JP2019120389A - Fluid dynamic pressure bearing device and motor including the same - Google Patents

Fluid dynamic pressure bearing device and motor including the same Download PDF

Info

Publication number
JP2019120389A
JP2019120389A JP2018002522A JP2018002522A JP2019120389A JP 2019120389 A JP2019120389 A JP 2019120389A JP 2018002522 A JP2018002522 A JP 2018002522A JP 2018002522 A JP2018002522 A JP 2018002522A JP 2019120389 A JP2019120389 A JP 2019120389A
Authority
JP
Japan
Prior art keywords
bearing
housing
bearing sleeve
fluid dynamic
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018002522A
Other languages
Japanese (ja)
Inventor
慎治 小松原
Shinji Komatsubara
慎治 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018002522A priority Critical patent/JP2019120389A/en
Priority to PCT/JP2019/000242 priority patent/WO2019139007A1/en
Publication of JP2019120389A publication Critical patent/JP2019120389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings

Abstract

To provide a fluid dynamic pressure bearing device which can maintain desired bearing rigidity while achieving reduction of an axial dimension of the entire device and can be assembled at low costs.SOLUTION: A fluid dynamic pressure bearing device 1 according to the invention includes: a housing 7 having a shape of a cylinder with a closed bottom; a bearing sleeve 8 disposed at an inner periphery of the housing 7; and a shaft member 2 having a shaft part 2a inserted into an inner periphery of the bearing sleeve 8 in a removable manner. One part of an internal space of the housing 7 is filled with lubrication oil L and the other part forms a cavity part which is not filled with the lubrication oil L. One axial end surface 8c of the bearing sleeve 8 located at the opening side of the housing 7 opens to atmospheric air. An inclined surface part 11 forming an oil buffer space 12 with an outer peripheral surface 2a1 of the shaft part 2a is provided between an inner peripheral surface 8a of the bearing sleeve 8 and the one axial end surface 8c.SELECTED DRAWING: Figure 4

Description

本発明は、流体動圧軸受装置及びこれを備えたモータに関する。   The present invention relates to a fluid dynamic bearing device and a motor provided with the same.

周知のように、流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有する。このため、流体動圧軸受装置は、情報機器をはじめとする種々の電気機器に搭載されるモータ用の軸受装置として、具体的には、PC等に組み込まれるファンモータ用、あるいはレーザビームプリンタ(LBP)に組み込まれるポリゴンスキャナモータ用の軸受装置などとして好適に使用されている。   As well known, a fluid dynamic bearing device has features such as high speed rotation, high rotation accuracy and low noise. For this reason, the fluid dynamic pressure bearing device is a bearing device for a motor mounted on various electric devices including an information device, specifically, for a fan motor incorporated in a PC or the like, or a laser beam printer ( It is suitably used as a bearing device for a polygon scanner motor incorporated in LBP).

流体動圧軸受装置の一例が下記の特許文献1に記載されている。この流体動圧軸受装置は、有底筒状(筒状部とその軸方向一端を閉塞する底部とを一体に有する形状)のハウジングと、ハウジングの内周に配設された軸受スリーブと、軸受スリーブの内周に挿入された軸部材と、ラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材の一端を支持するスラスト軸受部と、ハウジングの開口部内周に固定された環状部材(シール部材)とを備える。   An example of a fluid dynamic bearing device is described in Patent Document 1 below. This fluid dynamic pressure bearing device has a bottomed cylindrical (a shape integrally having a cylindrical portion and a bottom portion closing one end in the axial direction) a housing, a bearing sleeve disposed on the inner periphery of the housing, and a bearing A shaft member inserted into the inner periphery of the sleeve, a radial bearing portion supporting the shaft member in the radial direction by an oil film of lubricating oil formed in a radial bearing gap, a thrust bearing portion supporting one end of the shaft member, a housing And an annular member (seal member) fixed to the inner periphery of the opening of

この流体動圧軸受装置は、ハウジングの内部空間全域を潤滑油で満たした、いわゆるフルフィル状態で使用されるものであり、環状部材の内周面と軸部材の外周面との間にシール空間(ラジアル軸受隙間よりも隙間幅の大きい径方向隙間)が設けられる。シール空間は、潤滑油の温度変化に伴う容積変化を吸収するバッファ機能を有し、想定される温度変化の範囲内において潤滑油の油面を常にシール空間内に保持し得るように設計されている。これにより、潤滑油の外部漏洩に起因した軸受性能の低下や周辺環境の汚染を防止可能としている。   This fluid dynamic pressure bearing device is used in a so-called full fill state in which the entire inner space of the housing is filled with lubricating oil, and a seal space (the inner peripheral surface of the annular member and the outer peripheral surface of the shaft member A radial gap) having a larger gap width than the radial bearing gap is provided. The seal space has a buffer function to absorb the volume change caused by the temperature change of the lubricating oil, and is designed to always keep the oil surface of the lubricant within the seal space within the assumed temperature change range. There is. As a result, it is possible to prevent the deterioration of the bearing performance due to the external leakage of the lubricating oil and the contamination of the surrounding environment.

しかしながら、ハウジングの内部空間全域を潤滑油で満たした、いわゆるフルフィル状態の含油構造を採用すると、流体動圧軸受装置の組立て後に、真空含浸等の煩雑な手法を用いてハウジングの内部空間全域を潤滑油で満たし、かつ潤滑油のシール空間における油面位置を精度良く管理する(潤滑油の充填量を微調整する)必要がある。そのため、従来の含油構造では流体動圧軸受装置に対する更なる低コスト化の要請に対応することが難しかった。   However, if a so-called full-filled oil-impregnated structure in which the entire internal space of the housing is filled with lubricating oil is adopted, the entire internal space of the housing is lubricated using a complicated method such as vacuum impregnation after assembly of the fluid dynamic bearing device. It is necessary to fill with oil and precisely manage the oil level position in the sealing space of the lubricating oil (finely adjust the filling amount of the lubricating oil). Therefore, in the conventional oil-containing structure, it has been difficult to meet the demand for further cost reduction for the fluid dynamic bearing device.

そこで、本出願人は、上記課題を解決すべく特許文献2に記載の如き流体動圧軸受装置を提案している。すなわち、この流体動圧軸受装置は、有底筒状のハウジングと、ハウジングの内周に配設された軸受スリーブと、軸受スリーブの内周に挿入された軸部材と、軸受スリーブの上端面と当接した状態でハウジングの内周に固定され、軸部材の外周面との間にシール空間を形成する環状のシール部材と、軸受スリーブの内周面と軸部材の外周面との間のラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材の一端をスラスト方向に支持するスラスト軸受部とを備えたもので、ハウジングの内部空間の一部が潤滑油で満たされ、残部が潤滑油で満たされていない空隙部となっている。   Therefore, the applicant has proposed a fluid dynamic bearing device as described in Patent Document 2 in order to solve the above-mentioned problems. That is, the fluid dynamic bearing includes: a bottomed cylindrical housing; a bearing sleeve disposed on the inner periphery of the housing; a shaft member inserted on the inner periphery of the bearing sleeve; and an upper end surface of the bearing sleeve An annular seal member fixed to the inner periphery of the housing in a contact state and forming a seal space with the outer peripheral surface of the shaft member, and a radial between the inner peripheral surface of the bearing sleeve and the outer peripheral surface of the shaft member A radial bearing portion for supporting the shaft member in the radial direction by an oil film of lubricating oil formed in the bearing gap, and a thrust bearing portion for supporting one end of the shaft member in the thrust direction. The part is filled with lubricating oil, and the remaining part is a void part not filled with lubricating oil.

このようにハウジングの内部空間に、潤滑油で満たされていない空隙部を設けることで、ハウジングの内部空間に充填する潤滑油量が、上記内部空間の全容積よりも少なくなり、上記内部空間に潤滑油で満たされていない領域が設けられる。よって、ハウジングの内周に軸受スリーブ及び環状部材を固定した後であって、軸受スリーブ内周への軸部材の挿入前に、適当な給油具(例えばマイクロピペット)を用いて内部空間に潤滑油を注入するだけで、内部空間に必要量の潤滑油を供給することができる。従って、注油のための大掛かりな設備や高精密な油面の調整及び管理作業が不要となり、流体動圧軸受装置への注油コスト、ひいては流体動圧軸受装置の組立てコストを低廉化することができる。   Thus, by providing the void portion not filled with lubricating oil in the internal space of the housing, the amount of lubricating oil filled in the internal space of the housing becomes smaller than the total volume of the internal space, and An area not filled with lubricating oil is provided. Therefore, after fixing the bearing sleeve and the annular member to the inner periphery of the housing, and before inserting the shaft member into the inner periphery of the bearing sleeve, lubricating oil in the inner space using a suitable filler (eg, micropipette) The necessary amount of lubricating oil can be supplied to the internal space simply by Therefore, it is possible to eliminate the need for extensive equipment for lubricating and highly precise adjustment and management of the oil level, and to reduce the cost of lubricating the fluid dynamic bearing device, and hence the cost of assembling the fluid dynamic bearing device. .

特開2003−307212号公報JP 2003-307212 特開2014−59014号公報JP, 2014-59014, A

ところで、最近では、上述した各種モータ(例えば冷却用のファンモータなど)の薄型化が進んでおり、従来サイズのファンモータと同等の冷却性能を維持するため、インペラのサイズが大きくなっている。このため、軸受に作用する負荷は増す傾向にある。モータの薄型化に伴い、流体動圧軸受装置内の軸受の軸方向寸法を短くすると、軸受剛性が低下し、上述のように増加傾向にある軸受への負荷を許容することは難しい。   By the way, recently, thickness reduction of various motors (for example, fan motor for cooling etc.) mentioned above is progressing, and in order to maintain cooling performance equivalent to the fan motor of conventional size, the size of the impeller is large. For this reason, the load acting on the bearings tends to increase. If the axial dimension of the bearing in the fluid dynamic pressure bearing device is shortened along with the thinning of the motor, the bearing rigidity is reduced, and it is difficult to allow the load on the bearing which tends to increase as described above.

以上の実情に鑑み、本発明では、装置全体の軸方向寸法を短くしつつも、所要の軸受剛性を維持することができ、かつ低コストに組立て可能な流体動圧軸受装置を提供することを、解決すべき技術課題とする。   In view of the above-described circumstances, the present invention provides a fluid dynamic bearing device capable of maintaining a required bearing rigidity while reducing the axial dimension of the entire device, and capable of being assembled at low cost. , And technical issues to be solved.

前記課題の解決は、本発明に係る流体動圧軸受装置によって達成される。すなわち、この軸受装置は、軸方向一端が閉塞されると共に軸方向他端が開口している有底筒状のハウジングと、ハウジングの内周に配設された軸受スリーブと、挿脱可能に軸受スリーブの内周に挿入された軸部を有する軸部材と、軸受スリーブの内周面と軸部材の外周面との間のラジアル軸受隙間に形成される潤滑油の油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材の一端をスラスト方向に支持するスラスト軸受部とを備えた流体動圧軸受装置において、ハウジングの内部空間の一部が潤滑油で満たされており、残部が潤滑油で満たされていない空隙部であって、ハウジングの開口側となる軸受スリーブの軸方向一端面は大気に開放されており、軸受スリーブの内周面と軸方向一端面との間に、軸部の外周面との間にオイルバッファ空間を形成する傾斜面部が設けられている点をもって特徴付けられる。なお、ここでいう「スラスト軸受部」は、例えば軸部材の一端をスラスト方向に接触支持するピボット軸受部であってもよい。   The solution to the above problems is achieved by the fluid dynamic bearing device according to the present invention. That is, this bearing device has a bottomed cylindrical housing closed at one end in the axial direction and open at the other end in the axial direction, a bearing sleeve disposed on the inner periphery of the housing, and a bearing that can be inserted and removed. The shaft member is radially oriented by an oil film of lubricating oil formed in a radial bearing gap between an inner peripheral surface of the bearing sleeve and an outer peripheral surface of the shaft member, and a shaft member having a shaft portion inserted into the inner periphery of the sleeve In a fluid dynamic bearing device comprising a radial bearing portion to support and a thrust bearing portion to support one end of a shaft member in a thrust direction, a part of the internal space of the housing is filled with lubricating oil and the remaining part is lubricated An axial end surface of the bearing sleeve which is an oil-free gap and is an opening side of the housing is open to the atmosphere, and an axial portion is formed between the inner peripheral surface of the bearing sleeve and the axial end surface. Between the outer surface of the Inclined surface is characterized with a point that is provided for forming a-buffered space. The “thrust bearing portion” referred to here may be, for example, a pivot bearing portion which contacts and supports one end of the shaft member in the thrust direction.

このように、本発明に係る流体動圧軸受装置では、ハウジングの内部空間の一部を潤滑油で満たした、いわゆるパーシャルフィルの形態をなす含油構造を採用しながら、ハウジングの開口側となる軸受スリーブの軸方向一端面を大気に開放した状態とし、かつ軸受スリーブの内周面と軸方向一端面との間に、軸部の外周面との間にオイルバッファ空間を形成する傾斜面部を設けた。これにより、従来のパーシャルフィルの形態をなす含油構造を有する流体動圧軸受装置では必須であったシール部材を廃止できるので、軸受スリーブの軸方向寸法を変えることなく流体動圧軸受装置全体の軸方向寸法を短くすることができる。また、パーシャルフィルの含油構造を採用する場合、フルフィルの形態をなす含油構造を採用する場合と比べて、それほど大きなオイルバッファ容積を必要とせずに済む。よって、軸受スリーブの軸方向一端側の一部を傾斜面部としてオイルバッファ空間の形成に利用するだけで、十分な容積のオイルバッファ空間を得ることができる。以上より、本発明によれば、効果的に潤滑油の漏れ出しを防止することのできる流体動圧軸受装置を低コストに組み立てることが可能となる。また、モータの薄型化並びに高負荷容量化に対応することが可能となる。   As described above, in the fluid dynamic bearing device according to the present invention, the bearing on the opening side of the housing is adopted while adopting an oil-impregnated structure in the form of a so-called partial fill in which a part of the internal space of the housing is filled with lubricating oil. An inclined surface portion is formed between the inner peripheral surface of the bearing sleeve and the axial end surface to form an oil buffer space between the inner peripheral surface of the bearing sleeve and the axial end surface, with one end surface in the axial direction of the sleeve being open to the atmosphere. The As a result, since the seal member which is essential in the fluid dynamic bearing having the oil-impregnated structure in the form of the conventional partial fill can be eliminated, the entire shaft of the fluid dynamic bearing can be obtained without changing the axial dimension of the bearing sleeve. Directional dimensions can be shortened. In addition, when using the oil filling structure of the partial fill, it is not necessary to require a large oil buffer volume as compared with the case of using the oil filling structure in the form of the full fill. Therefore, the oil buffer space of sufficient volume can be obtained only by utilizing a part of axial direction one end side of a bearing sleeve as formation of an oil buffer space as a slope part. As described above, according to the present invention, it is possible to assemble at low cost a fluid dynamic bearing device capable of effectively preventing the leakage of lubricating oil. In addition, it becomes possible to cope with thinning of the motor and high load capacity.

また、本発明に係る流体動圧軸受装置においては、傾斜面部は、軸受スリーブの内周面と連続する面取り部と、面取り部と連続し、面取り部よりも軸受スリーブの中心軸に対する傾斜角が大きな大傾斜面とからなるものであってもよい。   Further, in the fluid dynamic bearing device according to the present invention, the inclined surface portion is continuous with the chamfered portion continuous with the inner peripheral surface of the bearing sleeve and the chamfered portion, and the inclination angle with respect to the central axis of the bearing sleeve is smaller than the chamfered portion. It may consist of a large, large inclined surface.

例えば傾斜面部を、十分なオイルバッファが可能となる程度に大きな傾斜角を有する傾斜面のみで構成した場合には、軸部を軸受スリーブの内周に挿入する際、軸部の挿入がスムーズに行えない可能性がある。軸部のスムーズな挿入を目的として、傾斜面の傾斜角を小さくすると、オイルバッファ空間が小さくなる問題が生じる。そこで、上述のように、傾斜面部を、面取り部と、面取り部よりも傾斜角が大きな大傾斜面とで構成することにより、軸部のスムーズな挿入を可能としつつも、十分な容積のオイルバッファ空間を軸部の外周面との間に形成することが可能となる。   For example, in the case where the inclined surface portion is constituted only by the inclined surface having a large inclination angle to allow sufficient oil buffer, the insertion of the shaft portion is smooth when the shaft portion is inserted into the inner periphery of the bearing sleeve. There is a possibility that can not be done. If the inclination angle of the inclined surface is reduced for the purpose of smooth insertion of the shaft, there arises a problem that the oil buffer space is reduced. Therefore, as described above, by forming the inclined surface portion with the chamfered portion and the large inclined surface having a larger inclination angle than the chamfered portion, it is possible to smoothly insert the shaft portion, but with a sufficient volume of oil. It is possible to form the buffer space with the outer peripheral surface of the shaft portion.

また、この場合、大傾斜面の中心軸に対する傾斜角は、45°より大きくかつ90°より小さくてもよい。   In this case, the inclination angle with respect to the central axis of the large inclined surface may be larger than 45 ° and smaller than 90 °.

このように大傾斜面の傾斜角を所定の範囲内に設定することで、上述した作用効果(軸部のスムーズな挿入を可能としつつ、十分な容積のオイルバッファ空間を形成することが可能となる)を効果的に享受することができる。   By thus setting the inclination angle of the large inclined surface within a predetermined range, it is possible to form the oil buffer space having a sufficient volume while enabling the smooth insertion of the shaft portion described above. ) Can be enjoyed effectively.

また、本発明に係る流体動圧軸受装置においては、軸受スリーブは、軸方向一端面と外周面との間に、軸方向一端面よりも軸受スリーブの軸方向中央側に後退した後退面部を有し、後退面部を押さえ部材で軸方向に押さえることで、軸受スリーブを押さえ部材とハウジングとで挟持してもよい。   Further, in the fluid dynamic bearing device according to the present invention, the bearing sleeve has a receding surface portion between the axial one end surface and the outer peripheral surface, which is receded to the axial center side of the bearing sleeve than the axial one end surface. The bearing sleeve may be held between the pressing member and the housing by pressing the receding surface portion in the axial direction by the pressing member.

このように軸受スリーブを押さえ部材で軸方向に押さえて、当該軸受スリーブを押さえ部材とハウジングとで挟持された状態とすることで、押さえ部材をハウジングに固定するのと同時に、軸受スリーブをハウジングに固定することができる。よって、部材同士の組付け(特に軸受スリーブとハウジングとの組付け)に要する手間を軽減することができる。また、軸受スリーブに、軸方向一端面より軸受スリーブの軸方向中央側に後退した後退面部を設けて、この後退面部を押さえ部材で押すことで軸受スリーブを挟持するようにしたので、押さえ部材の軸方向の一部又は全部を上端面よりも軸受スリーブの軸方向中央側に収めることができる。よって、押さえ部材を用いつつも流体動圧軸受装置の軸方向寸法をできる限り短くすることができる。   Thus, by holding the bearing sleeve in the axial direction by the pressing member and holding the bearing sleeve between the pressing member and the housing, the bearing sleeve is fixed to the housing at the same time as fixing the pressing member to the housing. It can be fixed. Therefore, the effort required for the assembly of members (especially the assembly of a bearing sleeve and a housing) can be reduced. Further, the bearing sleeve is provided with a receding surface portion receding to the axial center side of the bearing sleeve from one end surface in the axial direction, and the bearing surface is held by pressing the receding surface portion by the pressing member. A part or all of the axial direction can be accommodated on the axial center side of the bearing sleeve rather than the upper end surface. Therefore, the axial dimension of the fluid dynamic bearing can be shortened as much as possible while using the pressing member.

また、この場合、押さえ部材は、その外周面をハウジングの内周面に圧入することでハウジングに固定されていてもよい。   In this case, the pressing member may be fixed to the housing by press-fitting the outer peripheral surface thereof into the inner peripheral surface of the housing.

このように押さえ部材の外周面をハウジングの内周面に圧入することで、押さえ部材をハウジングに固定すれば、押さえ部材の圧入動作と同時に、押さえ部材による軸受スリーブ(の後退面部)の軸方向中央側への押込みを行うことができる。よって、最小限の作業で押さえ部材と軸受スリーブ、及びハウジングを相互に固定することが可能となる。   As described above, when the pressing member is fixed to the housing by press-fitting the outer peripheral surface of the pressing member to the inner circumferential surface of the housing, the axial direction of (the retreating surface portion of) the bearing sleeve by the pressing member The center can be pushed in. Thus, the pressing member, the bearing sleeve and the housing can be fixed to each other with a minimum of work.

また、本発明に係る流体動圧軸受装置においては、軸受スリーブが、内部空孔に潤滑油を含浸させた多孔質体からなるものであってもよい。   Further, in the fluid dynamic bearing device according to the present invention, the bearing sleeve may be made of a porous body in which the inner holes are impregnated with the lubricating oil.

このように軸受スリーブを多孔質体で形成し、その内部空孔に潤滑油を含浸させた構造とすれば、軸受スリーブの表面開孔からの潤滑油の滲み出しにより、ラジアル軸受隙間及びスラスト軸受部の周辺を潤沢な潤滑油で満たすことができる。よって、ラジアル軸受部及びスラスト軸受部の軸受性能を安定的に維持することが可能となる。また、予め潤滑油を含浸させた状態の軸受スリーブをハウジングに固定できれば、その分ハウジングの内部空間に注入する潤滑油の量を少なくできる。よって、ハウジング内部への注油作業をより簡便に行うことが可能となる。   As described above, when the bearing sleeve is formed of a porous body and the internal pores thereof are impregnated with the lubricating oil, the radial bearing clearance and the thrust bearing are generated due to the bleeding of the lubricating oil from the surface opening of the bearing sleeve. The area around the department can be filled with ample lubricating oil. Therefore, the bearing performance of the radial bearing portion and the thrust bearing portion can be stably maintained. In addition, if the bearing sleeve impregnated with lubricating oil can be fixed to the housing in advance, the amount of lubricating oil injected into the internal space of the housing can be reduced accordingly. Therefore, it becomes possible to perform the oiling operation to the inside of a housing more simply.

また、本発明に係る流体動圧軸受装置においては、潤滑油が、エステル系もしくはPAO系もしくはフッ素系潤滑油であってもよい。   Further, in the fluid dynamic bearing device according to the present invention, the lubricating oil may be an ester type, a PAO type or a fluorine type lubricating oil.

このように、エステル系もしくはPAO系もしくはフッ素系の潤滑油を使用することで、流体動圧軸受装置1の使用時や輸送時における温度変化等に強い含油構造を得ることができる。   As described above, by using an ester-based, PAO-based or fluorine-based lubricating oil, it is possible to obtain an oil-impregnated structure that is resistant to temperature changes and the like during use and transportation of the fluid dynamic bearing device 1.

以上の説明に係る流体動圧軸受装置は、上述のように、装置全体の軸方向寸法を短くしつつも、所要の軸受剛性を維持することができ、かつ低コストに組立て可能であるから、例えば上記流体動圧軸受装置を備えたモータとして、特に薄肉化が要求されるファンモータなどに好適に提供可能である。   As described above, the fluid dynamic bearing device according to the above description can maintain the required bearing rigidity while reducing the axial dimension of the entire device, and can be assembled at low cost. For example, as a motor provided with the above-mentioned fluid dynamic pressure bearing device, it can be suitably provided especially as a fan motor etc. which are required to be thinned.

以上より、本発明によれば、装置全体の軸方向寸法を短くしつつも、所要の軸受剛性を維持することができ、かつ低コストに組立て可能な流体動圧軸受装置を提供することが可能となる。   As described above, according to the present invention, it is possible to maintain the required bearing rigidity while shortening the axial dimension of the entire device, and provide a fluid dynamic bearing device that can be assembled at low cost. It becomes.

本発明の一実施形態に係るファンモータの断面図である。It is a sectional view of a fan motor concerning one embodiment of the present invention. 図1に示す流体動圧軸受装置の断面図である。It is sectional drawing of the fluid hydrodynamic bearing apparatus shown in FIG. 図2に示す軸受スリーブの断面図である。3 is a cross-sectional view of the bearing sleeve shown in FIG. 図2に示す流体動圧軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of a fluid hydrodynamic bearing apparatus shown in FIG. 図2に示す流体動圧軸受装置の組立て工程を示す図であり、(a)は同工程の初期段階(注油時)を示す図、(b)は同工程の中間段階(軸部材の挿入時)を示す図である。It is a figure which shows the assembly process of the fluid hydrodynamic bearing apparatus shown in FIG. 2, (a) is a figure which shows the initial stage (at the time of oiling) of the process, (b) is the middle stage of the process (when inserting a shaft member) FIG. 図4に示すオイルバッファ空間の作用を概念的に説明するための図で、(a)は潤滑油をオイルバッファ空間で保持している状態を示す要部拡大断面図、(b)は潤滑油の引き込みが生じた際の要部拡大断面図である。FIG. 5 is a view for conceptually explaining the action of the oil buffer space shown in FIG. 4, in which (a) is a main part enlarged sectional view showing a state in which the lubricating oil is held in the oil buffer space, (b) is a lubricating oil It is a principal part expanded sectional view when pull-in of a has occurred.

以下、本発明の一実施形態を図面に基づき説明する。   Hereinafter, an embodiment of the present invention will be described based on the drawings.

図1は、本実施形態に係るファンモータの一構成例を概念的に示したものである。このファンモータは、流体動圧軸受装置1と、流体動圧軸受装置1の回転部となる軸部材2と、軸部材2が取付けられ、かつ図示しない羽根を有するロータ3と、ロータ3に取付けられるロータマグネット4と、ロータマグネット4と半径方向のギャップを介して対向するステータコイル5と、ステータコイル5が取付けられ、ファンモータの静止側を構成する保持部材としてのモータベース6とを備える。流体動圧軸受装置1のハウジング7は、モータベース6の内周に固定され、ロータ3は、流体動圧軸受装置1の軸部材2の一端に固定されている。このように構成されたファンモータにおいて、ステータコイル5に通電すると、ステータコイル5とロータマグネット4との間の電磁力でロータマグネット4が回転し、これに伴って軸部材2、および軸部材2に固定されたロータ3が一体に回転する。   FIG. 1 conceptually shows one configuration example of a fan motor according to the present embodiment. The fan motor includes a fluid dynamic pressure bearing device 1, a shaft member 2 serving as a rotating portion of the fluid dynamic pressure bearing device 1, a rotor 3 to which the shaft member 2 is attached and has blades not shown, and a rotor 3 And a stator coil 5 opposed to the rotor magnet 4 via a radial gap, and a motor base 6 as a holding member to which the stator coil 5 is attached and which constitutes the stationary side of the fan motor. The housing 7 of the fluid dynamic bearing 1 is fixed to the inner periphery of the motor base 6, and the rotor 3 is fixed to one end of the shaft member 2 of the fluid dynamic bearing 1. In the fan motor configured as described above, when the stator coil 5 is energized, the rotor magnet 4 is rotated by the electromagnetic force between the stator coil 5 and the rotor magnet 4, and along with this, the shaft member 2 and the shaft member 2 The rotor 3 fixed to the shaft rotates integrally.

なお、ロータ3が回転すると、ロータ3に設けられた羽根の形態に応じて図1中上向き又は下向きに風が送られる。このため、ロータ3の回転中にはこの送風作用の反力として、流体動圧軸受装置1の軸部材2に図1中下向き又は上向きの推力が作用する。ステータコイル5とロータマグネット4との間には、この推力を打ち消す方向の磁力(斥力)を作用させており、上記推力と磁力の大きさの差により生じたスラスト荷重が流体動圧軸受装置1のスラスト軸受部Tに作用する。上記推力を打ち消す方向の磁力は、例えば、ステータコイル5とロータマグネット4とを軸方向にずらして配置することにより発生させることができる(詳細な図示は省略)。また、ロータ3の回転時には、流体動圧軸受装置1の軸部材2にラジアル荷重が作用する。このラジアル荷重は、流体動圧軸受装置1のラジアル軸受部R1,R2に作用する。   When the rotor 3 rotates, wind is sent upward or downward in FIG. 1 according to the configuration of the blades provided on the rotor 3. For this reason, while the rotor 3 is rotating, a thrust downward or upward in FIG. 1 acts on the shaft member 2 of the fluid dynamic pressure bearing device 1 as a reaction force of the blowing action. Between the stator coil 5 and the rotor magnet 4, a magnetic force (repulsive force) in the direction to cancel this thrust acts, and the thrust load generated by the difference between the thrust and the magnetic force is the fluid dynamic bearing device 1 Acting on the thrust bearing T of the The magnetic force in the direction to cancel the thrust can be generated, for example, by displacing the stator coil 5 and the rotor magnet 4 in the axial direction (detailed illustration is omitted). Further, when the rotor 3 rotates, a radial load acts on the shaft member 2 of the fluid dynamic bearing device 1. The radial load acts on the radial bearings R1, R2 of the fluid dynamic bearing device 1.

図2は、本実施形態に係る流体動圧軸受装置1の断面図である。この流体動圧軸受装置1は、ハウジング7と、ハウジング7の内周に配設された軸受スリーブ8と、軸受スリーブ8の内周に挿入された軸部材2と、軸受スリーブ8を軸方向(ここでは軸受スリーブ8の中心軸Xに沿った方向を指す。以下、同じ。)に押さえてハウジング7とで挟持するための押さえ部材9とを主に備える。ハウジング7の内部空間には所定量の潤滑油L(図2中、密な散点ハッチングで示す)が充填されており、少なくとも、軸部材2をラジアル方向に支持するラジアル軸受部R1,R2のラジアル軸受隙間Gr(図4を参照)と、軸部材2の下端をスラスト方向に支持するスラスト軸受部Tを収容した底隙間Gbとが潤滑油Lで満たされている。なお、以下では、説明の便宜上、ハウジング7が開口している軸方向一方の側を上側、その軸方向反対側を下側とするが、使用時における流体動圧軸受装置1の姿勢を限定するものではない。   FIG. 2 is a cross-sectional view of the fluid dynamic bearing device 1 according to the present embodiment. The fluid dynamic bearing device 1 includes a housing 7, a bearing sleeve 8 disposed on the inner periphery of the housing 7, a shaft member 2 inserted on the inner periphery of the bearing sleeve 8, and the bearing sleeve 8 in the axial direction Here, it mainly includes a pressing member 9 for pressing in a direction along the central axis X of the bearing sleeve 8 (the same applies hereinafter) and holding the same with the housing 7. The inner space of the housing 7 is filled with a predetermined amount of lubricating oil L (indicated by dense hatching in FIG. 2), and at least the radial bearing portions R1 and R2 supporting the shaft member 2 in the radial direction. The radial bearing gap Gr (see FIG. 4) and the bottom gap Gb accommodating the thrust bearing portion T supporting the lower end of the shaft member 2 in the thrust direction are filled with the lubricating oil L. In the following, for convenience of explanation, one side in the axial direction in which the housing 7 is open is referred to as the upper side, and the opposite side in the axial direction is the lower side. However, the posture of the fluid dynamic bearing device 1 in use is limited. It is not a thing.

ハウジング7は、筒状部7aと、筒状部7aの下端側を閉塞する底部7bとを有する形状(いわゆる有底筒状)をなし、本実施形態では、図2に示すように筒状部7aと底部7bが金属で一体に形成されている。筒状部7aと底部7bの境界部内周には、筒状部7a及び底部7bと一体に段部7cが形成され、段部7cの上端面7c1に軸受スリーブ8の下端面8bが当接している。本実施形態では、ハウジング7の底部7bの上端面7b1に、例えば樹脂製のスラストプレート10を配置している。これによりすなわちスラストプレート10の上端面10aが段部7cの上端面7c1よりも所定高さ分だけ低くなるようにしている。この場合、スラストプレート10の上端面10aがスラスト軸受面となる。ただし、このスラストプレート10は必ずしも設ける必要はなく、省略しても構わない。その場合、底部7bの上端面7b1がスラスト軸受面となる。もちろん、このハウジング7は樹脂の射出成形品とすることもできる。   The housing 7 has a shape (a so-called bottomed cylindrical shape) having a cylindrical portion 7a and a bottom portion 7b closing the lower end side of the cylindrical portion 7a, and in the present embodiment, the cylindrical portion as shown in FIG. 7a and the bottom 7b are integrally formed of metal. A stepped portion 7c is formed integrally with the cylindrical portion 7a and the bottom portion 7b on the inner periphery of the boundary portion between the cylindrical portion 7a and the bottom portion 7b, and the lower end surface 8b of the bearing sleeve 8 abuts on the upper end surface 7c1 of the stepped portion 7c. There is. In the present embodiment, on the upper end surface 7b1 of the bottom 7b of the housing 7, for example, the thrust plate 10 made of resin is disposed. Thus, the upper end surface 10a of the thrust plate 10 is made lower than the upper end surface 7c1 of the step 7c by a predetermined height. In this case, the upper end surface 10 a of the thrust plate 10 is a thrust bearing surface. However, the thrust plate 10 is not necessarily provided, and may be omitted. In that case, the upper end surface 7b1 of the bottom 7b is a thrust bearing surface. Of course, the housing 7 can also be an injection-molded product of resin.

軸部材2は、軸受スリーブ8の内周に挿入される軸部2aを有する。この場合、軸部材2のうち少なくとも軸部2aがステンレス鋼などの鋼材をはじめとする高剛性の金属材料で形成される。軸部2aの外周面2a1は平滑な円筒面に形成されると共に、凸球面状の先端部2a2を除いて軸部2aの全長にわたって外径寸法が一定となるように形成されている。軸部材2の外径寸法は、軸受スリーブ8の内径寸法(内周面8aの直径)よりも小径とされる。以上より、軸部材2は、軸受スリーブ8に対して挿脱自在とされる。軸部2aの先端部2a2は、ハウジング7の底部に配設されたスラストプレート10の上端面10aと接触している。   The shaft member 2 has a shaft portion 2 a inserted into the inner periphery of the bearing sleeve 8. In this case, at least the shaft portion 2a of the shaft member 2 is formed of a highly rigid metal material including a steel material such as stainless steel. The outer peripheral surface 2a1 of the shaft portion 2a is formed to be a smooth cylindrical surface, and is formed so that the outer diameter dimension is constant over the entire length of the shaft portion 2a except for the convex spherical tip 2a2. The outer diameter of the shaft member 2 is smaller than the inner diameter of the bearing sleeve 8 (the diameter of the inner circumferential surface 8 a). As described above, the shaft member 2 is insertable into and removable from the bearing sleeve 8. The tip 2 a 2 of the shaft 2 a is in contact with the upper end surface 10 a of the thrust plate 10 disposed at the bottom of the housing 7.

軸受スリーブ8は、多孔質体、ここでは銅系粉末(純銅粉末だけでなく銅合金粉末を含む)と鉄系粉末(純鉄粉末だけでなく鉄合金粉末を含む)の何れか一方又は双方を主成分とする焼結金属の多孔質体で円筒状に形成される。この場合、軸受スリーブ8の内部空孔には、潤滑油Lが含浸されていてもよい。軸受スリーブ8は、焼結金属以外の多孔質体、例えば多孔質樹脂で形成することもでき、あるいは内部空孔のない金属の中実体(銅、ステンレスなど)で形成することもできる。   The bearing sleeve 8 is either a porous body, in this case copper-based powder (including not only pure copper powder but also copper alloy powder) and / or iron-based powder (including not only pure iron powder but also iron alloy powder) It is formed in a cylindrical shape by a porous body of sintered metal which is a main component. In this case, the lubricating oil L may be impregnated in the internal holes of the bearing sleeve 8. The bearing sleeve 8 may be formed of a porous body other than sintered metal, for example, a porous resin, or may be formed of a solid body of metal without internal pores (copper, stainless steel, etc.).

軸受スリーブ8の内周面8aには、対向する軸部2aの外周面2a1との間にラジアル軸受隙間Gr(図4を参照)を形成する円筒状のラジアル軸受面が軸方向の二箇所に設けられる。図3に示すように、各ラジアル軸受面には、ラジアル軸受隙間Gr内の潤滑油Lに動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)A1,A2がそれぞれ形成されている。本実施形態のラジアル動圧発生部A1,A2は、それぞれ、互いに反対方向に傾斜し、かつ軸方向に離間して設けられた複数の上側動圧溝Aa1および下側動圧溝Aa2と、両動圧溝Aa1,Aa2を区画する凸状の丘部とを有し、全体としてヘリングボーン形状をなしている。本実施形態の丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられ、傾斜丘部Abと略同径の環状丘部Acとからなる。   Cylindrical radial bearing surfaces forming radial bearing gaps Gr (see FIG. 4) between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the opposing shaft portion 2a are provided at two axial positions. Provided. As shown in FIG. 3, dynamic pressure generating portions (radial dynamic pressure generating portions) A1 and A2 for generating dynamic pressure action on the lubricating oil L in the radial bearing gap Gr are formed on the respective radial bearing surfaces. ing. The radial dynamic pressure generating portions A1 and A2 of the present embodiment are respectively inclined in opposite directions and axially spaced from each other, and are provided with a plurality of upper dynamic pressure grooves Aa1 and lower dynamic pressure grooves Aa2, It has a convex-shaped hill part which divides dynamic-dynamic-pressure groove Aa1 and Aa2, and has a herringbone shape as a whole. The hill portion of the present embodiment is an annular portion provided between the inclined hill portion Ab provided between adjacent dynamic pressure grooves in the circumferential direction and the upper and lower dynamic pressure grooves Aa1 and Aa2 and having substantially the same diameter as the inclined hill portion Ab. It consists of hill part Ac.

上側のラジアル動圧発生部A1においては、上側の動圧溝Aa1の軸方向寸法が下側の動圧溝Aa2の軸方向寸法よりも大きくなっている。一方、下側のラジアル動圧発生部A2においては、下側の動圧溝Aa2の軸方向寸法が上側の動圧溝Aa1の軸方向寸法よりも大きくなっている。さらに、ラジアル動圧発生部A1を構成する上側の動圧溝Aa1の軸方向寸法は、ラジアル動圧発生部A2を構成する下側の動圧溝Aa2の軸方向寸法と等しく、また、ラジアル動圧発生部A1を構成する下側の動圧溝Aa2の軸方向寸法は、ラジアル動圧発生部A2を構成する上側の動圧溝Aa1の軸方向寸法と等しくなっている。従って、軸部材2の回転時、上側(ラジアル軸受部R1)および下側(ラジアル軸受部R2)のラジアル軸受隙間Gr内の潤滑油Lは、それぞれ、下側(ラジアル軸受部R2)および上側(ラジアル軸受部R1)のラジアル軸受隙間に向けて押し込まれる。   In the upper radial dynamic pressure generating portion A1, the axial dimension of the upper dynamic pressure groove Aa1 is larger than the axial dimension of the lower dynamic pressure groove Aa2. On the other hand, in the lower radial dynamic pressure generating portion A2, the axial dimension of the lower dynamic pressure groove Aa2 is larger than the axial dimension of the upper dynamic pressure groove Aa1. Further, the axial dimension of the upper dynamic pressure groove Aa1 constituting the radial dynamic pressure generating portion A1 is equal to the axial dimension of the lower dynamic pressure groove Aa2 constituting the radial dynamic pressure generating portion A2, and The axial dimension of the lower dynamic pressure groove Aa2 constituting the pressure generating portion A1 is equal to the axial dimension of the upper dynamic pressure groove Aa1 constituting the radial dynamic pressure generating portion A2. Therefore, when the shaft member 2 rotates, the lubricating oil L in the radial bearing gap Gr on the upper side (radial bearing portion R1) and the lower side (radial bearing portion R2) respectively corresponds to the lower side (radial bearing portion R2) and the upper side (radial bearing portion R2). It is pushed into the radial bearing gap of the radial bearing portion R1).

なお、ラジアル動圧発生部A1,A2は、例えば、軸受スリーブ8を成形するのと同時に(詳細には、金属粉末を圧粉成形した後、焼結してなる焼結体にサイジング加工を施すことで仕上がり寸法の軸受スリーブ8を成形するのと同時に)型成形で形成してもよいし、焼結金属の良好な加工性に鑑み、内周面が平滑面に成形された軸受素材に転造等の塑性加工を施すことで形成してもよい。また、ラジアル動圧発生部A1,A2(各動圧溝)の形態はこれに限定されるものではない。例えば、ラジアル動圧発生部A1,A2の何れか一方又は双方は、スパイラル形状の動圧溝を円周方向に複数配列したものとしてもよい。また、ラジアル動圧発生部A1,A2の何れか一方又は双方は、対向する軸部2aの外周面2a1に形成してもよい。なお、ラジアル動圧軸受部A1,A2は必ずしも軸方向に離間している必要はなく、例えば図示は省略するが、軸方向に隣接して設けられてもよい。   For example, the radial dynamic pressure generating portions A1 and A2 simultaneously perform the forming of the bearing sleeve 8 (more specifically, the sintered body formed by compacting the metal powder and then sintering is subjected to a sizing process Therefore, the bearing sleeve 8 may be formed by molding at the same time as molding the bearing sleeve 8 of finished dimensions, and in view of the good workability of the sintered metal, the inner peripheral surface is rolled to a smooth bearing surface. You may form by giving plastic processing, such as construction. Further, the form of the radial dynamic pressure generating portions A1, A2 (each dynamic pressure groove) is not limited to this. For example, any one or both of the radial dynamic pressure generating portions A1 and A2 may have a plurality of spiral dynamic pressure grooves arranged in the circumferential direction. Further, either or both of the radial dynamic pressure generating portions A1 and A2 may be formed on the outer peripheral surface 2a1 of the opposing shaft portion 2a. The radial dynamic pressure bearing portions A1 and A2 do not necessarily have to be separated in the axial direction. For example, although not shown, they may be provided adjacent to each other in the axial direction.

また、本実施形態では、軸受スリーブ8は、上端面8cの外周側に、上端面8cよりも軸受スリーブ8の中心軸Xの中央側(図3でいえば下端面8bと上端面8cとの軸方向中間位置に近い側)に後退した後退面部8gを有する。この後退面部8gは例えば平坦形状をなし、下端面8b及び上端面8cと平行に形成されている。この場合、上端面8cと後退面部8gとの間に、相対的に外径寸法の小さい第一外周面8d1が設けられると共に、下端面8bと後退面部8gとの間に、相対的に外径寸法の大きい第二外周面8d2が設けられている。なお、この場合、下端面8bと上端面8cはともに、動圧溝等の凹凸のない平坦な形状をなす。ただし、多孔質構造に起因する表面開孔の存在を否定するものではない(特に被覆などの封孔処理を施していなくてもよい)。   Further, in the present embodiment, the bearing sleeve 8 is located on the outer peripheral side of the upper end surface 8c and on the center side of the central axis X of the bearing sleeve 8 than the upper end surface 8c (in FIG. It has a receding surface 8g which is retracted to the side closer to the axial middle position). The receding surface portion 8g has, for example, a flat shape, and is formed parallel to the lower end surface 8b and the upper end surface 8c. In this case, the first outer peripheral surface 8d1 having a relatively small outer diameter is provided between the upper end surface 8c and the receding surface portion 8g, and the outer diameter is relatively provided between the lower end surface 8b and the receding surface portion 8g. A large second outer circumferential surface 8d2 is provided. In this case, both the lower end surface 8 b and the upper end surface 8 c have a flat shape without irregularities such as dynamic pressure grooves. However, this does not deny the existence of surface openings resulting from the porous structure (in particular, the sealing treatment such as coating may not be performed).

また、内周面8aと上端面8cとの間には、図4に示すように、軸部2aの外周面2a1との間にオイルバッファ空間12を形成する傾斜面部11が設けられる。本実施形態では、傾斜面部11は、内周面8aとその上端側で連続する面取り部8eと、面取り部8eとその上端側で連続し、面取り部8eよりも軸受スリーブ8の中心軸Xに対する傾斜角θ2が大きな大傾斜面8fとからなっている。大傾斜面8fは上端面8cと連続している。ここで、面取り部8eの中心軸Xに対する傾斜角θ1は、通常、45°であるが、もちろん、成形条件の調整等により増減させることは可能である。また、大傾斜面8fの中心軸Xに対する傾斜角θ2は、上述した条件を満たす限りにおいて任意であり、例えば45°より大きくかつ90°より小さい範囲に設定され、好ましくは60°以上でかつ80°以下の範囲に設定される。また、この場合、大傾斜面8fの半径方向寸法は、上端面8cの範囲内で任意に設定可能である。   Further, as shown in FIG. 4, an inclined surface portion 11 forming an oil buffer space 12 with the outer peripheral surface 2a1 of the shaft portion 2a is provided between the inner peripheral surface 8a and the upper end surface 8c. In this embodiment, the inclined surface portion 11 is continuous with the inner peripheral surface 8a and the chamfered portion 8e continuous on the upper end side, and the chamfered portion 8e and the upper end side, and the inclined surface portion 11 with respect to the central axis X of the bearing sleeve 8 The inclination angle θ2 is composed of a large large inclined surface 8f. The large inclined surface 8f is continuous with the upper end surface 8c. Here, the inclination angle θ1 of the chamfered portion 8e with respect to the central axis X is usually 45 °, but it is of course possible to increase or decrease it by adjusting the molding conditions or the like. The inclination angle θ2 of the large inclined surface 8f with respect to the central axis X is arbitrary as long as the above conditions are satisfied, and is set, for example, in a range larger than 45 ° and smaller than 90 °. It is set in the range of ° or less. Further, in this case, the radial dimension of the large inclined surface 8 f can be arbitrarily set within the range of the upper end surface 8 c.

上記形状の軸受スリーブ8は、その下端面8bをハウジング7の段部7cの上端面7c1に当接させた状態でハウジング7内に収容されている。これにより、ハウジング7と軸受スリーブ8の軸方向における相対的な位置決めがなされ、かつ軸受スリーブ8の下端面8bとハウジング7の底部に設けたスラストプレート10の上端面10aとの間に所定容積の底隙間Gbが形成される。   The bearing sleeve 8 having the above-mentioned shape is accommodated in the housing 7 in a state where the lower end surface 8 b is in contact with the upper end surface 7 c 1 of the step 7 c of the housing 7. As a result, relative positioning between the housing 7 and the bearing sleeve 8 in the axial direction is achieved, and a predetermined volume of space between the lower end surface 8 b of the bearing sleeve 8 and the upper end surface 10 a of the thrust plate 10 provided at the bottom of the housing 7 is Bottom clearance Gb is formed.

軸受スリーブ8は、圧入(大きな締め代をもたせた圧入)、接着、圧入接着(圧入と接着の併用)等の適宜の手段でハウジング7に固定し得るが、本実施形態では、軸受スリーブ8の半径方向外側に設けた後退面部8gを押さえ部材9で軸方向に押さえることで、軸受スリーブ8を押さえ部材9とハウジング7とで挟持し、これにより軸受スリーブ8をハウジング7に固定している(図2を参照)。この際、押さえ部材9をハウジング7に固定すれば、軸受スリーブ8の外周面(ここでは第二外周面8d2)を直接ハウジング7の内周面7a1に固定しなくてよい(多少の隙間があってもよい)ので、軸受スリーブ8のハウジング7への組付け作業が簡便になる。なお、押さえ部材9のハウジング7への固定手段については任意であり、例えば押さえ部材9の下端面9aが軸受スリーブ8の後退面部8gに当接する位置まで、押さえ部材9の外周面9bをハウジング7の内周面7a1に圧入する手段などを採用することができる。この場合、押さえ部材9の内周面9cと軸受スリーブ8の第一外周面8d1との間には多少の隙間が存在してもよい。   The bearing sleeve 8 can be fixed to the housing 7 by an appropriate means such as press-fitting (press-fitting with a large interference), bonding, press-bonding (combination of press-fitting and bonding), but in the present embodiment The bearing sleeve 8 is held between the pressing member 9 and the housing 7 by axially pressing the receding surface portion 8g provided radially outward with the pressing member 9, thereby fixing the bearing sleeve 8 to the housing 7 (see FIG. See Figure 2). At this time, if the pressing member 9 is fixed to the housing 7, the outer peripheral surface (here, the second outer peripheral surface 8d2) of the bearing sleeve 8 does not have to be fixed directly to the inner peripheral surface 7a1 of the housing 7 Because the bearing sleeve 8 may be assembled, the operation of assembling the bearing sleeve 8 to the housing 7 is simplified. The means for fixing the pressing member 9 to the housing 7 is optional. For example, the outer peripheral surface 9 b of the pressing member 9 is moved to a position where the lower end surface 9 a of the pressing member 9 abuts on the receding surface 8 g of the bearing sleeve 8. The means etc. which press-fit to inner skin 7a1 of 5 are employable. In this case, a slight gap may exist between the inner circumferential surface 9 c of the pressing member 9 and the first outer circumferential surface 8 d 1 of the bearing sleeve 8.

このように、ハウジング7と押さえ部材9とで軸受スリーブ8を挟持することで、軸受スリーブ8をハウジング7に固定する場合、上端面8cは大気に開放されており、また、本実施形態では、押さえ部材9の上端面9dが軸受スリーブ8の上端面8cと同一高さ位置(中心軸X方向で同じ位置)にある。   As described above, when the bearing sleeve 8 is fixed to the housing 7 by holding the bearing sleeve 8 between the housing 7 and the pressing member 9, the upper end surface 8c is open to the atmosphere, and in the present embodiment, The upper end surface 9 d of the pressing member 9 is at the same height position (the same position in the central axis X direction) as the upper end surface 8 c of the bearing sleeve 8.

以上の構成を有する流体動圧軸受装置1が図2に示す姿勢で配置された状態では、ハウジング7の内部空間のうち、少なくともラジアル軸受部R1,R2のラジアル軸受隙間Gr及びスラスト軸受部Tを収容した底隙間Gbを含む一部の領域が潤滑油Lで満たされる。本実施形態では、さらに、軸受スリーブ8の上端内周に位置する面取り部8eと軸部2aの外周面2a1との間に形成される環状空間(オイルバッファ空間12の一部)も潤滑油Lで満たされる(図2を参照)。一方、ハウジング7の内部空間の残部の領域(上述した一部の領域を除いた領域)は、通常時(例えば温度でいえば室温時)、潤滑油Lで満たされていない。具体的には、軸受スリーブ8の大傾斜面8fと、軸部2aの外周面2a1との間の環状空間(オイルバッファ空間12の残部)は、通常時、潤滑油Lで満たされていない。   When the fluid dynamic bearing device 1 having the above configuration is disposed in the posture shown in FIG. 2, at least the radial bearing gap Gr and the thrust bearing portion T of the radial bearing portions R1 and R2 in the internal space of the housing 7 A part of the area including the bottom gap Gb contained therein is filled with the lubricating oil L. In the present embodiment, an annular space (a part of the oil buffer space 12) formed between the chamfered portion 8e located on the upper inner periphery of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a is also lubricating oil L (See Figure 2). On the other hand, the area of the remaining part of the internal space of the housing 7 (the area excluding the above-described part of the area) is not filled with the lubricating oil L at normal time (for example, at room temperature in terms of temperature). Specifically, the annular space (the remaining portion of the oil buffer space 12) between the large inclined surface 8f of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a is not usually filled with the lubricating oil L.

以上より、この流体動圧軸受装置1では、ハウジング7の内部空間に充填される潤滑油Lの量(体積)が、ハウジング7の内部空間の容積よりも少なくなっており、従って、この流体動圧軸受装置1(ハウジング7)の内部空間には潤滑油Lが存在しない空隙部が設けられている。   As described above, in the fluid dynamic bearing device 1, the amount (volume) of the lubricating oil L filled in the internal space of the housing 7 is smaller than the volume of the internal space of the housing 7. The internal space of the pressure bearing device 1 (housing 7) is provided with a gap where the lubricating oil L does not exist.

ここで、潤滑油Lとしては、流体動圧軸受装置1の使用時や輸送時における温度変化等を考慮して、エステル系もしくはPAO系もしくはフッ素系潤滑油が好適に使用される。   Here, as the lubricating oil L, an ester-based, PAO-based or fluorine-based lubricating oil is suitably used in consideration of temperature change and the like during use and transportation of the fluid dynamic pressure bearing device 1.

以上の構成を具備する流体動圧軸受装置1は、例えば図5(a)及び(b)に示す手順で組み立てられる。   The fluid dynamic bearing device 1 having the above configuration is assembled, for example, in the procedure shown in FIGS. 5 (a) and 5 (b).

まず、内部空孔に潤滑油Lを含浸させた軸受スリーブ8を用意する。そして、この軸受スリーブ8の下端面8bがハウジング7の段部7cの上端面7c1に当接するまで、軸受スリーブ8をハウジング7の内周に軽圧入し、もしくは所定隙間を介した状態で嵌め込む。次いで、押さえ部材9の下端面9aを軸受スリーブ8の後退面部8gに当接させた状態でハウジング7の内周面7a1の上端部に固定し、軸受スリーブ8を、押さえ部材9とハウジング7の底部7b(段部7c)とで軸方向両側から挟持して、ハウジング7に固定する。このようにハウジング7と軸受スリーブ8、及び押さえ部材9とがサブアセンブリされた状態で、ハウジング7の内部空間(例えば、軸受スリーブ8の内周)に所定量の潤滑油Lを充填する(図5(a)を参照)。そして、図5(b)に示すように、軸受スリーブ8の内周に軸部2aを挿入し、軸部2aの先端部2a2をスラストプレート10の上端面10aに当接させると共に(図2を参照)、軸部2aの外周面2a1を軸受スリーブ8の傾斜面部11、本実施形態では面取り部8e及び大傾斜面8fと対向させる(図4を参照)。これにより、オイルバッファ空間12が形成され、図2に示す流体動圧軸受装置1が完成する。   First, the bearing sleeve 8 in which the inner hole is impregnated with the lubricating oil L is prepared. Then, until the lower end surface 8b of the bearing sleeve 8 abuts on the upper end surface 7c1 of the step portion 7c of the housing 7, the bearing sleeve 8 is lightly press-fit onto the inner periphery of the housing 7 or fitted with a predetermined gap therebetween. . Subsequently, the lower end surface 9a of the pressing member 9 is fixed to the upper end portion of the inner peripheral surface 7a1 of the housing 7 in a state where the lower end surface 9a is in contact with the receding surface 8g of the bearing sleeve 8. It clamps from the axial direction both sides with bottom 7b (step 7c), and fixes to housing 7. With the housing 7 and the bearing sleeve 8 and the pressing member 9 thus subassembled, a predetermined amount of lubricating oil L is filled in the internal space of the housing 7 (for example, the inner periphery of the bearing sleeve 8) (see FIG. 5 (a)). Then, as shown in FIG. 5 (b), the shaft 2a is inserted into the inner periphery of the bearing sleeve 8, and the tip 2a2 of the shaft 2a is brought into contact with the upper end surface 10a of the thrust plate 10 (FIG. Reference), the outer peripheral surface 2a1 of the shaft 2a is opposed to the inclined surface 11 of the bearing sleeve 8, which in the present embodiment is the chamfer 8e and the large inclined surface 8f (see FIG. 4). Thereby, the oil buffer space 12 is formed, and the fluid dynamic bearing 1 shown in FIG. 2 is completed.

以上の構成からなる流体動圧軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aの上下2箇所に離間して設けられたラジアル軸受面と、これに対向する軸部2aの外周面2a1との間にラジアル軸受隙間Gr,Grがそれぞれ形成される。そして軸部材2の回転に伴い、両ラジアル軸受隙間Gr,Grに形成される油膜の圧力がラジアル動圧発生部A1,A2の動圧作用によって高められ、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に形成される。これと同時に、ハウジング7の底部に配設したスラストプレート10の上端面10aで軸部材2をスラスト方向に接触支持するスラスト軸受部Tが形成される。なお、図1を参照しながら説明したように、軸部材2には、これを下方(ハウジング7の底部7b側)に押し付ける外力としての磁力を作用させている。従って、軸部材2が回転するのに伴って軸部材2が過度に浮上するのを、ひいては軸受スリーブ8の内周から抜脱するのを可及的に防止することができる。   In the fluid dynamic bearing device 1 configured as described above, when the shaft member 2 rotates, radial bearing surfaces provided to be separated at two locations above and below the inner peripheral surface 8a of the bearing sleeve 8 and a shaft portion opposed thereto Radial bearing gaps Gr and Gr are respectively formed between the outer peripheral surface 2a1 and the outer peripheral surface 2a. Then, with the rotation of the shaft member 2, the pressure of the oil film formed in the both radial bearing gaps Gr, Gr is increased by the dynamic pressure action of the radial dynamic pressure generating portions A1, A2, and the shaft member 2 is supported non-contact in the radial direction. The radial bearing portions R1 and R2 are formed at two places in the axial direction. At the same time, a thrust bearing portion T is formed which contacts and supports the shaft member 2 in the thrust direction on the upper end surface 10 a of the thrust plate 10 disposed at the bottom of the housing 7. As described with reference to FIG. 1, the shaft member 2 exerts a magnetic force as an external force that presses the shaft member 2 downward (to the bottom 7 b of the housing 7). Therefore, excessive rotation of the shaft member 2 as the shaft member 2 rotates can be prevented as much as possible from being pulled out of the inner periphery of the bearing sleeve 8.

また、ハウジング7の内部空間と大気との唯一の連通部分である、軸部2aと軸受スリーブ8の間には、軸受スリーブ8の内周面8aと上端面8cとの間に設けた傾斜面部11により、軸部2aの外周面2a1との間にオイルバッファ空間12が形成されている(図4を参照)。そのため、例えば流体動圧軸受装置1の置かれる環境が高温環境下になる等して、ハウジング7の内部空間が高温状態に変化した場合、ハウジング7の内部空間を満たしている潤滑油Lが膨張したとしても、上述したオイルバッファ空間12で膨張した分の潤滑油Lを保持して、潤滑油Lの漏れ出しを防止することができる(図6(a)を参照)。また、本実施形態のように、軸受外側に位置する大傾斜面8fの中心軸Xに対する傾斜角θ2を相対的に大きくし、大傾斜面8fより軸受内側に位置する面取り部8eの中心軸Xに対する傾斜角θ1を相対的に小さくすることで、オイルバッファ空間12に保持される潤滑油Lに対して、毛細管現象に起因する軸受内部への引込み作用が効果的に生じる。よって、オイルバッファ空間12に保持された状態の潤滑油Lは、面取り部8eと軸部2aの外周面2a1との間の環状空間を介して軸受内部(ラジアル軸受隙間など)に戻っていく(図6(b)を参照)。   In addition, between the shaft portion 2a and the bearing sleeve 8, which is the only communication portion between the internal space of the housing 7 and the atmosphere, an inclined surface portion provided between the inner peripheral surface 8a and the upper end surface 8c of the bearing sleeve 8. An oil buffer space 12 is formed between the shaft portion 2a and the outer peripheral surface 2a1 of the shaft portion 2a (see FIG. 4). Therefore, when the internal space of the housing 7 changes to a high temperature state, for example, the environment in which the fluid dynamic bearing device 1 is placed becomes a high temperature environment, the lubricating oil L filling the internal space of the housing 7 expands. Even if it does, the lubricating oil L which was expanded in the oil buffer space 12 mentioned above can be hold | maintained, and the leaking out of the lubricating oil L can be prevented (refer Fig.6 (a)). Further, as in the present embodiment, the inclination angle θ2 with respect to the central axis X of the large inclined surface 8f located on the bearing outer side is made relatively large, and the central axis X of the chamfered portion 8e located on the inner side of the bearing from the large inclined surface 8f. By relatively reducing the inclination angle θ1 with respect to the angle θ1, a pull-in function to the inside of the bearing due to the capillary phenomenon is effectively generated for the lubricating oil L held in the oil buffer space 12. Therefore, the lubricating oil L in the state of being held in the oil buffer space 12 returns to the inside of the bearing (a radial bearing gap or the like) via the annular space between the chamfered portion 8e and the outer peripheral surface 2a1 of the shaft portion 2a See FIG. 6 (b)).

以上で説明したように、本発明に係る流体動圧軸受装置1では、ラジアル軸受隙間Gr及び底隙間Gbが潤滑油Lで満たされた状態(図2を参照)において、ハウジング7の内部空間に空隙部が設けられる。これは、内部空間に充填されている潤滑油Lの量が、内部空間の全容積よりも少ないことを意味する。本発明に係る流体動圧軸受装置1では、軸部材2が、軸受スリーブ8に対して挿脱自在であることから、上述したように、ハウジング7の内周に軸受スリーブ8を固定した後であって、軸受スリーブ8内周への軸部材2の挿入前に、適当な給油具を用いてハウジング7の内部空間に潤滑油Lを充填するだけで、ハウジング7の内部空間に必要量の潤滑油Lを供給することができる。そのため、真空含浸など注油のための大掛かりな設備や高精密な油面の調整ないし管理作業が不要となり、流体動圧軸受装置1の製造コストを低廉化することができる。   As described above, in the fluid dynamic pressure bearing device 1 according to the present invention, when the radial bearing gap Gr and the bottom gap Gb are filled with the lubricating oil L (see FIG. 2), A void is provided. This means that the amount of lubricating oil L filled in the inner space is smaller than the total volume of the inner space. In the fluid dynamic bearing device 1 according to the present invention, since the shaft member 2 is attachable to and detachable from the bearing sleeve 8, as described above, after the bearing sleeve 8 is fixed to the inner periphery of the housing 7. A necessary amount of lubrication can be provided to the internal space of the housing 7 simply by filling the internal space of the housing 7 with the lubricating oil L using an appropriate oil supply tool before inserting the shaft member 2 into the inner periphery of the bearing sleeve 8. Oil L can be supplied. Therefore, a large-scale equipment for oil supply such as vacuum impregnation or a highly precise adjustment or management operation of the oil surface is not necessary, and the manufacturing cost of the fluid dynamic bearing 1 can be reduced.

また、本発明に係る流体動圧軸受装置1では、上述のように、ハウジング7の内部空間の一部を潤滑油Lで満たした、いわばパーシャルフィルの形態をなす含油構造を採用しながら、軸受スリーブ8の上端面8cを大気に開放した状態とし、かつ軸受スリーブ8の内周面8aと上端面8cとの間に、軸部2aの外周面2a1との間にオイルバッファ空間12を形成する傾斜面部11を設けた(図2及び図4を参照)。これにより、従来のパーシャルフィルの形態をなす含油構造を有する流体動圧軸受装置では必須であったシール部材を廃止できるので、軸受スリーブ8の軸方向寸法を変えることなく流体動圧軸受装置1全体の軸方向寸法を短くすることができる。また、パーシャルフィルの含油構造を採用する場合、フルフィルの形態をなす含油構造を採る場合と比べて、それほど大きなオイルバッファ容積を必要とせずに済む。よって、軸受スリーブ8の上端側の一部を傾斜面部11としてオイルバッファ空間12の形成に利用するだけで、十分な容積のオイルバッファ空間12を得ることができる。以上より、本発明によれば、効果的に潤滑油Lの漏れ出しを防止することのできる流体動圧軸受装置1を低コストに組み立てることが可能となる。   Further, in the fluid dynamic bearing device 1 according to the present invention, as described above, the bearing is adopted while filling a part of the internal space of the housing 7 with the lubricating oil L, so-called oil-filled structure in the form of a partial fill. The upper end surface 8c of the sleeve 8 is open to the atmosphere, and an oil buffer space 12 is formed between the inner peripheral surface 8a and the upper end surface 8c of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a. The inclined surface portion 11 was provided (see FIGS. 2 and 4). As a result, the seal member, which is essential in the fluid dynamic pressure bearing device having an oil-impregnated structure in the form of a conventional partial fill, can be eliminated, so the entire fluid dynamic pressure bearing device 1 can be obtained without changing the axial dimension of the bearing sleeve 8 The axial dimension of can be shortened. In addition, when using the oil filling structure of the partial fill, it is not necessary to require a large oil buffer volume as compared with the case of adopting the oil filling structure in the form of the full fill. Therefore, the oil buffer space 12 having a sufficient volume can be obtained only by utilizing a part of the upper end side of the bearing sleeve 8 as the inclined surface portion 11 to form the oil buffer space 12. As described above, according to the present invention, it is possible to assemble the fluid dynamic bearing device 1 capable of effectively preventing the leakage of the lubricating oil L at low cost.

また、本実施形態では、傾斜面部11を、軸受スリーブ8の内周面8aと連続する面取り部8eと、面取り部8eと連続し、軸受スリーブ8の中心軸Xに対する面取り部8eの傾斜角θ1よりも軸受スリーブ8の中心軸Xに対する傾斜角θ2が大きな大傾斜面8fとで構成した。これにより、例えば軸部2aを軸受スリーブ8の内周に挿入する際(図5(b)を参照)、中心軸Xに対する傾斜角θ1が相対的に小さな面取り部8eにより軸部2aがスムーズに挿入される。また、その一方で、大傾斜面8fの傾斜角θ2を相対的に大きく設定することで、オイルバッファ空間12の容積を増加させることがでる。   Further, in the present embodiment, the inclined surface portion 11 is continuous with the chamfered portion 8e continuous with the inner peripheral surface 8a of the bearing sleeve 8 and the chamfered portion 8e, and the inclination angle θ1 of the chamfered portion 8e with respect to the central axis X of the bearing sleeve 8 The inclination angle θ2 with respect to the central axis X of the bearing sleeve 8 is larger than that of the large inclination surface 8f. Thereby, for example, when inserting the shaft portion 2a into the inner periphery of the bearing sleeve 8 (see FIG. 5B), the shaft portion 2a is made smooth by the chamfered portion 8e having a relatively small inclination angle θ1 with respect to the central axis X Be inserted. On the other hand, the volume of the oil buffer space 12 can be increased by setting the inclination angle θ2 of the large inclined surface 8f relatively large.

また、本実施形態では、軸受スリーブ8を押さえ部材9で軸方向に押さえて、当該軸受スリーブ8を押さえ部材9とハウジング7とで挟持された状態としたので、押さえ部材9をハウジング7に固定するだけで、軸受スリーブ8をハウジング7に固定することができる。よって、部材同士の組付け(特に軸受スリーブ8とハウジング7との組付け)に要する手間を軽減することができる。また、軸受スリーブ8に、上端面8cより軸受スリーブ8の軸方向中央側に後退した後退面部8gを設けて、この後退面部8gを押さえ部材9で押すことで軸受スリーブ8を挟持するようにしたので、押さえ部材9の軸方向の一部又は全部(本実施形態では全部)を上端面8cよりも軸受スリーブ8の軸方向中央側に収めることができる。よって、押さえ部材9を用いつつも流体動圧軸受装置1の軸方向寸法をできる限り短くすることができる。   Further, in the present embodiment, since the bearing sleeve 8 is axially pressed by the pressing member 9 and the bearing sleeve 8 is held between the pressing member 9 and the housing 7, the pressing member 9 is fixed to the housing 7. The bearing sleeve 8 can be fixed to the housing 7 only by doing this. Therefore, the effort required for the assembly of members (especially the assembly of bearing sleeve 8 and housing 7) can be reduced. Further, the bearing sleeve 8 is provided with a receding surface portion 8g receding from the upper end surface 8c to the axial center side of the bearing sleeve 8, and the bearing surface 8 is held by pressing the receding surface portion 8g with the pressing member 9. Therefore, a part or all (in the present embodiment, all) of the pressing member 9 in the axial direction can be accommodated on the axial center side of the bearing sleeve 8 with respect to the upper end surface 8c. Therefore, the axial dimension of the fluid dynamic bearing 1 can be shortened as much as possible while using the pressing member 9.

以上、本発明の一実施形態を説明したが、本発明に係る流体動圧軸受装置1及びその製造方法は上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採り得る。   As mentioned above, although one Embodiment of this invention was described, the fluid hydrodynamic bearing apparatus 1 which concerns on this invention, and its manufacturing method take any form in the range of this invention, without being limited to the form of the said illustration. obtain.

例えば、上記実施形態では、傾斜面部11として、共にテーパ状をなす面取り部8eと、面取り部8eよりも中心軸Xに対する傾斜角θ2が大きな大傾斜面8fとからなるものを例示したが、もちろんこれ以外の形態をとることも可能である。例えば図示は省略するが、一又は複数の曲面(例えば、中心軸Xに対する傾斜角が軸方向外側に向かうにつれて増加する形状など)で傾斜面部11を構成してもよいし、テーパ状の傾斜面と、上述した曲面とで傾斜面部11を構成してもよい。   For example, in the above embodiment, the inclined surface portion 11 is exemplified by the chamfered portion 8e both having a tapered shape and the large inclined surface 8f having a larger inclination angle θ2 with respect to the central axis X than the chamfered portion 8e. Other forms are also possible. For example, although not shown, the inclined surface portion 11 may be configured of one or more curved surfaces (for example, a shape in which the inclination angle with respect to the central axis X increases outward in the axial direction), or a tapered inclined surface The inclined surface portion 11 may be configured by the curved surface described above.

また、後退面部8gについて、上記実施形態では、平坦な形状をなし、上端面8cと平行なものを例示したが(図2を参照)、もちろんこれ以外の形状を採ることも可能である。例えば傾斜面や凹状面など、軸受スリーブ8を押さえ部材9で軸方向に押さえることができる限りにおいて、後退面部8gは任意の形状をとり得る。同様に、押さえ部材9についても、軸受スリーブ8を軸方向に押さえることができる限りにおいてその形状は任意であり、図示以外の形状をとり得る。   In the above embodiment, the receding surface portion 8g has a flat shape and is parallel to the upper end surface 8c (see FIG. 2), but other shapes may of course be adopted. For example, the receding surface portion 8g can have any shape as long as the bearing sleeve 8 can be axially pressed by the pressing member 9, such as an inclined surface or a concave surface. Similarly, the shape of the pressing member 9 is arbitrary as long as the bearing sleeve 8 can be pressed in the axial direction, and may have a shape other than illustrated.

また、以上で示した実施形態では、モータベース6の内周に、モータベース6と別体に設けたハウジング7を固定するようにしたが、ハウジング7にモータベース6に相当する部位を一体に設けることもできる。   Further, in the embodiment described above, the housing 7 provided separately from the motor base 6 is fixed to the inner periphery of the motor base 6, but the part corresponding to the motor base 6 is integrally fixed to the housing 7 It can also be provided.

また、ラジアル軸受部R1,R2の何れか一方又は双方は、いわゆる多円弧軸受、ステップ軸受、および波型軸受等、公知のその他の動圧軸受で構成することもできる。また、スラスト軸受部Tを動圧軸受で構成する場合、この動圧軸受は、いわゆるステップ軸受や波型軸受等、公知のその他の動圧軸受で構成することもできる。   Further, either or both of the radial bearing portions R1 and R2 may be configured by other known dynamic pressure bearings such as so-called multi-arc bearings, step bearings, and wave-shaped bearings. When the thrust bearing portion T is configured by a dynamic pressure bearing, the dynamic pressure bearing can also be configured by another known dynamic pressure bearing such as a so-called step bearing or a wave type bearing.

また、以上で示した実施形態では、ロータマグネット4とステータコイル5とを軸方向にずらして配置することにより、軸部材2に、軸部材2をハウジング7の底部7b側に押し付けるための外力を作用させるようにしたが、このような外力を軸部材2に作用させるための手段は上記のものに限られない。図示は省略するが、例えば、ロータマグネット4を引き付け得る磁性部材をロータマグネット4と軸方向に対向配置することにより、上記磁力をロータ3に作用させることもできる。また、送風作用の反力としての推力が十分に大きく、この推力のみで軸部材2を下方に押し付けることができる場合、軸部材2を下方に押し付けるための外力としての磁力(磁気吸引力)は省略しても構わない。   Further, in the embodiment described above, by arranging the rotor magnet 4 and the stator coil 5 in the axial direction, an external force for pressing the shaft member 2 against the bottom 7 b of the housing 7 can be applied to the shaft member 2. Although it was made to act, the means for making such an external force act on shaft member 2 is not restricted to the above-mentioned. Although illustration is omitted, for example, the magnetic force can be applied to the rotor 3 by arranging a magnetic member capable of attracting the rotor magnet 4 so as to face the rotor magnet 4 in the axial direction. Further, when the thrust as the reaction force of the blowing action is sufficiently large and the shaft member 2 can be pressed downward only by this thrust, the magnetic force (magnetic attraction force) as the external force for pressing the shaft member 2 downward is You may omit it.

また、以上では、回転部材として、羽根を有するロータ3が軸部材2に固定される流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、本発明は、回転部材として、ディスク搭載面を有するディスクハブ、あるいはポリゴンミラーが軸部材2に固定される流体動圧軸受装置1にも好ましく適用することができる。すなわち、本発明は、図1に示すようなファンモータのみならず、ディスク装置用のスピンドルモータや、レーザビームプリンタ(LBP)用のポリゴンスキャナモータ等、その他の電気機器に組み込まれる流体動圧軸受装置1にも好ましく適用することができる。   Further, although the case where the present invention is applied to the fluid dynamic pressure bearing device 1 in which the rotor 3 having blades as the rotating member is fixed to the shaft member 2 has been described above, the present invention uses the rotating member as: The present invention can be preferably applied to the fluid dynamic bearing device 1 in which a disk hub having a disk mounting surface or a polygon mirror is fixed to the shaft member 2. That is, according to the present invention, not only the fan motor as shown in FIG. 1, but also a fluid dynamic pressure bearing incorporated in other electric devices such as a spindle motor for a disk drive and a polygon scanner motor for a laser beam printer (LBP). It can be preferably applied to the device 1 as well.

1 流体動圧軸受装置
2 軸部材
2a 軸部
2a1 外周面
3 ロータ
4 ロータマグネット
5 ステータコイル
6 モータベース
7 ハウジング
7a 筒状部
7b 底部
7c 段部
8 軸受スリーブ
8e 面取り部
8f 大傾斜面
8g 後退面部
9 押さえ部材
10 スラストプレート
11 傾斜面部
12 オイルバッファ空間
A1,A2 ラジアル動圧発生部
Aa1,Aa2 動圧溝
Gb 底隙間
Gr ラジアル軸受隙間
L 潤滑油
R1,R2 ラジアル軸受部
T スラスト軸受部
X 中心軸
θ1 傾斜角(面取り部)
θ2 傾斜角(大傾斜面)
DESCRIPTION OF SYMBOLS 1 fluid dynamic pressure bearing device 2 shaft member 2a shaft portion 2a1 outer peripheral surface 3 rotor 4 rotor magnet 5 stator coil 6 motor base 7 housing 7a cylindrical portion 7b bottom portion 7c step portion 8 bearing sleeve 8e chamfered portion 8f large inclined surface 8g receding surface portion 9 pressing member 10 thrust plate 11 inclined surface portion 12 oil buffer space A1, A2 radial dynamic pressure generating portion Aa1, Aa2 dynamic pressure groove Gb bottom gap Gr radial bearing gap L lubricating oil R1, R2 radial bearing portion T thrust bearing portion X central axis θ1 Inclination angle (Chamfered portion)
θ2 inclination angle (large inclination surface)

Claims (8)

軸方向一端が閉塞されると共に軸方向他端が開口している有底筒状のハウジングと、前記ハウジングの内周に配設された軸受スリーブと、挿脱可能に前記軸受スリーブの内周に挿入された軸部を有する軸部材と、前記軸受スリーブの内周面と前記軸部材の外周面との間のラジアル軸受隙間に形成される潤滑油の油膜で前記軸部材をラジアル方向に支持するラジアル軸受部と、前記軸部材の一端をスラスト方向に支持するスラスト軸受部とを備えた流体動圧軸受装置において、
前記ハウジングの内部空間の一部が前記潤滑油で満たされており、残部が前記潤滑油で満たされていない空隙部であって、
前記ハウジングの開口側となる前記軸受スリーブの軸方向一端面は大気に開放されており、前記軸受スリーブの内周面と軸方向一端面との間に、前記軸部の外周面との間にオイルバッファ空間を形成する傾斜面部が設けられていることを特徴とする流体動圧軸受装置。
A bottomed cylindrical housing closed at one axial end and open at the other axial end, a bearing sleeve disposed on the inner periphery of the housing, and an insertable and removable inner periphery of the bearing sleeve The shaft member is supported in the radial direction by an oil film of lubricating oil formed in a radial bearing gap between an inner peripheral surface of the bearing sleeve and an outer peripheral surface of the shaft member, and a shaft member having an inserted shaft portion. In a fluid dynamic bearing device comprising: a radial bearing portion; and a thrust bearing portion supporting one end of the shaft member in a thrust direction,
A part of the internal space of the housing is filled with the lubricating oil, and the remaining part is a void not filled with the lubricating oil,
One axial end face of the bearing sleeve on the opening side of the housing is open to the atmosphere, and between the inner peripheral face of the bearing sleeve and the axial one end face, between the outer peripheral face of the shaft portion A fluid dynamic bearing device comprising an inclined surface portion forming an oil buffer space.
前記傾斜面部は、前記軸受スリーブの内周面と連続する面取り部と、前記面取り部と連続し、前記面取り部よりも前記軸受スリーブの中心軸に対する傾斜角が大きな大傾斜面とからなる請求項1に記載の流体動圧軸受装置。   The inclined surface portion includes a chamfered portion continuous with the inner circumferential surface of the bearing sleeve, and a large inclined surface continuous with the chamfered portion and having a larger inclination angle with respect to the central axis of the bearing sleeve than the chamfered portion. The fluid dynamic bearing device according to 1. 前記大傾斜面の前記中心軸に対する傾斜角は、45°より大きくかつ90°より小さい請求項1又は2に記載の流体動圧軸受装置。   The fluid dynamic bearing according to claim 1 or 2, wherein an inclination angle of the large inclined surface with respect to the central axis is larger than 45 ° and smaller than 90 °. 前記軸受スリーブは、前記軸方向一端面と前記外周面との間に、前記軸方向一端面よりも前記軸受スリーブの軸方向中央側に後退した後退面部を有し、
前記後退面部を押さえ部材で軸方向に押さえることで、前記軸受スリーブが前記押さえ部材と前記ハウジングとで挟持される請求項1〜3の何れか一項に記載の流体動圧軸受装置。
The bearing sleeve has, between the one axial end surface and the outer peripheral surface, a receding surface portion which is retracted to the axial center side of the bearing sleeve with respect to the one axial end surface,
The fluid dynamic bearing according to any one of claims 1 to 3, wherein the bearing sleeve is sandwiched between the pressing member and the housing by pressing the receding surface portion in the axial direction by the pressing member.
前記押さえ部材は、その外周面を前記ハウジングの内周面に圧入することで前記ハウジングに固定されている請求項4に記載の流体動圧軸受装置。   The fluid dynamic bearing according to claim 4, wherein the pressing member is fixed to the housing by press-fitting the outer peripheral surface thereof to the inner peripheral surface of the housing. 前記軸受スリーブが、内部空孔に前記潤滑油を含浸させた多孔質体からなる請求項1〜4の何れか一項に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to any one of claims 1 to 4, wherein the bearing sleeve is made of a porous body in which internal holes are impregnated with the lubricating oil. 前記潤滑油は、エステル系もしくはPAO系もしくはフッ素系潤滑油である請求項1〜6の何れか一項に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to any one of claims 1 to 6, wherein the lubricating oil is an ester-based, PAO-based or fluorine-based lubricating oil. 請求項1〜7の何れか一項に記載の流体動圧軸受装置を備えたモータ。   A motor comprising the fluid dynamic bearing device according to any one of claims 1 to 7.
JP2018002522A 2018-01-11 2018-01-11 Fluid dynamic pressure bearing device and motor including the same Pending JP2019120389A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018002522A JP2019120389A (en) 2018-01-11 2018-01-11 Fluid dynamic pressure bearing device and motor including the same
PCT/JP2019/000242 WO2019139007A1 (en) 2018-01-11 2019-01-08 Fluid dynamic bearing device and motor equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002522A JP2019120389A (en) 2018-01-11 2018-01-11 Fluid dynamic pressure bearing device and motor including the same

Publications (1)

Publication Number Publication Date
JP2019120389A true JP2019120389A (en) 2019-07-22

Family

ID=67218315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002522A Pending JP2019120389A (en) 2018-01-11 2018-01-11 Fluid dynamic pressure bearing device and motor including the same

Country Status (2)

Country Link
JP (1) JP2019120389A (en)
WO (1) WO2019139007A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213329B1 (en) 2021-11-29 2023-01-26 シチズンファインデバイス株式会社 bearing material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065554A (en) * 1999-08-26 2001-03-16 Matsushita Electric Ind Co Ltd Fluid bearing device
JP4942321B2 (en) * 2005-09-28 2012-05-30 Ntn株式会社 Hub bearing
JP2009228873A (en) * 2008-03-25 2009-10-08 Ntn Corp Fluid bearing device
JP2011021649A (en) * 2009-07-14 2011-02-03 Ntn Corp Fluid bearing device
JP2011033103A (en) * 2009-07-31 2011-02-17 Ntn Corp Fluid bearing device

Also Published As

Publication number Publication date
WO2019139007A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP5951365B2 (en) Fluid dynamic bearing device and motor including the same
WO2014045772A1 (en) Fluid dynamic bearing device and motor with same
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP6502068B2 (en) Method of manufacturing fluid dynamic bearing device
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP6877185B2 (en) Fluid dynamic bearing device and motor equipped with it
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP2003065324A (en) Hydrodyanamic type bearing apparatus
JP2009228873A (en) Fluid bearing device
WO2019159787A1 (en) Fluid dynamic pressure bearing device and motor provided with same
WO2023189389A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device including same
JP6502036B2 (en) Fluid dynamic bearing device and motor including the same
JP2001124059A (en) Dynamic pressure bearing unit
JP5231095B2 (en) Hydrodynamic bearing device
JP7023754B2 (en) Fluid dynamic bearing equipment
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
WO2015133563A1 (en) Fluid dynamic bearing device and motor comprising same
WO2019065719A1 (en) Fluid dynamic pressure bearing device and motor having same
JP2020141532A (en) Fluid dynamic pressure bearing device and motor including the same
WO2018012186A1 (en) Fluid dynamic bearing device and motor with same
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2024053879A (en) Dynamic pressure bearing and fluid dynamic pressure bearing device equipped with same
JP2004360921A (en) Dynamic pressure type sintered oil retaining bearing unit