JP2019138370A - 作動流体供給装置 - Google Patents

作動流体供給装置 Download PDF

Info

Publication number
JP2019138370A
JP2019138370A JP2018021877A JP2018021877A JP2019138370A JP 2019138370 A JP2019138370 A JP 2019138370A JP 2018021877 A JP2018021877 A JP 2018021877A JP 2018021877 A JP2018021877 A JP 2018021877A JP 2019138370 A JP2019138370 A JP 2019138370A
Authority
JP
Japan
Prior art keywords
pump
flow rate
supply state
working fluid
oil pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018021877A
Other languages
English (en)
Other versions
JP7042103B2 (ja
Inventor
和哉 室田
Kazuya Murota
和哉 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2018021877A priority Critical patent/JP7042103B2/ja
Publication of JP2019138370A publication Critical patent/JP2019138370A/ja
Application granted granted Critical
Publication of JP7042103B2 publication Critical patent/JP7042103B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)

Abstract

【課題】車両の燃費を向上させる。【解決手段】作動流体供給装置100は、エンジン50に駆動される第1オイルポンプ10と、電動モータ60に駆動される第2オイルポンプ20と、第1オイルポンプ10を無負荷運転状態とするアンロード弁18と、自動変速機70への作動油の供給状態を制御するコントローラ40と、を備える。コントローラ40は、第2オイルポンプ20を停止し第1オイルポンプ10のみから作動油を供給する第1供給状態と、アンロード弁18により第1オイルポンプ10を無負荷運転状態とし第2オイルポンプ20のみから作動油を供給する第2供給状態と、第1オイルポンプ10及び第2オイルポンプ20から作動油を供給する第3供給状態と、から自動変速機70への作動油の供給状態を設定する供給状態設定部46を有する。【選択図】図1

Description

本発明は、車両用の動力伝達装置への作動流体の供給を制御する作動流体供給装置に関するものである。
特許文献1には、エンジンにより駆動される機械式ポンプと、電動モータにより駆動される電動式ポンプと、を備えた作動流体供給装置が開示されている。この作動流体供給装置では、機械式ポンプ及び電動式ポンプから動力伝達装置へ作動流体を供給することが可能である。
特開2000−46166号公報
特許文献1に記載の作動流体供給装置では、機械式ポンプから吐出される作動流体の流量が動力伝達装置で必要とされる作動流体の流量を大幅に上回っている場合であっても、機械式ポンプはエンジンにより駆動され続ける。このため、エンジンで無駄な燃料が消費され、結果として車両の燃費が悪化するおそれがある。
本発明は、上記の問題点に鑑みてなされたものであり、車両の燃費を向上させることを目的とする。
第1の発明は、第1駆動源の出力を車両の駆動輪に伝達する動力伝達装置への作動流体の供給を制御する作動流体供給装置が、第1駆動源の出力により駆動され動力伝達装置へ作動流体を供給可能な第1ポンプと、第2駆動源の出力により駆動され動力伝達装置へ作動流体を供給可能な第2ポンプと、第1ポンプを無負荷運転状態とするアンロード機構と、車両の状態に応じて動力伝達装置への作動流体の供給状態を制御する供給状態制御部と、を備え、供給状態制御部が、車両の状態に基づいて、第2ポンプを停止し第1ポンプのみから動力伝達装置へ作動流体を供給する第1供給状態と、アンロード機構により第1ポンプを無負荷運転状態とし第2ポンプのみから動力伝達装置へ作動流体を供給する第2供給状態と、第1ポンプ及び第2ポンプから動力伝達装置へ作動流体を供給する第3供給状態と、から動力伝達装置への作動流体の供給状態を設定する供給状態設定部を有することを特徴とする。
第1の発明では、車両の駆動輪を駆動する第1駆動源の出力によって駆動される第1ポンプを、アンロード機構によって無負荷運転状態とすることが可能である。第1ポンプは、第1駆動源が駆動する限り第1駆動源によって駆動され続けるため、動力伝達装置への作動流体の供給が第2ポンプのみで賄える場合のように、第1ポンプを駆動させる必要がない場合であっても、第1ポンプを停止させることができない。このため、第1ポンプを駆動させる必要がない場合には、第1ポンプを無負荷運転状態とすることによって、第1駆動源で無駄なエネルギーが消費されることが抑制される。さらに、動力伝達装置への作動流体の供給は、第1ポンプに加えて、第2ポンプからも行われる。このため、第1ポンプの最大吐出流量を動力伝達装置の最大必要流量に合せて設定する必要がないことから、第1ポンプの最大吐出流量を小さく設定し、第1ポンプの駆動動力を低減させることが可能となる。
第2の発明は、供給状態制御部が、車両の状態に基づいて動力伝達装置で必要とされる作動流体の必要流量を演算する必要流量演算部と、第1ポンプから吐出される作動流体の吐出流量を算出する吐出流量算出部と、をさらに有し、供給状態設定部は、必要流量と吐出流量との比較結果に基づいて動力伝達装置への作動流体の供給状態を設定することを特徴とする。
第2の発明では、動力伝達装置で必要とされる作動流体の必要流量と、第1ポンプから吐出される作動流体の吐出流量と、の比較結果に基づいて動力伝達装置への作動流体の供給状態が設定される。このように、動力伝達装置の必要流量を考慮して動力伝達装置への作動流体の供給状態を設定することで、動力伝達装置を安定して作動させることができるとともに、最適な作動流体の供給状態を設定することで第1駆動源において無駄なエネルギーが消費されることが抑制され、結果として、車両の燃費を向上させることができる。
第3の発明は、供給状態制御部が、吐出流量が必要流量以上である場合に、第1ポンプの駆動動力と、必要流量に基づき設定される目標吐出流量を吐出させた場合の第2ポンプの駆動動力と、を演算する駆動動力演算部をさらに有し、供給状態設定部は、第1ポンプの駆動動力が第2ポンプの駆動動力以下である場合は、動力伝達装置への作動流体の供給状態を第1供給状態とし、第1ポンプの駆動動力が第2ポンプの駆動動力よりも大きい場合は、動力伝達装置への作動流体の供給状態を第2供給状態とすることを特徴とする。
第3の発明では、第1ポンプの駆動動力が第2ポンプの駆動動力以下である場合は、動力伝達装置への作動流体の供給状態が第1供給状態に設定され、第1ポンプの駆動動力が第2ポンプの駆動動力よりも大きい場合は、動力伝達装置への作動流体の供給状態が第2供給状態に設定される。このように、必要流量を供給することが可能であり且つ駆動動力が小さいポンプが動力伝達装置へ作動流体を供給するポンプとして選択されるため、動力伝達装置を安定して作動させることができるとともに、車両の燃費を向上させることができる。
第4の発明は、供給状態設定部は、吐出流量が必要流量よりも小さい場合には、動力伝達装置への作動流体の供給状態を第3供給状態とすることを特徴とする。
第4の発明では、吐出流量が必要流量よりも小さい場合は、動力伝達装置への作動流体の供給状態が、第1ポンプ及び第2ポンプから作動流体が供給される第3供給状態に設定される。このように、必要流量が大きい場合は、第1ポンプに加えて、第2ポンプからも作動流体が供給される。このため、第1ポンプの最大吐出流量を動力伝達装置の最大必要流量に合せて設定する必要がないことから、第1ポンプの最大吐出流量を小さく設定し、第1ポンプの駆動動力を低減させることが可能となる。このように第1ポンプの駆動動力が低減されると、第1ポンプを駆動する第1駆動源において無駄なエネルギーが消費されることが抑制される。この結果、車両の燃費を向上させることができる。
第5の発明は、供給状態制御部が、車両の状態に基づいて第1ポンプ及び第2ポンプの異常の有無を判定する異常判定部をさらに有し、供給状態設定部は、異常判定部により第1ポンプに異常があると判定された場合には、第2ポンプから動力伝達装置へ供給される作動流体の供給流量が必要流量を超えるように第2駆動源が制御される第1異常時供給状態とし、異常判定部により第2ポンプに異常があると判定された場合には、アンロード機構の作動を停止するとともに第1ポンプから動力伝達装置へ供給される作動流体の供給流量が必要流量を超えるように第1駆動源及び動力伝達装置が制御される第2異常時供給状態とすることを特徴とする。
第5の発明では、動力伝達装置への作動流体の供給状態が、第1ポンプに異常がある場合は、第2ポンプから供給される作動流体の供給流量が必要流量を超えるように第2駆動源が制御される第1異常時供給状態に設定され、第2ポンプに異常がある場合は、アンロード機構の作動を停止するとともに第1ポンプから供給される作動流体の供給流量が必要流量を超えるように第1駆動源及び動力伝達装置が制御される第2異常時供給状態に設定される。このように、第1ポンプまたは第2ポンプに異常が生じた場合も動力伝達装置へは必要流量を超える作動流体が供給される。このため、動力伝達装置を安定して作動させることができる。
第6の発明は、供給状態制御部が、車両の状態に基づいて第1駆動源の駆動状態を判定する駆動状態判定部をさらに有し、供給状態設定部は、駆動状態判定部により第1駆動源が停止していると判定された場合には、動力伝達装置への作動流体の供給状態を第2供給状態とすることを特徴とする。
第6の発明では、第1駆動源が停止している場合は、動力伝達装置への作動流体の供給状態が第2供給状態に設定される。このように第2ポンプを第1駆動源が停止している時に作動流体を供給する予備ポンプとして流用することによって、予備ポンプを別途設ける必要がなくなるため、車両の製造コストを低減させることができる。
本発明によれば、車両の燃費を向上させることができる。
本発明の実施形態に係る作動流体供給装置の構成を示す概略図である。 本発明の実施形態に係る作動流体供給装置のコントローラの機能を説明するためのブロック図である。 本発明の実施形態に係る作動流体供給装置のコントローラによって実行される制御手順を示すフローチャートである。
以下、添付図面を参照しながら本発明の実施形態について説明する。
図1は、本発明の実施形態に係る作動流体供給装置100の構成を示す概略図である。作動流体供給装置100は、第1駆動源としてのエンジン50と、エンジン50の出力を駆動輪に伝達する動力伝達装置としての自動変速機70と、を備える図示しない車両に搭載され、自動変速機70への作動流体の供給を制御するものである。以下では、自動変速機70が、ベルト式無段変速機構(CVT)を備える変速機である場合を例に説明する。
作動流体供給装置100は、エンジン50の出力により駆動され自動変速機70へ作動流体としての作動油を供給可能な第1ポンプとしての第1オイルポンプ10と、第2駆動源としての電動モータ60の出力により駆動され自動変速機70へ作動油を供給可能な第2ポンプとしての第2オイルポンプ20と、第1オイルポンプ10を無負荷運転状態とするアンロード機構としてのアンロード弁18と、電動モータ60やアンロード弁18の作動を制御し自動変速機70への作動油の供給状態を制御する供給状態制御部としてのコントローラ40と、を備える。
第1オイルポンプ10は、エンジン50によって回転駆動されるベーンポンプであり、吸込管11を通じてタンク30に貯留された作動油を吸引し、吐出管12を通じて自動変速機70へと作動油を吐出する。吐出管12には、第1オイルポンプ10から自動変速機70への作動油の流れのみを許容する逆止弁14が設けられる。
また、吐出管12には、逆止弁14よりも上流側とタンク30とを連通するアンロード通路16が接続される。アンロード通路16には、アンロード通路16を開放または遮断可能なアンロード弁18が設けられる。
アンロード弁18は、電気的に駆動される開閉弁であり、その開閉はコントローラ40によって制御される。アンロード弁18が閉弁していると、アンロード通路16が遮断されるため、第1オイルポンプ10から吐出された作動油は、吐出管12を通じて自動変速機70へと供給される。一方、アンロード弁18が開弁していると、アンロード通路16が開放されるため、第1オイルポンプ10から吐出された作動油は、アンロード通路16を通じてタンク30へと排出され、第1オイルポンプ10の吸込側へと戻る。
つまり、アンロード弁18が開弁していると、第1オイルポンプ10の吸入側と吐出側との両方がタンク30に連通した状態となり、第1オイルポンプ10の吸入側と吐出側との圧力差がほぼゼロとなる。このため、第1オイルポンプ10は無負荷運転状態、すなわち、第1オイルポンプ10を駆動させる負荷がエンジン50に対してほとんどかからない状態となる。このようにアンロード弁18の開閉を切り換えることで、第1オイルポンプ10を負荷運転状態と無負荷運転状態とに切り換えることが可能である。なお、アンロード弁18は、ソレノイドによって直接駆動されてアンロード通路16を開閉するものであってもよいし、弁体に作用するパイロット圧力の有無によってアンロード通路16を開閉するものであってもよく、コントローラ40からの指令に応じてアンロード通路16を開閉することができればどのような構成であってもよい。
第2オイルポンプ20は、電動モータ60によって回転駆動される内接歯車ポンプであり、吸込管21を通じてタンク30に貯留された作動油を吸引し、第1オイルポンプ10の吐出管12に接続される吐出管22を通じて自動変速機70へと作動油を吐出する。吐出管22には、第2オイルポンプ20から自動変速機70への作動油の流れのみを許容する逆止弁24が設けられる。
第2オイルポンプ20を駆動する電動モータ60の回転は、コントローラ40によって制御される。このため、第2オイルポンプ20の吐出流量は、電動モータ60の回転を変更することで自在に変更することが可能である。
このように、作動流体供給装置100では、第1オイルポンプ10及び第2オイルポンプ20から自動変速機70へと作動油を供給することが可能である。
次に、図2を参照し、コントローラ40について説明する。図2は、コントローラ40の機能を説明するためのブロック図である。
コントローラ40は、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、及びI/Oインターフェース(入出力インターフェース)を備えたマイクロコンピュータで構成される。RAMはCPUの処理におけるデータを記憶し、ROMはCPUの制御プログラム等を予め記憶し、I/Oインターフェースはコントローラ40に接続された機器との情報の入出力に使用される。コントローラ40は、複数のマイクロコンピュータで構成されていてもよい。
コントローラ40は、車両の各部に設けられた各種センサから入力される車両の状態を示す信号に基づき、電動モータ60及びアンロード弁18を制御することで自動変速機70への作動油の供給を制御する。なお、コントローラ40は、エンジン50のコントローラ及び自動変速機70のコントローラを兼ねるものであってもよいし、エンジン50のコントローラ及び自動変速機70のコントローラとは別に設けられるものあってもよい。
コントローラ40に入力される車両の状態を示す信号としては、例えば、車両の速度を示す信号や車両の加速度を示す信号、シフトレバーの操作位置を示す信号、アクセルの操作量を示す信号、エンジン50の回転数を示す信号、スロットル開度や燃料噴射量等のエンジン50の負荷を示す信号、自動変速機70の入力軸及び出力軸回転数を示す信号、自動変速機70内の作動油の油温を示す信号、自動変速機70に供給された作動油の圧力(ライン圧)を示す信号、自動変速機70の変速比を示す信号、第1オイルポンプ10の吐出圧を示す信号、第2オイルポンプ20の吐出圧を示す信号、電動モータ60の回転数を示す信号等である。
コントローラ40は、自動変速機70への作動油の供給を制御するための機能として、各種センサから入力される信号に基づき自動変速機70で必要とされる作動油の必要流量Qrを演算する必要流量演算部41と、各種センサから入力される信号に基づき第1オイルポンプ10から吐出される作動油の吐出流量Q1を算出する吐出流量算出部42と、必要流量演算部41で演算された必要流量Qrと吐出流量算出部42で算出された吐出流量Q1とを比較する第1比較部43と、各種センサから入力される信号に基づき第1オイルポンプ10の駆動動力W1を演算するとともに必要流量Qrに基づき設定される目標吐出流量Qaを吐出させた場合の第2オイルポンプ20の駆動動力W2を演算する駆動動力演算部44と、駆動動力演算部44で演算された第1オイルポンプ10の駆動動力W1と第2オイルポンプ20の駆動動力W2とを比較する第2比較部45と、第1比較部43及び第2比較部45における比較結果に基づき自動変速機70への作動油の供給状態を設定する供給状態設定部46と、を有する。なお、これら必要流量演算部41等は、コントローラ40の各機能を、仮想的なユニットとして示したものであり、物理的に存在することを意味するものではない。
必要流量演算部41は、主にアクセル開度や車速、自動変速機70内の作動油の油温、自動変速機70に供給された作動油の圧力、自動変速機70の入力軸及び出力軸回転数、自動変速機70の変速比に基づいて自動変速機70で必要とされる作動油の流量を演算する。
ここで、自動変速機70で必要とされる作動油の流量は、図示しないベルト式無段変速機構のバリエータのプーリ幅を変化させるために必要となる変速流量や油圧制御弁内の隙間や油圧回路上の隙間から漏れるリーク流量、自動変速機70を冷却ないし潤滑するために必要となる潤滑流量、図示しないオイルクーラに導かれる冷却流量などがある。
これらの流量がどの程度の流量となるかは、予めマップ化されており、コントローラ40のROMに記憶されている。具体的には、変速流量は、変速比が大きく変化する場合、例えば、アクセル開度の上昇率が大きい加速時や車速の減速率が大きい減速時には大きな値となることから、アクセル開度や車速の変化率がパラメータとされる。なお、車両の加減速に関連するパラメータとしては、エンジン50の回転数や負荷の変化に影響を及ぼすスロットル開度や燃料噴射量などが用いられてもよい。リーク流量は、作動油の温度が上昇し作動油の粘度が低下するほど、また、供給される作動油の圧力が大きいほど大きな値となることから、作動油の温度や圧力がパラメータとされる。
また、作動油の温度が上昇し作動油の粘度が低下するほど油膜切れが生じやすくなるため、作動油の温度が高いほど潤滑流量を多くする必要があり、また、自動変速機70内の回転軸の回転数が高いほど油膜切れが生じやすくなるため、自動変速機70内の回転軸の回転数が高いほど潤滑流量を多くする必要がある。これらを考慮し、潤滑流量は、例えば、作動油の温度や自動変速機70の入出力軸の回転数がパラメータとされる。
また、作動油の温度は、潤滑性や油膜保持等の観点からは、所定の温度を超えないようにする必要があり、また、作動油を冷却するためには、オイルクーラに冷却風が導かれる状態、すなわち、所定以上の車速で車両が走行する状態である必要がある。このため、冷却流量は、主に作動油の温度と車速とがパラメータとされる。なお、これら変速流量、リーク流量、潤滑流量及び冷却流量を決定するためのパラメータは一例であり、例示されたパラメータと関連性があるパラメータが用いられてもよく、何をパラメータとするかはコントローラ40に入力される信号から適宜選定される。
このように、必要流量演算部41では、変速流量、リーク流量、潤滑流量及び冷却流量を考慮して自動変速機70で必要とされる作動油の必要流量Qrが演算される。
吐出流量算出部42は、主にエンジン50の回転数に基づいて第1オイルポンプ10から吐出される作動油の吐出流量Q1を算出する。
第1オイルポンプ10の回転数と第1オイルポンプ10の吐出流量Q1とは、ほぼ比例して変化する関係にあり、また、第1オイルポンプ10の吐出流量Q1は、油温によって変わる粘度や第1オイルポンプ10の吐出圧に応じて変化する。これらの関係は、第1オイルポンプ10の吐出流量Q1を正確に算出するために予めマップ化され、コントローラ40のROMに記憶されている。
第1オイルポンプ10の回転数は、第1オイルポンプ10を駆動するエンジン50の回転数に応じて変化するため、吐出流量算出部42では、エンジン50の回転数と作動油の油温と第1オイルポンプ10の吐出圧とから吐出流量Q1が容易に算出される。第1オイルポンプ10の吐出流量Q1算出は、アンロード弁18の作動状態に関わらず、すなわち、第1オイルポンプ10が負荷運転状態にあるか無負荷運転状態にあるかに関わらず行われる。なお、エンジン50の回転数に代えて、第1オイルポンプ10の回転数を用いて吐出流量Q1を算出してもよい。また、第1オイルポンプ10の吐出圧は、自動変速機70に供給された作動油の圧力であるライン圧に応じて変化するため、第1オイルポンプ10の吐出流量Q1の算出にあたっては、第1オイルポンプ10の吐出圧に代えて、ライン圧が用いられてもよい。
第1比較部43は、必要流量演算部41で演算された必要流量Qrと吐出流量算出部42で算出された吐出流量Q1とを比較し、吐出流量Q1が必要流量Qr以上である場合には、駆動動力演算部44に比較結果信号を送信し、吐出流量Q1が必要流量Qrよりも小さい場合には、供給状態設定部46に比較結果信号を送信する。
駆動動力演算部44は、第1比較部43からの比較結果信号を受信すると、第1オイルポンプ10の駆動動力W1を演算するとともに必要流量Qrに基づき設定される目標吐出流量Qaを吐出させた場合の第2オイルポンプ20の駆動動力W2を演算する。
第1オイルポンプ10の駆動動力W1は、エンジン50において、第1オイルポンプ10を駆動するために費やされた出力であり、第1オイルポンプ10の吐出流量Q1と吐出圧力P1とポンプ効率η1とから算出される。第1オイルポンプ10が無負荷運転状態にあり第1オイルポンプ10から自動変速機70へ作動油が供給されていない場合には、自動変速機70内の作動油の圧力であるライン圧PLを吐出圧力P1と仮定して第1オイルポンプ10の駆動動力W1が推定される。第1オイルポンプ10の回転数、吐出圧力P1及び作動油の油温に応じて変化するポンプ効率η1は、予めマップ化され、コントローラ40のROMに記憶されている。なお、吐出流量Q1としては、吐出流量算出部42で算出された値が用いられる。
同様にして、第2オイルポンプ20の駆動動力W2は、第2オイルポンプ20の目標吐出流量Qaと吐出圧力P2とポンプ効率η2とから算出される。目標吐出流量Qaは、必要流量演算部41で演算された必要流量Qrよりも10%程度多い流量であって、現在の車両の状態が多少変化したとしても必要流量Qrを下回らないように余裕を持って設定される。電動モータ60が停止しており第2オイルポンプ20から自動変速機70へ作動油が供給されていない場合には、自動変速機70内の作動油の圧力であるライン圧PLを吐出圧力P2と仮定して第2オイルポンプ20の駆動動力W2が推定される。第2オイルポンプ20の回転数、吐出圧力P2及び作動油の油温に応じて変化するポンプ効率η2は、第1オイルポンプ10のポンプ効率η1と同様に、予めマップ化され、コントローラ40のROMに記憶されている。なお、第2オイルポンプ20の駆動動力W2は、第2オイルポンプ20を駆動する電動モータ60において消費される電力に相当することから、電動モータ60に供給される電流及び電圧に基づき第2オイルポンプ20の駆動動力W2を算出してもよい。
ここで、電動モータ60には、エンジン50によって駆動されるオルタネータで発電された電力がバッテリを介して供給される。このため、第1オイルポンプ10の駆動条件と第2オイルポンプ20の駆動条件とを一致させるため、第2オイルポンプ20の駆動動力W2の演算にあたっては、オルタネータの発電効率やバッテリの充放電効率等の種々のエネルギー変換効率がさらに加味される。つまり、最終的に演算される第2オイルポンプ20の駆動動力W2は、第2オイルポンプ20がエンジン50によって駆動されると仮定した場合にエンジン50において費やされる出力となる。
なお、第1オイルポンプ10の駆動動力W1と第2オイルポンプ20の駆動動力W2の演算方法は、上述の演算方法に限定されず、第1オイルポンプ10の駆動条件と第2オイルポンプ20の駆動条件とを同じ条件とした場合の第1オイルポンプ10の駆動動力W1と第2オイルポンプ20の駆動動力W2とが演算されれば、どのような演算方法であってもよい。例えば、吐出圧力P1及び吐出圧力P2が直接検出されていない場合には、作動油がどのような供給状態にある場合であってもライン圧PLを吐出圧力P1及び吐出圧力P2と仮定して、駆動動力W1,W2が演算されてもよい。
第2比較部45は、駆動動力演算部44で演算された第1オイルポンプ10の駆動動力W1と第2オイルポンプ20の駆動動力W2とを比較し、供給状態設定部46に比較結果信号を送信する。
供給状態設定部46は、第1比較部43及び第2比較部45から送信された比較結果信号に基づき自動変速機70への作動油の供給状態を設定する。具体的には、供給状態設定部46は、第2比較部45から第1オイルポンプ10の駆動動力W1が第2オイルポンプ20の駆動動力W2以下であるという信号を受信すると、電動モータ60を停止、または、電動モータ60を停止した状態に維持することによって、第1オイルポンプ10のみから自動変速機70へ作動油を供給する第1供給状態に上述の供給状態を設定する。
また、第2比較部45から第1オイルポンプ10の駆動動力W1が第2オイルポンプ20の駆動動力W2よりも大きいという信号を受信すると、供給状態設定部46は、アンロード弁18を開弁させることによって第1オイルポンプ10を無負荷運転状態とし、第2オイルポンプ20のみから自動変速機70へ作動油を供給する第2供給状態に上述の供給状態を設定する。
また、第1比較部43から吐出流量Q1が必要流量Qrよりも小さいという信号を受信すると、供給状態設定部46は、アンロード弁18を閉弁させるとともに電動モータ60を駆動させることによって、第1オイルポンプ10及び第2オイルポンプ20の両方から自動変速機70へ作動油を供給する第3供給状態に上述の供給状態を設定する。
コントローラ40は、上述の機能に加えて、各種センサから入力される信号に基づきエンジン50の駆動状態を判定する駆動状態判定部47と、各種センサから入力される信号に基づき第1オイルポンプ10及び第2オイルポンプ20の異常の有無を判定する異常判定部48と、を有する。
駆動状態判定部47は、主にエンジン50の回転数やスロットル開度、燃料噴射量等に基づきエンジン50がどのような駆動状態にあるか、特に停止中であるか、駆動中であるかを判定する。駆動状態判定部47で判定された結果は、供給状態設定部46へ判定結果信号として送信される。
供給状態設定部46は、エンジン50が停止状態にあるという信号を駆動状態判定部47から受信すると、第2オイルポンプ20のみから自動変速機70へ作動油を供給する第2供給状態に上述の供給状態を設定する。これにより、アイドリングストップ時のように、第1オイルポンプ10がエンジン50により駆動されない場合であっても、第2オイルポンプ20によって、自動変速機70へ作動油を供給することが可能となる。
異常判定部48は、主に自動変速機70に供給された作動油の圧力であるライン圧PLや第1オイルポンプ10の吐出圧力P1、第2オイルポンプ20の吐出圧力P2、作動油の温度などに基づき第1オイルポンプ10及び第2オイルポンプ20の異常の有無を判定する。例えば、異常判定部48は、第1オイルポンプ10が駆動されているときにライン圧PLや第1オイルポンプ10の吐出圧力P1が所定の範囲内にない場合は第1オイルポンプ10の異常と判定し、第2オイルポンプ20が駆動されているときにライン圧PLや第2オイルポンプ20の吐出圧力P2が所定の範囲内にない場合は第2オイルポンプ20の異常と判定する。
また、異常判定部48は、作動油が例えばマイナス20度以下といった非常に温度が低い状態であり、仮に電動モータ60により第2オイルポンプ20を駆動させた場合、作動油の粘度が高いことで電動モータ60が過負荷状態になるおそれがある場合も第2オイルポンプ20の異常と判定する。なお、作動油の温度が非常に低い場合は、アイドリングストップ制御が禁止され、第1オイルポンプ10から自動変速機70へ作動油が常時供給される状態となる。
また、異常判定部48は、電動モータ60に電力を供給するバッテリの充電量が十分でない場合やバッテリに発電電力を充電するオルタネータに異常がある場合も電動モータ60を正常に駆動させることができなくなるおそれがあることから第2オイルポンプ20の異常と判定する。
供給状態設定部46は、第1オイルポンプ10に異常があるという信号を異常判定部48から受信すると、第2オイルポンプ20のみから自動変速機70へ作動油を供給する第1異常時供給状態に上述の供給状態を設定し、第2オイルポンプ20に異常があるという信号を異常判定部48から受信すると、アンロード弁18を閉弁し第1オイルポンプ10のみから自動変速機70へ作動油を供給する第2異常時供給状態に上述の供給状態を設定する。
供給状態設定部46は、第1異常時供給状態では電動モータ60を制御し、第2オイルポンプ20の吐出流量Q2が自動変速機70で必要とされる作動油の必要流量Qrに達するように電動モータ60の回転数を上昇させる。
また、供給状態設定部46は、第2異常時供給状態において、第1オイルポンプ10の吐出流量Q1が自動変速機70で必要とされる作動油の必要流量Qrよりも小さい場合には、自動変速機70を制御して変速比をロー側へ若干変化させることによりエンジン50の回転数を上昇させ、第1オイルポンプ10の吐出流量Q1が必要流量Qrに達するように第1オイルポンプ10の回転数を上昇させる。一方、第2異常時供給状態において、第1オイルポンプ10の吐出流量Q1が自動変速機70で必要とされる作動油の必要流量Qr以上である場合には、供給状態設定部46は、エンジン50及び自動変速機70を制御することなく、アンロード弁18の閉弁のみを実行する。これにより、第1オイルポンプ10または第2オイルポンプ20に異常がある場合であっても自動変速機70へ作動油を十分に供給することが可能となり、自動変速機70を安定して作動させることができる。
なお、第1オイルポンプ10を駆動するエンジン50の回転数が最大定格回転数に達してしまったり、第2オイルポンプ20を駆動する電動モータ60の回転数が上限回転数に達してしまうと、自動変速機70で必要とされる作動油の必要流量Qrを確保できなくなるおそれがある。このような場合には、エンジン50を制御し、エンジン50の出力トルクを低減させて必要なライン圧PLを小さくすることによって、自動変速機70の必要流量Qrを減少させてもよい。
次に、図3のフローチャートを参照し、上述の機能を有するコントローラ40による自動変速機70への作動油の供給制御について説明する。図3に示される制御は、コントローラ40によって所定の時間毎に繰り返し実行される。
まず、ステップS11において、コントローラ40には、車両の状態、特にエンジン50や自動変速機70の状態を示す各種センサの検出信号が入力される。
ステップS12では、ステップS11において入力された各種センサの信号に基づき、自動変速機70で必要とされる作動油の必要流量Qrが必要流量演算部41において演算される。
続くステップS13では、ステップS11において入力された各種センサの信号に基づき、第1オイルポンプ10から吐出される作動油の吐出流量Q1が吐出流量算出部42において算出される。
ステップS12で演算された必要流量QrとステップS13で算出された吐出流量Q1とは、ステップS14において第1比較部43によって比較される。
ステップS14において、吐出流量Q1が必要流量Qr以上であると判定された場合、つまり、第1オイルポンプ10のみで自動変速機70で必要とされる作動油の必要流量Qrを賄うことが可能である場合には、ステップS15に進む。一方、吐出流量Q1が必要流量Qrよりも小さいと判定された場合、つまり、第1オイルポンプ10のみでは自動変速機70で必要とされる作動油の必要流量Qrを賄うことが不可能である場合には、ステップS19に進む。
ステップS15では、ステップS11において入力された各種センサの信号に基づき、第1オイルポンプ10の駆動動力W1及び第2オイルポンプ20の駆動動力W2が駆動動力演算部44によって演算される。
駆動動力演算部44によって演算された第1オイルポンプ10の駆動動力W1及び第2オイルポンプ20の駆動動力W2は、ステップS16において第2比較部45によって比較される。
ここで、第1オイルポンプ10は、エンジン50によって駆動されるため、エンジン50の回転数が増加するにつれて、その吐出流量Q1は増加する。一方で、自動変速機70で必要とされる作動油の必要流量Qrは、変速比が大きく変化する場合、すなわち、アクセル開度の上昇率が大きい加速時や車速の減速率が大きい減速時には増加するものの、車速の変化が小さい場合は比較的少なくなる。
つまり、エンジン50の回転数が比較的高く、車速が比較的安定している場合には、必要流量Qrに対して吐出流量Q1が上回り、自動変速機70に供給される油量が過剰な状態となるため、結果として、エンジン50の出力が第1オイルポンプ10を駆動するために無駄に費やされることになる。このような場合は、第1オイルポンプ10を駆動させるよりも、必要流量Qrを所定量だけ上回る目標吐出流量Qaを第2オイルポンプ20によって吐出させた方がエンジン50における燃料消費を抑制させることができる可能性がある。
このような状況として、具体的には、エンジン50が比較的回転数が高い中回転域以上で回転し車両が車速の変化が小さい巡航運転状態にあるときやエンジンブレーキによってエンジン50が高回転域で回転しているときなどが挙げられる。また、エンジン50の回転数が低くても、車両が停止しておりエンジン50がアイドリング運転状態となっているときやクリープ現象で車両が走行しているときなどは、自動変速機70の必要流量Qrが非常に小さくなるため、第1オイルポンプ10の吐出流量Q1が必要流量Qrを上回る場合がある。なお、このような状況であっても油温が高い場合は、リーク流量や冷却流量が増加するため、必ずしも第1オイルポンプ10の吐出流量Q1が必要流量Qrを上回るとは限らない。
つまり、ステップS16では、第1オイルポンプ10を駆動させて作動油を供給する場合よりも第2オイルポンプ20を駆動させて作動油を供給する場合の方がエンジン50の燃料消費を低減させることができるか否かが判定される。
ステップS16において、第1オイルポンプ10の駆動動力W1が第2オイルポンプ20の駆動動力W2以下であると判定された場合、つまり、第1オイルポンプ10をエンジン50によって駆動させて作動油を供給する場合の方がエンジン50の燃料消費を低減させることができる場合は、ステップS17に進み、自動変速機70への作動油の供給状態は、供給状態設定部46によって第1供給状態に設定される。
一方、ステップS16において、第1オイルポンプ10の駆動動力W1が第2オイルポンプ20の駆動動力W2よりも大きいと判定された場合、つまり、第2オイルポンプ20を電動モータ60によって駆動させて作動油を供給する場合の方がエンジン50の燃料消費を低減させることができる場合は、ステップS18に進み、自動変速機70への作動油の供給状態は、供給状態設定部46によって第2供給状態に設定される。
ステップS19では、自動変速機70への作動油の供給状態が供給状態設定部46により第3供給状態に設定される。この場合は、自動変速機70で必要とされる作動油の必要流量Qrが比較的多く、これを確保するために、第1オイルポンプ10に加えて第2オイルポンプ20が駆動される。
このような状況として、具体的には、急加速や急減速によって変速流量が増加する場合や、作動油の油温が例えば130℃を超えるような高温となり、リーク流量が増加する場合、作動油の油温が高温であって車速が中速(30〜50km/h)以上となり、十分な冷却流量を確保する必要がある場合などが挙げられる。
このように、車両の状態、特にエンジン50や自動変速機70の状態に基づいて自動変速機70への作動油の供給状態を切り換えることで、自動変速機70に十分な作動油が供給されるとともに、エンジン50において無駄な燃料が消費されることが抑制される。この結果、自動変速機70を安定して作動させることができるとともに、車両の燃費を向上させることができる。
なお、自動変速機70への作動油の供給状態が頻繁に切り換わると、自動変速機70に供給される作動油の圧力が変動し、自動変速機70の制御が不安定となるおそれがあることから、第1比較部43及び第2比較部45において比較を行う際にヒステリシスを設定し、供給状態が頻繁に切り換わることを抑制してもよい。また、何れかの供給状態に設定された後、自動変速機70への供給される作動油量が必要流量Qrを下回らなければ、所定時間の間は他の供給状態に移行することを禁止してもよい。
また、エンジン50の燃料消費を低減させるために、アイドリングストップ制御が行われる場合、駆動状態判定部47においてエンジン50が停止状態にあることが判定されると、図3に示されるフローチャートに従うことなく、自動変速機70への作動油の供給状態は、供給状態設定部46により第2供給状態、すなわち、第2オイルポンプ20のみから自動変速機70へ作動油を供給する状態に設定される。
これにより、エンジン50が停止し第1オイルポンプ10が駆動されない場合であっても、第2オイルポンプ20によって、自動変速機70へ作動油を安定して供給することができる。なお、アイドリングストップ制御が行われるときに自動変速機70で必要とされる作動油の必要流量Qrは非常に少ないため、第2オイルポンプ20によって十分に賄うことができる。このように、第2オイルポンプ20は、アイドリングストップ時に駆動される予備電動オイルポンプとして流用可能であることから、予備電動オイルポンプを別途設ける必要がなくなることで、車両の製造コストを低減させることができる。なお、すでに予備電動オイルポンプを備えた車両であれば、予備電動オイルポンプの性能を第2オイルポンプ20と同等の性能とすることで、新たな電動オイルポンプを設ける必要がなくなるため、結果として車両の製造コストを低減させることができる。
また、第1オイルポンプ10または第2オイルポンプ20に異常があると異常判定部48において判定された場合には、コントローラ40は、図3に示されるフローチャートに従うことなく、異常がないオイルポンプのみから自動変速機70へ作動油を供給させる状態とする。
具体的には、供給状態設定部46は、第1オイルポンプ10に異常があるという信号を異常判定部48から受信すると、自動変速機70へ作動油を供給する供給状態を、第2オイルポンプ20のみから作動油が供給される第1異常時供給状態に設定するとともに、電動モータ60を制御し、第2オイルポンプ20の吐出流量Q2が自動変速機70で必要とされる作動油の必要流量Qrに達するように電動モータ60の回転数を上昇させる。
また、供給状態設定部46は、第2オイルポンプ20に異常があるという信号を異常判定部48から受信すると、自動変速機70へ作動油を供給する供給状態を、アンロード弁18を閉弁し第1オイルポンプ10のみから作動油が供給される第2異常時供給状態とするとともに、エンジン50を制御し、第1オイルポンプ10の吐出流量Q1が自動変速機70で必要とされる作動油の必要流量Qrに達するようにエンジン50の回転数を上昇させる。
これにより、第1オイルポンプ10または第2オイルポンプ20に異常がある場合であっても自動変速機70へ作動油を十分に供給することが可能となり、自動変速機70を安定して作動させることができる。
以上の実施形態によれば、以下に示す効果を奏する。
作動流体供給装置100では、車両の駆動輪を駆動するエンジン50の出力によって駆動される第1オイルポンプ10を、アンロード弁18によって無負荷運転状態とすることが可能である。このため、第1オイルポンプ10を駆動させる必要がない場合には、第1オイルポンプ10を無負荷運転状態とすることによって、エンジン50で無駄な燃料が消費されることが抑制される。さらに、作動流体供給装置100では、自動変速機70への作動油の供給が、第1オイルポンプ10に加えて、第2オイルポンプ20からも行われる。このため、第1オイルポンプ10の最大吐出流量を自動変速機70の最大必要流量に合せて設定する必要がないことから、第1オイルポンプ10の最大吐出流量を小さく設定し、第1オイルポンプ10の駆動動力を低減させることが可能となる。このように第1オイルポンプ10の駆動動力が低減されると、第1オイルポンプ10を駆動するエンジン50において無駄な燃料が消費されることが抑制される。この結果、車両の燃費を向上させることができる。
次に、上記実施形態の変形例について説明する。
上記実施形態では、第1オイルポンプ10を無負荷運転状態とするアンロード機構としてアンロード弁18が用いられる。これに代えて、アンロード機構としては、エンジン50と第1オイルポンプ10とを連結する連結部に設けられるクラッチであってもよい。この場合、クラッチを切断状態とすることにより第1オイルポンプ10はエンジン50によって駆動されず、第1オイルポンプ10の吐出量はゼロとなる。このように、無負荷運転状態には、通常はエンジン50により駆動されている第1オイルポンプ10を非作動状態、すなわち、第1オイルポンプ10を駆動させる負荷がエンジン50にかからない状態とし、第1オイルポンプ10の吐出量がゼロとなる場合も含まれる。また、第1オイルポンプ10として、可変容量型のベーンポンプやピストンポンプを採用し、カムリングの偏心量やピストンのストロークを調整して第1オイルポンプ10の吐出量がゼロとなるようにしてもよい。この場合、可変容量型ポンプの吐出量を調整する調整機構がアンロード機構に相当し、第1オイルポンプ10の吐出量がゼロとなるように調整機構が制御されることによって、第1オイルポンプ10は無負荷運転状態となる。
また、上記実施形態では、自動変速機70がベルト式無段変速機構(CVT)を備える変速機である場合について説明したが、自動変速機70は作動油の圧力を利用して作動するものであればどのような形式のものであってもよく、トロイダル式無段変速機構や遊星歯車機構を備えたものであってもよい。
また、上記実施形態では、第1オイルポンプ10はベーンポンプであり、第2オイルポンプ20は内接歯車ポンプである。第1オイルポンプ10及び第2オイルポンプ20の形式は、異なる形式である必要はなく、同じ形式のものが用いられてもよく、例えば、両者ともベーンポンプであってもよい。また、ポンプの形式は、これらに限定されず、例えば、外接歯車ポンプやピストンポンプといった容積ポンプであればどのような形式のものであってもよい。また、第1オイルポンプ10は容量固定タイプであるが、容量可変タイプのポンプであってもよい。
また、上記実施形態では、第1オイルポンプ10は、エンジン50の出力により駆動される。第1オイルポンプ10を駆動する第1駆動源としては、エンジン50に限定されず、例えば、車両の駆動輪を駆動する電動モータであってもよい。
また、上記実施形態では、第2オイルポンプ20は、電動モータ60の出力により駆動される。第2オイルポンプ20を駆動する第2駆動源としては、電動モータ60に限定されず、例えば、補機等を駆動する補助エンジンであってもよい。
また、上記実施形態では、コントローラ40に入力される車両の状態を示す信号として種々の信号が列記されているが、これら以外にも、例えば、自動変速機70にトルクコンバータが設けられている場合は、トルクコンバータの作動状態や締結状態を示す信号がコントローラ40に入力されてもよい。この場合、トルクコンバータの状態を加味して、自動変速機70の必要流量Qrを演算したり、自動変速機70への作動油の供給状態の切り換えを制限したりしてもよい。例えば、トルクコンバータが半締結状態(スリップロックアップ状態)にあることが検出された場合には、作動油供給状態が他の供給状態に移行することを禁止してもよい。これにより、トルクコンバータを安定した作動状態に維持することができる。また、車両の減速状態を示す信号として、ブレーキの操作量及び操作速度を示す信号がコントローラ40に入力されてもよい。
また、上記実施形態では、コントローラ40の吐出流量算出部42では、第1オイルポンプ10から吐出される作動油の吐出流量Q1が算出される。これに代えて、流量センサ等によって、第1オイルポンプ10から吐出される実際の作動油の吐出流量Q1を直接的に計測してもよい。
以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
作動流体供給装置100は、エンジン50の出力により駆動され自動変速機70へ作動油を供給可能な第1オイルポンプ10と、電動モータ60の出力により駆動され自動変速機70へ作動油を供給可能な第2オイルポンプ20と、第1オイルポンプ10を無負荷運転状態とするアンロード弁18と、車両の状態に応じて自動変速機70への作動油の供給状態を制御するコントローラ40と、を備え、コントローラ40は、車両の状態に基づいて、第2オイルポンプ20を停止し第1オイルポンプ10のみから自動変速機70へ作動油を供給する第1供給状態と、アンロード弁18により第1オイルポンプ10を無負荷運転状態とし第2オイルポンプ20のみから自動変速機70へ作動油を供給する第2供給状態と、第1オイルポンプ10及び第2オイルポンプ20から自動変速機70へ作動油を供給する第3供給状態と、から自動変速機70への作動油の供給状態を設定する供給状態設定部46を有する。
この構成では、車両の駆動輪を駆動するエンジン50の出力によって駆動される第1オイルポンプ10を、アンロード弁18によって無負荷運転状態とすることが可能である。このため、第1オイルポンプ10を駆動させる必要がない場合には、第1オイルポンプ10を無負荷運転状態とすることによって、エンジン50で無駄な燃料が消費されることが抑制される。さらに、この構成では、自動変速機70への作動油の供給が、第1オイルポンプ10に加えて、第2オイルポンプ20からも行われる。このため、第1オイルポンプ10の最大吐出流量を自動変速機70の最大必要流量に合せて設定する必要がないことから、第1オイルポンプ10の最大吐出流量を小さく設定し、第1オイルポンプ10の駆動動力を低減させることが可能となる。このように第1オイルポンプ10の駆動動力が低減されると、第1オイルポンプ10を駆動するエンジン50において無駄な燃料が消費されることが抑制される。この結果、車両の燃費を向上させることができる。
また、コントローラ40は、車両の状態に基づいて自動変速機70で必要とされる作動油の必要流量Qrを演算する必要流量演算部41と、第1オイルポンプ10から吐出される作動油の吐出流量Q1を算出する吐出流量算出部42と、をさらに有し、供給状態設定部46は、必要流量Qrと吐出流量Q1との比較結果に基づいて自動変速機70への作動油の供給状態を設定する。
この構成では、自動変速機70で必要とされる作動油の必要流量Qrと、第1オイルポンプ10から吐出される作動油の吐出流量Q1と、の比較結果に基づいて自動変速機70への作動油の供給状態が設定される。このように、自動変速機70の必要流量Qrを考慮して自動変速機70への作動油の供給状態を設定することで、自動変速機70を安定して作動させることができるとともに、最適な作動油の供給状態を設定することでエンジン50において無駄な燃料が消費されることが抑制され、結果として、車両の燃費を向上させることができる。
また、コントローラ40は、吐出流量Q1が必要流量Qr以上である場合に、第1オイルポンプ10の駆動動力W1と、必要流量Qrに基づき設定される目標吐出流量Qaを吐出させた場合の第2オイルポンプ20の駆動動力W2と、を演算する駆動動力演算部44をさらに有し、供給状態設定部46は、第1オイルポンプ10の駆動動力W1が第2オイルポンプ20の駆動動力W2以下である場合は、自動変速機70への作動油の供給状態を第1供給状態とし、第1オイルポンプ10の駆動動力W1が第2オイルポンプ20の駆動動力W2よりも大きい場合は、自動変速機70への作動油の供給状態を第2供給状態とする。
この構成では、第1オイルポンプ10の駆動動力W1が第2オイルポンプ20の駆動動力W2以下である場合は、自動変速機70への作動油の供給状態が第1供給状態に設定され、第1オイルポンプ10の駆動動力W1が第2オイルポンプ20の駆動動力W2よりも大きい場合は、自動変速機70への作動油の供給状態が第2供給状態に設定される。このように、必要流量Qrを供給することが可能であり且つ駆動動力が小さいポンプが自動変速機70へ作動油を供給するポンプとして選択されるため、自動変速機70を安定して作動させることができるとともに、車両の燃費を向上させることができる。また、この構成では、第1オイルポンプ10と第2オイルポンプ20との何れかが自動変速機70へ作動油を供給するポンプとして選択されるため、第1オイルポンプ10及び第2オイルポンプ20を同時に駆動し両者の駆動効率に応じて第1オイルポンプ10及び第2オイルポンプ20の吐出量をそれぞれ変化させるような複合的な制御を行う場合と比較し、制御を簡素化することができる。
また、供給状態設定部46は、吐出流量Q1が必要流量Qrよりも小さい場合には、自動変速機70への作動油の供給状態を第3供給状態とする。
この構成では、吐出流量Q1が必要流量Qrよりも小さい場合は、自動変速機70への作動油の供給状態が、第1オイルポンプ10及び第2オイルポンプ20から作動油が供給される第3供給状態に設定される。このように、必要流量Qrが大きい場合は、第1オイルポンプ10に加えて、第2オイルポンプ20からも作動油が供給される。このため、第1オイルポンプ10の最大吐出流量を自動変速機70の最大必要流量に合せて設定する必要がないことから、第1オイルポンプ10の最大吐出流量を小さく設定し、第1オイルポンプ10の駆動動力を低減させることが可能となる。このように第1オイルポンプ10の駆動動力が低減されると、第1オイルポンプ10を駆動するエンジン50において無駄な燃料が消費されることが抑制される。この結果、車両の燃費を向上させることができる。
また、コントローラ40は、車両の状態に基づいて第1オイルポンプ10及び第2オイルポンプ20の異常の有無を判定する異常判定部48をさらに有し、供給状態設定部46は、異常判定部48により第1オイルポンプ10に異常があると判定された場合には、第2オイルポンプ20から自動変速機70へ供給される作動油の供給流量が必要流量Qrを超えるように電動モータ60が制御される第1異常時供給状態とし、異常判定部48により第2オイルポンプ20に異常があると判定された場合には、アンロード弁18の作動を停止するとともに第1オイルポンプ10から自動変速機70へ供給される作動油の供給流量が必要流量Qrを超えるようにエンジン50及び自動変速機70が制御される第2異常時供給状態とする。
この構成では、自動変速機70への作動油の供給状態が、第1オイルポンプ10に異常がある場合は、第2オイルポンプ20から供給される作動油の供給流量が必要流量Qrを超えるように電動モータ60が制御される第1異常時供給状態に設定され、第2オイルポンプ20に異常がある場合は、アンロード弁18の作動を停止するとともに第1オイルポンプ10から供給される作動油の供給流量が必要流量Qrを超えるようにエンジン50及び自動変速機70が制御される第2異常時供給状態に設定される。このように、第1オイルポンプ10または第2オイルポンプ20に異常が生じた場合も自動変速機70へは必要流量Qrを超える作動油が供給される。このため、自動変速機70を常に安定して作動させることができる。
また、コントローラ40は、車両の状態に基づいてエンジン50の駆動状態を判定する駆動状態判定部47をさらに有し、供給状態設定部46は、駆動状態判定部47によりエンジン50が停止していると判定された場合には、自動変速機70への作動油の供給状態を第2供給状態とする。
この構成では、エンジン50が停止している場合は、自動変速機70への作動油の供給状態が第2供給状態に設定される。このように第2オイルポンプ20をアイドリングストップ時に駆動される予備電動オイルポンプとして流用することによって、予備電動オイルポンプを別途設ける必要がなくなるため、車両の製造コストを低減させることができる。また、第1オイルポンプ10はアンロード弁18によって無負荷運転状態となっていることから、エンジン50を再始動させる際にエンジン50が第1オイルポンプ10を駆動させる駆動動力W1はほぼゼロである。この結果、エンジン50の再始動性を向上させることができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
上記実施形態による作動流体供給装置100は、作動流体として、作動油を使用しているが、作動油の代わりに水や水溶液等の非圧縮性流体を使用してもよい。
また、上記実施形態による作動流体供給装置100は、車両の動力伝達装置に作動流体を供給するものとして説明したが、これが適用されるものは車両に限定されず、ポンプから供給される作動流体によって作動する動力伝達装置を備えたものであればどのようなものであってもよい。
100・・・作動流体供給装置、10・・・第1オイルポンプ(第1ポンプ)、18・・・アンロード弁(アンロード機構)、20・・・第2オイルポンプ(第2ポンプ)、40・・・コントローラ(供給状態制御部)、50・・・エンジン(第1駆動源)、60・・・電動モータ(第2駆動源)、70・・・自動変速機(動力伝達装置)

Claims (6)

  1. 第1駆動源の出力を車両の駆動輪に伝達する動力伝達装置への作動流体の供給を制御する作動流体供給装置であって、
    前記第1駆動源の出力により駆動され前記動力伝達装置へ作動流体を供給可能な第1ポンプと、
    第2駆動源の出力により駆動され前記動力伝達装置へ作動流体を供給可能な第2ポンプと、
    前記第1ポンプを無負荷運転状態とするアンロード機構と、
    前記車両の状態に応じて前記動力伝達装置への作動流体の供給状態を制御する供給状態制御部と、を備え、
    前記供給状態制御部は、前記車両の状態に基づいて、前記第2ポンプを停止し前記第1ポンプのみから前記動力伝達装置へ作動流体を供給する第1供給状態と、前記アンロード機構により前記第1ポンプを無負荷運転状態とし前記第2ポンプのみから前記動力伝達装置へ作動流体を供給する第2供給状態と、前記第1ポンプ及び前記第2ポンプから前記動力伝達装置へ作動流体を供給する第3供給状態と、から前記動力伝達装置への作動流体の供給状態を設定する供給状態設定部を有することを特徴とする作動流体供給装置。
  2. 前記供給状態制御部は、
    前記車両の状態に基づいて前記動力伝達装置で必要とされる作動流体の必要流量を演算する必要流量演算部と、
    前記第1ポンプから吐出される作動流体の吐出流量を算出する吐出流量算出部と、をさらに有し、
    前記供給状態設定部は、前記必要流量と前記吐出流量との比較結果に基づいて前記動力伝達装置への作動流体の供給状態を設定することを特徴とする請求項1に記載の作動流体供給装置。
  3. 前記供給状態制御部は、前記吐出流量が前記必要流量以上である場合に、前記第1ポンプの駆動動力と、前記必要流量に基づき設定される目標吐出流量を吐出させた場合の前記第2ポンプの駆動動力と、を演算する駆動動力演算部をさらに有し、
    前記供給状態設定部は、
    前記第1ポンプの駆動動力が前記第2ポンプの駆動動力以下である場合は、前記動力伝達装置への作動流体の供給状態を前記第1供給状態とし、
    前記第1ポンプの駆動動力が前記第2ポンプの駆動動力よりも大きい場合は、前記動力伝達装置への作動流体の供給状態を前記第2供給状態とすることを特徴とする請求項2に記載の作動流体供給装置。
  4. 前記供給状態設定部は、前記吐出流量が前記必要流量よりも小さい場合には、前記動力伝達装置への作動流体の供給状態を前記第3供給状態とすることを特徴とする請求項2または3に記載の作動流体供給装置。
  5. 前記供給状態制御部は、前記車両の状態に基づいて前記第1ポンプ及び前記第2ポンプの異常の有無を判定する異常判定部をさらに有し、
    前記供給状態設定部は、
    前記異常判定部により前記第1ポンプに異常があると判定された場合には、前記第2ポンプから前記動力伝達装置へ供給される作動流体の供給流量が前記必要流量を超えるように前記第2駆動源が制御される第1異常時供給状態とし、
    前記異常判定部により前記第2ポンプに異常があると判定された場合には、前記アンロード機構の作動を停止するとともに前記第1ポンプから前記動力伝達装置へ供給される作動流体の供給流量が前記必要流量を超えるように前記第1駆動源及び前記動力伝達装置が制御される第2異常時供給状態とすることを特徴とする請求項2から4の何れか1つに記載の作動流体供給装置。
  6. 前記供給状態制御部は、前記車両の状態に基づいて前記第1駆動源の駆動状態を判定する駆動状態判定部をさらに有し、
    前記供給状態設定部は、前記駆動状態判定部により前記第1駆動源が停止していると判定された場合には、前記動力伝達装置への作動流体の供給状態を前記第2供給状態とすることを特徴とする請求項1から5の何れか1つに記載の作動流体供給装置。
JP2018021877A 2018-02-09 2018-02-09 作動流体供給装置 Active JP7042103B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021877A JP7042103B2 (ja) 2018-02-09 2018-02-09 作動流体供給装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021877A JP7042103B2 (ja) 2018-02-09 2018-02-09 作動流体供給装置

Publications (2)

Publication Number Publication Date
JP2019138370A true JP2019138370A (ja) 2019-08-22
JP7042103B2 JP7042103B2 (ja) 2022-03-25

Family

ID=67693499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021877A Active JP7042103B2 (ja) 2018-02-09 2018-02-09 作動流体供給装置

Country Status (1)

Country Link
JP (1) JP7042103B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139028A (ja) * 2008-12-12 2010-06-24 Toyota Motor Corp 油圧制御装置
JP2017067226A (ja) * 2015-10-01 2017-04-06 ジヤトコ株式会社 無段変速機の制御装置及び無段変速機の制御方法
US20170167598A1 (en) * 2015-12-10 2017-06-15 Hyundai Motor Company Hydraulic pressure supply system of automatic transmission
US20170167599A1 (en) * 2015-12-14 2017-06-15 Hyundai Motor Company Hydraulic pressure supply system of automatic transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139028A (ja) * 2008-12-12 2010-06-24 Toyota Motor Corp 油圧制御装置
JP2017067226A (ja) * 2015-10-01 2017-04-06 ジヤトコ株式会社 無段変速機の制御装置及び無段変速機の制御方法
US20170167598A1 (en) * 2015-12-10 2017-06-15 Hyundai Motor Company Hydraulic pressure supply system of automatic transmission
US20170167599A1 (en) * 2015-12-14 2017-06-15 Hyundai Motor Company Hydraulic pressure supply system of automatic transmission

Also Published As

Publication number Publication date
JP7042103B2 (ja) 2022-03-25

Similar Documents

Publication Publication Date Title
US8108115B2 (en) Vehicle control device
KR101786704B1 (ko) 하이브리드 차량용 변속기를 동작시키는 eop의 제어방법
KR102142171B1 (ko) 변속기의 유압 제어 시스템의 적응 제어를 위한 시스템 및 방법
CN103321884B (zh) 电动泵的控制装置
JP5304226B2 (ja) 油圧制御装置
EP2933491B1 (en) Fluid supply device
CN112969869B (zh) 工作流体供给装置
JP5315487B1 (ja) 可変容量ポンプの制御装置
JP2010139028A (ja) 油圧制御装置
US20130253785A1 (en) Oil pressure control system of automatic transmission for vehicle
US20040072649A1 (en) Lubricant amount control apparatus and lubricant amount control method for power transmission mechanism
CN102257297A (zh) 驱动力控制装置
WO2021090646A1 (ja) 作動流体供給システム
JP7042103B2 (ja) 作動流体供給装置
JP7116662B2 (ja) 作動流体供給装置
JP7290934B2 (ja) 作動流体供給装置
JP7042102B2 (ja) 作動流体供給装置
JP6506804B2 (ja) 油圧制御装置
JP7389635B2 (ja) 作動流体供給システム
KR102115061B1 (ko) 변속기에서 펌프 성능을 제어하기 위한 시스템 및 방법
CN113280011B (zh) 车辆的静压驱动系统及其控制方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R151 Written notification of patent or utility model registration

Ref document number: 7042103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350