JP2019131415A - Method for recovering selenium from copper electrolytic slime - Google Patents

Method for recovering selenium from copper electrolytic slime Download PDF

Info

Publication number
JP2019131415A
JP2019131415A JP2018012364A JP2018012364A JP2019131415A JP 2019131415 A JP2019131415 A JP 2019131415A JP 2018012364 A JP2018012364 A JP 2018012364A JP 2018012364 A JP2018012364 A JP 2018012364A JP 2019131415 A JP2019131415 A JP 2019131415A
Authority
JP
Japan
Prior art keywords
residual liquid
adsorption
platinum
selenium
sulfur dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018012364A
Other languages
Japanese (ja)
Other versions
JP6933151B2 (en
Inventor
秀昌 永井
Hidemasa Nagai
秀昌 永井
中井 隆行
Takayuki Nakai
隆行 中井
正寛 新宮
Masahiro Shingu
正寛 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018012364A priority Critical patent/JP6933151B2/en
Publication of JP2019131415A publication Critical patent/JP2019131415A/en
Application granted granted Critical
Publication of JP6933151B2 publication Critical patent/JP6933151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for recovering high purity selenium with low platinum quality from a residual liquid of adsorption treatment, after treating with an anion exchange resin a residual liquid of extraction treatment after gold is extracted and separated, when recovering valuable metals from a leachate of chlorine leaching of copper electrolytic slime.SOLUTION: According to the present invention, a method, in which a slurry of copper electrolytic slime is leached with chlorine, gold is extracted by an organic solvent being brought into contact with leachate, platinum group elements are adsorbed on an anion exchange resin by an extraction residual liquid being brought into contact with it, and subsequently selenium is reduced and recovered by sulfur dioxide being injected into a residual liquid after adsorption, comprises addition of ascorbic acid to the residual liquid after adsorption before injection of sulfur dioxide, and recovering of selenium by injecting the sulfur dioxide into an obtained filtrate after filtering and separating precipitate containing platinum generated. Here, an amount of ascorbic acid added is preferably 10 to 100 times a molar amount (total molar amount) of palladium and platinum (Pd+Pt) in the residual liquid after adsorption.SELECTED DRAWING: None

Description

本発明は、銅電解スライムから、白金族元素、特に白金の品位が低い高純度なセレンを回収する方法に関する。   The present invention relates to a method for recovering a high purity selenium having a low grade of platinum group element, particularly platinum, from copper electrolytic slime.

銅電解スライムから有価金族を回収する処理については、乾式法及び湿式法のいずれも実用化されている。特に、湿式法については様々な方法があるが、そのひとつの例として特許文献1に記載された方法がある。   As for the process of recovering valuable metal from copper electrolytic slime, both the dry method and the wet method have been put into practical use. In particular, there are various wet methods, and one example is the method described in Patent Document 1.

特許文献1に開示の方法では、銅電解スライムに水を加えてスラリー状とし、塩素ガスを吹き込むことにより、金、白金族元素、セレン、テルル等の有価金属を浸出する。得られた浸出液をビス(2−ブトキシエチル)エーテルと接触させて金を有機相に抽出分離した後、抽出残液を塩化トリオクチルメチルアンモニウム及びリン酸トリブチルと接触させて白金族元素を抽出する。そして、この抽出残液に二硫化硫黄を吹き込み、酸化還元電位(参照電極:Ag/AgCl)を400mV〜500mVに維持してセレンを選択的に還元し、次いで酸化還元電位を290mV〜380mVに維持することによりテルルを還元して回収する。   In the method disclosed in Patent Document 1, valuable metals such as gold, platinum group elements, selenium and tellurium are leached by adding water to copper electrolytic slime to form a slurry and blowing chlorine gas. The obtained leachate is brought into contact with bis (2-butoxyethyl) ether to extract and separate gold into an organic phase, and then the extraction residue is brought into contact with trioctylmethylammonium chloride and tributyl phosphate to extract platinum group elements. . Then, sulfur disulfide is blown into this extraction residue, and the redox potential (reference electrode: Ag / AgCl) is maintained at 400 mV to 500 mV to selectively reduce selenium, and then the redox potential is maintained at 290 mV to 380 mV. By doing so, tellurium is reduced and recovered.

また、上記のごとく金を分離した抽出残液から白金族元素を回収する別の方法として、特許文献2には、金を分離した抽出残液をポリアミン型アニオン交換樹脂と接触することにより、白金族元素を吸着して分離する方法が提案されている。なお、このポリアミン型アニオン交換樹脂のような陰イオン交換樹脂により白金族元素を吸着した後の残液中に残るセレンやテルルは、上述した特許文献1に開示の方法と同様に、二硫化硫黄の吹き込みにより還元して回収することができる。   As another method for recovering a platinum group element from an extraction residual liquid from which gold has been separated as described above, Patent Document 2 discloses that platinum extraction is performed by bringing the extraction residual liquid from which gold has been separated into contact with a polyamine type anion exchange resin. Methods for adsorbing and separating group elements have been proposed. In addition, selenium and tellurium remaining in the residual liquid after the platinum group element is adsorbed by an anion exchange resin such as this polyamine type anion exchange resin are sulfur disulfide as in the method disclosed in Patent Document 1 described above. It can be reduced and recovered by blowing.

また、回収したセレンやテルルに不純物として残留する白金族元素、特にパラジウムを除去する方法として、特許文献3には、陰イオン交換樹脂により白金族元素を吸着した後の残液中に二硫化硫黄を吹き込む前に還元剤を添加(部分還元工程を追加)し、陰イオン交換樹脂で取りきれなかった白金族元素を沈殿物として除去する方法が開示されている。   As a method for removing platinum group elements remaining as impurities in the recovered selenium and tellurium, particularly palladium, Patent Document 3 discloses sulfur disulfide in the residual liquid after the platinum group elements are adsorbed by an anion exchange resin. A method of adding a reducing agent (adding a partial reduction step) before blowing in and removing platinum group elements that could not be removed by an anion exchange resin as a precipitate is disclosed.

具体的には、銅電解スライムのスラリーを塩素浸出し、その浸出液に有機溶媒を接触させて金を抽出し、抽出残液を陰イオン交換樹脂と接触させて白金族元素を吸着させた後、吸着後残液に二酸化硫黄を吹き込んでセレンを還元して回収する方法において、吸着後残液中の塩化物濃度を2.0mol/L〜2.5mol/Lの範囲に調整した後、その吸着後残液の温度を30℃〜50℃の範囲に調整しながら、吸着後残液にNaHSO換算で濃度35重量%〜36重量%の溶液とした亜硫酸水素ナトリウムをその吸着後残液の液量に対し1体積%〜3体積%添加して、生成した主にパラジウムを含む沈殿物を濾過して分離し、その後、得られた濾液に二酸化硫黄を吹き込むことを特徴とする方法である。 Specifically, chlorine leaching of a copper electrolytic slime slurry, extracting gold by contacting the leachate with an organic solvent, contacting the extraction residual liquid with an anion exchange resin to adsorb platinum group elements, In the method of reducing and recovering selenium by blowing sulfur dioxide into the residual liquid after adsorption, after adjusting the chloride concentration in the residual liquid after adsorption to the range of 2.0 mol / L to 2.5 mol / L, the adsorption While adjusting the temperature of the post-residue liquid in the range of 30 ° C. to 50 ° C., sodium bisulfite in the form of a NaHSO 3 converted solution having a concentration of 35% to 36% by weight was added to the post-adsorption residual liquid. It is a method characterized by adding 1% by volume to 3% by volume with respect to the amount, separating the produced precipitate containing mainly palladium by filtration, and then blowing sulfur dioxide into the obtained filtrate.

このような特許文献3に開示の方法は、それまでの方法を改良し、パラジウム品位の低いセレンを回収することができる有用な方法である。しかしながら、白金族元素のうちでも白金(Pt)を有効に分離回収して、白金品位の低い高純度なセレンを回収する方法については記載されていない。銅電解スライムには、所定の割合で白金が含まれており、しかも有価な金属であるため、その銅電解スライムから白金を効果的に分離して回収するとともに、高純度なセレンを回収する方法が求められている。   Such a method disclosed in Patent Document 3 is a useful method that can improve the conventional method and recover selenium having a low palladium quality. However, a method for effectively separating and recovering platinum (Pt) among platinum group elements and recovering high-purity selenium having a low platinum quality is not described. A method of recovering high-purity selenium while effectively separating and recovering platinum from the copper electrolytic slime, because the copper electrolytic slime contains platinum in a predetermined ratio and is a valuable metal. Is required.

特開2001−207223号公報JP 2001-207223 A 特開2004−131745号公報JP 2004-131745 A 特開2012−126611号公報JP 2012-126611 A

本発明は、このような実情に鑑みて提案されたものであり、銅電解スライムを塩素浸出した浸出液から有価金属を回収する場合に、金を抽出分離した後の抽出残液を陰イオン交換樹脂により処理した後、その吸着後残液から、白金品位の低い高純度なセレンを回収する方法を提供することを目的とする。   The present invention has been proposed in view of such circumstances, and when recovering valuable metals from a leachate obtained by leaching copper electrolytic slime with chlorine, the extraction residual liquid after extraction and separation of gold is treated with an anion exchange resin. It is an object of the present invention to provide a method for recovering high-purity selenium having a low platinum quality from the residual solution after the adsorption.

本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、白金族元素のうちの特に白金(Pt)と、セレンの還元挙動について研究したところ、陰イオン交換樹脂と接触させて白金族元素を吸着させた後の吸着後残液に、アスコルビン酸を添加することによって、吸着後残液中に残った白金をセレンよりも優先的に還元して沈殿物化して分離できることを見出し、本発明を完成するに至った。   This inventor repeated earnest examination in order to solve the subject mentioned above. As a result, the reduction behavior of selenium, particularly platinum (Pt) among platinum group elements, was studied. Ascorbic acid was added to the residual liquid after adsorption after the platinum group elements were adsorbed by contact with an anion exchange resin. As a result, it was found that platinum remaining in the residual liquid after adsorption can be reduced preferentially over selenium to be precipitated and separated, and the present invention has been completed.

(1)本発明の第1の発明は、銅電解スライムのスラリーを塩素浸出し、その浸出液に有機溶媒を接触させて金を抽出し、抽出残液を陰イオン交換樹脂と接触させて白金族元素を吸着させた後、吸着後残液に二酸化硫黄を吹き込んでセレンを還元して回収する方法において、前記吸着後残液に二酸化硫黄を吹き込む前にアスコルビン酸を添加し、生成した白金を含む沈殿物を濾過して分離した後、得られた濾液に二酸化硫黄を吹き込むことによってセレンを回収する、銅電解スライムからのセレンの回収方法である。   (1) In the first invention of the present invention, a copper electrolysis slime slurry is leached with chlorine, an organic solvent is brought into contact with the leaching solution to extract gold, and the extraction residue is brought into contact with an anion exchange resin to form a platinum group. In the method in which sulfur dioxide is blown into the residual liquid after adsorption after adsorbing the element and selenium is reduced and recovered, ascorbic acid is added before the sulfur dioxide is blown into the residual liquid after adsorption, and the generated platinum is included. This is a method for recovering selenium from copper electrolytic slime, in which selenium is recovered by blowing the sulfur dioxide into the obtained filtrate after separating the precipitate by filtration.

(2)本発明の第2の発明は、第1の発明において、前記アスコルビン酸の添加量を、前記吸着後残液中のパラジウム及び白金(Pd+Pt)のモル量の10倍量〜100倍量とする、銅電解スライムからのセレンの回収方法である。   (2) According to a second aspect of the present invention, in the first aspect, the amount of ascorbic acid added is 10 to 100 times the molar amount of palladium and platinum (Pd + Pt) in the residual liquid after adsorption. And a method for recovering selenium from copper electrolytic slime.

本発明によれば、吸着後残液から、白金を還元して有効に回収することができるとともに、白金品位の低い高純度なセレンを回収することができる。   According to the present invention, platinum can be effectively recovered by reducing platinum from the residual liquid after adsorption, and high-purity selenium having a low platinum quality can be recovered.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。   Hereinafter, a specific embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.

本実施の形態に係るセレンの回収方法は、銅電解スライムからのセレンの回収方法であって、具体的には、銅電解スライムのスラリーを塩素浸出し、その浸出液に有機溶媒を接触させて金を抽出し、抽出残液を陰イオン交換樹脂と接触させて白金族元素を吸着させた後、吸着後残液に二酸化硫黄を吹き込んでセレンを還元して回収する方法である。   The method for recovering selenium according to the present embodiment is a method for recovering selenium from copper electrolytic slime. Specifically, the copper electrolytic slime slurry is leached with chlorine, and an organic solvent is brought into contact with the leached solution to obtain gold. Is extracted, and the extraction residual liquid is brought into contact with an anion exchange resin to adsorb platinum group elements, and after adsorption, sulfur dioxide is blown into the residual liquid to reduce and recover selenium.

そして、このセレンの回収方法においては、吸着後残液に二酸化硫黄を吹き込む前にアスコルビン酸を添加し、生成した白金を含む沈殿物を濾過して分離した後、得られた濾液に二酸化硫黄を吹き込むことによってセレンを回収することを特徴としている。ここで、吸着後残液には、陰イオン交換樹脂の吸着力(吸着率)にもよるが、白金やパラジウムといった白金族元素が残存している。   In this selenium recovery method, ascorbic acid is added before blowing the sulfur dioxide into the residual liquid after adsorption, and the precipitate containing platinum is filtered and separated, and sulfur dioxide is then added to the obtained filtrate. It is characterized by recovering selenium by blowing. Here, platinum group elements such as platinum and palladium remain in the residual liquid after adsorption, depending on the adsorption power (adsorption rate) of the anion exchange resin.

この方法では、吸着後残液にアスコルビン酸を添加することで、その吸着後残液中に残っている白金族元素である白金(Pt)をセレンよりも優先的に還元し、主に白金を含む沈殿物を生成させることができ、その生成した沈殿物を濾過することによって有効に分離除去することができる。そして、濾過して得られた濾液に二酸化硫黄を吹き込んでセレンを還元することによって、白金の品位が低い高純度なセレンを沈殿させて回収することができる。一方で、還元して沈殿物化した有価金属である白金についても、有効にかつ効率的に回収することができる。   In this method, by adding ascorbic acid to the residual liquid after adsorption, platinum (Pt), which is a platinum group element remaining in the residual liquid after the adsorption, is preferentially reduced over selenium. A precipitate can be produced, and the produced precipitate can be effectively separated and removed by filtering. By filtering sulfur dioxide into the filtrate obtained by filtration to reduce selenium, high-purity selenium with low platinum quality can be precipitated and recovered. On the other hand, platinum, which is a valuable metal reduced and precipitated, can be recovered effectively and efficiently.

なお、金の抽出に用いる有機溶媒や白金族元素の吸着に用いる陰イオン交換樹脂としては、従来から使用されているものでよい。例えば、金の抽出に用いる有機溶媒としては、ビス(2−ブトキシエチル)エーテルが好ましく、また、白金族元素の吸着に用いる陰イオン交換樹脂としては、ポリアミン型の陰イオン交換樹脂の使用が好ましい。   In addition, as an organic solvent used for gold | metal | money extraction, or anion exchange resin used for adsorption | suction of a platinum group element, what is used conventionally may be used. For example, bis (2-butoxyethyl) ether is preferred as the organic solvent used for gold extraction, and polyamine type anion exchange resin is preferably used as the anion exchange resin used for the adsorption of platinum group elements. .

上述したように、吸着残液に残った白金を還元して回収するための工程(以下、「白金還元分離工程」ともいう)では、還元剤としてアスコルビン酸(NaC;L−アスコルビン酸ナトリウムともいう)を使用する。ここで、陰イオン交換樹脂による吸着処理後の吸着後残液に含まれる白金族元素は、非常に微量であるため、液の酸化還元電位だけを監視しながら例えば二酸化硫黄ガス等の還元剤の添加量を精度よくコントロールすることは容易でない。これに対して、アスコルビン酸を溶液で用いて添加する方法によれば、例えば定量ポンプを使う等の方法によって、添加時間、すなわち添加量を管理することができ、また、酸化還元電位の管理も容易となる。これにより、微量含有される白金等の白金族元素の還元を、容易にかつ精度よくコントロールすることができる。 As described above, in the step of reducing and recovering platinum remaining in the adsorption residual liquid (hereinafter also referred to as “platinum reduction separation step”), ascorbic acid (NaC 6 H 7 O 6 ; L— (Also called sodium ascorbate). Here, since the platinum group element contained in the post-adsorption residual liquid after the adsorption treatment with the anion exchange resin is very small amount, while monitoring only the redox potential of the liquid, for example, a reducing agent such as sulfur dioxide gas is used. It is not easy to accurately control the amount added. On the other hand, according to the method of adding ascorbic acid using a solution, the addition time, that is, the addition amount can be managed by a method such as using a metering pump, and the redox potential can also be managed. It becomes easy. Thereby, the reduction | restoration of platinum group elements, such as platinum contained in trace amount, can be controlled easily and accurately.

アスコルビン酸の添加量は、NaC換算で濃度33重量%〜38重量%の溶液として、陰イオン交換樹脂での吸着後残液中のパラジウム及び白金(Pd+Pt)のモル量(合計モル量)の10倍量〜100倍量とすることが好ましい。 The addition amount of ascorbic acid, as a solution concentration of 33 wt% to 38 wt% with NaC 6 H 7 O 6 terms, the molar amounts of palladium and platinum remaining solution after adsorption on an anion exchange resin (Pd + Pt) (Total The amount is preferably 10 times to 100 times the molar amount).

アスコルビン酸の添加量が多いほど、白金の還元量を増加させることができるが、アスコルビン酸は高価であるため、添加装置を追加する費用を含め、白金の回収量に見合う上限を設定することが好ましい。また、アスコルビン酸の添加量が多すぎると、還元により生成する沈殿物にセレンも巻き込まれて沈殿してしまうため、白金と分離した上でのセレンの回収量を増やすことができない可能性がある。一方で、アスコルビン酸の添加量が少ないと、吸着後残液に含まれる白金の還元量が減少する可能性があり、次工程でセレンを回収する際にセレンに分配する白金量(セレン中の白金の品位)が増えることがある。これらのことから、アスコルビン酸の添加量を(Pd+Pt)モル量の10倍量〜100倍量とすることで、白金をより効果的に分離回収するとともに、セレン中の白金品位をより低減させて、高品質なセレンを回収することができる。   As the amount of ascorbic acid added increases, the amount of platinum reduced can be increased. However, ascorbic acid is expensive, so it is possible to set an upper limit commensurate with the amount of platinum recovered, including the cost of adding an addition device. preferable. In addition, if the amount of ascorbic acid added is too large, selenium is also entrained and precipitated in the precipitate produced by the reduction, so there is a possibility that the amount of selenium recovered after separation from platinum cannot be increased. . On the other hand, if the amount of ascorbic acid added is small, the reduction amount of platinum contained in the residual liquid after adsorption may decrease, and the amount of platinum distributed to selenium when selenium is recovered in the next step (in selenium) Platinum quality) may increase. From these things, by making the addition amount of ascorbic acid 10 times to 100 times the amount of (Pd + Pt) mole, platinum can be separated and recovered more effectively, and the platinum quality in selenium can be further reduced. High quality selenium can be recovered.

ここで、吸着後残液に、アスコルビン酸を添加するに際しては、その還元剤を添加するに先立ち、酸濃度(塩化物イオン濃度)が1.7mol/L〜2.3mol/Lの範囲となるようにすることが好ましい。   Here, when ascorbic acid is added to the residual liquid after adsorption, the acid concentration (chloride ion concentration) is in the range of 1.7 mol / L to 2.3 mol / L prior to adding the reducing agent. It is preferable to do so.

一般に、塩化物溶液中の白金イオンはPtCl 2−で示される形態で存在するが、この形態では塩化物イオン濃度が高くなると塩化物錯体の安定度が増して還元し難くなり、セレンとの選択性が低下して白金を分離し難くなる。 In general, platinum ions in a chloride solution are present in a form represented by PtCl 6 2- . In this form, when the chloride ion concentration is increased, the stability of the chloride complex is increased and the reduction is difficult. The selectivity is lowered and it becomes difficult to separate platinum.

このことから、アスコルビン酸を添加するに先立って、その吸着後残液中の酸濃度を調整しておくことが好ましく、具体的には、吸着後残液のpHを調整する等して、酸濃度を1.7mol/L〜2.3mol/Lの範囲とする。このように、好ましくは、酸濃度を1.7mol/L〜2.3mol/Lの範囲に調整することで、セレンとの選択性を確保し、白金を選択的に還元して沈殿させることがより容易となる。   Therefore, prior to adding ascorbic acid, it is preferable to adjust the acid concentration in the residual liquid after adsorption, specifically, by adjusting the pH of the residual liquid after adsorption, etc. The concentration is in the range of 1.7 mol / L to 2.3 mol / L. Thus, preferably, by adjusting the acid concentration to a range of 1.7 mol / L to 2.3 mol / L, selectivity with selenium is secured, and platinum is selectively reduced and precipitated. It becomes easier.

吸着後残液の酸濃度が低いほどセレンとの選択性は向上するものの、酸濃度が1.7mol/L未満であると、濃度調整のためのpH調整剤等の使用量が増加してしまい、中和熱による液温上昇を抑えるために冷却水等の添加が必要となり、非効率となる。   Although the selectivity with selenium improves as the acid concentration in the residual liquid after adsorption decreases, if the acid concentration is less than 1.7 mol / L, the amount of pH adjuster used for concentration adjustment will increase. In order to suppress the rise in liquid temperature due to heat of neutralization, it is necessary to add cooling water or the like, which is inefficient.

酸濃度の調整方法としては、例えば、還元剤を添加する前の吸着後残液中の酸濃度が上述した範囲よりも低い場合には、塩化ナトリウム、塩化カリウム、塩酸等の形で塩化物イオンを補充するか、あるいは吸着後残液を加熱して濃縮する等の方法により、調整することができる。一方で、酸濃度が上述した範囲よりも高い場合には、吸着後残液に水を加えて希釈すればよい。   As an acid concentration adjusting method, for example, when the acid concentration in the residual liquid after adsorption before adding the reducing agent is lower than the above range, chloride ions in the form of sodium chloride, potassium chloride, hydrochloric acid, etc. It can be adjusted by a method such as replenishing or concentrating by heating the residual liquid after adsorption. On the other hand, when the acid concentration is higher than the above-described range, water may be diluted by adding water to the residual liquid after adsorption.

また、吸着後残液にアスコルビン酸を添加して還元する際における吸着後残液の温度としては、30℃〜50℃の範囲に調整することが好ましい。この温度は、吸着後残液から白金を分離回収した後に、得られた濾液に二酸化硫黄を吹き込んでセレンを還元して回収する際も同様である。吸着後残液の温度が30℃未満であっても、白金を選択還元することはできるが、白金の還元速度が遅くなる。そのため、工業的な規模で実施する場合には、操作に手間と時間がかかるうえ、遅い還元速度と必要な処理量に見合った規模の反応槽が必要となる等の不利益が生じる。   Moreover, it is preferable to adjust to the range of 30 degreeC-50 degreeC as temperature of the residual liquid after adsorption | suction at the time of adding and reducing ascorbic acid to the residual liquid after adsorption | suction. This temperature is the same when platinum is separated and recovered from the residual liquid after adsorption, and sulfur dioxide is blown into the obtained filtrate to recover selenium by reduction. Even if the temperature of the residual liquid after adsorption is less than 30 ° C., platinum can be selectively reduced, but the reduction rate of platinum becomes slow. Therefore, when it implements on an industrial scale, the operation takes time and effort, and disadvantages such as the need for a reaction tank having a scale corresponding to the slow reduction rate and the required throughput arise.

一方で、吸着後残液の温度が50℃を超えると、生成するセレンが取り扱い難い性状となるため好ましくない。すなわち、セレンの形態は、還元温度が50℃以下では不定型の赤色セレン、50℃を超えて60℃程度までではガラス状のアモルファスセレン、70℃以上では結晶型のセレンへと変化する。ガラス状のアモルファスセレンは、団子状となって反応槽の内側や撹拌羽根に付着しやすいため、生成を避けることが望ましい。また、温度が50℃を超えて高い場合には、白金の再溶解が生じるため、白金の還元も進みに難くなる。これらの理由から、反応温度として50℃を上限とすることが好ましい。   On the other hand, if the temperature of the residual liquid after adsorption exceeds 50 ° C., the generated selenium is difficult to handle, which is not preferable. That is, the form of selenium changes to amorphous red selenium when the reduction temperature is 50 ° C. or lower, glassy amorphous selenium above 50 ° C. to about 60 ° C., and crystalline selenium above 70 ° C. Since glassy amorphous selenium tends to adhere to the inside of the reaction vessel and the stirring blade in the form of a dumpling, it is desirable to avoid the generation. Further, when the temperature is higher than 50 ° C., platinum is re-dissolved, so that the reduction of platinum is difficult to proceed. For these reasons, the upper limit of the reaction temperature is preferably 50 ° C.

白金還元分離工程により吸着後残液から白金を含む沈殿物を濾過して分離した後の濾液は、従来と同様の処理により、セレン及びテルルを順次還元して回収することができる。すなわち、セレンの還元工程では、二硫化硫黄を吹き込んで酸化還元電位(参照電極:Ag/AgCl)を400mV〜500mVに維持することによりセレンを選択的に還元する。また、次のテルルの還元工程では、酸化還元電位を290mV〜380mVに維持することによりテルルを還元して回収する。セレン及びテルルの還元に用いる還元剤としては、安価で取り扱いの容易な二酸化硫黄ガスが好ましい。   The filtrate after separating the platinum-containing precipitate by filtration from the post-adsorption residue in the platinum reduction separation step can be recovered by reducing selenium and tellurium sequentially by the same treatment as before. That is, in the selenium reduction step, sulfur disulfide is blown in and selenium is selectively reduced by maintaining the oxidation-reduction potential (reference electrode: Ag / AgCl) at 400 mV to 500 mV. In the next tellurium reduction step, tellurium is reduced and recovered by maintaining the redox potential at 290 mV to 380 mV. As a reducing agent used for reduction of selenium and tellurium, sulfur dioxide gas which is inexpensive and easy to handle is preferable.

さて、本件出願人が提案した特許文献3に開示の方法においては、吸着後残液に還元剤である亜硫酸水素ナトリウムを添加し、これにより、吸着後残液に残存するパラジウムを還元して有効に分離除去している。ただし、その特許文献3には、白金族元素のうちの白金の分離除去については示されていない。金を分離した後の抽出残液に対して陰イオン交換樹脂を用いて白金族元素を吸着する際、その陰イオン交換樹脂による、特に白金の吸着率が低下する場合も考えられる。しかも、後述する実施例にて示すように、本実施の形態に係る方法にて吸着後残液に添加するアスコルビン酸では、吸着後残液に含まれるパラジウムよりも白金をより効果的に還元することができる。換言すると、特許文献3に開示されている亜硫酸水素ナトリウムのみを添加した場合では、吸着後残液中に残った白金を有効に分離除去できるか否かは不明であるといえる。   In the method disclosed in Patent Document 3 proposed by the present applicant, sodium hydrogen sulfite, which is a reducing agent, is added to the residual liquid after adsorption, thereby reducing palladium remaining in the residual liquid after adsorption and effective. It is separated and removed. However, Patent Document 3 does not disclose the separation and removal of platinum among the platinum group elements. When the platinum group element is adsorbed to the extraction residual liquid after separating gold using an anion exchange resin, the platinum adsorption rate by the anion exchange resin may be particularly lowered. Moreover, as shown in the examples described later, ascorbic acid added to the residual liquid after adsorption by the method according to the present embodiment reduces platinum more effectively than palladium contained in the residual liquid after adsorption. be able to. In other words, when only sodium hydrogen sulfite disclosed in Patent Document 3 is added, it can be said that it is unclear whether or not platinum remaining in the residual liquid after adsorption can be effectively separated and removed.

以下、本発明の実施例を示してより具体的について説明するが、本発明は以下の実施例に何ら限定されるものではない。   Examples of the present invention will be described below in more detail. However, the present invention is not limited to the following examples.

(吸着後残液について)
銅電解精製で生成した銅電解スライムに水を加え、スラリー濃度が200g/Lとなるように調整した。このスラリーに、ボンベから塩素ガスを吹き込むことによって浸出処理を施し、下記表1に示す組成の浸出液を得た。そして、得られた浸出液1.5リットルに対し、有機抽出剤として1.5リットルのビス(2−ブトキシエチル)エーテルを混合し、5分間振盪した後静置して、浸出液中に含まれる金を有機相中に抽出して分離した。
(Residual liquid after adsorption)
Water was added to the copper electrolytic slime produced | generated by copper electrolytic refining, and it adjusted so that a slurry density | concentration might be 200 g / L. The slurry was subjected to a leaching treatment by blowing chlorine gas from a cylinder to obtain a leachate having the composition shown in Table 1 below. Then, 1.5 liters of the obtained leachate is mixed with 1.5 liters of bis (2-butoxyethyl) ether as an organic extractant, shaken for 5 minutes and allowed to stand, and the gold contained in the leachate Was extracted into the organic phase and separated.

続いて、金を分離した後の抽出残液を、ポリアミン型陰イオン交換樹脂(ピュロライト社製、商品名:A830W型)100mlを充填したガラス製カラムに、流量がSV=2(200ml/hr)、液量がBV=15(1500ml)となる条件で通液し、抽出残液中に含まれている白金族元素を吸着させた。樹脂通過後の吸着後残液をひとつにまとめ、ICP分析装置を用いて分析した(但し、Cu、As、Sb、Biは除く)。下記表1に、得られた吸着後残液の組成を示す。   Subsequently, the extraction residual liquid after separating the gold was applied to a glass column packed with 100 ml of a polyamine type anion exchange resin (manufactured by Purolite, trade name: A830W type), and the flow rate was SV = 2 (200 ml / hr). The liquid was passed under the condition of BV = 15 (1500 ml) to adsorb the platinum group element contained in the extraction residual liquid. The post-adsorption residual liquid after passing through the resin was put together and analyzed using an ICP analyzer (however, Cu, As, Sb, and Bi were excluded). Table 1 below shows the composition of the obtained post-adsorption residual liquid.

Figure 2019131415
Figure 2019131415

なお、吸着後残液の酸濃度(塩化物イオン濃度)は、2.5mol/Lであった。   In addition, the acid concentration (chloride ion concentration) of the residual liquid after adsorption was 2.5 mol / L.

(還元剤の種類について)
以下の実施例等で使用した還元剤は、以下のとおりである。
還元剤1:アスコルビン酸ナトリウム(濃度35重量%溶液)
(About the types of reducing agents)
The reducing agents used in the following examples and the like are as follows.
Reducing agent 1: sodium ascorbate (35% strength by weight solution)

[実施例1]
1.5リットルの吸着後残液を容量3リットルの耐熱ガラス製ビーカーに入れ、加温して温度を50℃に調整し、スリーワンモーターで撹拌しながらアスコルビン酸溶液(NaH(CO(COO)換算で濃度35重量%)を添加した。添加量は、吸着後残液中に含まれる白金(Pt)とパラジウム(Pd)の合計(Pt+Pd)モル数に対する還元剤の理想的な必要量を1等量とし、10等量(10倍量)、30等量(30倍量)、100等量(100倍量)とした。
[Example 1]
The 1.5 liter after-adsorption residual liquid was put into a heat-resistant glass beaker with a capacity of 3 liters, heated to adjust the temperature to 50 ° C., and stirred with a three-one motor, while ascorbic acid solution (NaH 2 (C 3 H 5 O (COO) 3 was added in an amount of 35% by weight.The amount of addition was ideal for the reducing agent with respect to the total number of platinum (Pt) and palladium (Pd) contained in the residual liquid after adsorption (Pt + Pd). The required amount was 1 equivalent, 10 equivalents (10 times the amount), 30 equivalents (30 times the amount), and 100 equivalents (100 times the amount).

各添加量でアスコルビン酸を添加した後(白金還元分離工程後)、固液分離して得られた濾液(還元後液)中に含まれる白金及びパラジウムの濃度を、ICP分析装置を用いて分析した。下記表2に、濾液中に含まれるセレン濃度に対する白金、パラジウムのそれぞれの濃度比(ppm)を示し、それらを還元により回収するセレン中の白金品位、パラジウム品位とみなした。   After adding ascorbic acid at each addition amount (after the platinum reduction separation step), analyze the concentration of platinum and palladium contained in the filtrate (post-reduction solution) obtained by solid-liquid separation using an ICP analyzer did. Table 2 below shows the concentration ratio (ppm) of platinum and palladium with respect to the concentration of selenium contained in the filtrate, and these were regarded as platinum quality and palladium quality in selenium recovered by reduction.

Figure 2019131415
Figure 2019131415

表2に示されるように、セレン中の白金(Pt)は、アスコルビン酸を添加して還元することで、有効に低減させることができた。特に、アスコルビン酸溶液を、吸着後液残液中の(Pt+Pd)モル量の30倍の添加量で添加して還元することで、無処理の場合と比べて10分の1以下にまで低減させることができた。   As shown in Table 2, platinum (Pt) in selenium could be effectively reduced by adding and reducing ascorbic acid. In particular, the ascorbic acid solution is reduced to 1/10 or less compared to the case of no treatment by adding and reducing the ascorbic acid solution at an addition amount 30 times the (Pt + Pd) molar amount in the residual liquid after adsorption. I was able to.

しかも、表2に示す白金とパラジウムとの結果から、吸着後残液にアスコルビン酸を添加することで、その吸着後液残液に含まれるパラジウムよりも白金に対する効果が高く、より選択的に分離除去できることが分かった。   Moreover, from the results of platinum and palladium shown in Table 2, by adding ascorbic acid to the residual liquid after adsorption, the effect on platinum is higher than palladium contained in the residual liquid after the adsorption, and it is more selectively separated. It turns out that it can be removed.

以上の結果から、金を分離した後の抽出残液に対して陰イオン交換樹脂を用いて白金族元素を吸着させたとき、その陰イオン交換樹脂による、特に白金の吸着率が低下した場合であっても、吸着後残液にアスコルビン酸を添加することで、その白金を有効に還元させて分離除去することができ、白金の品位が低い高純度のセレンを回収できることが分かった。また、アスコルビン酸の添加量を特定の範囲とすることで、より効果的に白金を分離除去できることが分かった。   From the above results, when platinum group elements were adsorbed to the extraction residue after separation of gold using an anion exchange resin, the platinum adsorption rate by the anion exchange resin was reduced. Even so, it was found that by adding ascorbic acid to the residual liquid after adsorption, the platinum can be effectively reduced and separated and removed, and high-purity selenium with low platinum quality can be recovered. Moreover, it turned out that platinum can be more effectively separated and removed by making the addition amount of ascorbic acid into a specific range.

Claims (2)

銅電解スライムのスラリーを塩素浸出し、その浸出液に有機溶媒を接触させて金を抽出し、抽出残液を陰イオン交換樹脂と接触させて白金族元素を吸着させた後、吸着後残液に二酸化硫黄を吹き込んでセレンを還元して回収する方法において、
前記吸着後残液に二酸化硫黄を吹き込む前にアスコルビン酸を添加し、
生成した白金を含む沈殿物を濾過して分離した後、得られた濾液に二酸化硫黄を吹き込むことによってセレンを回収する
銅電解スライムからのセレンの回収方法。
The copper electrolysis slime slurry is leached with chlorine, and the leachate is contacted with an organic solvent to extract gold. The extracted residual liquid is contacted with an anion exchange resin to adsorb platinum group elements, and then the residual liquid after adsorption. In the method of reducing and recovering selenium by blowing in sulfur dioxide,
Add ascorbic acid before blowing sulfur dioxide into the residual liquid after adsorption,
A method for recovering selenium from copper electrolytic slime, in which selenium is recovered by blowing the sulfur dioxide into the obtained filtrate after separating the precipitate containing platinum produced by filtration.
前記アスコルビン酸の添加量を、前記吸着後残液中のパラジウム及び白金(Pd+Pt)のモル量の10倍量〜100倍量とする
請求項1に記載の銅電解スライムからのセレンの回収方法。
The method for recovering selenium from copper electrolytic slime according to claim 1, wherein the amount of ascorbic acid added is 10 to 100 times the molar amount of palladium and platinum (Pd + Pt) in the residual liquid after adsorption.
JP2018012364A 2018-01-29 2018-01-29 How to recover selenium from copper electrolytic slime Active JP6933151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018012364A JP6933151B2 (en) 2018-01-29 2018-01-29 How to recover selenium from copper electrolytic slime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012364A JP6933151B2 (en) 2018-01-29 2018-01-29 How to recover selenium from copper electrolytic slime

Publications (2)

Publication Number Publication Date
JP2019131415A true JP2019131415A (en) 2019-08-08
JP6933151B2 JP6933151B2 (en) 2021-09-08

Family

ID=67547154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012364A Active JP6933151B2 (en) 2018-01-29 2018-01-29 How to recover selenium from copper electrolytic slime

Country Status (1)

Country Link
JP (1) JP6933151B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311182B1 (en) 2022-02-10 2023-07-19 株式会社ガルデリア Precious metal recovery agent and method for recovering precious metal

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102596A (en) * 1973-02-05 1974-09-27
JPS55164042A (en) * 1979-06-08 1980-12-20 Agency Of Ind Science & Technol Method of separating and recovering platinum from platinum plating waste liquid
JPH01225707A (en) * 1988-03-03 1989-09-08 Tanaka Kikinzoku Kogyo Kk Production of fine palladium particles
JP2001207223A (en) * 2000-01-25 2001-07-31 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from copper electrolytic slime
JP2001316735A (en) * 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd Method for treating anode slime
JP2007270250A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Method for recovering platinum from waste solution containing selenium using hydrazine
JP2011026665A (en) * 2009-07-27 2011-02-10 National Institute For Materials Science Metal nanoparticle having dendritic portion and method for producing the same
JP2011241119A (en) * 2010-05-19 2011-12-01 Hokkaido Univ Three-dimensional dendrite structure noble metal nanoparticle and method for producing the same
JP2012126611A (en) * 2010-12-16 2012-07-05 Sumitomo Metal Mining Co Ltd Method for recovering selenium from copper electrolysis slime
JP2014173189A (en) * 2013-03-05 2014-09-22 Heraeus Precious Metals Gmbh & Co Kg Method for producing highly pure platinum powder, as well as platinum powder obtained by the method, and use of the powder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102596A (en) * 1973-02-05 1974-09-27
JPS55164042A (en) * 1979-06-08 1980-12-20 Agency Of Ind Science & Technol Method of separating and recovering platinum from platinum plating waste liquid
JPH01225707A (en) * 1988-03-03 1989-09-08 Tanaka Kikinzoku Kogyo Kk Production of fine palladium particles
JP2001207223A (en) * 2000-01-25 2001-07-31 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from copper electrolytic slime
JP2001316735A (en) * 2000-03-03 2001-11-16 Nippon Mining & Metals Co Ltd Method for treating anode slime
JP2007270250A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk Method for recovering platinum from waste solution containing selenium using hydrazine
JP2011026665A (en) * 2009-07-27 2011-02-10 National Institute For Materials Science Metal nanoparticle having dendritic portion and method for producing the same
JP2011241119A (en) * 2010-05-19 2011-12-01 Hokkaido Univ Three-dimensional dendrite structure noble metal nanoparticle and method for producing the same
JP2012126611A (en) * 2010-12-16 2012-07-05 Sumitomo Metal Mining Co Ltd Method for recovering selenium from copper electrolysis slime
JP2014173189A (en) * 2013-03-05 2014-09-22 Heraeus Precious Metals Gmbh & Co Kg Method for producing highly pure platinum powder, as well as platinum powder obtained by the method, and use of the powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311182B1 (en) 2022-02-10 2023-07-19 株式会社ガルデリア Precious metal recovery agent and method for recovering precious metal
WO2023153291A1 (en) * 2022-02-10 2023-08-17 株式会社ガルデリア Noble metal recovery agent and noble metal recovery method

Also Published As

Publication number Publication date
JP6933151B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP5454461B2 (en) Method for recovering selenium from copper electrolytic slime
JP4144311B2 (en) Methods for separating and recovering platinum group elements
JP4715627B2 (en) Method for recovering platinum group element from ion exchange resin adsorbed platinum group element
KR100956050B1 (en) Method for separating platinum group element
KR101853255B1 (en) Process for purifying zinc oxide
JP5467133B2 (en) Gold collection method
CN106048233B (en) A kind of silver-colored leaching method
JP5667111B2 (en) Method for recovering gold in dilute gold solution
JP2012246198A (en) Method for purifying selenium by wet process
JP6933151B2 (en) How to recover selenium from copper electrolytic slime
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP2000239753A (en) Method for separating and purifying tellurium
JP3975901B2 (en) Iridium separation and purification method
AU2015368938A1 (en) Method for recovering gold from activated carbon
JP2012246197A (en) Method for purifying selenium by wet process
JP7183748B2 (en) Method for recovering selenium from copper electrolytic slime
JP7400443B2 (en) Mutual separation method of platinum group elements
JP7006332B2 (en) How to make gold powder
JP4124071B2 (en) Purification method of nickel chloride aqueous solution
JP4821486B2 (en) Method for purifying platinum raw materials containing tin
JP2011208248A (en) Method for separating platinum group element
JP2011208249A (en) Method for separating platinum group element
JP6229847B2 (en) Method for recovering platinum group elements
JP5835579B2 (en) Method for treating aqueous bromic acid solution containing platinum group elements
PL228374B1 (en) Method for separation of platinum, gold and palladium from aqueous solutions containing chloride ions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6933151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150