JP2019116684A - 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法 - Google Patents

炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法 Download PDF

Info

Publication number
JP2019116684A
JP2019116684A JP2018219090A JP2018219090A JP2019116684A JP 2019116684 A JP2019116684 A JP 2019116684A JP 2018219090 A JP2018219090 A JP 2018219090A JP 2018219090 A JP2018219090 A JP 2018219090A JP 2019116684 A JP2019116684 A JP 2019116684A
Authority
JP
Japan
Prior art keywords
carbon material
particles
powder
sintering
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018219090A
Other languages
English (en)
Other versions
JP6885386B2 (ja
Inventor
一洋 岩瀬
Kazuhiro Iwase
一洋 岩瀬
山本 哲也
Tetsuya Yamamoto
哲也 山本
隆英 樋口
Takahide Higuchi
隆英 樋口
友司 岩見
Tomoji Iwami
友司 岩見
頌平 藤原
Shohei Fujiwara
頌平 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019116684A publication Critical patent/JP2019116684A/ja
Application granted granted Critical
Publication of JP6885386B2 publication Critical patent/JP6885386B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】焼結機へ搬送され、焼結機に装入される工程において炭材内装粒子の崩壊を抑制できる炭材内装粒子の製造方法を提供する。【解決手段】粉状の鉄含有原料と、石灰含有原料と、セメント粉と、を混合して混合粉とし、混合粉と、炭材とを造粒して、炭材の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する。【選択図】図1

Description

本発明は、高炉などで製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、炭材を内装した炭材内装粒子の製造方法および当該炭材内装粒子を焼結原料の一部として製造される炭材内装焼結鉱の製造方法に関する。
高炉製鉄法では、鉄源として焼結鉱や鉄鉱石、ペレットなどの鉄含有原料を主に用いている。ここで、焼結鉱は、塊成鉱の一種であり、以下の手順にて製造される。まず、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、石灰石や生石灰、製鋼スラグなどの石灰含有原料と、精錬ニッケルスラグ、ドロマイト、蛇紋岩などのMgO含有原料と、珪石などからなるSiO含有原料と、粉コークスや無煙炭などからなる凝結材と、から構成される造粒原料に適量の水を添加し、ドラムミキサーなどを用いて混合、造粒して擬似粒子とする。次いで、擬似粒子とした造粒原料を、焼結機の循環移動するパレットに装入し、造粒原料に含まれる凝結材を燃焼させて焼結ケーキとする。その後、焼結ケーキを、破砕、冷却、整粒し、一定の粒径以上のものを成品焼結鉱として回収している。
従来、焼結ベッド全体を均一に液相焼結する方法が主体であったが、近年、従来通り液相焼結主体の部分と、液相生成を抑えた部分とを焼結ベッドに混在させ、あえて不均一な構造を指向する焼結方法が検討されている。その理由は、融点が高く溶融しにくい部分は、焼成後には多くの細かい気孔が残存し、還元性ガスとの接触面積が増え、還元されやすい焼結鉱組織を形成することができるからである。
このような塊成鉱の製造方法として、特許文献1には、高融点で液相生成を抑えたものとして、炭材を鉄鉱石粉とCaO含有原料で被覆した湿潤ペレットを作製し、これを従来の液相焼結主体の焼結原料に混合後、下方吸引型焼結機において焼結する方法が開示されている。
特許第5790966号公報
特許文献1に開示されたように、炭材内装焼結鉱は、炭材核を有する炭材内装粒子を、炭材核を有しない通常の造粒粒子に配合して焼結原料とし、焼結機で焼結することで製造される。しかしながら、炭材内装粒子が造粒機で造粒され、焼結機へ搬送、装入される工程で崩壊してしまうと、液相生成を抑えた部分が生成されず、還元されやすい焼結鉱組織を形成させることができない。本発明は上記課題を鑑みてなされたものであって、その目的は、焼結機へ搬送され、焼結機に装入される工程において炭材内装粒子の崩壊を抑制できる炭材内装粒子の製造方法を提供することにある。
このような課題を解決できる本発明の特徴は、以下の通りである。
(1)粉状の鉄含有原料と、石灰含有原料と、セメント粉と、を混合して混合粉とし、
前記混合粉と、炭材とを造粒して、炭材核の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する、炭材内装粒子の製造方法。
(2)前記混合粉に対するセメント粉の配合割合が1質量%以上10質量%以下になるように前記セメント粉を配合する、(1)に記載の炭材内装粒子の製造方法。
(3)(1)または(2)に記載の炭材内装粒子の製造方法で製造された炭材内装粒子を、鉄含有原料と、副原料と、凝結材と、を混合、造粒した造粒粒子に配合して焼結原料とし、前記焼結原料を焼結機のパレットに装入して焼結する、炭材内装焼結鉱の製造方法。
本発明の炭材内装焼結鉱の製造方法を実施することで、圧潰強度の高い炭材内装粒子を製造できるので、焼結機へ搬送され、焼結機に装入される工程において、崩壊する炭材内装粒子を少なくできる。そして、当該炭材内装粒子を含む焼結原料を焼結して炭材内装焼結鉱を製造することで、焼結鉱に還元されやすい焼結鉱組織が形成され、還元効率の向上が実現できる。
本実施形態に係る炭材内装粒子の製造方法が実施できる炭材内装粒子の製造工程10の一例を示す模式図である。 混練機28での混合時間と、造粒機38で造粒された炭材内装粒子の圧潰強度分布との関係を示すグラフである。 造粒機38に存在する混合粉30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。 炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。 養生期間と炭材内装粒子の圧潰強度との関係を示すグラフである。 セメント粉の配合割合と炭材内装粒子の圧潰強度との関係を示すグラフである。 セメント粉の配合割合と炭材内装焼結鉱の気孔率との関係を示すグラフである。 実施例および比較例の焼結鉱のRIを示すグラフである。
以下、本発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る炭材内装粒子の製造方法が実施できる炭材内装粒子の製造工程10の一例を示す模式図である。図1を用いて、本実施形態に係る炭材内装粒子の製造方法を説明する。
炭材内装粒子の製造工程10では、まず、貯蔵槽14に貯蔵された鉄鉱石粉12と、貯蔵槽18に貯蔵された生石灰16と、貯蔵槽22に貯蔵されたセメント粉20とがそれぞれの貯蔵槽から搬送機24に所定量切り出される。鉄鉱石粉12、生石灰16およびセメント粉20は、搬送機24によってインテンシブミキサーなどの混練機28に搬送される。搬送された鉄鉱石粉12、生石灰16およびセメント粉20は、適量の水26とともに混練機28の内部で混合されて混合粉30となる。
本実施形態において、鉄鉱石粉12は、粉状の鉄含有原料の一例であり、例えば、粒径が150μm以下、比表面積が1500cm/g程度の鉄鉱石粉や、製鉄所内で発生するダストやスラッジ等である。生石灰16は、石灰含有原料の一例であり、生石灰に代えて、または生石灰とともに石灰石や消石灰を用いてもよい。但し、混合粉30を造粒するという観点から、造粒効果の高い生石灰や消石灰を用いることが好ましい。また、焼結時に生じる融液の粘度を増加させるドロマイト[CaMg(CO]を生石灰および/または石灰石に添加してもよい。すなわち、石灰含有原料とは、生石灰、石灰石およびドロマイトの何れか1つ以上を含有する原料である。セメント粉20は、水硬性のセメントであって、例えば、ポルトランドセメント、混合セメント、高炉スラグセメントなどである。なお、セメント粉20には生石灰も含まれるので、セメント粉20を加える場合には、セメント粉20に含まれる生石灰の分だけ生石灰16の切り出し量を減少させる。なお、以下の実施形態ではセメント粉20として、以下の表1に示すポルトランドセメントを用いた。セメントは種類によって数か月の長期強度に差が有るが、本発明の用途では4週間かそれ以内の強度があればよく、数か月の長期強度は求められていない。このため、本実施形態では、いずれの種類のセメントも用いることができる。なお、寒冷地などではアルミナセメントを用いることでさらに短時間で強度が発現するので、より好ましい。
混練機28では各原料を混練機28で十分に混合し、各原料を均一に分散させることが好ましい。これにより、炭材内装粒子40の品質を安定させることができる。例えば、生石灰16の分散が不十分となり、炭材内装粒子に設定品位よりも生石灰16が過剰に配合されると、後の焼結工程で炭材核の周囲の外層が溶融してしまい炭材内装焼結鉱を得られない場合がある。また、セメント粉20の分散が不十分となり、炭材内装粒子に配合されるセメント粉20の配合量が設定品位よりも不足すると、搬送等のハンドリングに耐える十分な強度が得られず、歩留りが低下するおそれがある。さらに、水26の分散が不十分となると、後の造粒機38による造粒に支障をきたすおそれがある。
図2は、混練機28での混合時間と、造粒機38で造粒された炭材内装粒子の圧潰強度分布との関係を示すグラフである。図2において、横軸は、セメント養生4週間後の炭材内装粒子の圧潰強度(N/個)であり、縦軸は頻度(個)である。図2の点線は、混練機28で各原料を混合せずに造粒機38を用いて炭材内装粒子に造粒し、その後、セメント養生を4週間行った後の炭材内装粒子の圧潰強度の分布を示す。破線は、混練機28で各原料を10秒間混合した混合粉を、造粒機38を用いて炭材内装粒子に造粒し、その後、セメント養生を4週間行った後の炭材内装粒子の圧潰強度の分布を示す。実線は、混練機28で各原料を60秒間混合した混合粉を、造粒機38を用いて炭材内装粒子に造粒し、その後、セメント養生を4週間行った後の炭材内装粒子の圧潰強度の分布を示す。なお、混練機28に各原料が連続的に装入され、混練が連続的になされる場合の混合時間は、混練機28内部の各原料の滞留量を装入速度で除することで算出できる。
図2に示すように、混合を全く行わない場合、圧潰強度の分布幅が広くなり、比較的低強度の炭材内装粒子が多く確認された。混合を10秒間行うと、混合を全く行わない場合よりも低強度の炭材内装粒子が減少した。混合を60秒間行うと、さらに、低強度の炭材内装粒子が減少して高強度の炭材内装粒子が増加し、圧潰強度の分布幅も狭くなった。この時の混合仕事率は330W/kgであった。なお、混合仕事率は、混合機の消費電力÷混合物の質量から算出した。また、混合を10秒間行った場合の混合エネルギーは、3300J/kgであり、混合を60秒間行った場合の混合エネルギーは、19800J/kgであった。この結果から、混練機28で各原料を均一に混合することで、炭材内装粒子の強度品質が高まるとともに強度品質が均一化され、炭材内装粒子の品質を安定化できることがわかる。なお、各原料を十分に混合できる混合時間は、炭材内装焼結鉱の製造に用いる原料、混練機および造粒機を用いて図2に示したような混合時間と圧潰強度の分布との関係を確認することで定めることができる。
次に、混練機28で混合された混合粉30と、貯蔵槽34に貯蔵されたコークス粒子32と、が搬送機36に所定量切り出され、造粒原料となる。本実施形態では、造粒原料に対するコークス粒子32の配合割合が1質量%以上5質量%以下、より好ましくは、2質量%以上4質量%以下になるように、混合粉30およびコークス粒子32を切り出している。
本実施形態において、コークス粒子32は、炭材の一例であり、当該炭材は、周囲に混合粉30からなる外層が形成されて炭材核となる。炭材として無煙炭であるホンゲイ炭を用いてもよい。コークス粒子およびホンゲイ炭は揮発分が少ないので、これらを用いることで焼結時に炭材から生じる燃焼ガスが少なくでき、当該炭材内装粒子を用いて製造される炭材内装焼結鉱の強度低下が抑制される。これにより、炭材内装焼結鉱の歩留低下を抑制できる。
造粒原料は、搬送機36によってディスクペレタイザーなどの造粒機38に搬送される。造粒原料は、造粒機38で適量の水26とともに転動され、水の架橋力等によってコークス粒子32が炭材核となり、その周囲に混合粉30からなる外層が形成された炭材内装粒子40が製造される。
図3は、造粒機38に存在する混合粉30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。図1に示した炭材内装粒子の製造工程10に従って炭材内装粒子40が製造されるが、炭材内装粒子40の強度が低いと、炭材内装粒子40を焼結機へ搬送し、焼結機に装入される工程で崩壊する。このため、本実施形態に係る炭材内装粒子の製造方法では、鉄鉱石粉12および生石灰16にセメント粉20を配合している。これにより、コークス粒子32の周囲に外層として形成される混合粉30の強度が高められ、焼結機へ搬送し、焼結機に装入される工程における炭材内装粒子40の崩壊を抑制できる。
図4は、炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。炭材内装焼結鉱の製造工程100では、図1に示した炭材内装粒子の製造工程10と平行して、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、石灰石、生石灰、製鋼スラグなどのCaO含有原料を含む副原料と、粒径3mm未満の粉コークスや無煙炭などからなる凝結材と、を含む原料50を、ドラムミキサー等の造粒機52で造粒して造粒粒子とする。なお、副原料には、精錬ニッケルスラグ、ドロマイト、蛇紋岩などのMgO含有原料や、珪石などからなるSiO含有原料が含まれてもよい。
次いで、原料50を造粒した造粒粒子に、炭材内装粒子40を配合して焼結原料とする。焼結原料のうち、原料50を造粒した造粒粒子が液相焼結主体の部分となり、炭材内装粒子40が液相生成を抑えた部分となる。焼結原料に対する炭材内装粒子40の配合割合が10質量%以上30質量%以下になるように、造粒粒子に炭材内装粒子40を配合することが好ましい。これにより、焼結原料の通気性が向上し、炭材内装焼結鉱の生産性が向上する。
炭材内装粒子が配合された焼結原料は、下方吸引式焼結機60のサージホッパーに搬入される。焼結原料は、サージホッパーから無端移動式のパレットに装入され、装入層が形成される。装入層は、上方に設置された点火炉によって点火され、下方に設置されたウインドボックスから上方のガスを下方に吸引されることで装入層は順次燃焼、焼結される。装入層は、当該燃焼により発生する燃焼熱で焼結されて焼結ケーキとなる。焼結ケーキは、排鉱部で破砕および整粒され、粒径4mm以上の塊成物が成品の炭材内装焼結鉱として回収される。このようにして製造された炭材内装焼結鉱が高炉70の製鉄原料として使用される。なお、本実施形態における粒径とは、JIS(日本工業規格) Z 8801−1に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径4mm以上とは、JIS Z 8801−1に準拠した公称目開き4mmの篩を用いて篩上に篩分けされる粒径をいう。
本実施形態に係る炭材内装粒子の製造方法で用いるコークス粒子32の粒径は、2mm以上であることが好ましい。粒径が2mm以上のコークス粒子を用いることで、炭材内装粒子を配合した焼結原料を焼結機で焼結する工程でコークス粒子が消失してしまうことを抑制できる。コークス粒子32の粒径は、3mm以上であることがより好ましい。粒径が3mm以上の炭材を用いることで、コークス粒子の消失をさらに抑制できる。
一方、粒径が大きいコークス粒子を用いると、焼結時にコークスから発生する燃焼ガス量が増加し、炭材内装焼結鉱においてコークス粒子を被覆する外層に亀裂が生じる。コークス粒子を被覆する外層に亀裂が生じると炭材内装焼結鉱の強度が大きく低下し、この結果、炭材内装焼結鉱の歩留が大きく低下する。このため、コークス粒子32の粒径は、8mm以下であることが好ましく、6mm以下であることがより好ましい。
また、製造される炭材内装粒子40の粒径は、8mm以上18mm以下であることが好ましい。上述したように、粒径が4mm以上の炭材内装焼結鉱が成品焼結鉱として回収され、粒径4mm未満の焼結鉱は、焼結原料にリサイクル(返鉱)される。また、炭材内装粒子40は、焼結機で焼結すると水分の蒸発や部分的な溶融によって体積が小さくなる。従って、炭材内装粒子40がそのまま焼結されたとしても返鉱にならないように、炭材内装粒子40の粒径は、8mm以上であることが好ましく、10mm以上であることがより好ましい。
一方、炭材内装粒子40に形成されたコークス粒子32の外層の厚さが5mmを超えると、限られた焼結時間内に炭材内装粒子40の全ての外層を焼結することが困難になる。焼結が不十分な部分が炭材内装焼結鉱に存在すると、炭材内装焼結鉱の強度は低下し、炭材内装焼結鉱の歩留が低下する。従って、炭材内装粒子40の外層の厚さは5mm以下であることが好ましく、例えば、コークス粒子32の粒径が8mmであって外層の厚さが5mmである場合の炭材内装粒子の粒径は18mmになる。このため、炭材内装粒子40の粒径は18mm以下であることが好ましい。
本実施形態に係る炭材内装粒子の製造方法では、混合粉にセメント粉20を配合し、これにより製造される炭材内装粒子40の強度を高めている。セメント粉は安価なので、焼結鉱の製造といった大量生産プロセスに用いることで、製造コスト抑制効果が高くなる。
次に、炭材内装粒子40の強度について説明する。炭材内装粒子40が製造されてから下方吸引式焼結機60に装入されるまでに、炭材内装粒子40は、複数の搬送コンベアを乗り継ぐ。このため、炭材内装粒子40は、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐える強度を有することが好ましい。まず、圧潰強度を変えた炭材内装粒子を試験的に製造し、搬送コンベアの乗り継ぎとパレット装入を行った後における炭材内装粒子の崩壊状況を確認した。その結果、炭材内装粒子の圧潰強度を9.8N/個以上にすることで、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐え、下方吸引式焼結機60への直送が可能になることが判明した。なお、本実施形態において、圧潰強度とは、圧縮試験機を用いて、圧縮速度1mm/minで炭材内装粒子を圧縮して測定される最大強度である。
炭材内装粒子の圧潰強度を9.8N/個以上にするには、ヘマタイトを主体鉱物とする鉄鉱石粉であれば、1800〜2000cm/g程度のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%以上となる鉄鉱石粉を使用する必要がある。しかしながら、現在、鉄鉱石市場で流通しているヘマタイト精鉱微粉の多くは、Blaine比表面積が500〜1500cm/g程度、45μm以下となる鉄鉱石粉の含有割合が35〜75質量%程度である。従って、これら原料をこのまま用いても圧潰強度9.8N/個以上の炭材内装粒子を製造できない。
一方、ボールミル等を用いて鉄鉱石粉を粉砕することで、1800cm/g以上のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%以上が達成できるが、設備コストやランニングコストが高くなる。そこで、炭材の周囲に形成される外層の混合粉30にセメント粉20を配合し、炭材内装粒子の圧潰強度を9.8N/個以上にできるか否かを確認するべく、図1に示した炭材内装粒子の製造工程10に従って、炭材内装粒子の製造試験を行った。
炭材内装粒子の製造試験は、以下の手順にて実施した。まず、粒径150μm以下であってBlaine比表面積が1500cm/gの鉄鉱石粉と、粒径75μm以下の生石灰と、粒径150μm以下のセメント粉とを、質量比で95:1:4の割合で配合し、インテンシブミキサーを用いて均一に混合して混合粉とした。この混合粉と、粒径2mm以上8mm以下のコークス粒子を質量比98:2の割合で配合して造粒原料とした。この造粒原料を、ディスクペレタイザーを用いて転動させて造粒原料を造粒し、炭材の周囲に混合粉からなる外層が形成された炭材内装粒子を製造した。造粒原料の造粒に必要な水は、インテンシブミキサーおよびディスクペレタイザー内へ適量噴霧して供給した。
図5は、養生期間と炭材内装粒子の圧潰強度との関係を示すグラフである。図5において、横軸は養生期間(Week)であり、縦軸は炭材内装粒子の圧潰強度(N/個)である。また、図5において、( )内の値は、炭材内装粒子の水分含有割合(質量%)を示し、白丸プロットは圧潰強度の実測値を示し、黒丸プロットは圧潰強度の平均値を示す。図5に示すように、養生後数日で炭材内装粒子の圧潰強度は9.8N/個以上となった。また、養生後に重機やリクレーマーでハンドリングしたとしても崩壊しない圧潰強度である49N/個以上とするには、養生期間を3週間以上にすればよいことがわかった。
この結果から、Blaine比表面積が1800cm/g未満または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%未満の鉄鉱石粉を用いた場合であっても、当該鉄鉱石粉を含む混合粉に対するセメント粉の配合割合が4質量%となるようにセメント粉を配合することで、炭材内装粒子の圧潰強度を9.8N/個以上の圧潰強度を有する炭材内装粒子を製造できることが確認された。一方、セメント粉を配合しない場合には、炭材内装粒子の圧潰強度は2.0〜3.9N/個となり、9.8N/個以上の圧潰強度にできなかった。
次に、混合原料に対するセメント粉の配合割合について説明する。混合原料に対するセメント粉の配合割合を0〜6質量%に変えて炭材内装粒子を製造し、各炭材内装粒子の圧潰強度を測定した。なお、セメント粉の配合割合を増やした場合には、その分だけ、鉄鉱石粉の配合割合を減じて調整した。炭材内装粒子の圧潰強度の測定結果を図6に示す。
図6は、セメント粉の配合割合と炭材内装粒子の圧潰強度との関係を示すグラフである。図6において、横軸は混合粉に対するセメント粉の配合割合(質量%)であり、縦軸はセメント養生を4週間行った後の炭材内装粒子の圧潰強度(N/個)である。図6に示すように、混合粉に対するセメント粉の配合割合を高くすることで、炭材内装粒子の圧潰強度は向上する。図6に示すように、セメント粉の配合割合を1質量%以上にすれば4週間後の圧潰強度は25N/個となる。図5に示すように、3日後強度は、4週間後強度×0.4程度となるので、9.8N/個の圧潰強度は3日後に得られることがわかる。
次に、セメント粉の配合割合を0〜12質量%に変えて製造した炭材内装粒子を含む焼結原料を用いて炭材内装焼結鉱を製造し、各炭材内装焼結鉱の中から炭材内装粒子に由来する部分を抜き出した。炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率をJIS R 1655:2003に規定される方法で測定した。各炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率の測定結果を図7に示す。
図7は、セメント粉の配合割合と炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率との関係を示すグラフである。図7において、横軸は混合粉に対するセメント粉の配合割合(質量%)であり、縦軸は炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率(%)である。図7に示すように、混合粉に対するセメント粉の配合割合を高くすると、炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率は低下する。炭材内装焼結鉱の中の炭材内装粒子に由来する部分の気孔率が高い方が高炉における還元反応性に有利となる。さらに、セメント粉の配合割合を高くすると、高炉原料におけるスラグ分が増えることになり好ましくない。このため、セメント粉の配合割合はなるべく低いことが好ましく、これらのことから、セメント粉の配合割合を10質量%以下とすることが好ましく、6質量%以下とすることがより好ましい。
混合粉に対するセメント粉の配合割合を高めることで炭材内装粒子の圧潰強度を高めることができる。しかしながら、セメント粉の配合割合を高め過ぎると、炭材内装粒子のスラグ成分が増加する。さらに、セメント粉の配合割合を高め過ぎると、セメント粉と水との水和反応で生成する析出物が炭材内装粒子内の気孔を閉塞し、炭材内装粒子の気孔率が低下する。このスラグ成分の増加抑制と、一定以上の気孔率を確保するために、混合粉に対するセメント粉の配合割合は、1質量%以上10質量%以下であることが好ましく、1質量%以上6質量%以下であることがより好ましい。
以上、説明したように、本実施形態に係る炭材内装粒子の製造方法を実施することで、圧潰強度の高い炭材内装粒子を安価に製造できるとともに、焼結機へ搬送され、焼結機に装入される工程において、崩壊する炭材内装粒子を少なくできる。そして、当該炭材内装粒子を含む焼結原料を焼結して炭材内装焼結鉱を製造することで、焼結鉱に還元されやすい焼結鉱組織が多く形成され、炭材内装焼結鉱の還元効率の向上が実現できる。
また、Blaine比表面積が1800cm/g未満または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%未満の鉄鉱石粉を用いた場合であっても、混合粉に対するセメント粉の配合割合が1質量%以上10質量%以下となるようにセメント粉を配合することで、焼結機へ直送できる強度の高い炭材内装粒子を製造できることが確認された。
次に炭材内装粒子を含む焼結原料を焼結して製造された炭材内装焼結鉱の還元反応性を確認した結果を説明する。図8は、実施例および比較例の焼結鉱のRIを示すグラフである。RIは、焼結鉱の被還元性を示す指標であって、JIS M 8713に準拠して測定される値である。
図8に示した比較例では、セメント粉が配合されず、焼結機へ搬送、装入される工程で炭材内装粒子が崩壊したことを模擬し、炭材内装粒子を含まない焼結原料を650t/hの投入速度で焼結機へ投入して焼結鉱を製造した。一方、実施例では、セメント粉が配合され、焼結機へ搬送、装入される工程で炭材内装粒子が崩壊しないとして、炭材内装粒子を内数で約7質量%(約50t/h相当)配合した焼結原料を650t/hの投入速度で焼結機へ投入して焼結鉱を製造した。
図8に示すように、実施例の炭材内装焼結鉱のRIは、比較例の焼結鉱のRIより3%高くなることが確認された。この結果から、本実施形態に係る炭材内装粒子の製造方法を用いて圧潰強度の高い炭材内装粒子を製造することで、焼結機へ搬送、装入される工程で崩壊する炭材内装粒子を少なくでき、これにより、当該炭材内装粒子を含む焼結原料から製造される炭材内装焼結鉱の被還元性を向上できることがわかる。
10 炭材内装粒子の製造工程
12 鉄鉱石粉
14 貯蔵槽
16 生石灰
18 貯蔵槽
20 セメント粉
22 貯蔵槽
24 搬送機
26 水
28 混練機
30 混合粉
32 コークス粒子
34 貯蔵槽
36 搬送機
38 造粒機
40 炭材内装粒子
50 原料
52 造粒機
60 下方吸引式焼結機
70 高炉
100 炭材内装焼結鉱の製造工程

Claims (3)

  1. 粉状の鉄含有原料と、石灰含有原料と、セメント粉と、を混合して混合粉とし、
    前記混合粉と、炭材とを造粒して、炭材核の周囲に前記混合粉からなる外層が形成された炭材内装粒子を製造する、炭材内装粒子の製造方法。
  2. 前記混合粉に対するセメント粉の配合割合が1質量%以上10質量%以下になるように前記セメント粉を配合する、請求項1に記載の炭材内装粒子の製造方法。
  3. 請求項1または請求項2に記載の炭材内装粒子の製造方法で製造された炭材内装粒子を、鉄含有原料と、副原料と、凝結材と、を混合、造粒した造粒粒子に配合して焼結原料とし、
    前記焼結原料を焼結機のパレットに装入して焼結する、炭材内装焼結鉱の製造方法。
JP2018219090A 2017-12-26 2018-11-22 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法 Active JP6885386B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017249329 2017-12-26
JP2017249329 2017-12-26

Publications (2)

Publication Number Publication Date
JP2019116684A true JP2019116684A (ja) 2019-07-18
JP6885386B2 JP6885386B2 (ja) 2021-06-16

Family

ID=67304104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219090A Active JP6885386B2 (ja) 2017-12-26 2018-11-22 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法

Country Status (1)

Country Link
JP (1) JP6885386B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228428A (ja) * 1989-03-02 1990-09-11 Sumitomo Metal Ind Ltd 高炉装入物およびその製造方法
JPH0860257A (ja) * 1994-08-12 1996-03-05 Kobe Steel Ltd 鉄鉱石焼結機操業方法
JP2000192153A (ja) * 1998-12-25 2000-07-11 Nkk Corp 焼結鉱およびその製造方法、ならびに高炉操業方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228428A (ja) * 1989-03-02 1990-09-11 Sumitomo Metal Ind Ltd 高炉装入物およびその製造方法
JPH0860257A (ja) * 1994-08-12 1996-03-05 Kobe Steel Ltd 鉄鉱石焼結機操業方法
JP2000192153A (ja) * 1998-12-25 2000-07-11 Nkk Corp 焼結鉱およびその製造方法、ならびに高炉操業方法

Also Published As

Publication number Publication date
JP6885386B2 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
JP2008214715A (ja) 製鉄用非焼成塊成鉱の製造方法
JP2007284744A (ja) 焼結鉱の製造方法
JP6686974B2 (ja) 焼結鉱の製造方法
JP2013245377A (ja) 焼結鉱の製造方法
JP2014214334A (ja) 焼結鉱の製造方法
JP4781807B2 (ja) 焼結機を用いた製鋼用脱リン剤の製造方法
JP6460293B2 (ja) 焼結鉱の製造方法
JP6734370B2 (ja) 原料処理装置及び原料処理方法
JP6885386B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP6992734B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP6996485B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
WO2012015066A1 (ja) 焼結用原料の製造方法
JP2018141204A (ja) 炭材内装造粒粒子の製造方法
JP6809446B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP6805672B2 (ja) 炭材内装造粒粒子の製造方法および炭材内装塊成鉱の製造方法
JP2014214339A (ja) 焼結鉱の製造方法
CN107674971B (zh) 原料处理方法
JP6887717B2 (ja) 焼結鉱製造用の炭材内装造粒粒子およびそれを用いた焼結鉱の製造方法
JP2009030116A (ja) 高炉用鉱石原料の製造方法
JP5729256B2 (ja) 非焼成溶銑脱りん材および非焼成溶銑脱りん材を用いた溶銑の脱りん方法
JP5517501B2 (ja) 焼結鉱の製造方法
JP5167641B2 (ja) 焼結鉱の製造方法
KR101486869B1 (ko) 소결광 제조용 브리켓, 그 제조 방법 및 이를 이용한 소결광 제조 방법
JP7227053B2 (ja) 焼結鉱の製造方法
JP2003277838A (ja) 高炉用焼結原料に用いる高結晶水鉱石、高炉用焼結原料及びその製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210208

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210217

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250