JP2019117828A - 検出装置および測長sem - Google Patents

検出装置および測長sem Download PDF

Info

Publication number
JP2019117828A
JP2019117828A JP2017249815A JP2017249815A JP2019117828A JP 2019117828 A JP2019117828 A JP 2019117828A JP 2017249815 A JP2017249815 A JP 2017249815A JP 2017249815 A JP2017249815 A JP 2017249815A JP 2019117828 A JP2019117828 A JP 2019117828A
Authority
JP
Japan
Prior art keywords
substrate
light
load lock
detection device
lock chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017249815A
Other languages
English (en)
Other versions
JP7073095B2 (ja
Inventor
伊藤 貴則
Takanori Ito
貴則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Manufacturing and Service Corp
Original Assignee
Hitachi High Tech Manufacturing and Service Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Manufacturing and Service Corp filed Critical Hitachi High Tech Manufacturing and Service Corp
Priority to JP2017249815A priority Critical patent/JP7073095B2/ja
Publication of JP2019117828A publication Critical patent/JP2019117828A/ja
Application granted granted Critical
Publication of JP7073095B2 publication Critical patent/JP7073095B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】検出器の構成の単純化を図りつつ、精度よく安定的に基板の位置ずれを検出できる技術を提供する。【解決手段】検出装置は、基板2の位置ずれを検出する検出装置であって、基板2が規定位置に配置された状態において基板2の上方を通過するビーム(43aおよび43b)を射出するN個(N≧2)の投光器40と、N個の投光器40のそれぞれから射出されたビーム(43aおよび43b)を、基板2が規定位置に配置された状態において基板2の上方を通過する方向に反射する複数のミラー42と、複数のミラー42のそれぞれによって反射された反射ビーム(43cおよび43d)を受光するN−1個以下の受光器41と、を備える。【選択図】図2

Description

本開示は、基板の傾きを検出する検出装置およびそれを備える測長SEMに関する。
半導体素子や集積回路の製造工程では、基板上に作成した半導体素子や集積回路の検査や評価を、基板上に形成した各種パターンの線幅等の寸法を測定することによって行う。通常、このような微小寸法の測定には、測長SEM(Scanning Electron Microscope)或いはCD−SEM(Critical Dimension-Scanning Electron Microscope)と呼ばれる測長機能付きの走査型電子顕微鏡が用いられる。
測長SEMは、観察試料に電子線やイオンビーム等の荷電粒子線を照射することによって得られる二次電子等の放出信号を画像化処理して観察試料像を取得し、その画像上の明暗の変化からパターンの形状を判別してパターン線幅等の寸法を導き出す。その際、観察試料としての基板は、測長SEMに備えられた基板搬送システムによって、真空状態に保持されている試料室に搬送され、試料室内の試料ステージに搭載されて荷電粒子線の照射を受ける。
測長SEMを用いて基板の観察および測長を行う場合、検査対象の基板は、カセットと称する一枚または複数枚の基板を収納可能なケースに予め格納されて準備される。カセットは大気圧下にあるが、基板を観察および測長する試料室は真空状態にあるため、基板の観察および測長を実施する際は、カセットから基板が一枚ずつ取り出され、大気圧状態と真空状態との間で雰囲気を変換するロードロック室と呼ばれる雰囲気変換室に一旦搬送される。ロードロック室の雰囲気が調整された後、基板は試料室に搬送され、前述した観察および測長が実施される。観察および測長が済んだ基板は、試料室からロードロック室に再度搬送され、ロードロック室の雰囲気が大気圧状態に調整されてから、ロードロック室より取り出され、カセットに搬送されて戻される。
測長SEMを用いた基板の検査や評価では、上記のような観察および測長作業が、基板一枚ごとに、カセットに収納されている検査対象の基板枚数分だけ、繰り返し行われる。その際、カセットとロードロック室との間の基板の搬送には、通常、ロボットが使用される。ロボットは、測長SEMによる観察および測長を実施する都度、カセットから取り出した検査対象の基板を、測長SEMのロードロック室に備えられているホルダと称す基板保持具まで搬送し、ホルダ上の規定位置に載置する。
ホルダは、ロードロック室内で板バネによって保持されており、ロードロック室内に設けられたアームの作動に応動して、試料室内の試料ステージとロードロック室との間で移動可能な構成になっている。ホルダの表面には、基板を規定の位置に保持しておくための固定ピンおよび可動ピンが、間隔を空けて立設されている。ホルダの規定の位置に載置された基板は、この可動ピンによって固定ピンに押し付けられて規定の位置に保持される。
ロードロック室は、基板搬入時には雰囲気が大気圧状態になる必要がある一方、基板を試料室内に搬送する際には雰囲気が試料室と同じ真空状態になる必要がある。そのため、ロードロック室は、バルブを介してドライポンプの吸込側と接続されている。測長SEMにおいては、ホルダの規定位置への基板の載置が完了すると、ロードロック室は密閉され、上記バルブの開放によってドライポンプの吸込側と連通されて室内の真空引きが行われる。その後、ロードロック室は、規定の真空度に達すると、ロードロック室と試料室との間が開放状態となり、基板は、ロードロック室からホルダごと試料室内に搬送され、試料室内で荷電粒子線の照射を受ける。
また、ロードロック室には、基板の有無やホルダへの異常載置を検出するためのセンサが備えられている。測長SEMでは、基板の未載置や異常載置が発生した場合、危険を未然に回避するために基板が載置されているホルダの試料室への搬送を停止するといった処置がなされる。
特許文献1には、「外寸が同じ基板保持具に異なるサイズの基板が載置される場合であっても、載置される基板の違いにかかわらず、基板の未載置や異常載置を正確にセンサに検出させる」ことができる基板保持具および基板搬送システムが開示されている。
特開2012−33594号公報
上述した基板保持検出器および基板搬送システムにおいては、基板が規定の位置に保持されていることを正確に検出する必要がある。基板の異常載置は、主に基板搬送時に生じる位置ずれや角度ずれに起因する。基板の載置位置が規定位置からわずかにずれても、可動ピンによって基板を固定ピン側に押し付けた時に、固定ピンや可動ピンに基板の外縁が乗り上げ、基板保持具の規定位置での基板の保持ができなくなることがある。
そのため、ロードロック室には、基板の有無やホルダへの異常載置を検出するためのセンサが設けられている。具体的には、基板が規定位置で配置された状態で、基板の上面直近を透過型センサのビームが基板と干渉せずに通るように、センサの投光器および受光器を構成し、基板の異常載置を検出している。ここで、基板を保持するための固定ピンおよび可動ピンは、ホルダ表面上に間隔を空けて複数立設されている。基板の乗り上げを検知するためのビーム光路は、複数立設された固定ピンおよび可動ピンのそれぞれと干渉しない位置を通る必要があり、センサの配置は制限されている。また、立設されたピンの配置に応じて基板の乗り上げが発生した際の基板の姿勢および乗り上げの程度は様々である。
公知の方法では、基板上面側から見て左右水平方向に、複数の投光器および受光器を配置し、一つ以上のセンサでビームの遮光状態を検出した場合に、基板は異常載置の状態であると判断する。しかしながら、複数のセンサで基板の微少な乗り上げを安定的に検出するためには、受光器の受光量がどの程度減じた場合に異常載置と見做すかを決定する光量の閾値を厳密な調整作業に基づいて設定する必要がある。また、基板の微小な位置ずれを検出するためには、投光器から射出するビームを基板の上面のわずか上方を通過させる必要があり、投光器および受光器の配置も多大な作業工数を必要とする。
本開示は、上記の点に鑑みてなされたものであり、検出器の構成の単純化を図りつつ、精度よく安定的に基板の位置ずれを検出できる技術を提供する。
上記課題を解決するために、基板の位置ずれを検出する検出装置であって、前記基板が規定位置に配置された状態において前記基板の上方を通過するビームを射出するN個(N≧2)の投光器と、前記N個の投光器のそれぞれから射出された前記ビームを、前記基板が前記規定位置に配置された状態において前記基板の上方を通過する方向に反射する複数のミラーと、前記複数のミラーのそれぞれによって反射された反射ビームを受光するN−1個以下の受光器と、を備える検出装置を提供する。
本開示によれば、検出器の構成の単純化を図りつつ、精度よく安定的に基板の位置ずれを検出できる。上記以外の課題、構成および効果は、以下の実施の形態の説明により明らかにされる。
第1の実施形態に係る検出装置が適用された測長SEMの概略構成図である。 ロードロック部の部分上面断面図を示す。 ロードロック部の部分側面断面図を示す。 比較例のセンサ構成を示す図である。 本実施形態の検出装置の構成を示す図である。 ビームの光量の変化を説明するための図である。 複数の基板サイズに対応可能なセンサ配置の例を示す図である。 位置ずれを検出する検出装置が備えるセンサの異なる配置例を示す図である。 位置ずれを検出する検出装置の別の構成例を示す図である。
以下、図面に基づいて、本開示の実施例を説明する。なお、本開示の実施例は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。また、後述する各実施例の説明に使用する各図の対応部分には同一の符号を付して示し、重複する説明を省略する。
<実施形態>
[測長SEMの構成]
本開示に係る検出装置および測長SEMの一態様について、図面に基づき説明する。
図1は、実施形態に係る検出装置が適用された測長SEM1の概略構成図である。測長SEM1は、局所クリーン化装置14と走査型電子顕微鏡本体20とを有し、局所クリーン化装置14内には、基板2を搬送する試料搬送装置10が設置されている。
測長SEM1は、試料の搬送、観察および測定を含む諸動作が、付設のコンピュータ装置(図示せず)によって制御される。オペレータは、コンピュータ装置に付属するマウスやキーボード、表示器の画面上に表示されるOSD(On Screen Display)等のユーザインターフェースを使用して、測長SEM1に実行させる試料の搬送等の制御処理についての指示および設定入力等をコンピュータ装置に行う。
図1に示された例では、試料搬送装置10は、ハンドリングアーム12を有し、二つのカセット置き台11aおよび11bから基板2を取り出せる構成になっている。カセット置き台11には、オペレータにより、オープンカセットまたはFOUP(Front Opening Unified Pod)といった基板2を保管する基板収納ケース13が搭載される。カセット置き台11は、例えばFOUPのような、蓋または扉によりケース内の気密を維持できるカセットを搭載する場合、当該カセットの蓋または扉の開閉を制御する機構を備える。ハンドリングアーム12は、カセット置き台11に搭載されている基板収納ケース13から基板2を取り出す。試料搬送装置10は、走査型電子顕微鏡本体20のロードロック室24に基板2を搬送したり、ロードロック室24から基板2を取り出して基板収納ケース13に収納して戻したりする。
基板2は清浄空間内にて搬送される必要があるため、試料搬送装置10は、装置全体が局所クリーン化装置14内部に設けられている。局所クリーン化装置14には、FFU(Fan Filter Unit)が備えられている。局所クリーン化装置14内部へは、上記FFUを通して、クリーン度の高い空気が大気圧雰囲気よりも陽圧状態で供給されている。
走査型電子顕微鏡本体20は、ロードロック部21と、ステージ部22と、鏡筒部23とを一体的に備えた構成となっている。ロードロック部21には、大気圧状態と真空状態との間で雰囲気を変換するロードロック室24が設けられている。ステージ部22には、基板2に荷電粒子線を照射するため、真空状態に保持される試料室25が設けられ、試料室25内には基板2を載置したホルダ26が搬送される試料ステージ29が備えられている。
ロードロック室24は、試料搬送装置10が配置されている局所クリーン化装置14と、ロードロック室24と、の間に介在するロードドア34の開閉に対応して局所クリーン化装置14と連通または遮断される。また、ロードロック室24は、試料室25と、ロードロック室24と、の間に介在するゲートバルブ35の開閉に対応して試料室25と連通または遮断される。ロードロック室24は、ロードドア34およびゲートバルブ35の閉塞により、局所クリーン化装置14および試料室25それぞれに対して密閉される。
鏡筒部23には、荷電粒子線を生成する荷電粒子源(図示せず)と、この荷電粒子源により生成された荷電粒子線を収束および偏向して試料室25内の試料ステージ29に搭載された基板2に照射する電子光学系(図示せず)とが設けられている。さらに、鏡筒部23またはステージ部22には、観察試料像を取得するため、荷電粒子線の照射により試料から放出される放出荷電粒子を検出する検出器(図示せず)が設けられている。また、ロードロック室24には、試料搬送装置10から基板2を搬入する際に大気圧雰囲気に開放された室内を試料室25内と同じ真空状態にするため、図示しないドライポンプの吸込側とバルブを介して接続されている。
上記のように構成された測長SEM1において、基板収納ケース13に収納されている検査対象の基板2は、試料搬送装置10によって取り出され、開放されたロードドア34を介してロードロック室24に搬送され、ロードロック室24に配置されているホルダの規定の位置に載置される。ホルダへの基板2の載置が完了すると、ロードロック室24は、ロードドア34が閉じられ、試料搬送装置10による基板2の搬入に伴って開放された室内を外部に対して密閉し、バルブが開放されて、ドライポンプによる室内の真空引きが行われる。
真空引きによってロードロック室24が規定の真空度に達すると、バルブが閉塞してドライポンプによる真空引きが停止する。その後、ゲートバルブ35が開放されて、基板2がホルダごと試料室25内に搬送され、試料ステージ29に搭載される。試料ステージ29に搭載された基板2は、荷電粒子線の照射を受け、観察および測長が行われる。
検査終了後は、試料室25内の試料ステージ29にホルダごと搭載された基板2は、ゲートバルブ35を介して、試料室25からロードロック室24内に搬送されて戻る。その後、ゲートバルブ35を閉じて、試料室25に対してロードロック室24を閉塞した後、ロードロック室24は大気圧開放され、その真空度が下げられる。ロードロック室24が大気圧状態になると、ロードドア34が開放され、検査が終了した基板2は、ロードロック室24からカセット置き台11上の、当該基板2が取り出された基板収納ケース13へ試料搬送装置10により戻されて収納される。
[ロードロック室]
次に、ロードロック室24を備えたロードロック部21の詳細な構成と、ロードロック室24に配置されているホルダへの基板2の載置手順について、図2および図3を参照しながら詳しく説明する。
図2は、ロードロック部21の部分上面断面図を示す。
図3は、ロードロック部21の部分側面断面図を示す。
図2および図3に示された例では、ロードロック部21は、直方体形状の中空の筐体31を備え、その中空部がロードロック室24を形成する。図2または図3に示された座標軸のX方向は、筐体31およびロードロック室24の幅方向を示し、座標軸のY方向は、筐体31およびロードロック室24の長さ方向を示し、座標軸のZ方向は、筐体31およびロードロック室24の高さ方向を示す。ここで、筐体31の長さ方向(Y方向)は、ロードロック室24から試料室25内のステージ部22へホルダ26を搬送する方向と同じ方向である。
ロードロック室24のホルダ26の搬送方向の両端側には、カセット置き台11とロードロック室24との間で基板2を搬送する際にロードロック室24を開放するロードドア34、および、ロードロック室24と試料室25との間で基板2を搬送する際にロードロック室24を試料室25に連通させるゲートバルブ35が設けられている。
また、ロードロック部21の内壁底面におけるX方向の両側には、断面矩形状の柱状部材32Rおよび32Lがロードロック部21の長さ方向(Y方向)に沿って延設され、ベース32を構成している。各ベース32(32Rおよび32L)には、その長さ方向(Y方向)に沿ってホルダ26を移動可能に支持するためのレール33(33Rおよび33L)が延設されている。各レール33(33Rおよび33L)には、ホルダ26に回転可能に取り付けられているホイール27(27Rおよび27L)が係合し、ホルダ26をロードロック室24の長さ方向(Y方向)に沿って移動可能に支持している。
ホルダ26は、その天面が矩形状の平坦な載置面28となった盤状部材によって構成されている。そして、ホルダ26は、このロードロック室24内で板バネ(図示せず)によって保持されて、アーム(図示せず)の作動に応動して、ホイール27をレール33上で転動させ、試料室25内の試料ステージ29とロードロック室24との間で移動可能な構成になっている。
一方、基板2は、ロードロック室24に配置されたホルダ26に対し、ホルダ26の載置面28に立設されている3本の固定ピン44(44a、44bおよび44c)と一本の可動ピン45とによって位置決めされ、固定される。3本の固定ピン44と一本の可動ピン45は、それぞれの外周面が薄板円盤形状の基板2に外接するように互いに適宜間隔を設け、ホルダ26の載置面28上に配置されている。この3本の固定ピン44および一本の可動ピン45によって規定される載置面28の領域が、規定位置に載置された基板2が対向する、載置面28の規定領域部分Pに該当する。載置面28の規定領域部分Pには、位置決めされて載置される基板2を水平に支持するための、固定ピン44や可動ピン45よりも高さが低い複数の支持ピン46(46a、46bおよび46c)が立設されている。そして、載置面28の規定領域部分Pに載置された基板2は、複数の支持ピン46によって水平に支持され、可動ピン45によって固定ピン44に押し付けられて保持される。
以下に、本実施形態による基板2の位置ずれを検出する方法を説明する前に、比較例の位置ずれ検出方法について説明する。
図4は、比較例のセンサ構成を示す図である。比較例の基板2の位置ずれ検出方法では、複数の投光器40と対向する位置に同数の受光器41が配置され、投光器40から射出されるビーム43の光路は、対となった投光器40と受光器41とを結ぶ線に平行である(図4a)。基板2は、規定位置に載置されている状態(図4b)において、固定ピン44、可動ピン45および支持ピン46により規定の位置に保持される。その際、投光器40から射出されるビーム43の光路は基板2のわずか上方(本実施形態では上面から+0.575mm上方)を通り、基板2に遮光されることなく100%の光量が受光器41に受光される。基板2がピンに乗り上げた状態(図4c)であっても、基板2の位置ずれ量は微少であるため、比較例の検出方法では、受光量の10%程度の減少を検出して基板2の位置ずれを判定していた。例えば、基板2によってビーム43が遮光されない時の受光量を100ルクス(lX)とすると、10ルクス(lX)程度の光量差に基づいて基板2が異常に載置された状態を検出していた。
微少な受光量の変化を高精度で安定して検出するためには、投光器40や受光器41の取付位置や、異常検出するための閾値(100%受光した時の基準光量100ルクス(lX)に対する光量)を厳密に調整する必要があり、作業には時間がかかる。例えば、基板2の位置がずれた時の遮光率が10%であると想定した場合、閾値を90ルクス(lX)とすれば検出機能を期待できる。しかしながら、現実には基板2の姿勢のばらつき、センサ光量の経時変化、基板2の外縁形状の様態等の尤度を考慮し、基本光量に対して95%程度の光量が最適な閾値となる。その場合、基板2が規定位置に載置された場合と異常に載置された場合とで5%の光量差しかないため、異常検出の安定性が低下する、即ち、誤検出をする可能性があった。
続いて、本実施形態による基板2の位置ずれの検出方法について説明する。
図5は、本実施形態の検出装置の構成を示す図である。本実施形態の検出装置は、基板2が規定位置に配置された状態において基板2の上方を通過するビームを射出するN個(N≧2)の投光器40と、N個の投光器のそれぞれから射出されたビームを、基板2が規定位置に配置された状態において基板2の上方を通過する方向に反射する複数のミラー42と、複数のミラー42のそれぞれによって反射された反射ビームを受光するN−1個以下の受光器41と、を備える。図5に示された例では、検出装置は二つの投光器40と二つのミラー42と一つの受光器41を備える。検出装置は、基板2を保持する際に固定ピン44や可動ピン45に基板2の外縁が乗り上げた状態となる異常載置を検出する。基板2の異常載置は、ホルダ26に基板2を載置した時の位置ずれや角度ずれなどに起因する。
図5に示されているように、本実施形態では第1の投光器40aおよび第2の投光器40bのそれぞれから射出されたビーム43a1および43b1は、ミラー42aおよび42bで反射され受光器41で受光されるため、ビーム43の光路は往路と復路とが存在する。したがって、基板2に位置ずれが生じた場合、往路および復路の双方で遮光され光量が減じることとなる。また、受光器41は、第1の投光器40aから射出されたビームの反射ビーム43c1と第2の投光器40bから射出されたビームの反射ビーム43d1とを合わせて受光する。上記のことから、受光器41は基板2が規定位置に載置された場合と異常に載置された場合とで受光量の差が比較例と比較して2倍程度に大きくなる。そのため、異常の判定閾値に対する尤度が拡大し、異常載置の安定検出を実現する。さらに、本実施形態では、受光器41が一つのため、比較例の検出方法では必要だった複数の受光器41それぞれの判定閾値の調整作業が簡略化され、作業工数が低減している。
図6は、図5におけるビームの光量の変化を説明するための図である。図6(a)および(b)は、それぞれ、投光器40aおよび40bから射出されたビームの光量の変化を示す図であり、図6(c)は、上記二つのビームの光量の合算値を示す図である。以下では、ミラー42での乱反射や透過光による光量損失はなく、基板2の異常載置が発生した場合は、ビームの光量は往路および復路の双方とも10%減ずると仮定する。また、投光器40、受光器41およびミラー42のそれぞれは、ビーム43の光路が固定ピン44や可動ピン45と干渉しない光路となるように配置される。
投光器40aから射出されたビームの光量は基板2の上方を通過する前のビーム(43a1)の光量を100とすると、ビーム(43a1)は基板2の載置異常によって遮光され基板2を通過したビーム(43a2)の光量は10%ほど減じて90となり、ミラー42aにて反射される。ミラー42aにて反射されたビームは、基板2の載置異常によって再度遮光され基板2を通過したビーム(43d1)の光量は10%ほど減じて81となり、受光器によって受光される。即ち、本実施形態では、基板2の異常載置が生じた場合、往路と復路の両方でビームが遮光されるため、受光量がおよそ20%低減する。投光器40bから射出されたビームの光量も同様であり、二つのビームの合算値は、200、180、162と段階的に変化する。
上記のとおり、本実施形態では受光器41で受光する光量が、基板2の異常載置が生じた場合に20%減ずるため、異常載置の判定閾値に対する尤度が拡大する。さらに、一つの受光器41で複数のビームを受光しているため、基板2の異常載置が生じた場合に光量の絶対値も200ルクス(lX)から162ルクス(lX)に減少するため、絶対量としての光量差をより大きく検出することが可能である。
さらに、検出精度を向上させるためには、ビーム43が固定ピン44や可動ピン45の近傍を通るように、投光器40、受光器41およびミラー42を配置することが望ましい。その場合、例えば、投光器40が射出したビーム43の光路と、当該投光器40が射出したビーム43の反射ビームの光路と、に挟まれた角θが所定の値よりも大きい値となるように投光器40、受光器41およびミラー42を配置する。上記所定の値は、例えば、30°〜70°の範囲内である。このようにすると、ビーム43が往路および復路の両方で固定ピン44または可動ピン45の近傍を通過し、基板2の乗り上げが生じた際により多く遮光されるようになる。つまり、受光器41が受光する絶対的な光量差が大きくなり検出が安定する。
また、ロードロック室の機構的な取付け位置の制限などで、前述した投光器40、受光器41およびミラー42の位置関係の実現が困難な場合は、湾曲形のミラーで光路を最適な位置に整調することも可能であり、ミラーの形状は平面形に限定されない。
投光器40および受光器41は、例えば、透過型ビームセンサを用いることができるが、それに限定されない。投光器40および受光器41は、観察試料の材質(Si、SiCなど)に応じて、LEDセンサやレーザセンサなど最適な光源を選択すればよい。
本実施形態では、投光器40から射出されるビームは基板2の上面のわずか上方を通過するように設定した。投光器40から射出されるビームは、基板2の下面のわずか下方を通過するように設定してもよい。基板2が固定ピン44または可動ピン45へ乗り上げた際は、基板2の姿勢が傾き、ピンに乗り上げた側とは反対側の端部が規定位置より低い位置に位置することがある。この場合、基板2により遮光された受光量を測定することによって基板2の位置ずれを検出することができる。
なお、基板2の異常載置の判定は、判定閾値よりも大きいか否かのバイナリで判定するだけでなく、受光量の大きさに基づいて基板2の位置ずれの度合いを判定してもよい。例えば、基板2の乗り上げ時の姿勢と受光量とのデータセットを記録し、統計的な相関分析により、測定した受光量に基づいて基板2の姿勢を推定してもよい。また、基板2の乗り上げ姿勢のデータを収集することによって、異常載置のパターン解析や原因解析を実行してもよい。さらに、受光量の絶対値を測定することにより、投光器40の光源の経時変化(光量低下)も検知可能となる。
[検出装置の別の構成例]
半導体搬送装置では、基板サイズごとに異なる位置に固定ピン44および可動ピン45を立設する必要があるため、通常、基板サイズに対応した異なる種類のホルダが用いられる。一方、基板2の位置ずれを検出する検出装置のセンサである投光器40、受光器41およびミラー42は、ロードロック室24に固定して配置されているため、どの種類のホルダが用いられてもビーム43の光路が固定ピン44および可動ピン45と干渉しないように配置される必要がある。
図7は、複数の基板サイズに対応可能なセンサ配置の例を示す図である。図7には、四つの基板サイズ50〜53とそれぞれのサイズに対応する固定ピン44および可動ピン45の配置が示されている。四つの基板サイズは、それぞれ、3inch基板50、4inch基板51、6inch基板52および8inch基板53に対応する。
図7に示されるように、どの基板サイズであっても基板2の中心位置はほぼ同じであり、固定ピン44および可動ピン45の多くは、他の基板サイズでの配置位置を拡大または縮小した配置となっている。即ち、固定ピン44および可動ピン45の多くは、基板2が規定位置に載置された場合の基板2の中心を基準とした放射線上に並んで立設される。ビーム43の光路は、固定ピン44および可動ピン45との干渉を避けることができればよいので、図7に示された構成例にて機能を達成することができる。
換言すると、N個(N≧2)の投光器40は、第1のサイズの基板が第1の規定位置に配置された状態および第2のサイズの基板が第2の規定位置に配置された状態において、基板2の上方を通過する方向にビーム43を射出し、複数のミラー42は、第1のサイズの基板が第1の規定位置に配置された状態および第2のサイズの基板が第2の規定位置に配置された状態において、基板2の上方を通過する方向にビーム43を射出するように構成されてよい。この際、ビーム43は、固定ピン44および可動ピン45に接触しない方向に射出および反射される。このように投光器40、受光器41およびミラー42を配置することによって、載置する基板2のサイズが異なる複数種類のホルダに対して、位置ずれの検出装置を汎用的に利用することができる。
<変形例1>
図8は、位置ずれを検出する検出装置が備えるセンサの異なる配置例を示す図である。上記の実施形態では、投光器40aおよび40b並びに受光器41は、それぞれ、ホルダ26に対して同じ側に配置され、ミラー42aおよび42bは、ホルダ26を挟んで反対側に配置された。即ち、ビーム43がロードロック室24の幅方向(X方向)の一方からもう一方へ進行しミラー42にて反射される構成であった。
しかしながら、ロードロック室24の機構的制限により、投光器40aおよび40b並びに受光器41は、それぞれ、ホルダ26に対して同じ側に配置できない場合がある。その場合、図8に示されるように、一組の投光器40とミラー42とに関しては、ビーム43がX方向の一方からもう一方へ進行してミラー42で反射される配置とし、別の一組の投光器40とミラー42とに関しては、ビーム43がY方向の一方からもう一方へ進行してミラー42で反射される配置としてもよい。この場合、例えば、投光器40aおよび40bは、それぞれ、ホルダ26を挟んでホルダ26の対角線上に配置される。
上記のようにすることによって、ロードロック室24の機構的制約がある場合であっても、一つの受光器41で二つの投光器40から射出されたビーム43を合算して受光することができ、基板2の載置が異常と判定する光量の閾値に対する尤度が拡大する。したがって、異常検出の安定性が向上する。
<変形例2>
図9は、位置ずれを検出する検出装置の別の構成例を示す図である。上記の実施形態とは異なり、図9に示された検出装置では、投光器40から射出されたビーム43が複数のミラー42によって複数回(この例では三回)反射された後、受光器41にて受光される。換言すると、複数のミラーのうち少なくとも二つのミラーは、同一の投光器から射出されたビームを反射する。或いは、複数のミラーのうち少なくとも一つのミラーは、別のミラーが反射した反射ビームを反射する。このようにすると、基板2が規定位置に載置されなかった場合、投光器40から射出されたビーム43の光量が、例えば、受光器41に到達するまでに射出時の光量の73%程度に減ずる。それ故、基板2の載置が異常と判定する光量の閾値に対する尤度が拡大する。したがって、異常検出の安定性が向上する。
なお、本開示は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1:測長SEM、2:基板、10:試料搬送装置、11a〜11b:カセット置き台
12:試料搬送ロボット、13:基板収納ケース、
14:局所クリーン化装置、20:走査型電子顕微鏡本体
21:ロードロック部、22:ステージ部、23:鏡筒部、24:ロードロック室
25:試料室、26:ホルダ、27L〜27R:ホイール、28:載置面
29:試料ステージ、31:筐体、32L/32R、:ベース部、33L〜33R:レール
35:ゲートバルブ、36L〜36R:取付台、40a〜40b:センサ投光器
41:センサ受光器、42a〜42b:ミラー、43a〜43d:ビーム
44a〜44c:固定ピン、45:可動ピン、46:支持ピン
50:3inch基板、51:4inch基板、52:6inch基板、53:8inch基板

Claims (7)

  1. 基板の位置ずれを検出する検出装置であって、
    前記基板が規定位置に配置された状態において前記基板の上方を通過するビームを射出するN個(N≧2)の投光器と、
    前記N個の投光器のそれぞれから射出された前記ビームを、前記基板が前記規定位置に配置された状態において前記基板の上方を通過する方向に反射する複数のミラーと、
    前記複数のミラーのそれぞれによって反射された反射ビームを受光するN−1個以下の受光器と、
    を備える検出装置。
  2. 請求項1に記載の検出装置において、
    前記N−1個以下の受光器のうち、少なくとも一つの受光器は、第1の投光器から射出された前記ビームの反射ビームと第2の投光器から射出された前記ビームの反射ビームとを合わせて受光する、
    検出装置。
  3. 請求項2に記載の検出装置において、
    前記第1の投光器が射出した前記ビームの光路と、前記第1の投光器が射出した前記ビームの反射ビームの光路と、に挟まれた角が所定の角度よりも大きい、
    検出装置。
  4. 請求項1に記載の検出装置において、
    前記複数のミラーのうち少なくとも一つのミラーは、別のミラーが反射した反射ビームを反射する、
    検出装置。
  5. 請求項1に記載の検出装置において、
    前記N個の投光器は、第1のサイズの基板が第1の規定位置に配置された状態および第2のサイズの基板が第2の規定位置に配置された状態において、前記基板の上方を通過する方向に前記ビームを射出し、
    前記複数のミラーは、前記第1のサイズの基板が前記第1の規定位置に配置された状態および前記第2のサイズの基板が前記第2の規定位置に配置された状態において、前記基板の上方を通過する方向に前記ビームを反射する、
    検出装置。
  6. 請求項1に記載の検出装置を備えるロードロック室と、
    前記ロードロック室と隣接する試料室と、
    前記ロードロック室に前記基板が保持されたホルダを搬送する搬送装置と、
    を備える測長SEM。
  7. 請求項5に記載の検出装置を備えるロードロック室と、
    前記ロードロック室と隣接する試料室と、
    前記ロードロック室に前記基板が保持されたホルダを搬送する搬送装置と、
    を備える測長SEM。
JP2017249815A 2017-12-26 2017-12-26 検出装置および測長sem Active JP7073095B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017249815A JP7073095B2 (ja) 2017-12-26 2017-12-26 検出装置および測長sem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249815A JP7073095B2 (ja) 2017-12-26 2017-12-26 検出装置および測長sem

Publications (2)

Publication Number Publication Date
JP2019117828A true JP2019117828A (ja) 2019-07-18
JP7073095B2 JP7073095B2 (ja) 2022-05-23

Family

ID=67304566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249815A Active JP7073095B2 (ja) 2017-12-26 2017-12-26 検出装置および測長sem

Country Status (1)

Country Link
JP (1) JP7073095B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150030A (ja) * 2020-03-16 2021-09-27 キオクシア株式会社 検査装置
JP7461820B2 (ja) 2020-07-14 2024-04-04 オークマ株式会社 ワークテーブル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316290A (ja) * 1995-05-15 1996-11-29 Dainippon Screen Mfg Co Ltd 回転式基板処理装置
JPH11243130A (ja) * 1998-02-26 1999-09-07 Omron Corp 薄板材状態検出装置および薄板材の状態検出方法
JP2012033594A (ja) * 2010-07-29 2012-02-16 Hitachi High-Technologies Corp 基板保持具及び基板搬送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316290A (ja) * 1995-05-15 1996-11-29 Dainippon Screen Mfg Co Ltd 回転式基板処理装置
JPH11243130A (ja) * 1998-02-26 1999-09-07 Omron Corp 薄板材状態検出装置および薄板材の状態検出方法
JP2012033594A (ja) * 2010-07-29 2012-02-16 Hitachi High-Technologies Corp 基板保持具及び基板搬送システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150030A (ja) * 2020-03-16 2021-09-27 キオクシア株式会社 検査装置
JP7305585B2 (ja) 2020-03-16 2023-07-10 キオクシア株式会社 検査装置
JP7461820B2 (ja) 2020-07-14 2024-04-04 オークマ株式会社 ワークテーブル

Also Published As

Publication number Publication date
JP7073095B2 (ja) 2022-05-23

Similar Documents

Publication Publication Date Title
US8280664B2 (en) XY-coordinate compensation apparatus and method in sample pattern inspection apparatus
KR101817395B1 (ko) 기판 반송 기구의 위치 검출 방법, 기억 매체 및 기판 반송 기구의 위치 검출 장치
JP4668809B2 (ja) 表面検査装置
JP2014229730A (ja) 基板搬送ロボット、基板搬送システムおよび基板の配置状態の検出方法
US20100243867A1 (en) Mapping mechanism, foup and load port
JP2019117828A (ja) 検出装置および測長sem
KR20040014213A (ko) 레티클 핸들링 방법, 레티클 핸들링 장치 및 노광장치
JP2007227781A (ja) 基板の位置ずれ検査機構,処理システム及び基板の位置ずれ検査方法
JP5473820B2 (ja) 基板保持具及び基板搬送システム
JP6994437B2 (ja) 基板保持具及び走査型電子顕微鏡装置
JP2005091342A (ja) 試料欠陥検査装置及び方法並びに該欠陥検査装置及び方法を用いたデバイス製造方法
KR101476388B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
KR101478898B1 (ko) 하전 입자빔 묘화 장치 및 하전 입자빔 묘화 방법
JP2019169593A (ja) 基板搬送システム
TW202131436A (zh) 搬運之系統及方法
JP3065843B2 (ja) 被処理体の検出装置
US20220367223A1 (en) Substrate transport apparatus and substrate transport method
JP5473439B2 (ja) 走査型電子顕微鏡、測定方法、アタッチメント、走査型荷電粒子装置
US11728191B2 (en) Front surface and back surface orientation detection of transparent substrate
JP2000182561A (ja) 電子線描画装置
KR20230101645A (ko) 기판 처리 장치 및 기판 처리 방법
US20220258363A1 (en) Devices and Methods for Improved Detection of Anomalous Substrates in Automated Material-Handling Systems
JPH1126539A (ja) 半導体製造装置、及び該装置に於ける基板位置ずれ修正方法
KR20230021892A (ko) 기판 검사 장치 및 기판 검사 방법
KR20200040667A (ko) 로드 포트 및 로드 포트의 foup 덮개 이상 검지 방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150