrary cross section is about 80 to 95% and 5 to 20% (αFe: γFe = 80 to 95%: 5 to 20%), respectively. Thereby, it is possible to achieve both suppression of wear of the shaft 2 and improvement of wear resistance of the bearing surface 1a.
パーライトの成長速度は、主に焼結温度に依存する。従って、上記の態様でパーライト相をフェライト相の粒界に存在させるためには、焼結温度(炉内雰囲気温度)を820℃〜900℃程度とし、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相(γFe)を形成することができる。なお、900℃を越える温度で焼結すると、黒鉛粉中の炭素が鉄と反応し、パーライト相が必要以上に増えるので好ましくない。焼結に伴い、上記流体潤滑剤、その他の潤滑剤、各種成形助剤は焼結体内部で燃焼し、あるいは焼結体内部からベーパする。 The growth rate of pearlite mainly depends on the sintering temperature. Therefore, in order for the pearlite phase to be present at the grain boundary of the ferrite phase in the above-described manner, the sintering temperature (furnace atmosphere temperature) is about 820 ° C. to 900 ° C., and the gas containing carbon as the furnace atmosphere, for example, Sintering using natural gas or endothermic gas (RX gas). Thereby, carbon contained in the gas diffuses into iron during sintering, and a pearlite phase (γFe) can be formed. Sintering at a temperature exceeding 900 ° C. is not preferable because carbon in the graphite powder reacts with iron and the pearlite phase increases more than necessary. With the sintering, the fluid lubricant, other lubricants, and various molding aids burn inside the sintered body or vaporize from inside the sintered body.
以上に述べた焼結工程を経ることで、多孔質の焼結体が得られる。この焼結体にサイジングを施し、さらに上記のグリースを含浸させることにより、図2に示す焼結軸受41が完成する。 By passing through the sintering step described above, a porous sintered body can be obtained. The sintered body 41 shown in FIG. 2 is completed by sizing the sintered body and further impregnating the above-mentioned grease.
以上の製作工程を経た焼結軸受1の表面付近(図1中の領域P)のミクロ組織を図9に概略図示する。 FIG. 9 schematically shows the microstructure near the surface of the sintered bearing 1 (region P in FIG. 1) that has undergone the above manufacturing process.
図9に示すように、本発明の焼結軸受1では、金型成形面20aに扁平銅粉15を層状に付着させた状態で圧粉体25が成形され(図8参照)、この扁平銅粉15が焼結されていることに由来して、軸受1の軸受面1aを含む表面全体に銅濃度が他よりも高い表面層S1が形成される。しかも、扁平銅粉15の幅広面が成形面20aに付着していたこともあり、表面層S1の銅組織51aの多くが表面層S1の厚さ方向を薄くした扁平状になる。表面層S1の厚さは金型成形面20aに層状に付着した扁平銅粉層の厚さに相当し、概ね1μm〜6μm程度である。表面層S1の表面は、銅組織51aの他に遊離黒鉛52(黒塗りで示す)を主体として形成され、残りが気孔の開口部や後述の鉄組織となる。この中では、銅組織51aの面積が最大であり、具体的には表面の60%以上が銅組織51aとなる。 As shown in FIG. 9, in the sintered bearing 1 of the present invention, the green compact 25 is formed in a state where the flat copper powder 15 is adhered in a layered manner to the mold forming surface 20a (see FIG. 8). Since the powder 15 is sintered, a surface layer S1 having a higher copper concentration than the others is formed on the entire surface including the bearing surface 1a of the bearing 1. In addition, the wide surface of the flat copper powder 15 may have adhered to the molding surface 20a, and many of the copper structures 51a of the surface layer S1 have a flat shape in which the thickness direction of the surface layer S1 is thinned. The thickness of the surface layer S1 corresponds to the thickness of the flat copper powder layer adhering to the mold forming surface 20a in layers, and is about 1 μm to 6 μm. The surface of the surface layer S1 is mainly composed of free graphite 52 (shown in black) in addition to the copper structure 51a, and the remainder is a pore opening or an iron structure described later. In this, the area of the copper structure 51a is the largest, specifically, 60% or more of the surface becomes the copper structure 51a.
一方、表面層S1で覆われた内側のベース部S2は、二種類の銅組織(51b,51c)、鉄組織53、遊離黒鉛52、および気孔が形成される。一方の銅組織51b(第一の銅組織)は圧粉体25の内部に含まれていた扁平銅粉15に由来して形成されたもので、扁平銅粉に対応した扁平形状をなしている。他方の銅組織51c(第二の銅組織)は、部分拡散合金粉11を構成する銅粉13に低融点金属が拡散して形成されたものであり、鉄組織33と接して形成されている。この第二の銅組織31cは、後述のように、粒子同士の結合力を高める役割を担う。 On the other hand, two types of copper structures (51b, 51c), iron structure 53, free graphite 52, and pores are formed in the inner base part S2 covered with the surface layer S1. One copper structure 51b (first copper structure) is formed from the flat copper powder 15 contained in the green compact 25, and has a flat shape corresponding to the flat copper powder. . The other copper structure 51 c (second copper structure) is formed by diffusing a low-melting-point metal into the copper powder 13 constituting the partial diffusion alloy powder 11, and is formed in contact with the iron structure 33. . As will be described later, the second copper structure 31c plays a role of increasing the bonding force between the particles.
図10は、図9に示す焼結後の鉄組織53およびその周辺組織を拡大して示すものである。図10に示すように、低融点金属としての錫は、焼結時に最初に溶融して部分拡散合金粉11(図4参照)を構成する銅粉13に拡散し、青銅相16(Cu−Sn)を形成する。この青銅層16により液相焼結が進行し、鉄粒子同士、鉄粒子と銅粒子、あるいは銅粒子同士が強固に結合される。また、個々の部分拡散合金粉11のうち、銅粉13の一部が拡散してFe−Cu合金が形成された部分にも溶融した錫が拡散してFe−Cu−Sn合金(合金相17)が形成される。青銅層16と合金相17を合わせたものが第二の銅組織51cとなる。このように第二の銅組織51cは、その一部が鉄組織53に拡散しているため、第二の銅組織51cと鉄組織53の間で高いネック強度を得ることができる。なお、図10においては、フェライト相(αFe)やパーライト相(γFe)などを色の濃淡で表現している。具体的には、フェライト相(αFe)→青銅相16→合金相17(Fe−Cu−Sn合金)→パーライト相(γFe)の順に色を濃くしている。 FIG. 10 shows the iron structure 53 after sintering shown in FIG. 9 and its surrounding structure in an enlarged manner. As shown in FIG. 10, tin as a low melting point metal is first melted during sintering and diffused into copper powder 13 constituting partial diffusion alloy powder 11 (see FIG. 4), and bronze phase 16 (Cu—Sn). ). Liquid phase sintering proceeds by this bronze layer 16, and iron particles, iron particles and copper particles, or copper particles are firmly bonded. Further, among the individual partial diffusion alloy powders 11, the molten tin is diffused into the part where the part of the copper powder 13 is diffused to form the Fe—Cu alloy, and the Fe—Cu—Sn alloy (alloy phase 17 ) Is formed. A combination of the bronze layer 16 and the alloy phase 17 becomes the second copper structure 51c. Thus, since the second copper structure 51 c is partially diffused in the iron structure 53, high neck strength can be obtained between the second copper structure 51 c and the iron structure 53. In FIG. 10, the ferrite phase (αFe), the pearlite phase (γFe), and the like are represented by shades of color. Specifically, the colors are darkened in the order of ferrite phase (αFe) → bronze phase 16 → alloy phase 17 (Fe—Cu—Sn alloy) → pearlite phase (γFe).
部分拡散合金粉11に代えて通常の鉄粉19を使用した場合、図11(a)に示すように、低融点金属粉16の一部が扁平銅粉15と通常鉄粉19の間に存在することになる。この状態で焼結すると、溶融した低融点金属粉16の表面張力によって扁平銅粉15が低融点金属粉16に引き込まれ、低融点金属粉16を核として丸くなる、いわゆる扁平銅粉15の球状化の問題を生じる。扁平銅粉15の球状化を放置すると、表面層S1における銅組織51a(図10参照)の面積が減少し、軸受面の摺動性に大きな影響を与える。 When normal iron powder 19 is used instead of the partial diffusion alloy powder 11, a part of the low melting point metal powder 16 exists between the flat copper powder 15 and the normal iron powder 19 as shown in FIG. Will do. When sintered in this state, the flat copper powder 15 is drawn into the low melting point metal powder 16 by the surface tension of the molten low melting point metal powder 16 and rounds around the low melting point metal powder 16 as a core. Cause problems. If the spheroidization of the flat copper powder 15 is left untreated, the area of the copper structure 51a (see FIG. 10) in the surface layer S1 is reduced, and the slidability of the bearing surface is greatly affected.
これに対し、本発明では、図12に示すように、原料粉末として鉄粉12の略全周が銅粉13で覆われた部分拡散合金粉11を使用しているため、低融点金属粉16の周辺には多数の銅粉13が存在することになる。この場合、焼結に伴って溶融した低融点金属粉16が扁平銅粉15より先に部分拡散合金粉11の銅粉13に拡散する。特に焼結の初期段階では、扁平銅粉15の表面に流体潤滑剤が残存しているため、この現象が助長される。これにより、低融点金属粉16が表面層S1の扁平銅粉15に与える影響を抑えることができる(仮に扁平銅粉15の直下に低融点金属粉16が存在していたとしても、扁平銅粉15に作用する表面張力が減少する)。従って、表面層における扁平銅粉15の球状化を抑制することができ、軸受面1aをはじめとする軸受表面における銅組織の割合を高め、良好な摺動特性を得ることが可能となる。以上の特徴を活かすため、原料粉末には極力単体の鉄粉を添加しないのが好ましい。すなわち、鉄組織53は全て部分拡散合金粉由来のものとするのが好ましい。 On the other hand, in the present invention, as shown in FIG. 12, since the partial diffusion alloy powder 11 in which substantially the entire circumference of the iron powder 12 is covered with the copper powder 13 is used as the raw material powder, the low melting point metal powder 16 is used. A large number of copper powders 13 are present in the vicinity of. In this case, the low melting point metal powder 16 melted with the sintering diffuses into the copper powder 13 of the partial diffusion alloy powder 11 before the flat copper powder 15. In particular, at the initial stage of sintering, the fluid lubricant remains on the surface of the flat copper powder 15, and this phenomenon is promoted. Thereby, the influence which the low melting metal powder 16 has on the flat copper powder 15 of the surface layer S1 can be suppressed (even if the low melting metal powder 16 exists directly under the flat copper powder 15, the flat copper powder The surface tension acting on 15 is reduced). Therefore, the spheroidization of the flat copper powder 15 in the surface layer can be suppressed, the ratio of the copper structure on the bearing surface including the bearing surface 1a can be increased, and good sliding characteristics can be obtained. In order to take advantage of the above characteristics, it is preferable not to add as much iron powder as possible to the raw material powder. That is, it is preferable that all the iron structures 53 are derived from the partially diffused alloy powder.
このように本発明では、表面層S1における扁平銅粉15の球状化を回避できるので、軸受における低融点金属粉16の配合割合を増やすことができる。すなわち、これまでの技術常識では、扁平銅粉15の球状化の影響を抑えるために、扁平銅粉15に対する低融点金属の配合配合(重量比)は10wt%未満に抑えるべきとされているが、本発明によれば、この割合を10wt%〜30wt%にまで高めることができる。このように低融点金属の配合割合を増すことで、液相焼結による金属粒子間の結合を促進させる効果がさらに高まるため、焼結軸受1の高強度化により有効となる。 Thus, in this invention, since the spheroidization of the flat copper powder 15 in the surface layer S1 can be avoided, the blending ratio of the low melting point metal powder 16 in the bearing can be increased. That is, in the conventional technical common sense, in order to suppress the influence of the spheroidization of the flat copper powder 15, the blending ratio (weight ratio) of the low melting point metal to the flat copper powder 15 should be suppressed to less than 10 wt%. According to the present invention, this ratio can be increased to 10 wt% to 30 wt%. By increasing the blending ratio of the low melting point metal as described above, the effect of promoting the bonding between the metal particles by the liquid phase sintering is further enhanced. Therefore, the strength of the sintered bearing 1 is increased.
以上の構成から、軸受面1aを含む表面層S1の表面全体で、鉄組織に対する銅組織の面積比を60%以上にすることができ、酸化されにくい銅リッチの軸受面を安定的に得ることができる。また、表面層S1が摩耗したとしても、部分拡散合金粉11に付着した銅粉13に由来する銅組織31cが軸受面1aに現れる。従って、初期なじみ性および静粛性をはじめとする軸受面の摺動特性を向上させることができる。 From the above configuration, the area ratio of the copper structure to the iron structure can be 60% or more over the entire surface of the surface layer S1 including the bearing surface 1a, and a copper-rich bearing surface that is not easily oxidized is stably obtained. Can do. Even if the surface layer S1 is worn, the copper structure 31c derived from the copper powder 13 adhered to the partial diffusion alloy powder 11 appears on the bearing surface 1a. Therefore, it is possible to improve the sliding characteristics of the bearing surface including initial conformability and quietness.
その一方で、表面層S1の内側のベース部S2は、表面相S1に比べて銅の含有量が少なく、かつ鉄の含有量が多い硬質組織となっている。具体的には、ベース部S2ではFeの含有量が最大であり、Cuの含有量は20〜40wt%となる。このように軸受1のほとんどの部分を占めるベース部S2で鉄の含有量が多くなるため、軸受1全体での銅の使用量を削減することができ、低コスト化を達成することができる。また、鉄の含有量が多いために軸受全体の強度を高めることができる。 On the other hand, the base portion S2 inside the surface layer S1 has a hard structure with a small copper content and a large iron content compared to the surface phase S1. Specifically, the content of Fe is the maximum in the base portion S2, and the content of Cu is 20 to 40 wt%. As described above, since the iron content increases in the base portion S2 that occupies most of the bearing 1, the amount of copper used in the entire bearing 1 can be reduced, and cost reduction can be achieved. Further, since the iron content is large, the strength of the entire bearing can be increased.
特に本発明では、銅よりも低融点の金属を所定量配合し、その液相焼結により金属粒子間(鉄粒子間、鉄粒子と銅粒子、あるいは銅粒子同士)の結合力が向上しており、しかも部分拡散合金粉11に由来する銅組織51cと鉄組織間53の間で高いネック強度が得られる。以上から、軸受面からの銅組織や鉄組織の脱落を防止し、軸受面の耐摩耗性を向上させることができる。また、軸受強度を高めることができ、具体的には、既存の銅鉄系焼結体に比べて2倍以上の圧環強度(300MPa以上)を達成することが可能となる。そのため、図1および図3に示すようにハウジング31、45の内周に焼結軸受41を圧入固定した場合でも、軸受面41aがハウジング3の内周面形状に倣って変形することがなく、取り付け後も軸受面41aの真円度や円筒度等を安定的に維持することができる。従って、ハウジングの内周に焼結軸受1を圧入固定した後、軸受面を適正形状・精度に仕上げるための加工(例えばサイジング)を追加的に実行することなく、所望の真円度(例えば3μm以下の真円度)を確保することができる。 In particular, in the present invention, a predetermined amount of a metal having a melting point lower than that of copper is blended, and the bonding force between metal particles (between iron particles, between iron particles and copper particles, or between copper particles) is improved by liquid phase sintering. In addition, a high neck strength is obtained between the copper structure 51c and the iron structure 53 derived from the partial diffusion alloy powder 11. From the above, it is possible to prevent the copper structure and the iron structure from falling off the bearing surface and to improve the wear resistance of the bearing surface. In addition, the bearing strength can be increased, and specifically, it is possible to achieve a crushing strength (300 MPa or more) that is twice or more that of an existing copper-iron-based sintered body. Therefore, even when the sintered bearing 41 is press-fitted and fixed to the inner circumferences of the housings 31 and 45 as shown in FIGS. 1 and 3, the bearing surface 41 a is not deformed following the shape of the inner circumferential surface of the housing 3. Even after the mounting, the roundness, cylindricity and the like of the bearing surface 41a can be stably maintained. Therefore, after press-fitting and fixing the sintered bearing 1 to the inner periphery of the housing, a desired roundness (for example, 3 μm) can be obtained without performing additional processing (for example, sizing) to finish the bearing surface with an appropriate shape and accuracy. The following roundness can be ensured.
加えて、軸受面を含む表面全体に遊離黒鉛が析出しており、しかも扁平銅粉15に付随する形で金型成形面20aに鱗状黒鉛を付着させているため、表面層S1における黒鉛の含有率がベース部S2での黒鉛の含有率よりも大きくなる。そのため、軸受面を低摩擦化することができ、軸受1の耐久性を増すことができる。 In addition, since free graphite is deposited on the entire surface including the bearing surface, and scaly graphite is attached to the mold forming surface 20a in a form accompanying the flat copper powder 15, the graphite content in the surface layer S1 The rate is larger than the graphite content in the base portion S2. Therefore, the friction of the bearing surface can be reduced, and the durability of the bearing 1 can be increased.
以上に述べた第一の実施形態では、鉄組織をフェライト相とパーライト相の二層組織としているが、パーライト相(γFe)は硬い組織(HV300以上)であって、相手材に対する攻撃性が強いため、軸受の使用条件によっては、軸2の摩耗を進行させるおそれがある。これを防止するため、鉄組織53の全てをフェライト相(αFe)で形成することもできる。 In the first embodiment described above, the iron structure is a two-layer structure of a ferrite phase and a pearlite phase, but the pearlite phase (γFe) is a hard structure (HV300 or higher) and has a strong attacking property against the counterpart material. For this reason, depending on the use conditions of the bearing, there is a possibility that the wear of the shaft 2 may proceed. In order to prevent this, the entire iron structure 53 can be formed of a ferrite phase (αFe).
このように鉄組織53の全てをフェライト相で形成するため、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。これらの対策により、原料粉では炭素と鉄の反応が生じず、従って焼結後の鉄組織は全て軟らかい(HV200以下)フェライト相(αFe)となる。かかる構成であれば、仮に表面層S1が摩耗してベース部S2の鉄組織53が表面に現れていても、軸受面1aを軟質化することができ、軸に対する攻撃性を弱めることができる。 Thus, in order to form all of the iron structure 53 in the ferrite phase, the sintering atmosphere is a gas atmosphere (hydrogen gas, nitrogen gas, argon gas, etc.) that does not contain carbon or a vacuum. By these measures, the raw material powder does not react with carbon and iron, and therefore the iron structure after sintering is all soft (HV200 or less) and a ferrite phase (αFe). With such a configuration, even if the surface layer S1 is worn and the iron structure 53 of the base portion S2 appears on the surface, the bearing surface 1a can be softened and the aggressiveness against the shaft can be weakened.
なお、以上の説明では、鉄粉に銅粉を部分拡散させた部分拡散合金粉と、扁平銅粉と同様よりも低融点の金属粉と、固定潤滑剤粉を原料粉末とする場合を例示したが、部分拡散合金粉に代えて通常の鉄粉を使用し、あるいは鉄粉と銅粉の混合粉を使用することもできる。この場合も表層のみ銅リッチにできるので、高価な銅の使用量を削減しつつ初期なじみ性や静粛性が良好な焼結軸受を提供することができる。 In addition, in the above description, the case where the partial diffusion alloy powder in which the copper powder is partially diffused in the iron powder, the metal powder having a melting point lower than that of the flat copper powder, and the fixed lubricant powder is exemplified as the raw powder. However, it is possible to use ordinary iron powder instead of the partial diffusion alloy powder, or a mixed powder of iron powder and copper powder. Also in this case, since only the surface layer can be made rich in copper, it is possible to provide a sintered bearing with good initial conformability and quietness while reducing the amount of expensive copper used.
1 振動装置(機器)
39 軸
41 焼結軸受
41a 軸受面
44 軸
1 Vibration device (equipment)
39 Shaft 41 Sintered bearing 41a Bearing surface 44 Shaft
本発明は、焼結軸受を有する機器に関する。 The present invention relates to an apparatus having a sintered bearing .
そこで、本発明は、焼結軸受を組み込んだ機器において、該機器の組み付け時等に一時的に加熱される際の潤滑油の蒸発や流出を抑制し、併せて該機器の使用中の摺動部での摩擦抵抗を低減することを目的とする。 Therefore, the present invention suppresses evaporation and outflow of lubricating oil when the device is incorporated with a sintered bearing, and is temporarily heated when the device is assembled. and an object thereof is to reduce the frictional resistance in parts.
以上のように、本発明によれば、焼結軸受を組み込んだ機器において、該機器の組み付け時等に一時的に加熱される際の潤滑油の蒸発や流出を抑制し、併せて該機器の使用中における摺動部での摩擦抵抗を低減することが可能となる。 As described above , according to the present invention, in an apparatus incorporating a sintered bearing , the evaporation and outflow of lubricating oil when temporarily heated at the time of assembling the apparatus is suppressed, and the It becomes possible to reduce the frictional resistance at the sliding portion during use.
Claims (7)
前記グリースが、増ちょう剤と、JIS K 2283に基づく動粘度測定方法にて、40℃における動粘度が40mm2/s以上、60mm2/s以下であり、かつ100℃における動粘度が5mm2/s以上、10mm2/s以下である基油とを含み、グリースにおける増ちょう剤濃度が0.1〜3wt%であることを特徴とする焼結軸受。 A sintered bearing having a sintered body and grease impregnated in the sintered body,
The grease has a thickener and a kinematic viscosity measurement method based on JIS K 2283, the kinematic viscosity at 40 ° C. is 40 mm 2 / s to 60 mm 2 / s and the kinematic viscosity at 100 ° C. is 5 mm 2. / S or more and 10 mm < 2 > / s or less base oil, The thickener concentration in grease is 0.1 to 3 wt%, The sintered bearing characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019031838A JP2019138472A (en) | 2019-02-25 | 2019-02-25 | Instrument having sinter bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019031838A JP2019138472A (en) | 2019-02-25 | 2019-02-25 | Instrument having sinter bearing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015066437A Division JP6625337B2 (en) | 2015-03-27 | 2015-03-27 | Vibration device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019138472A true JP2019138472A (en) | 2019-08-22 |
Family
ID=67693550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019031838A Pending JP2019138472A (en) | 2019-02-25 | 2019-02-25 | Instrument having sinter bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019138472A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001251069A (en) * | 2000-12-27 | 2001-09-14 | Matsushita Electric Ind Co Ltd | Vibrator holding device and wireless apparatus equipped with the device |
JP2008255273A (en) * | 2007-04-06 | 2008-10-23 | Nok Kluber Kk | Lubricating oil composition |
JP2010077474A (en) * | 2008-09-25 | 2010-04-08 | Hitachi Powdered Metals Co Ltd | Iron-based sintered bearing, and method for manufacturing the same |
JP2011094167A (en) * | 2009-10-27 | 2011-05-12 | Diamet:Kk | Iron-copper based sintered sliding member, and method for producing the same |
JP2013159795A (en) * | 2012-02-02 | 2013-08-19 | Ntn Corp | Method for manufacturing sintered bearing |
JP2014219097A (en) * | 2013-04-09 | 2014-11-20 | Ntn株式会社 | Method for manufacturing sintered bearing |
-
2019
- 2019-02-25 JP JP2019031838A patent/JP2019138472A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001251069A (en) * | 2000-12-27 | 2001-09-14 | Matsushita Electric Ind Co Ltd | Vibrator holding device and wireless apparatus equipped with the device |
JP2008255273A (en) * | 2007-04-06 | 2008-10-23 | Nok Kluber Kk | Lubricating oil composition |
JP5391526B2 (en) * | 2007-04-06 | 2014-01-15 | Nokクリューバー株式会社 | Lubricating oil composition for impregnation |
JP2010077474A (en) * | 2008-09-25 | 2010-04-08 | Hitachi Powdered Metals Co Ltd | Iron-based sintered bearing, and method for manufacturing the same |
JP2011094167A (en) * | 2009-10-27 | 2011-05-12 | Diamet:Kk | Iron-copper based sintered sliding member, and method for producing the same |
JP2013159795A (en) * | 2012-02-02 | 2013-08-19 | Ntn Corp | Method for manufacturing sintered bearing |
JP2014219097A (en) * | 2013-04-09 | 2014-11-20 | Ntn株式会社 | Method for manufacturing sintered bearing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10907685B2 (en) | Sintered bearing and manufacturing process therefor | |
US20210246948A1 (en) | Sintered bearing and method of manufacturing same | |
JP6741730B2 (en) | Sintered bearing and manufacturing method thereof | |
CN110043564B (en) | Method for manufacturing sintered bearing, and vibration motor | |
JP6816079B2 (en) | Vibration motor | |
JP4749260B2 (en) | Sintered oil-impregnated bearing | |
JP6038459B2 (en) | Sintered bearing | |
JP5972588B2 (en) | Manufacturing method of sintered bearing | |
JP2018048358A (en) | Copper-based sintered alloy oil retaining bearing | |
JP2015137660A (en) | sintered bearing | |
JP2019138472A (en) | Instrument having sinter bearing | |
JP6625337B2 (en) | Vibration device | |
WO2015050200A1 (en) | Sintered bearing and manufacturing process therefor | |
JP6038460B2 (en) | Manufacturing method of sintered bearing | |
CN109890539B (en) | Sintered bearing and method for manufacturing same | |
JP6548952B2 (en) | Sintered bearing and method of manufacturing the same | |
CN110475982B (en) | Sintered bearing and method for manufacturing same | |
JP2019065323A (en) | Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing | |
WO2013042664A1 (en) | Sintered bearing and method for manufacturing same | |
JP6536866B1 (en) | Sintered bearing, sintered bearing device and rotating device | |
WO2018100660A1 (en) | Ferrous sinter oil-containing bearing | |
WO2021070712A1 (en) | Sintered oil-containing bearing | |
JP2019207030A (en) | Sintered bearing and manufacturing method thereof | |
JP6462053B2 (en) | Sintered bearing | |
WO2018181706A1 (en) | Sintered bearing and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190322 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201029 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210330 |